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This paper studies the appointed-time attitude tracking control of the spacecraft on Special Orthogonal Group, with the attitude forbidden zone, the parameter uncertainties, and the external disturbances. A novel projection function is proposed, such that the normalized boresight vector of the sensitive instrument is mapped to a reduced dimensional vector in the Euclidean space. If the reduced dimensional vector is uniformly bounded, the constraint on the attitude forbidden zone will be satisfied at all the time. By virtue of the designed reduced dimensional vector and the associated auxiliary vectors, a set of vector-based error functions, the appointedtime performance constraints and the according switching law are carefully constructed. The proposed vector-based adaptive control scheme ensures that the spacecraft attitude can satisfy the attitude constraint and appointed-time control performance simultaneously, in the presence of parameter uncertainties and external disturbances. Simulation results show the effectiveness of the designed control scheme.

I. INTRODUCTION

The spacecraft attitude control has attracted much attention in recent years, due to its significance in many space missions [START_REF] Nicosia | Nonlinear observer and output feedback attitude control of spacecraft[END_REF]- [START_REF] Zhao | Command filtered backstepping-based attitude containment control for spacecraft formation[END_REF]. However, it is still challenging to design the attitude control scheme of spacecraft. This is because the state space of the spacecraft attitude constitutes a nonlinear manifold named Special Orthogonal Group SO(3) [START_REF] Bullo | Tracking for fully actuated mechanical systems: a geometric framework[END_REF]- [START_REF] Xiao | Attitude exponential stabilization control of rigid bodies via disturbance observer[END_REF]. Besides, the spacecraft is inevitably subject to the parameter uncertainties and the external disturbances in the space environment [START_REF] Zou | Finite-time attitude control for rigid spacecraft subject to actuator saturation[END_REF]- [START_REF] Ding | Stabilization of the attitude of a rigid spacecraft with external disturbances using finite-time control techniques[END_REF]. The closed-loop stability of the spacecraft attitude control system will be deteriorated if the parameter uncertainties and the external disturbances are overlooked in the controller design. In face of the above problems, several breakthroughs have been made in the field of spacecraft attitude control [START_REF] Kim | Robust backstepping control for slew maneuver using nonlinear tracking function[END_REF]- [START_REF] Liu | Event-triggered sliding mode control for attitude stabilization of a rigid spacecraft[END_REF]. In [START_REF] Bayat | Model predictive sliding control for finite-time three-axis spacecraft attitude tracking[END_REF], a novel nonlinear terminal sliding mode attitude control input and the model predictive control method are Manuscript received ... This work was supported by the NSFC (61327807,61521091, 61520106010, 61134005) and the National Basic Research Program of China (973 Program: 2012CB821200, 2012CB821201). (Corresponding author: Yingmin Jia.)
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Fumitoshi Matsuno is with the Department of Mechanical Engineering and Science, Kyoto University, Kyoto 606-8501, Japan (e-mail: matsuno@me.kyoto-u.ac.jp). combined to achieve the spacecraft attitude tracking, in the presence of the inertia uncertainties, the external disturbances and the actuator constraints. Several fault-tolerant attitude control schemes are also proposed in [START_REF] Han | Adaptive fault-tolerant control of spacecraft attitude dynamics with actuator failures[END_REF]- [START_REF] Sun | Adaptive fault-tolerant constrained control of cooperative spacecraft rendezvous and docking[END_REF], to improve the robustness of the closed-loop system to the actuator faults.

Unfortunately, the above methods [START_REF] Kim | Robust backstepping control for slew maneuver using nonlinear tracking function[END_REF]- [START_REF] Sun | Adaptive fault-tolerant constrained control of cooperative spacecraft rendezvous and docking[END_REF] are derived based upon the attitude parameterization of the rotation matrix on SO [START_REF] Crassidis | Optimal variablestructure control tracking of spacecraft maneuvers[END_REF], like the Euler angles, the quaternion and the modified Rodriguez parameters (MRPs). Notice that the Euler angles and the MRPs encounter singularity problem, and the quaternion-based continuous attitude control scheme suffers from the unwinding phenomenon. Hence, it is of great importance to design the attitude control scheme directly on SO [START_REF] Crassidis | Optimal variablestructure control tracking of spacecraft maneuvers[END_REF], to prevent the above problems. Sanyal et al. [START_REF] Sanyal | Inertia-free spacecraft attitude tracking with disturbance rejection and almost global stabilization[END_REF] design an attitude control scheme on SO [START_REF] Crassidis | Optimal variablestructure control tracking of spacecraft maneuvers[END_REF] to achieve almost global attitude tracking. In [START_REF] Mayhew | Synergistic hybrid feedback for global rigid-body attitude tracking on SO(3)[END_REF]- [START_REF] Berkane | Construction of synergistic potential functions on SO(3) with application to velocity-free hybrid attitude stabilization[END_REF], the hybrid control method is successfully applied into the attitude control on SO [START_REF] Crassidis | Optimal variablestructure control tracking of spacecraft maneuvers[END_REF]. In [START_REF] Sarlette | Autonomous rigid body attitude synchronization[END_REF]- [START_REF] Thunberg | Distributed attitude synchronization control of multi-agent systems with switching topologies[END_REF], the attitude synchronization control schemes are developed on SO [START_REF] Crassidis | Optimal variablestructure control tracking of spacecraft maneuvers[END_REF], for the general time-varying and directed communication graph. In [START_REF] Forbes | Passivity-based attitude control on the special orthogonal group of rigid-body rotations[END_REF], An adaptive passivity-based control scheme is also proposed to realize attitude tracking on SO [START_REF] Crassidis | Optimal variablestructure control tracking of spacecraft maneuvers[END_REF]. In [START_REF] Zou | Velocity-free leader-follower cooperative attitude tracking of multiple rigid bodies on SO(3)[END_REF], a distributed observer is designed on SO [START_REF] Crassidis | Optimal variablestructure control tracking of spacecraft maneuvers[END_REF] to estimate the leader's state information, and the obtained SO(3)-based attitude consensus control scheme can avoid the measurement of the angular velocity.

However, notice that the methods in [START_REF] Kim | Robust backstepping control for slew maneuver using nonlinear tracking function[END_REF]- [START_REF] Zou | Velocity-free leader-follower cooperative attitude tracking of multiple rigid bodies on SO(3)[END_REF] do not consider the attitude constraints of the spacecraft. In fact, the boresight vectors of some sensitive instruments of the spacecraft should prevent direct exposure to the specific celestial objects. Therefore, to meet the according attitude constraints, several effective attitude trajectory planning schemes have been proposed [START_REF] Kjellberg | Discretized constrained attitude pathfinding and control for satellites[END_REF]- [START_REF] Kim | Quadratically constrained attitude control via semidefinite programming[END_REF]. Note that compared with the trajectory planning method [START_REF] Kjellberg | Discretized constrained attitude pathfinding and control for satellites[END_REF]- [START_REF] Kim | Quadratically constrained attitude control via semidefinite programming[END_REF], the potential-functionbased attitude control method can ensure the closed-loop stability. In [START_REF] Lee | Feedback control for spacecraft reorientation under attitude constraints via convex potentials[END_REF], the artificial potential function on the attitude constraints and the according constrained attitude stabilization control scheme are elaborately designed. In [START_REF] Shen | Rigidbody attitude stabilization with attitude and angular rate constraints[END_REF]- [START_REF] Hu | Saturated attitude control for rigid spacecraft under attitude constraints[END_REF], the potential-function-based attitude stabilization control schemes are also developed and are robust to the external disturbances. A hierarchical controller is designed for the spacecraft attitude stabilization in [START_REF] Nicotra | Spacecraft attitude control with nonconvex constraints: an explicit reference governor approach[END_REF], where the attitude constraints and the input saturation are both considered. Note that the methods in [START_REF] Lee | Feedback control for spacecraft reorientation under attitude constraints via convex potentials[END_REF]- [START_REF] Nicotra | Spacecraft attitude control with nonconvex constraints: an explicit reference governor approach[END_REF] are derived on the quaternion. Hence in [START_REF] Kulumani | Constrained geometric attitude control on SO(3)[END_REF], an adaptive constrained attitude control scheme is proposed on SO [START_REF] Crassidis | Optimal variablestructure control tracking of spacecraft maneuvers[END_REF], so that the robustness of the closed-loop system toward the external disturbances is enhanced. In [START_REF] Chen | Continuous constrained attitude regulation of multiple spacecraft on SO(3)[END_REF], a velocity-free constrained attitude synchronization control scheme is also developed on SO [START_REF] Crassidis | Optimal variablestructure control tracking of spacecraft maneuvers[END_REF].

Besides, the results in [START_REF] Sanyal | Inertia-free spacecraft attitude tracking with disturbance rejection and almost global stabilization[END_REF]- [START_REF] Forbes | Passivity-based attitude control on the special orthogonal group of rigid-body rotations[END_REF] and [START_REF] Lee | Feedback control for spacecraft reorientation under attitude constraints via convex potentials[END_REF]- [START_REF] Kulumani | Constrained geometric attitude control on SO(3)[END_REF] only ensure the closed-loop stability and the convergence of the attitude tracking/regulation error. However, the transient and steady control performance of the spacecraft attitude is essential to realize several space missions, and is challenging to be determined a priori [START_REF] Wei | Learning-based adaptive attitude control of spacecraft formation with guaranteed prescribed performance[END_REF]- [START_REF] Huang | Adaptive fixed-time six-DOF tracking control for noncooperative spacecraft fly-around mission[END_REF]. Recently, the prescribed performance control method [START_REF] Bechlioulis | Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance[END_REF]- [START_REF] Wang | RISE-based asymptotic prescribed performance tracking control of nonlinear servo mechanisms[END_REF] has been proposed, where the prescribed performance control problem of the original control system is converted into the stabilization problem of an unconstrained nonlinear control system. Then several quaternion-based and MRPs-based prescribed performance attitude control schemes are designed [START_REF] Luo | Low-complexity prescribed performance control for spacecraft attitude stabilization and tracking[END_REF]- [START_REF] Liu | Appointed-time fault-tolerant attitude tracking control of spacecraft with double-level guaranteed performance bounds[END_REF]. In [START_REF] Peng | The specified finite-time distributed observers-based velocity-free attitude synchronization for rigid bodies on SO(3)[END_REF], a velocity-free prescribed-time attitude synchronization control scheme is derived on SO(3). Zhou et al. [START_REF] Zhou | Robust attitude tracking for rigid spacecraft with prescribed transient performance[END_REF] also put forward an SO(3)-based attitude tracking control scheme with the prescribed control performance, by virtue of a carefullyselected configuration error function. Unfortunately, note that the results in both [START_REF] Lee | Feedback control for spacecraft reorientation under attitude constraints via convex potentials[END_REF]- [START_REF] Kulumani | Constrained geometric attitude control on SO(3)[END_REF] and [START_REF] Peng | The specified finite-time distributed observers-based velocity-free attitude synchronization for rigid bodies on SO(3)[END_REF]- [START_REF] Zhou | Robust attitude tracking for rigid spacecraft with prescribed transient performance[END_REF] cannot satisfy the attitude constraint and achieve prescribed control performance simultaneously. The main difficulty to achieve the SO(3)based constrained prescribed performance attitude tracking control is that SO(3) is not a Euclidean space but a compact manifold without boundary. Additionally, it will become more complex to design the constrained attitude control scheme with prescribed control performance, if the spacecraft is subject to the parameter uncertainties and the external disturbances.

Motivated by above discussion and analysis, this paper aims to study the attitude tracking control of the spacecraft on SO(3) with appointed-time control performance, in the presence of the attitude constraint, the parameter uncertainties and the external disturbances. To meet the attitude constraint and the appointed-time control performance simultaneously, a novel projection function is carefully constructed, such that the boresight vector of the sensitive instrument is mapped to a reduced dimensional vector in the Euclidean space R 2 . If the obtained reduced dimensional vector is uniformly bounded, the spacecraft attitude will keep away from the attitude forbidden zone. Then, based upon the reduced dimensional vector, the according auxiliary vectors are also constructed. Correspondingly, a set of vector-based error functions, the appointedtime performance constraints and the vector-based switched controller are carefully designed. Compared with the control schemes in [START_REF] Lee | Feedback control for spacecraft reorientation under attitude constraints via convex potentials[END_REF]- [START_REF] Kulumani | Constrained geometric attitude control on SO(3)[END_REF] and [START_REF] Peng | The specified finite-time distributed observers-based velocity-free attitude synchronization for rigid bodies on SO(3)[END_REF]- [START_REF] Zhou | Robust attitude tracking for rigid spacecraft with prescribed transient performance[END_REF], by means of the designed attitude control scheme, the spacecraft attitude on SO(3) can meet the attitude constraint and the appointed-time control performance simultaneously. Moreover, to attenuate the effects of the parameter uncertainties and the external disturbances, two dynamic gaining variables are designed and introduced into the control input. Compared with the control schemes in [START_REF] Kulumani | Constrained geometric attitude control on SO(3)[END_REF] and [START_REF] Peng | The specified finite-time distributed observers-based velocity-free attitude synchronization for rigid bodies on SO(3)[END_REF], by virtue of the designed dynamic gaining variables, the proposed adaptive control scheme can be robust toward the parameter uncertainties and the external disturbances, without the need to estimate the uncertain parameters.

The rest of this paper is organized as follows. Section II is the preliminaries, including the notations, the attitude motion modeling of the spacecraft, the description of the attitude constraint, the introduction of the appointed-time performance function and the error transformation, and the problem formulation. Section III is the controller design. Section IV is the simulation results. The conclusions are drawn in Section V.

II. PRELIMINARIES

A. Notations

First, R n and R m×n are the real n-dimensional vector space and the real (m × n)-dimensional matrix space respectively. 0 n ∈ R n is the zero vector, and E n ∈ R n×n is the identity matrix. ∥z∥ is the 2-norm of the vector z ∈ R n . ∥B∥, rank(B), Tr(B) are the 2-norm, the rank and the trace of the matrix B ∈ R n×n respectively. For any matrix B ∈ R m×n with m ≤ n, B † is the pseudo-inverse of the matrix B, and (-zi) exp(zi)+exp(-zi) . Moreover, the Special Orthogonal Group SO( 3) is used to describe the spacecraft attitude and is defined as [START_REF] Sanyal | Inertia-free spacecraft attitude tracking with disturbance rejection and almost global stabilization[END_REF]- [START_REF] Sarlette | Autonomous rigid body attitude synchronization[END_REF] 

B † = B T (BB T ) -1 if B is full row rank. For any vector b = col(b 1 , b 2 , b 3 ) ∈ R 3 , the function S(•) is defined as S(b) = [0, -b 3 , b 2 ; b 3 , 0, -b 1 ; -b 2 , b 1 , 0], and the function Pa(•) is defined as Pa(S(b)) = b. For any vector z = [z i ] n ∈ R n , tanh(z) col(tanh(z 1 ), . . . , tanh(z n )) is the hyperbolic tangent function with tanh(z i ) = exp(zi)-exp
SO(3) { Q ∈ R 3×3 | QT Q = E 3 , det( Q) = 1}. (1)
Based on the Rodrigues ′ formula, the rotation matrix Q ∈ SO(3) can be represented as [START_REF] Zhou | Robust attitude tracking for rigid spacecraft with prescribed transient performance[END_REF] 

Q = E 3 + sin(∥ϕ Q ∥) ∥ϕ Q ∥ S(ϕ Q ) + 1 -cos(∥ϕ Q ∥) ∥ϕ Q ∥ 2 S 2 (ϕ Q ), (2) 
where the vector

ϕ Q ∈ R 3 satisfies ∥ϕ Q ∥ ≤ π.

B. Attitude Motion Modeling of the Spacecraft

First, the inertia frame and the body-attached frame of the spacecraft are denoted by F i and F b respectively. The attitude kinematics and dynamics of the spacecraft are [START_REF] Sanyal | Inertia-free spacecraft attitude tracking with disturbance rejection and almost global stabilization[END_REF]- [START_REF] Sarlette | Autonomous rigid body attitude synchronization[END_REF] 

Q = QS(w), (3a) J ẇ = -S(w)Jw + τ + d, ( 3b 
)
where Q ∈ SO(3) is the spacecraft attitude representing the rotation from

F i to F b expressed in F b , w ∈ R 3 is the angular velocity of the spacecraft in F b , τ ∈ R 3 is the control input, d(t) ∈ R 3
are the time-varying and bounded external disturbances, J ∈ R 3×3 is the inertia matrix, and the matrix S(w) ∈ R 3×3 is defined in Notations. Besides, the following property holds for the spacecraft [START_REF] Han | Adaptive fault-tolerant control of spacecraft attitude dynamics with actuator failures[END_REF]- [START_REF] Huo | Adaptive fuzzy finitetime fault-tolerant attitude control of rigid spacecraft[END_REF]. Property 1: J is positive definite and is bounded, that is, there exist two positive constants λ J,max and λ J,min such that λ J,min E 3 < J < λ J,max E 3 . Besides, the disturbances d(t) are uniformly bounded, meaning that there exists a constant ∆ d > 0 so that ∥d(t)∥ < ∆ d at all the time.

C. Attitude forbidden zone of the spacecraft

Here the spacecraft should satisfy the attitude constraint. To be specific, v b,1 ∈ R 3 denotes the normalized boresight vector of the sensitive instrument in F b , and v r,1 Qv b,1 ∈ R 3 is the according normalized boresight vector in F i . Here the vector v b,1 is constant. Besides, v f ∈ R 3 denotes a normalized vector in F i , which stands for the orientation toward the undesired space object. For the spacecraft, the angle between v r,1 and v f should be larger than θ f ∈ [0, π) which is the minimum allowable angle between these two vectors. Correspondingly, the constraint on the attitude forbidden zone can be formulated as [START_REF] Kim | Quadratically constrained attitude control via semidefinite programming[END_REF] 

v T f v r,1 < cos θ f . ( 4 
)
Then denote

η cos θ f -v T f v r,1 . (5) 
Note that the constraint (4) holds if and only if η(t) > 0.

D. Appointed-time performance function and error transformation

Here consider a general non-negative error function y(t) ≥ 0. y(t) will possess the prescribed control performance, if it satisfies the following constraint at all the time

y(t) < ρ y (t), (6) 
where ρ y (t) = ρ(ρ 0 , ρ ∞ , t 0 , t f , t) is the according appointedtime decaying function and is defined as

ρ(ρ 0 , ρ ∞ , t 0 , t f , t) { ρ0-ρ∞ t 2 f (t 0 + t f -t) 2 + ρ ∞ , t 0 ≤ t < t 0 + t f ; ρ ∞ , t ≥ t 0 + t f , (7) 
with the parameters ρ 0 , ρ ∞ , t 0 and t f satisfying ρ 0 > ρ ∞ > 0 and t f > t 0 ≥ 0. Besides, it is obtained from ( 6)- [START_REF] Bayat | Two-layer terminal sliding mode attitude control of satellites equipped with reaction wheels[END_REF] that

ρ(ρ 0 , ρ ∞ , t 0 , t f , t) = { -2(ρ0-ρ∞) t 2 f (t 0 + t f -t), t 0 ≤ t < t 0 + t f ; 0, t ≥ t 0 + t f . ( 8 
)
Remark 1: The meanings and the effects of the parameters in the appointed-time decaying function ρ y (t) are discussed here [START_REF] Bechlioulis | Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance[END_REF]- [START_REF] Liu | Appointed-time fault-tolerant attitude tracking control of spacecraft with double-level guaranteed performance bounds[END_REF]. First, the parameters t 0 is the activation time of the constraint (6), meaning that from the time t 0 , the variable y(t) should meet the constraint (6) (that is, y(t 0 ) < ρ y (t 0 )). The parameter ρ 0 is the initial value of the decaying function ρ y (t), that is, ρ y (t 0 ) = ρ 0 . The parameters ρ ∞ and t f are the steady value and the setting time interval of the decaying function ρ y (t) respectively, that is, ρ y (t) ≡ ρ ∞ when t ≥ t 0 + t f . Notice that if the constraint (6) holds for any t ≥ t 0 , the function y(t) will fall into the interval [0, ρ ∞ ) with the setting time interval t f s, meaning that sup t≥t0+t f y(t) ≤ ρ ∞ .

In addition, since ρ ∞ < ρ 0 , it is obtained from ( 7)-( 8) that dρy(t) dt < 0 when t 0 ≤ t < t 0 +t f . Therefore the function ρ y (t) monotonically decreases from ρ 0 to ρ ∞ in the time interval [t 0 , t 0 + t f ], and remains at ρ ∞ when t ≥ t 0 + t f . It can be also seen in ( 7) that ρ y (t) ≥ ρ ∞ > 0 for any t ≥ t 0 .

According to the constraint (6), the following prescribed performance error function is designed

W e (y ρ ) -ln(1 -y ρ ), (9) 
where y ρ (t) y(t) ρy(t) , and y ρ (t) ≥ 0 since y(t) ≥ 0 and ρ y (t) > 0. Note that W e = 0 if and only if y ρ = 0, meaning that W e = 0 if and only if y = 0. Besides, W e will tend to positive infinity if y ρ tends to 1, and W e will be finite if y ρ < 1. Moreover, it is obtained from [START_REF] Xiao | Attitude exponential stabilization control of rigid bodies via disturbance observer[END_REF] that

dW e dt = Φ(y ρ )( 1 ρ y ẏ - ρy ρ 2 y y), ( 10 
) if 0 ≤ y ρ < 1,
where

Φ(y ρ ) ∂W e ∂y ρ = 1 1 -y ρ . ( 11 
)
Note that Φ(y ρ ) ≥ 1 and

W e (y ρ ) ≤ Φ(y ρ )y ρ ≤ Φ 2 (y ρ )y ρ , ( 12 
)
if 0 ≤ y ρ < 1 (that is, the constraint ( 6) is satisfied).

E. Problem formulation

In this paper, the spacecraft is controlled to achieve attitude tracking. The reference attitude, the reference angular velocity, and the reference angular acceleration are denoted by ( 

Q d (t) ∈ SO(3), w d (t) ∈ R
) 13 
Q d v b,1 , Q er Q T d Q, wd Q T er w d ,
Qer = Q er S(w er ), (14a) 
J ẇer = -S( wd )J wd -JQ T er a d + S(Jw)w er -(S( wd )J + JS( wd ))w er + τ + d. ( 14b 
)
Then the problem to be studied is provided as follows.

Problem 1: For the spacecraft with the parameter uncertainties and the external disturbances, a control scheme should be designed, so that the spacecraft attitude Q(t) can track the trajectory Q d (t) with the appointed-time control performance, and the attitude constraint (4) can be satisfied at all the time.

Besides, the following lemma will be used later. Lemma 1: For a positive semidefinite matrix P ∈ R 3×3 with rank(P ) ≥ 2, its eigenvalues are λ P,i , i = 1, 2, 3, with λ P,1 ≥ λ P,2 ≥ λ P,3 ≥ 0. Then it follows that Tr(P -P Q) ≥ λP,2+λP, 3 2 Tr(E 3 -E 3 Q) for any rotation matrix Q ∈ SO [START_REF] Crassidis | Optimal variablestructure control tracking of spacecraft maneuvers[END_REF].

The proof of Lemma 1 can be seen in [START_REF] Lu | Projection function design on attitude constraint of the spacecraft[END_REF].

III. CONSTRAINED APPOINTED-TIME ATTITUDE CONTROLLER DESIGN

In this section, a control scheme will be designed to realize constrained attitude tracking. First, v b,2 ∈ R 3 and v b,3 ∈ R 3 denote two unit vectors in F b , so that v b,i , i = 1, 2, 3, are perpendicular to each other, and v b,3 = S(v b,1 )v b,2 . It means that v T b,i v b,j = 0 for any i = 1, 2, 3 and j = 1, 2, 3

with i ̸ = j. Denote v r,2 Qv b,2 , v r,d,2 Q d v b,2 , v r,3 Qv b,3 , v r,d,3 Q d v b,3 , U b [v b,1 , v b,2 , v b,3 ], U r [v r,1 , v r,2 , v r,3 ] and U r,d [v r,d,1 , v r,d,2 , v r,d,3 ]. Note that v r,3 = S(v r,1 )v r,2 , v r,d,3 = S(v r,d,1 )v r,d,2 , ∥v r,i ∥ = ∥v r,d,i ∥ = 1 for any i = 1, 2, 3, U T b U b = U T r U r = U T r,d U r,d = E 3 , Q = U r U T b , and Q d = U r,d U T b . Besides, if v r,1 = v r,d,1 and v r,2 = v r,d,2 , it is obtained that v r,3 = v r,d,3 and accordingly Q = Q d .
This means that if the vectors v r,1 and v r,2 converge to v r,d,1 and v r,d,2 respectively, the attitude Q will converge to Q d . In addition, based upon (3a) and ( 13), the derivatives of v r,i and v r,d,i are

vr,i = QS(w)v b,i = -S(v r,i )Qw, (15a) vr,d,i = Q d S(w d )v b,i = -S(v r,d,i )Q d w d .
(15b)

A. The projection function on the attitude constraint

In this paper, the spacecraft attitude should meet the constraint ( 4) at all the time, and besides the attitude tracking error should possess the appointed-time control performance. However, the state space of the spacecraft attitude, that is, SO(3), is not an Euclidean space like R 3 , which complicates the control scheme design to meet the constraint (4) and the appointed-time control performance simultaneously. Hence, a novel reduced dimensional vector x ∈ R 2 is designed as

x Pr(v r,1 ), (16) 
where

Pr(v r,1 ) cos θ f + 1 η N f v r,1 , (17) 
is the according projection function, η is defined in [START_REF] Zhao | Command filtered backstepping-based attitude containment control for spacecraft formation[END_REF], and the matrix

N f [v T p,1 ; v T p,2 ] ∈ R 2×3 satisfies ∥v p,1 ∥ = ∥v p,2 ∥ = 1, v T p,1 v p,2 = 0 and S(v p,1 )v p,2 = v f . It is obtained from the definition of N f that N f N T f = E 2 and N f v f = 0 2 .
Similarly, we can also obtain the reduced dimensional vector associated with v r,d,1 , that is,

x d Pr(v r,d,1 ) ∈ R 2 . ( 18 
)
In addition, for the vectors v r,1 and v r,d,1 , and the reduced dimensional vectors x and x d , the following lemmas hold.

Lemma 2: For the vectors v r,1 and x, if v r,1 satisfies the constraint (4), x will be bounded.

The proof of Lemma 2 can be seen in [START_REF] Lu | Projection function design on attitude constraint of the spacecraft[END_REF]. Lemma 3: For v r,1 (t) and x(t), if v r,1 (0) satisfies the constraint (4) and x(t) is uniformly bounded in [0, t), where 0 < t ≤ +∞, then the constraint (4) always holds in [0, t).

The proof of Lemma 3 can be seen in [START_REF] Lu | Projection function design on attitude constraint of the spacecraft[END_REF].

Lemma 4: If both v r,1 and v r,d,1 satisfy the constraint (4), then ∥v r,1 -v r,d,1 ∥ ≤ ∥x -x d ∥ will hold. Moreover, ∥v r,1 - v r,d,1 ∥ = ∥x -x d ∥ if and only if v r,1 = v r,d,1 .
The proof of Lemma 4 can be seen in [START_REF] Lu | Projection function design on attitude constraint of the spacecraft[END_REF]. Note that Q d (t) satisfies the constraint (4) at all the time, and therefore it follows from Lemma 2 that x d (t) is uniformly bounded at all the time. Moreover, in view of (15a) and ( 16)-( 17), the derivative of x is

ẋ = - 1 η 2 Gw, (19) 
where

G (cos θ f + 1)N f (ηE 3 + v r,1 v T f )S(v r,1 )Q. ( 20 
)
Accordingly, the following lemma holds for G ∈ R 2×3 . Lemma 5: The matrix G is bounded. Besides, if the constraint ( 4) is satisfied, the matrix GG T will be positive definite. This means that there exist two positive constants λ G,min and

λ G,max such that λ G,min E 2 ≤ GG T ≤ λ G,max E 2 .
The proof of Lemma 5 can be seen in [START_REF] Lu | Projection function design on attitude constraint of the spacecraft[END_REF].

Similarly, it is obtained from (15b) and ( 17)-( 18) that

ẋd = - 1 η 2 d G d w d , ( 21 
)
where

η d cos θ f -v T f v r,d,1 and G d (cos θ f + 1)N f (η d E 3 + v r,d,1 v T f )S(v r,d,1 )Q d .
Based upon Lemma 5, it follows that the matrix G d (t) is uniformly bounded, and since η d (t) > 0 at all the time and w d (t) is uniformly bounded, it is further obtained that ẋd (t) is also uniformly bounded.

Remark 2: It should be noted that based upon the projection function [START_REF] Kim | Robust backstepping control for slew maneuver using nonlinear tracking function[END_REF], the unit vectors v r,1 (t) and v r,d,1 (t) are mapped to the reduced dimensional vectors x(t) and x d (t) in the Euclidean space R 2 respectively. Note that if x(t) is uniformly bounded and the initial attitude Q(0) meets the constraint (4), it is ensured in Lemma 3 that the attitude constraint (4) is satisfied at all the time. Besides, since x d (t) is uniformly bounded, it further follows that in order to satisfy the constraint (4) at all the time, the control scheme is only required to ensure the uniformly boundedness of ∥x(t) -x d (t)∥, if v r,1 (0) meets the constraint (4).

B. Vector-based error functions and appointed-time performance constraints

First, denote

x er x -x d , ( 22 
)
as the tracking error with respect to x d . Then the following auxiliary vectors are introduced

vr,d,2 ṽr,d,2 ∥ṽ r,d,2 ∥ , (23a) vr,d,3 ṽr,d,3 ∥ṽ r,d,3 ∥ , ( 23b 
)
where

ṽr,d,2 S(v r,1 )v r,d,2 , (24a) ṽr,d,3 (E 3 -v r,1 v T r,1 )v r,d,2 . ( 24b 
)
Based upon (23a)-( 23b) and ( 24a)

-(24b), it is further obtained that v T r,1 ṽr,d,2 = v T r,1 vr,d,2 = v T r,1 ṽr,d,3 = v T r,1 vr,d,3 = ṽT r,d,2 ṽr,d,3 = vT r,d,2 vr,d,3 = 0. Since v T r,1 vr,d,2 = v T r,1 vr,d,3 = 0, S(v r,2 )v r,1 = -v r,3 and ∑ 3 i=1 (ź T v r,i ) 2 = 1 for any unit vector ź ∈ R 3 , it is obtained that (v T r,d,2 S(v r,2 )v r,1 ) 2 = (v T r,d,2 v r,3 ) 2 + (v T r,1 vr,d,2 ) 2 = 1 -(v T r,d,2 v r,2 ) 2 , (25a) (v T r,d,3 S(v r,2 )v r,1 ) 2 = (v T r,d,3 v r,3 ) 2 + (v T r,1 vr,d,3 ) 2 = 1 -(v T r,d,3 v r,2 ) 2 . (25b)
In view of (15a)-( 15b) and (23a)-(23b), the derivatives of vb,d,2 and vb,d,3 are

vr,d,2 = 1 ∥ṽ r,d,2 ∥ Ψ 2 (-S(v r,1 )S(v r,d,2 )Q d w d + S(v r,d,2 )S(v r,1 )Qw), (26a) 
vr,d,3 = 1 ∥ṽ r,d,3 ∥ Ψ 3 (-(E 3 -v r,1 v T r,1 )S(v r,d,2 )Q d w d + Ψ 4 Qw). ( 26b 
)
where

Ψ 2 E 3 -vr,d,2 vT r,d,2 , Ψ 3 E 3 -vr,d,3 vT r,d,3 and Ψ 4 (v T r,1 v r,d,2 E 3 + v r,1 v T r,d,2 )S(v r,1
). Then, the following vector-based error functions are constructed

φ 1 1 2 ∥x er ∥ 2 , ( 27a 
)
φ 2 1 -vT r,d,2 v r,2 , ( 27b 
)
φ 3 1 -vT r,d,3 v r,2 . ( 27c 
)
On one hand, the appointed-time performance constraint on φ 1 is designed as

φ 1 (t) < ρ 1 (t), (28) 
where

ρ 1 (t) ρ(ρ 0,1 , ρ ∞,1 , 0, t f,1 , t) with 0 < ρ ∞,1 < min{ρ 0,1 , 1} and t f,1 > 0.
Here the parameter ρ 0,1 is designed such that the constraint (28) holds at the initial instant.

On the other hand, two time instants t s and tf are designed as

t c { t f,1 , φ 3 (t f,1 ) ≤ 2 -ϵ 1 ; t f,1 + t f,2 , φ 3 (t f,1 ) > 2 -ϵ 1 , ( 29a 
) tf t c + t f,3 , (29b) 
where

0 < ϵ 1 < 1, t f,2 > 0 and t f,3 > 0. It can be seen in (29a)-(29b) that t c = t f,1 and tf = t f,1 +t f,3 when φ 3 (t f,1 ) ≤ 2 -ϵ 1 , and t c = t f,1 + t f,2 and tf = t f,1 + t f,2 + t f,3 when φ 3 (t f,1 ) > 2 -ϵ 1 . In view of (29a), if φ 3 (t f,1 ) > 2 -ϵ 1 and accordingly t c = t f,1 + t f,2 , the following appointed- time performance constraint on φ 2 is constructed in the time interval t ∈ [t f,1 , t f,1 + t f,2 ) φ 2 (t) < ρ 2 (t), (30) 
where

ρ 2 (t) = ρ(ρ 0,2 , ρ ∞,2 , t f,1 , t f,2 , t) with 0 < ρ ∞,2 < 1 - √ 1 -(1 -ϵ 1 ) 2 and 1 + √ 1 -(1 -ϵ 1 ) 2 ≤ ρ 0,2 < 2.
Then, when t ≥ t c , the following appointed-time performance constraint on φ 3 is constructed in the time interval [t c , +∞)

φ 3 (t) < ρ 3 (t), (31) 
where

ρ 3 (t) = ρ(ρ 0,3 , ρ ∞,3 , t c , t f,3 , t), with 0 < ρ ∞,3 < 1 and 2 -ϵ 1 < ρ 0,3 < 2.
In addition, the following lemma holds for φ 1 (t) and φ 3 (t). [START_REF] Crassidis | Optimal variablestructure control tracking of spacecraft maneuvers[END_REF] , the attitude tracking error Q er will be in the set

Lemma 6: If φ 1 < ρ ∞,1 and φ 3 < ρ ∞,
Θ R {Q er ∈ SO(3) | Tr(E 3 -Q er ) < 4ρ ∞,1 + 2ρ ∞,3 }, ( 32 
)
which is a small neighborhood of the equilibrium E 3 .

The proof of Lemma 6 can be seen in Appendix A. Remark 3: Here the choice of the parameter ρ ∞,1 is discussed as follows. On one hand, if ρ ∞,1 < ρ 0,1 , it follows from (8) that ρ1 (t) < 0 when t ∈ [0, t f,1 ), and ρ1 (t) = 0 when t ≥ t f,1 . This means that the parameter ρ ∞,1 should be selected as ρ ∞,1 < ρ 0,1 , so that the function ρ 1 (t) is strictly monotonically decreasing in the time interval [0, t f,1 ), and remains its value when

t ≥ t f,1 (that is, ρ 1 (t) = ρ ∞,1 when t ≥ t f,1 ).
On the other hand, if φ 1 (t) meets the constraint [START_REF] Sun | Adaptive fault-tolerant constrained control of cooperative spacecraft rendezvous and docking[END_REF], it follows from Lemma 4 that

1 -v T r,d,1 (t)v r,1 (t) < ρ 1 (t). Especially, if φ 1 (t) < ρ ∞,1 , it also follows from Lemma 4 that 1 -v T r,d,1 (t)v r,1 (t) = 1 2 ∥v r,1 (t) -v r,d,1 (t)∥ 2 < ρ ∞,1 . (33) Accordingly, if the parameter ρ ∞,1 is set as ρ ∞,1 < 1, it can be obtained from (33) that v T r,d,1 (t)v r,1 (t) > 1 -ρ ∞,1 > 0. (34) 
Besides, according to (24a)-(24b), it is obtained that

∥ṽ r,d,2 (t)∥ 2 = ∥ṽ r,d,3 (t)∥ 2 = 1 -(v T r,1 (t)v r,d,2 (t)) 2 . ( 35 
)
Notice that źT U r,d U T r,d ź = ∑ 3 i=1 (v T r,d,i ź) 2 = 1 for any unit vector ź ∈ R 3 . Accordingly, from (34)- [START_REF] Zou | Velocity-free leader-follower cooperative attitude tracking of multiple rigid bodies on SO(3)[END_REF], it follows that

∥ṽ r,d,2 (t)∥ 2 =∥ṽ r,d,3 (t)∥ 2 =(v T r,1 (t)v r,d,1 (t)) 2 + (v T r,1 (t)v r,d,3 (t)) 2 ≥(v T r,1 (t)v r,d,1 (t)) 2 >(1 -ρ ∞,1 ) 2 >0, (36) if ρ ∞,1 < 1. Since ∥ṽ r,d,2 (t)∥ = ∥ṽ r,d,3 (t)∥ > (1 -ρ ∞,1 ) > 0 when ρ ∞,1 < 1,
the vectors vr,d,2 (t) (23a) and vr,d,3 (t) (23b) can be obtained. This means that the parameter ρ ∞,1 should be selected as ρ ∞,1 < 1, in order to obtain the vectors vr,d,2 (t) (23a) and vr,d,3 (t) (23b) when φ 1 (t) < ρ ∞,1 . Based upon the above analysis, it is obtained that the parameter ρ ∞,1 should be chosen as ρ ∞,1 < min{ρ 0,1 , 1}.

Remark 4: It should be noticed that if the constraint (28) holds at all the time, it is obtained from Remark 2 that the attitude constraint ( 4) is satisfied at all the time. Besides, if the constraint [START_REF] Sun | Adaptive fault-tolerant constrained control of cooperative spacecraft rendezvous and docking[END_REF] holds at all the time, it follows that that Eq. ( 33) holds when t ≥ t f,1 . From [START_REF] Thunberg | Distributed attitude synchronization control of multi-agent systems with switching topologies[END_REF], it further follows that

∥v r,1 (t) -v r,d,1 (t)∥ < √ 2ρ ∞,1 , (37) 
when t ≥ t f,1 . It can be seen in ( 37) that the smaller the parameter ρ ∞,1 is, the smaller the error between the vectors v r,1 (t) and v r,d,1 (t) becomes when t ≥ t f,1 . Remark 5: Here, the choice of the range of the parameters ρ 0,2 , ρ ∞,2 , ρ 0,3 and ρ ∞,3 is discussed as below. First, when φ 3 (t f,1 ) ≤ 2 -ϵ 1 , it follows from (29a) and ( 31) that t c = t f,1 and accordingly the error function φ 3 (t) should obey the constraint (31) for any t ≥ t f,1 . Hence, the parameter ρ 0,3 is set as ρ 0,3 > 2-ϵ 1 , meaning that φ 3 (t f,1 ) ≤ 2-ϵ 1 < ρ 0,3 and the constraint [START_REF] Berkane | Construction of synergistic potential functions on SO(3) with application to velocity-free hybrid attitude stabilization[END_REF] [START_REF] Crassidis | Optimal variablestructure control tracking of spacecraft maneuvers[END_REF] , meaning that the requirement on the monotonic decrease of the function ρ 3 (t) can be satisfied.

is satisfied when t = t f,1 . The parameter ρ ∞,3 is then set as 0 < ρ ∞,3 < 1 such that ρ ∞,3 < 1 < 2 -ϵ 1 < ρ 0,
Besides, when φ

3 (t f,1 ) = 1 -vT r,d,3 (t f,1 )v r,2 (t f,1 ) > 2 -ϵ 1 , it follows from (29a) that t c = t f,1 + t f,2 . S- ince the parameter ρ 0,2 is set as 1 + √ 1 -(1 -ϵ 1 ) 2 ≤ ρ 0,2 < 2, it follows from v T r,1 vr,d,2 = v T r,1 vr,d,3 = vT r,d,2 vr,d,3 = v T r,1 v r,2 = 0 and vT r,d,3 (t f,1 )v r,2 (t f,1 ) < -1 + ϵ 1 that φ 2 (t f,1 ) ≤ 1 + √ (v T r,d,2 (t f,1 )v r,2 (t f,1 )) 2 = 1 + √ 1 -(v T r,d,3 (t f,1 )v r,2 (t f,1 )) 2 < 1 + √ 1 -(1 -ϵ 1 ) 2 ≤ ρ 0,2 , meaning that the constraint (30) is satisfied when t = t f,1 . In addition, since the parameter ρ ∞,2 is set as ρ ∞,2 < 1 - √ 1 -(1 -ϵ 1 ) 2 , if φ 2 (t c ) = 1-v T r,d,2 (t c )v r,2 (t c ) < ρ ∞,2 , it is similarly obtained from v T r,1 vr,d,2 = v T r,1 vr,d,3 = vT r,d,2 vr,d,3 = v T r,1 v r,2 = 0 that φ 3 (t c ) ≤ 1 + √ (v T r,d,3 (t c )v r,2 (t c )) 2 = 1+ √ 1 -(v T r,d,2 (t c )v r,2 (t c )) 2 < 2-ϵ 1 < ρ 0,3
. This means that if the constraint ( 30) is satisfied when t = t c , the according constraint (31) will also hold when t = t c .

In all, the range of the parameter ρ 0,2 is set to ensure that the constraint (30) holds when t = t f,1 and φ 3 (t f,1 ) > 2 -ϵ 1 , the ranges of the parameters ρ 0,3 and ρ ∞,2 are set to guarantee that the constraint (31) holds when t = t c , and the range of the parameter ρ ∞,3 is set to ensure that the function ρ 3 (t) is monotonically decreasing.

Remark 6: If the constraint [START_REF] Sun | Adaptive fault-tolerant constrained control of cooperative spacecraft rendezvous and docking[END_REF] holds at all the time, and the constraint (31) always holds when t ≥ t c , it follows that φ 1 (t) < ρ ∞,1 and φ 3 (t) < ρ ∞,3 when t ≥ tf . Hence, to realize the desired control performance, the control scheme should be designed so that the constraint [START_REF] Sun | Adaptive fault-tolerant constrained control of cooperative spacecraft rendezvous and docking[END_REF] holds at all the time, and the constraint (31) always holds when t ≥ t c .

Besides, based on Remark 1, if the parameters ρ ∞,i , i = 1, 2, 3, get larger (smaller), the steady values of the functions ρ i (t), i = 1, 2, 3, will be larger (smaller), the size of the residual set Θ R (32) will be larger (smaller), and the steadystate error of the tracking error R er (t) will also be larger (smaller). In addition, based on Remark 1, if the parameters t f,i , i = 1, 2, 3, get larger (smaller), the setting time intervals of the functions ρ i (t), i = 1, 2, 3, will be larger (smaller), and the setting time tf (29b) of the tracking error R er (t) will also be larger (smaller).

C. Virtual controller design

First, based upon the error functions (27a)-(27c), and the appointed-time performance constraints ( 28) and ( 30)- [START_REF] Berkane | Construction of synergistic potential functions on SO(3) with application to velocity-free hybrid attitude stabilization[END_REF], the virtual attitude controller is designed as

w c = w c,1 + λ c v b,1 , ( 38 
)
where

w c,1 k c,1 η 2 G † Φ 1 x er , (39a) λ c    0, 0 ≤ t < t f,1 ; -k c,2 Φ 2 vT r,d,2 S(v r,2 )v r,1 , t f,1 ≤ t < t c , -k c,3 Φ 3 vT r,d,3 S(v r,2 )v r,1 , t ≥ t c . (39b) In (39a)-(39b), k c,1 > 0, k c,2 > 0, k c,3 > 0, Φ 1 Φ( φ1 ρ1 ), Φ 2 Φ( φ2 ρ2 ), Φ 3 Φ( φ3 ρ3
), G † is the pseudo inverse of the matrix G, and η is defined in [START_REF] Zhao | Command filtered backstepping-based attitude containment control for spacecraft formation[END_REF].

Correspondingly, the sliding variable is denoted by

w r w er -w c . ( 40 
)
When t ≥ t f,1 , it is obtained from ( 38), [START_REF] Lee | Feedback control for spacecraft reorientation under attitude constraints via convex potentials[END_REF], w er = w -wd and v r,1 = Qv b,1 that

S(v r,1 )Qw = S(v r,1 )Q(w r + wd + w c,1 + λ c v b,1 ) = S(v r,1 )Q(w r + wd + w c,1 ). (41) 
Then, for the error function φ 1 , the associated Lyapunov function candidate is constructed as

V k,1 W e ( φ1 ρ1
), where the function W e (•) is defined in [START_REF] Xiao | Attitude exponential stabilization control of rigid bodies via disturbance observer[END_REF]. According to ( 10)-( 11), ( 19)-( 20), ( 22), (27a), ( 38)-(39a), ( 40)-( 41), Lemma 5 and the Young's inequality, if the constraint ( 28) is satisfied, the derivative of V k,1 is scaled as

Vk,1 = - k c,1 Φ 2 1 η 4 ρ 1 ∥x er ∥ 2 - Φ 1 η 2 ρ 1 x T er Gw r - Φ 1 ρ 1 x T er ẋd - ρ1 Φ 1 2ρ 2 1 ∥x er ∥ 2 - Φ 1 η 2 ρ 1 x T er GQ T er w d ≤ - 5k c,1 Φ 2 1 8η 4 ρ 1 ∥x er ∥ 2 + 4λ G,max k c,1 ρ 1 ∥w r ∥ 2 + 4λ G,max k c,1 ρ 1 ∥w d ∥ 2 + 2η 4 k c,1 ρ 1 ∥ ẋd ∥ 2 + ρ2 1 η 4 2k c,1 ρ 3 1 ∥x er ∥ 2 . (42) Besides, when φ 3 (t f,1 ) > 2 -ϵ 1 , the Lyapunov function candidate on φ 2 is set in [t f,1 , t f,1 + t f,2 ) as V k,2 W e ( φ2 ρ2
). Based on ( 10)-( 11), (15a), (25a), (26a), (27b), ( 38), (39a)-(39b), ( 40)-( 41) and v r,1 = Qv b,1 , if the constraints ( 28) and [START_REF] Mayhew | Synergistic hybrid feedback for global rigid-body attitude tracking on SO(3)[END_REF] 

hold in [t f,1 , t f,1 + t f,2 ), the derivative of V k,2 is Vk,2 = Φ 2 ρ 2 vT r,d,2 S(v r,2 )Q(w r + wd ) - k c,2 Φ 2 2 ρ 2 (1 -(v T r,d,2 v r,2 ) 2 ) -Φ 2 ρ2 ρ 2 2 (1 -vT r,d,2 v r,2 ) + k c,1 Φ 2 ρ 2 η 2 vT r,d,2 S(v r,2 )QG † Φ 1 x er + Φ 2 ρ 2 ∥ṽ r,d,2 ∥ v T r,2 Ψ 2 S(v r,1 )S(v r,d,2 )Q d w d - Φ 2 ρ 2 ∥ṽ r,d,2 ∥ v T r,2 Ψ 2 S(v r,d,2 )S(v r,1 )Q(w r + wd ) - k c,1 Φ 1 Φ 2 ρ 2 η 2 ∥ṽ r,d,2 ∥ v T r,2 Ψ 2 S(v r,d,2 )S(v r,1 )QG † x er . ( 43 
)
Based on the Young's inequality, [START_REF] Kjellberg | Discretized constrained attitude pathfinding and control for satellites[END_REF] and Lemma 5, the derivative of V k,2 [START_REF] Nicotra | Spacecraft attitude control with nonconvex constraints: an explicit reference governor approach[END_REF] is scaled as

Vk,2 ≤ - k c,2 Φ 2 2 4ρ 2 (1 -(v T r,d,2 v r,2 ) 2 ) + c 1 ρ 2 ∥w r ∥ 2 + c 2 Φ 2 1 ρ 2 η 4 ∥x er ∥ 2 + c 3 ρ 2 ∥w d ∥ 2 + 2 ρ2 2 (1 -vT r,d,2 v r,2 ) k c,2 ρ 3 2 (1 + vT r,d,2 v r,2 ) , ( 44 
)
if the constraints ( 28) and ( 30) hold, where c

1 4 kc,2 ( 1 (1-ρ∞,1) 2 + 1), c 2 2k 2 c,1 kc,2λG,min (1 + 1 (1-ρ∞,1) 2 ) and c 3 2 kc,2 (2 + 3 (1-ρ∞,1) 2 ).
Additionally, in the time interval [t c , +∞), the Lypuanov function candidate on φ 3 is constructed as V k, [START_REF] Crassidis | Optimal variablestructure control tracking of spacecraft maneuvers[END_REF] W e ( φ3 ρ3 ). According to ( 10)-( 11), (15a), (25b), (26b), (27c), ( 38), (39a)-(39b), ( 40), [START_REF] Shen | Rigidbody attitude stabilization with attitude and angular rate constraints[END_REF] and v r,1 = Qv b,1 , if the constraints ( 28) and [START_REF] Berkane | Construction of synergistic potential functions on SO(3) with application to velocity-free hybrid attitude stabilization[END_REF] 

hold in [t c , +∞), the derivative of V k,3 is Vk,3 = Φ 3 ρ 3 vT r,d,3 S(v r,2 )Q(w r + wd ) -Φ 3 ρ3 ρ 2 3 (1 -vT r,d,3 v r,2 ) - k c,3 Φ 2 3 ρ 3 (1 -(v T r,d,3 v r,2 ) 2 ) + k c,1 Φ 1 Φ 3 ρ 3 η 2 vT r,d,3 S(v r,2 )QG † x er - Φ 3 ρ 3 ∥ṽ r,d,3 ∥ v T r,2 Ψ 3 Ψ 4 Q(w r + wd ) - k c,1 Φ 1 Φ 3 ρ 3 ∥ṽ r,d,3 ∥η 2 v T r,2 Ψ 3 Ψ 4 QG † x er + Φ 3 ρ 3 ∥ṽ r,d,3 ∥ v T r,2 Ψ 3 (E 3 -v r,1 v T r,1 )S(v r,d,2 )Q d w d . ( 45 
)
Notice that

Ψ T 4 Ψ 4 ≤ 4(v T r,1 v r,d,3 ) 2 E 3 ≤ 4E 3 . ( 46 
)
Based on the Young's inequality, [START_REF] Kjellberg | Discretized constrained attitude pathfinding and control for satellites[END_REF], [START_REF] Wei | Learning-based adaptive attitude control of spacecraft formation with guaranteed prescribed performance[END_REF] and Lemma 5, the derivative of V k,3 [START_REF] Chen | Continuous constrained attitude regulation of multiple spacecraft on SO(3)[END_REF] is scaled as

Vk,3 ≤ - k c,3 Φ 2 3 4ρ 3 (1 -(v T r,2 vr,d,3 ) 2 ) + c 4 ρ 3 ∥w r ∥ 2 + c 5 Φ 2 1 ρ 3 η 4 ∥x er ∥ 2 + c 6 ρ 3 ∥w d ∥ 2 + 2 ρ2 3 (1 -vT r,d,3 v r,2 ) k c,3 ρ 3 3 (1 + vT r,d,3 v r,2 ) , ( 47 
)
if the constraints ( 28) and (31) hold, where c 4 Moreover denote

V k    V k,1 , 0 ≤ t < t f,1 ; V k,1 + c 7 V k,2 , t f,1 ≤ t < t c ; V k,1 + c 8 V k,3 , t ≥ t c , (48) 
where c 7 kc,1ρ∞,2 8c2ρ0,1 and c 8 kc,1ρ∞,3 8c5ρ0,1 . On one hand, when t f,1 ≤ t < t c , it is obtained from (8) that ρ1 (t) = 0 and, together with [START_REF] Hu | Saturated attitude control for rigid spacecraft under attitude constraints[END_REF] and [START_REF] Kulumani | Constrained geometric attitude control on SO(3)[END_REF], that the derivative of

V k = V k,1 + c 7 V k,2 is scaled as Vk ≤ - k c,1 Φ 2 1 2η 4 ρ 1 ∥x er ∥ 2 - k c,2 c 7 Φ 2 2 4ρ 2 (1 -(v T r,2 vr,d,2 ) 2 ) + ( 4λ G,max k c,1 ρ 1 + c 1 c 7 ρ 2 )∥w r ∥ 2 + 2η 4 k c,1 ρ 1 ∥ ẋd ∥ 2 + ( c 3 c 7 ρ 2 + 4λ G,max k c,1 ρ 1 )∥w d ∥ 2 + 2c 7 ρ2 2 (1 -v T r,2 vr,d,2 ) k c,2 ρ 3 2 (1 + v T r,2 vr,d,2 ) , ( 49 
)
if the constraints ( 28) and ( 30) hold. On the other hand, if t ≥ t c , it can be also obtained from (8) that ρ1 (t) = 0. Hence, based upon ( 42) and ( 47), if the constraints ( 28) and ( 31) hold, the derivative of

V k = V k,1 + c 8 V k,3 is bounded as Vk ≤ - k c,1 Φ 2 1 2η 4 ρ 1 ∥x er ∥ 2 - k c,3 c 8 Φ 2 3 4ρ 3 (1 -(v T r,2 vr,d,3 ) 2 ) + ( 4λ G,max k c,1 ρ 1 + c 4 c 8 ρ 3 )∥w r ∥ 2 + 2η 4 k c,1 ρ 1 ∥ ẋd ∥ 2 + ( c 6 c 8 ρ 3 + 4λ G,max k c,1 ρ 1 )∥w d ∥ 2 + 2c 8 ρ2 3 (1 -vT r,d,3 v r,2 ) k c,3 ρ 3 3 (1 + vT r,d,3 v r,2 ) . ( 50 
)

D. Control Input Design

Based upon the designed virtual controller ( 38) and (39a)-(39b), the actual control input will be put forward in this subsection. First, in view of (14b) and [START_REF] Lee | Feedback control for spacecraft reorientation under attitude constraints via convex potentials[END_REF], it is obtained that J ẇr = (S(Jw) -S( wd )J -JS( wd ))w r + τ + Ξ 1 , [START_REF] Luo | Low-complexity prescribed performance control for spacecraft attitude stabilization and tracking[END_REF] where Ξ 1 = -J ẇc -S( wd )J wd -JQ T er a d + S(Jw)w c -(S( wd )J + JS( wd ))w c + d.

(

) 52 
The Lyapunov function candidate on w r is V w,r = 1 2 w T r Jw r , and in view of [START_REF] Luo | Low-complexity prescribed performance control for spacecraft attitude stabilization and tracking[END_REF], and its derivative is

Vw,r = w T r τ + w T r Ξ 1 . ( 53 
)
Notice that Ξ 1 (t) is the term on the uncertain inertia parameters and the external disturbances, and in view of Property 1 and the Young's inequality, it follows that

w T r Ξ 1 ≤ λ 2 J,max 2ϵ 2 ∥w d ∥ 2 ∥w c ∥ 2 ∥w r ∥ 2 + λ 2 J,max 4ϵ 2 ∥ ẇc ∥ 2 ∥w r ∥ 2 + λ 2 J,max 4ϵ 2 ∥w∥ 2 ∥w c ∥ 2 ∥w r ∥ 2 + 3ϵ 2 -w T r S( wd )J wd -w T r JQ T er a d + w T r d. ( 54 
)
Correspondingly, it follows from ( 53)-( 54) that Vw,r ≤w T r (-S( wd )J wd -JQ T er

a d + d) + 3ϵ 2 + λ 2 J,max 2ϵ 2 ∥w d ∥ 2 ∥w c ∥ 2 ∥w r ∥ 2 + λ 2 J,max 4ϵ 2 ∥ ẇc ∥ 2 ∥w r ∥ 2 + λ 2 J,max 4ϵ 2 ∥w∥ 2 ∥w c ∥ 2 ∥w r ∥ 2 + w T r τ, ( 55 
)
where ϵ 2 > 0. Owing to the uniform boundedness of w d (t) and a d (t), it follows that there exist two constants ∆ 1 > 0 and ∆ 2 > 0 such that ∥ -S( wd (t))J wd (t)

-JQ T er (t)a d (t) + d(t)∥ ≤ λ J,max ∥w d (t)∥ 2 + λ J,max ∥a d (t)∥ + ∥d(t)∥ < ∆ 1 and λ 2 J,max 2ϵ2 ∥w d (t)∥ 2 + λ 2 J,max 4ϵ2 < ∆ 2 .
Correspondingly, based upon the relation ∥w r ∥ ≤ w T r tanh( 1 ϵ3 w r ) + 3ϵ 3 δ 1 with ϵ 3 > 0 and δ 1 = 0.2785 [START_REF] Zhang | Robust adaptive integrated translation and rotation control of a rigid spacecraft with control saturation and actuator misalignment[END_REF], it is further obtained from (55) that Vw,r ≤w T r tanh(

1 ϵ 3 w r )∆ 1 + 3ϵ 3 δ 1 ∆ 1 + w T r τ + 3ϵ 2 + ∆ 2 (∥ ẇc ∥ 2 + ∥w c ∥ 2 + ∥w c ∥ 2 ∥w∥ 2 )∥w r ∥ 2 . ( 56 
)
Then, the control input is designed as

τ = -k w,c w r -r u,1 tanh( 1 ϵ 3 w r ) -r u,2 (∥ ẇc ∥ 2 + ∥w c ∥ 2 + ∥w c ∥ 2 ∥w∥ 2 )w r , ( 57 
)
where k w,c > 0, r u,1 (t) and r u,2 (t) are dynamic gaining variables satisfying the following equations

ṙu,1 = Γ u,1 w T r tanh( 1 ϵ 3 w r ) -k u,1 r u,1 , (58a) ṙu,2 =Γ u,2 (∥ ẇc ∥ 2 + ∥w c ∥ 2 + ∥w c ∥ 2 ∥w∥ 2 )∥w r ∥ 2 -k u,2 r u,2 , ( 58b 
)
with the parameters Γ u,1 > 0, Γ u,2 > 0, k u,1 > 0 and k u,2 > 0 and the function tanh(•) defined in Notations. Here r u,1 (0) ≥ 0, r u,2 (0) ≥ 0, and according to (58a)-(58b), it is obtained that r u,1 (t) ≥ 0 and r u,2 (t) ≥ 0. Denote V u,1

1 2Γu,1 (r u,1 -∆ 1 ) 2 , V u,2 1 2Γu,2 (r u,2 -∆ 2 ) 2 and V d V w,r + V u,1 + V u,2
, and based upon ( 56), ( 57), (58a)-(58b), and the Young's inequality, the derivative of V d is bounded as

Vd ≤ -k w,c ∥w r ∥ 2 - 3k u,1 2 V u,1 - 3k u,2 2 V u,2 + ∆c , ( 59 
)
where ∆c 3ϵ [START_REF] Crassidis | Optimal variablestructure control tracking of spacecraft maneuvers[END_REF] }, and it follows from ( 12), ( 42), ( 49)-( 50) and ( 59) that

3 δ 1 ∆ 1 + 3ϵ 2 + ku,1∆ 2 1 Γu,1 + ku,2∆ 2 2 Γu,2 . In addition, denote V c V k + c 9 V d , where c 9 2 kw,c { 4λ G,max kc,1ρ∞,1 + c1c7 ρ∞,2 + c4c8 ρ∞,
Vc ≤ -Π c + Π e + ∆ c , ( 60 
)
where

Π c Π c,1 + c 9 k w,c λ J,max V w,r + 3c 9 k u,1 2 V u,1 + 3c 9 k u,2 2 V u,2 , (61a) Π c,1      kc,1Φ1 16 V k,1 , 0 ≤ t < t f,1 ; kc,1Φ1 16 V k,1 + kc,2c7Φ2(1+v T r,2 vr,d,2 ) 4 V k,2 , t f,1 ≤ t < t c ; kc,1Φ1 16 V k,1 + kc,3c8Φ3(1+v T r,2 vr,d,3 ) 4 V k,3 , t ≥ t c , (61b) 
Π e          8 ρ2 1 kc,1ρ 3 1 ∥x er ∥ 2 , 0 ≤ t < t f,1 ; 2c7 ρ2 2 (1-v T r,d,2 vr,2) kc,2ρ 3 2 (1+v T r,d,2 vr,2) , t f,1 ≤ t < t c ; 2c8 ρ2 3 (1-v T r,d,3 vr,2) kc,3ρ 3 3 (1+v T r,d,3 vr,2) , t ≥ t c , (61c) 
and ∆ c (t) c 9 ∆c + 32∥ ẋd ∥ 2 kc,1ρ∞,1 +( 4λG,max kc,1ρ∞,1 + c3c7 ρ∞,2 + c6c8 ρ∞,3 )∥w d ∥ 2 . Notice that Π c,1 (t) ≥ 0, Π c (t) ≥ 0, Π e (t) ≥ 0, and ∆ c (t) is uniformly bounded at all the time.

Then the following theorem is obtained. Theorem 1: For the control scheme ( 38), (39a)-(39b), ( 40), [START_REF] Zhang | Prescribed performance adaptive attitude tracking control for flexible spacecraft with active vibration suppression[END_REF], and (58a)-(58b), if the initial spacecraft attitude meets the constraints ( 4) and ( 28), r u,1 (0) ≥ 0 and r u,2 (0) ≥ 0, then the variables Q er (t), w(t), r u,1 (t) and r u,2 (t) are all uniformly bounded with r u,1 (t) ≥ 0 and r u,2 (t) ≥ 0. Besides, the constraint ( 4) is satisfied at all the time, and Q er (t) can fall into the set Θ R [START_REF] Sarlette | Autonomous rigid body attitude synchronization[END_REF] with the setting time tf s.

Proof: The proof of this theorem includes four steps. a). The uniform boundedness of

V c (t) in [0, t f,1 ).
First, it will be proved by contradiction that the function V k,1 (t) is uniformly bounded in [0, t f,1 ). Suppose that the above claim is invalid. Hence there is a time instant

t h,1 ∈ (0, t f,1 ) so that lim t→t - h,1 V k,1 (t) = +∞ and V k,1 (t)
is finite for any t ∈ [0, t h,1 ). It follows from ( 9) that the constraint ( 28) is satisfied in [0, t h,1 ), and x er (t) is uniformly bounded in [0, t h,1 ). Then according to [START_REF] Peng | The specified finite-time distributed observers-based velocity-free attitude synchronization for rigid bodies on SO(3)[END_REF], it is obtained that w r (t), r u,1 (t), r u,2 (t) and V d (t) are all uniformly bounded in [0, t h,1 ). Based on the uniform boundedness of x er (t), w r (t), ẋd (t) and w d (t) in [0, t h,1 ), it follows from (42) that V k,1 (t) is uniformly bounded in [0, t h,1 ), which contradicts with the above assumption. Hence, the above assumption is invalid, meaning that in the time interval [0, t f,1 ), V k,1 (t) is uniformly bounded, the constraints ( 4) and ( 28) hold, and x er (t), Φ 1 (t), G † (t) and w c (t) = w c,1 (t) (39a) are all uniformly bounded.

Then, it will be verified that V c (t) is uniformly bounded in [0, t f,1 ). First, since the constraint [START_REF] Sun | Adaptive fault-tolerant constrained control of cooperative spacecraft rendezvous and docking[END_REF] holds in [0, t f,1 ), Eq. ( 60) holds in [0, t f,1 ). From ( 7)-( 8), it follows that ρ 1 (t) ≥ ρ ∞,1 , ρ1 (t) is uniformly bounded and, together with the uniform boundedness of x er (t) in [0, t f,1 ), that Π e (t) is uniformly bounded in [0, t f,1 ). Since ∆ c (t) is uniformly bounded, it follows from (60) that V c (t) is also uniformly bounded in [0, t f,1 ), meaning that Q er (t), w r (t), r u,1 (t) and r u,2 (t) are all uniformly bounded in [0, t f,1 ). Besides, due to the uniform boundedness of w r (t), w c (t) and wd (t) in [0, t f,1 ), it follows that w(t) is also uniformly bounded in [0, t f,1 ).

b). The uniform boundedness of [START_REF] Crassidis | Optimal variablestructure control tracking of spacecraft maneuvers[END_REF] , and the constraint (30) holds when

V c (t) in [t f,1 , t c ) when φ 3 (t f,1 ) > 2 -ϵ 1 . First, if φ 3 (t f,1 ) = 1 -vT r,d,3 (t f,1 )v r,2 (t f,1 ) > 2 -ϵ 1 , it is obtained from (29a)-(29b) and Remark 5 that t c = t f,1 + t f,2 , tf = t f,1 + t f,2 + t f,
t = t f,1 . Accordingly, it is obtained that V k,2 (t f,1 ) < +∞.
Besides, similar to the proof procedure of part a), it follows that in the time interval [t f,1 , t f,1 + t f,2 ), V k,1 (t) is uniformly bounded, the constraints ( 4) and ( 28) always hold, and x er (t), Φ 1 (t), G † (t) and w c,1 (t) are also uniformly bounded.

Then it will be proved by contradiction that V k,2 (t) is uniformly bounded in [t f,1 , t f,1 + t f,2 ). Suppose the above claim is invalid. Notice that V k,2 (t f,1 ) < +∞, and hence there exists a time instant 59), it is obtained that w r (t), r u,1 (t) and r u,2 (t) are all uniformly bounded in [t f,1 , t h,2 ), and it is also obtained from the uniform boundedness of V k,1 (t) in

t h,2 ∈ (t f,1 , t f,1 + t f,2 ) so that lim t→t - h,2 V k,2 (t) = +∞ and V k,2 (t) < +∞ when t ∈ [t f,1 , t h,2 ). From (
[t f,1 , t f,1 + t f,2 ) that the term c2Φ 2 1 (t) ρ2(t)η 4 (t) ∥x er (t)∥ 2 in (44) is also uniformly bounded in [t f,1 , t f,1 + t f,2 ). Moreover, since V k,2 (t) < +∞ in [t f,1 , t h,2 ), it is obtained that the constraint (30) holds in [t f,1 , t h,2 ), 1 + v T r,2 (t)v r,d,2 (t) > 2 -ρ 0,2 > 0 in [t f,1 , t h,2 ), and k c,2 Φ 2 2 4ρ 2 (1 -(v T r,d,2 v r,2 ) 2 ) ≥ k c,2 (2 -ρ 0,2 ) 4 V k,2 , ( 62a 
)
2 ρ2 2 (1 -vT r,d,2 v r,2 ) k c,2 ρ 3 2 (1 + vT r,d,2 v r,2 ) ≤ 4 ρ2 2 k c,2 ρ 3 2 (2 -ρ 0,2 ) . ( 62b 
)
Based upon the uniformly boundedness of

c2Φ 2 1 (t)
ρ2(t)η 4 (t) ∥x er (t)∥ 2 , w r (t), w d (t), and Eqs. ( 44) and ( 62a)

-(62b), it is obtained that V k,2 (t) is uniformly bounded in [t f,1 , t h,2
), which contradicts with the above assumption. Hence, the above assumption is invalid, and [START_REF] Mayhew | Synergistic hybrid feedback for global rigid-body attitude tracking on SO(3)[END_REF] and is uniformly bounded with φ 2 (t f,1 + t f,2 ) < ρ ∞,2 , and both Φ 2 (t) and λ c (t) (39b) are also uniformly bounded. Due to the unform boundedness of w c,1 (t) and

V k,2 (t) is uniformly bounded in [t f,1 , t f,1 + t f,2 ). This means that in the time interval [t f,1 , t f,1 + t f,2 ), φ 2 (t) meets the constraint
λ c (t) in [t f,1 , t f,1 + t f,2 ], it follows that w c (t) (38) is also uniformly bounded in [t f,1 , t f,1 + t f,2 ].
Additionally, similar to the proof procedure of part a), it is obtained that in

V c (t) is uniformly bounded in [t f,1 , t f,1 + t f,2 ). Correspondingly, Q er (t), w r (t), r u,1 (t), r u,2 (t), w c (t) and w(t) are all uniformly bounded in [t f,1 , t f,1 + t f,2 ). c). The uniform boundedness of V c (t) in [t c , +∞).
First, it will be proved that V k,3 (t c ) < +∞. On one hand, if φ 3 (t f,1 ) ≤ 2 -ϵ 1 , it is obtained from (29a)-(29b) and Remark 5 that t c = t f,1 , tf = t f,1 +t f,3 and φ 3 (t c ) meets the constraint [START_REF] Berkane | Construction of synergistic potential functions on SO(3) with application to velocity-free hybrid attitude stabilization[END_REF], meaning that V k,3 (t c ) < +∞. On the other hand, if φ 3 (t f,1 ) > 2-ϵ 1 , it can be also obtained from (29a)-(29b) and the proof procedure of part b) that

t c = t f,1 +t f,2 , tf = t f,1 + t f,2 + t f,3 , and φ 2 (t f,1 + t f,2 ) < ρ ∞,2
. Accordingly, it follows from Remark 5 that φ 3 (t c ) also meets the constraint [START_REF] Berkane | Construction of synergistic potential functions on SO(3) with application to velocity-free hybrid attitude stabilization[END_REF] and

V k,3 (t c ) < +∞. In all, it is obtained that V k,3 (t c ) < +∞.
Besides, based upon the similar proof procedure of part a), it is obtained that

V k,1 (t) is uniformly bounded in [t c , +∞). This means that in the time interval [t c , +∞), φ 1 (t) < ρ ∞,1 ,
x er (t) and Φ 1 (t) are both uniformly bounded, the attitude constraint (4) always holds, G † (t) is uniformly bounded, and w c,1 (t) (39a) is also uniformly bounded.

Then it will be verified by contradiction that the function V k,3 (t) is uniformly bounded in [t c , +∞). Suppose that this claim is invalid, which implies that there exists a time instant

t h,3 with t c < t h,3 ≤ +∞, such that lim t→t - h,3 V k,3 (t) = +∞ and V k,3 (t) < +∞ when t ∈ [t c , t h,3
). Similar to the proof procedure of part a), it is obtained that w r (t), r u,1 (t) and r u,2 (t) are all uniformly bounded in [t c , t h,3 ). Besides, since in the time interval [t c , +∞), x er (t) and Φ 1 (t) are both uniformly bounded, ρ 3 (t) ≥ ρ ∞,3 , and the attitude constraint (4) always holds, it is obtained that the term

c5Φ 2 1 (t) ρ3(t)η 4 (t) ∥x er (t)∥ 2 in (47) is uniformly bounded in [t c , +∞). Moreover, since V k,3 (t) < +∞ in [t c , t h,3 ), it is obtained that in [t c , t h,3 ), the constraint (31) is satisfied and 1+v T r,2 (t)v r,d,3 (t) > 2-ρ 0,3 > 0.
Correspondingly, in view of [START_REF] Tafazoli | A study of on-orbit spacecraft failures[END_REF], it follows that

k c,3 4ρ 3 Φ 2 3 (1 -(v T r,2 vr,d,3 ) 2 ) ≥ k c,3 (2 -ρ 0,3 ) 4 V k,3 , (63a) 2 ρ2 3 (1 -vT r,d,3 v r,2 ) k c,3 ρ 3 3 (1 + vT r,d,3 v r,2 ) ≤ 4 ρ2 3 k c,3 ρ 3 3 (2 -ρ 0,3 ) . ( 63b 
)
Based on the uniform boundedness of w r (t), w d (t) and c5 ρ3(t)η 4 (t) Φ 2 1 (t)∥x er (t)∥ 2 , and Eqs. ( 47) and (63a)-(63b), it follows that V k,3 (t) is uniformly bounded in [t c , t h,3 ), which contradicts with the previous assumption. Hence, the previous assumption is invalid, and V k,3 (t) is uniformly bounded in [t c , +∞), which means that in the time interval [t c , +∞), the constraint (31) holds, φ 3 (t) and Φ 3 (t) are both uniformly bounded, and λ c (t) (39b) is also uniformly bounded. Due to the uniform boundedness of w c,1 (t) and λ c (t) in [t c , +∞), it follows that w c (t) [START_REF] Wu | Time-optimal spacecraft attitude maneuver path planning under boundary and pointing constraints[END_REF] is also uniformly bounded in [t c , +∞).

In addition, it will be verified that V c (t) is uniformly bounded in [t c , +∞). First, since V k,1 (t) and V k,3 (t) are both uniformly bounded in [t c , +∞), it follows that Eq. ( 60) holds in [t c , +∞). It can be seen in ( 61c) and (63b) that Π e (t) is uniformly bounded in [t c , +∞). Besides, it follows from

Φ 1 (t) ≥ 1, (61a)-(61b) and (63a) that in [t c , +∞), Π c ≥c 1 V c , (64) where c1 max( kc,1 16 , kc,3(2-ρ0,3) 4 , kw,c λJ 
,max , k u,1 , k u,2 ) > 0.
Hence, based on ( 60), [START_REF] Wertz | Spacecraft Attitude Determination and Control[END_REF], and the uniform boundedness of Π e (t) and

∆ c (t) in [t c , +∞), it follows that V c (t) is uniformly bounded in [t c , +∞). This means that in [t c , +∞), Q er (t),
w r (t), r u,1 (t), r u,2 (t) and w(t) are all uniformly bounded. d). The prescribed performance of the tracking error Q er (t). First, based upon the above proof procedure, it is obtained that V k,1 (t), V c (t), Q er (t), w(t), r u,1 (t) and r u,2 (t) are all uniformly bounded, and the constraints (4) and [START_REF] Sun | Adaptive fault-tolerant constrained control of cooperative spacecraft rendezvous and docking[END_REF] hold at all the time, which means that φ 1 (t) < ρ ∞,1 when t ≥ t f,1 . Since V k,3 (t) is also uniformly bounded in [t c , +∞) and the constraint [START_REF] Berkane | Construction of synergistic potential functions on SO(3) with application to velocity-free hybrid attitude stabilization[END_REF] always holds in the time interval [t c , +∞), it follows that φ 3 (t) < ρ ∞,3 when t ≥ tf . Hence, according to Lemma 6, it follows that Q er (t) will always be within the set Θ R (32) when t ≥ tf . Moreover, in view of (58a)-(58b), it follows that r u,1 (t) ≥ 0 and r u,2 (t) ≥ 0 at all the time. The proof of Theorem 1 is complete.

Remark 7: The distinctions between the proposed control scheme and those in [START_REF] Lee | Feedback control for spacecraft reorientation under attitude constraints via convex potentials[END_REF]- [START_REF] Kulumani | Constrained geometric attitude control on SO(3)[END_REF] and [START_REF] Peng | The specified finite-time distributed observers-based velocity-free attitude synchronization for rigid bodies on SO(3)[END_REF]- [START_REF] Zhou | Robust attitude tracking for rigid spacecraft with prescribed transient performance[END_REF] are discussed as follows. First, in this paper, a novel projection function Pr(•) (17) is designed to map the boresight vector v r,1 (t) to a reduced dimensional vector x(t). On one hand, notice that the reduced dimensional vectors x(t), and the according auxiliary vectors vr,d,2 (t) and vr,d,3 (t) are located in either R 2 or R 3 , and therefore the attitude control scheme constructed based upon the above vectors can circumvent the topological obstruction of the nonlinear manifold SO [START_REF] Crassidis | Optimal variablestructure control tracking of spacecraft maneuvers[END_REF]. On the other hand, by means of the designed vectors, the requirement of the satisfaction of the attitude constraint ( 4) is transformed as the requirement of the uniform boundedness of the reduced dimensional vector x(t), which is shown in Lemma 3. The appointed-time performance requirement of the attitude tracking is transformed as the appointed-time tracking performance 
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requirement of the according vectors (that is, the vectors x(t) and v r,2 (t) should track the vectors x d (t) and vr,d,3 (t) respectively, with the appointed-time control performance), which is shown in Lemma 6.

Besides, based upon the above properties, the according vector-based error functions (27a)-(27c), the appointed-time performance constraints ( 28) and ( 30)- [START_REF] Berkane | Construction of synergistic potential functions on SO(3) with application to velocity-free hybrid attitude stabilization[END_REF], and the vectorbased switching virtual controller ( 38)-(39b) are carefully constructed. By means of the above design, it is ensured that the vector x(t) is uniformly bounded, the constraint ( 28) always holds at all the time, and the vector v r,2 (t) can always satisfy the constraint (31) when t ≥ t c . This means that the attitude constraint ( 4) is satisfied at all the time, and the attitude tracking error Q er (t) can always remain in the residual set Θ R [START_REF] Sarlette | Autonomous rigid body attitude synchronization[END_REF] when t ≥ tf .

In all, based on the designed projection function [START_REF] Kim | Robust backstepping control for slew maneuver using nonlinear tracking function[END_REF], the appointed-time performance constraints ( 28) and ( 30)- [START_REF] Berkane | Construction of synergistic potential functions on SO(3) with application to velocity-free hybrid attitude stabilization[END_REF], and the vector-based switching virtual controller ( 38)-(39b), the proposed attitude control scheme on SO(3) can meet the attitude constraint and the appointed-time control performance simultaneously, and hence differs from those in [START_REF] Lee | Feedback control for spacecraft reorientation under attitude constraints via convex potentials[END_REF]- [START_REF] Kulumani | Constrained geometric attitude control on SO(3)[END_REF] and [START_REF] Peng | The specified finite-time distributed observers-based velocity-free attitude synchronization for rigid bodies on SO(3)[END_REF]- [START_REF] Zhou | Robust attitude tracking for rigid spacecraft with prescribed transient performance[END_REF]. On one hand, the artificial-potential-functionbased constrained attitude stabilization schemes in [START_REF] Lee | Feedback control for spacecraft reorientation under attitude constraints via convex potentials[END_REF]- [START_REF] Kulumani | Constrained geometric attitude control on SO(3)[END_REF] can ensure the satisfaction of the attitude constraint. However, compared with the proposed control scheme, the control schemes in [START_REF] Lee | Feedback control for spacecraft reorientation under attitude constraints via convex potentials[END_REF]- [START_REF] Kulumani | Constrained geometric attitude control on SO(3)[END_REF] cannot achieve appointed-time attitude tracking of the spacecraft. On the other hand, by virtue of the designed SO(3)-based prescribed performance constraints, the control schemes in [START_REF] Peng | The specified finite-time distributed observers-based velocity-free attitude synchronization for rigid bodies on SO(3)[END_REF]- [START_REF] Zhou | Robust attitude tracking for rigid spacecraft with prescribed transient performance[END_REF] can ensure the appointed transient and steady control performance. However, compared with the proposed control scheme, the control schemes in [START_REF] Peng | The specified finite-time distributed observers-based velocity-free attitude synchronization for rigid bodies on SO(3)[END_REF]- [START_REF] Zhou | Robust attitude tracking for rigid spacecraft with prescribed transient performance[END_REF] cannot satisfy the attitude constraint [START_REF] Zhao | Review of cylinder block/valve plate interface in axial piston pumps: theoretical models, experimental investigations, and optimal design[END_REF].

Remark 8: In this paper, two dynamic gaining factors r u,1 (t) and r u,2 (t) are employed into the control input [START_REF] Zhang | Prescribed performance adaptive attitude tracking control for flexible spacecraft with active vibration suppression[END_REF]. Note that in the dynamic equation [START_REF] Luo | Low-complexity prescribed performance control for spacecraft attitude stabilization and tracking[END_REF], there is a term Ξ 1 (t) [START_REF] Hu | Model-free prescribed performance control for spacecraft attitude tracking[END_REF] which is related to the uncertain parameters and the external disturbances and will affect the closed-loop stability of the spacecraft attitude. Therefore, in order to deal with the term Ξ 1 (t), two dynamic gaining variables r u,1 (t) (58a) and r u,2 (t) (58b) are constructed to adjust the gaining parameters of the control input. It can be seen in ( 59)-( 60) and Theorem 1 that by means of the designed variables r u,1 (t) and r u,2 (t), the closedloop stability of the spacecraft attitude can be guaranteed, and the influence of the parameter uncertainties and the external disturbances (that is, the term Ξ 1 (t)) is attenuated. This means that, compared with [START_REF] Kulumani | Constrained geometric attitude control on SO(3)[END_REF] and [START_REF] Peng | The specified finite-time distributed observers-based velocity-free attitude synchronization for rigid bodies on SO(3)[END_REF], the spacecraft attitude can possess the appointed-time control performance and meet the attitude constraint, even in the presence of the parameter uncertainties and the external disturbances, without the need to estimate the uncertain parameters. It should be noted that due to the presence of the external disturbances, it is only guaranteed that the attitude tracking error of the spacecraft converges into the according residual set Θ R [START_REF] Sarlette | Autonomous rigid body attitude synchronization[END_REF] with the setting time tf s. Remark 9: Notice that the selection of the vectors v b,2 and v b,3 can change the values of the error functions φ 2 (t) and φ 3 (t), and can also change the value of the control input u(t). However, it is worth mentioning that by means of the designed switching laws (29a)-(29b) and the switching virtual controller ( 38)-(39b), the design of the functions φ 2 (t), φ 3 (t), ρ 2 (t) and ρ 3 (t) is unaffected by these vectors, and the obtained control scheme can still achieve the appointed-time control performance of the spacecraft and satisfy the attitude constraint, as long as the unit vectors v b,2 and v b,3 satisfy v T b,1 v b,2 = 0 and v b,3 = S(v b,1 )v b,2 . Besides, since the value of the control input u(t) is influenced by the vectors v b,2 and v b,3 , it deserves further investigation on the optimal selection of the vectors v b,2 and v b,3 in the future.

IV. SIMULATION RESULTS

In the section, the simulation results will be provided to show the effectiveness of the proposed scheme. First, the values of the system parameters refer to [START_REF] Xiao | Adaptive sliding mode fault tolerant attitude tracking control for flexible spacecraft under actuator saturation[END_REF] and can be seen in Table I. Besides, in this paper, the external disturbances of the spacecraft d(t) include the gravity-gradient torque d g (t), the aerodynamic torque d a (t) and the Earth magnetic torque d e (t). According to [START_REF] Xiao | Adaptive sliding mode fault tolerant attitude tracking control for flexible spacecraft under actuator saturation[END_REF] and [START_REF] Baldi | A new aerodynamic decoupled frequential FDIR methodology for satellite actuator faults[END_REF]- [START_REF] Larson | Space Mission Analysis and Design[END_REF], the form of the above disturbance torques are d g = 3µ ∥βg∥ 5 S(β g )Jβ g , d a = -1 2 c D s D ϱ a S(L p )∥V a ∥V a , and d e = S(M e )B e , where µ = 3.9787 * 10 14 m 3 s -2 is the Earth's gravitational constant, β g ∈ R 3 is the relative position from the center of the Earth to the spacecraft centroid in F b , ϱ a is the atmospheric density, s D is the area of the spacecraft cross-section, c D is the drag coefficient, L p ∈ R 3 is the relative position from the spacecraft centroid to the center of the pressure in F b , V a ∈ R 3 is the spacecraft velocity in F b , B e ∈ R 3 is geocentric magnetic flux density in F b , and M e ∈ R 3 is the sum of the magnetic moments due to permanent, spacecraftgenerated current loops and induced magnetism in F b . The values of the above parameters and vectors can be seen in [START_REF] Xiao | Adaptive sliding mode fault tolerant attitude tracking control for flexible spacecraft under actuator saturation[END_REF].

In addition, here the spacecraft is subject to the measurement noises. Correspondingly, denote Q m (t) Q(t)Q dis (t) ∈ SO(3) and w m (t) = w(t) + w dis (t) ∈ R 3 as the measured attitude and the measured angular velocity of the spacecraft, respectively, where 3) and w dis (t) = 0.002 * rand(t)1 3 ∈ R 3 are the measurement noises of the spacecraft attitude and the spacecraft angular velocity respectively, with ϕ R (t) = 0.005 * rand(t)1 3 ∈ R 3 . Notice that the spacecraft cannot obtain the exact information of its attitude and angular velocity, and therefore the above measured attitude Q m (t) and the measured angular velocity w m (t) are employed in the attitude controller.

Q dis (t) = E 3 + sin(∥ϕR(t)∥) ∥ϕR(t)∥ S(ϕ R (t)) + 1-cos(∥ϕR(t)∥) ∥ϕR(t)∥ 2 S 2 (ϕ R (t)) ∈ SO(
The values of the control parameters can be seen in Table II. The initial values of the control and system variables are Q(0) = [0, 1, 0; 0.943, 0, 0.333; 0.333, 0, -0.943], w(0) = col(-0.045, -0.075, 0.15) rad/s, r u,1 (0) = 1 and r u,2 (0) = 1.5. The reference angular velocity and reference angular acceleration are w d (t) = (0.08 + 0.01 sin(0.2t))n r rad/s and a d (t) = 0.002 cos(0.2t)n r rad/s 2 with n r = col(0.9923, 0, 0.1240), and the initial value of the reference attitude is Q d (0) = [0, 1, 0; -1, 0, 0; 0, 0, 1].

To show the performance of the proposed scheme, two control schemes are introduced as the compared schemes. The control scheme similar to [START_REF] Kulumani | Constrained geometric attitude control on SO(3)[END_REF] is employed as the first compared scheme, and the according virtual controller is

w c = -k c,1 (B R e Q,C + C R e Q,B ), (65) 
where

B R = 1 -k c,2 ln( η 1+cos θ f ), C R = 1 2 Tr(A c (E 3 - Q er )), e R,B = - kc,2 η S(Q T v f )v b,1 , e R,C = 1
2 Pa(A c Q er ), the operator Pa(•) is defined in Notations, and A c = diag(a c,1 , a c,2 , a c,3 ) with a c,i > 0 for i = 1, 2, 3 and a c,i ̸ = a c,j for any i ̸ = j. The control input (57) and the according adaptive laws (58a)-(58b) are still employed in the above compared control scheme. Note that the repulsive term B R (Q er (t)) on the attitude constraint (4) and the associated vector e R,B (Q er (t)) are contained in the virtual controller [START_REF] Larson | Space Mission Analysis and Design[END_REF]. The function of the term B R (Q er (t)) and the vector e R,B (Q er (t)) is to make the spacecraft attitude keep away from the attitude forbidden zone [START_REF] Kulumani | Constrained geometric attitude control on SO(3)[END_REF]. The design procedure on the above virtual controller w c [START_REF] Larson | Space Mission Analysis and Design[END_REF] and the rigorous proof of satisfying the attitude constraint can be seen in [START_REF] Kulumani | Constrained geometric attitude control on SO(3)[END_REF].

Besides, the prescribed performance attitude control scheme similar to [START_REF] Zhou | Robust attitude tracking for rigid spacecraft with prescribed transient performance[END_REF] is also introduced as the second compared control scheme, and the associated virtual controller is

w c = wd + B -1 Q (B e e ζ -B -1 ζ ζ), (66) 
where

e ζ = col(e ζ,1 , e ζ,2 , e ζ,3 ) = 1 2 √ 1+Tr(Qer) Pa(Q er ) ∈ R 3 , B Q = 1 2 √ 1+Tr(Qer) (Tr(Q er )E 3 -Q T er + 2e ζ e T ζ ) ∈ R 3×3 , ζ = (T ζ,1 (e ζ,1 /ρ ζ,1 ), T ζ,2 (e ζ,2 /ρ ζ,2 ), T ζ,3 (e ζ,3 /ρ ζ,3 )) ∈ R 3 , B ζ = diag( dT ζ,1 d(e ζ,1 /ρ ζ,1 )ρ ζ,1 , dT ζ,2 d(e ζ,2 /ρ ζ,2 )ρ ζ,2 , dT ζ,3 d(e ζ,3 /ρ ζ,3 )ρ ζ,3 ) ∈ R 3×3 , B e = diag( ρξ,1 ρ ξ,1 , ρξ,2 ρ ξ,2 , ρξ,3 ρ ξ,3
), with T ζ,i (•) and ρ ζ,i (t), i = 1, 2, 3, being the prescribed performance transformation functions and the decaying functions respectively [START_REF] Zhou | Robust attitude tracking for rigid spacecraft with prescribed transient performance[END_REF]. The control input [START_REF] Zhang | Prescribed performance adaptive attitude tracking control for flexible spacecraft with active vibration suppression[END_REF] and the according adaptive laws (58a)-(58b) are still used in the above compared control scheme. It is worth mentioning that the above control schemes similar to [START_REF] Zhou | Robust attitude tracking for rigid spacecraft with prescribed transient performance[END_REF] can possess the prescribed control performance.

The simulation results of three control schemes can be seen in Figs. 12, where the green dotted lines in Figs. 1(b)-(d) are the decaying functions ρ 1 (t), ρ 2 (t) and ρ 3 (t), respectively. The regions surrounded by the green dotted line and the x-y axes are the according appointed-time performance constraints. The functions φ 1 (t), φ 2 (t) and φ 3 (t) can meet the appointed-time control performance, if they are located in the above regions.

First, it can be seen in Figs. 1(e)-(h) that within 80 s, w(t), r u,1 (t), r u,2 (t) and τ (t) of three control schemes are all bounded, r u,1 (t) ≥ 0 and r u,2 (t) ≥ 0. However, it can be seen in Figs. 1(a)-(d) and Fig. 2 that the attitude tracking performance of the proposed scheme differs from that of these two compared schemes.

For the proposed scheme, on one hand, the attitude tracking error Q er (t) in Fig. 1(a) converges into the small neighborhood of the equilibrium E 3 within 50 s and remains in this neighborhood after 50 s. This is because the appointed-time performance requirements [START_REF] Sun | Adaptive fault-tolerant constrained control of cooperative spacecraft rendezvous and docking[END_REF], [START_REF] Mayhew | Synergistic hybrid feedback for global rigid-body attitude tracking on SO(3)[END_REF] and [START_REF] Berkane | Construction of synergistic potential functions on SO(3) with application to velocity-free hybrid attitude stabilization[END_REF] are considered in the proposed scheme. In fact, in Fig. 1(b), different from the first compared control scheme [START_REF] Larson | Space Mission Analysis and Design[END_REF], the error function φ 1 (t) of the proposed control scheme always satisfies the constraint (28) within 50 s, meaning that the error function φ 1 (t) of the proposed control scheme can converge into the interval [0, 0.3) within 25 s and can remain in this interval after 25 s. Besides, in Figs. 1(c)-(d), different from the first compared control scheme [START_REF] Larson | Space Mission Analysis and Design[END_REF] and the second compared control scheme (66), the error function φ 2 (t) of the proposed control scheme satisfies the constraint (30) when 25 s ≤ t ≤ 35 s, and the error function φ 3 (t) of the proposed control scheme also satisfies the constraint (31) when t ≥ 35 s. Based upon Theorem 1, this means that the attitude tracking error Q er (t) can remain in the set Θ R (32) after 50 s. On the other hand, in Fig. 2, the proposed control scheme can meet the attitude constraint (4) within 80 s. The reason is that by virtue of the projection function ( 16)-( 17), the designed control scheme can meet the attitude constraint (4) at all the time.

However, it can be seen in Figs. 1(a)-(d) and Fig. 2 that the compared control schemes cannot meet the attitude constraint and the appointed-time control performance simultaneously. On one hand, for the first compared control scheme [START_REF] Larson | Space Mission Analysis and Design[END_REF], it is shown in Fig. 2 that the associated spacecraft attitude can meet the attitude constraint (4) within 80 s. However, compared with the proposed scheme, the corresponding attitude tracking error Q er (t) in Fig. 1(a) does not possess the small convergence time and the small steady-state error. This is because the appointed-time performance constraints [START_REF] Sun | Adaptive fault-tolerant constrained control of cooperative spacecraft rendezvous and docking[END_REF], [START_REF] Mayhew | Synergistic hybrid feedback for global rigid-body attitude tracking on SO(3)[END_REF] and [START_REF] Berkane | Construction of synergistic potential functions on SO(3) with application to velocity-free hybrid attitude stabilization[END_REF] are not considered in the first compared scheme, and therefore in Figs. 1(b)-(d), the according error functions φ 1 (t), φ 2 (t) and φ 3 (t) violate the constraints (28), [START_REF] Mayhew | Synergistic hybrid feedback for global rigid-body attitude tracking on SO(3)[END_REF] and [START_REF] Berkane | Construction of synergistic potential functions on SO(3) with application to velocity-free hybrid attitude stabilization[END_REF]. On the other hand, for the second compared control scheme (66), it is shown in Fig. 1(a) that the according spacecraft attitude can fast track the reference attitude. However in Fig. 2, the corresponding spacecraft attitude cannot meet the attitude constraint (4). This reason is that the second compared control scheme does not consider the attitude constraint [START_REF] Zhao | Review of cylinder block/valve plate interface in axial piston pumps: theoretical models, experimental investigations, and optimal design[END_REF]. In all, it is concluded from Figs. 1-2 that, distinct with the above compared control schemes, the proposed control scheme can meet the attitude constraint and the appointed-time control performance simultaneously, even in the presence of the parameter uncertainties, the external disturbances and the measurement noises.

V. CONCLUSIONS

This paper studies the constrained attitude tracking control of the spacecraft with the appointed-time control performance. A novel projection function is developed to map the boresight vector to the according reduced dimensional vector, and the attitude constraint will be satisfied if the reduced dimensional vector is uniformly bounded. Then a set of vector-based error functions, the appointed-time performance constraints, and the corresponding adaptive controller are carefully constructed. Based on the derived SO(3)-based attitude control scheme, the spacecraft attitude can possess the appointed-time control performance and avoid the attitude forbidden zone simultaneously, and is robust to the parameter uncertainties and the external disturbances. In the future, inspired by [START_REF] Lee | Feedback control for spacecraft reorientation under attitude constraints via convex potentials[END_REF]- [START_REF] Chen | Continuous constrained attitude regulation of multiple spacecraft on SO(3)[END_REF], the authors intend to investigate the prescribed performance attitude synchronization control of multiple spacecraft with the attitude constraints.

APPENDIX A PROOF OF LEMMA 6

First, it is obtained from φ 1 < ρ ∞,1 and Remark 3 that the Eqs. ( 33)-( 34) and (36) hold. Besides, it is obtained from (23b), (24b) and v T r,2 v r,1 = 0 that v T r,2 v r,d,2 = v T r,2 (E 3 -v r,1 v T r,1 )v r,d,2 = ∥ṽ r,d,3 ∥v T r,2 vr,d,3 .

(67)

Therefore, based upon φ 3 = 1 -v T r,2 vr,d,3 < ρ ∞,3 < 1, (36) and (67), it is further obtained that 1 -v T r,2 v r,d,2 = 1 -∥ṽ r,d,3 ∥v T r,2 vr,d,3

< 1 -(1 -ρ ∞,1 )(1 -ρ ∞,3 ). ( 68 
)
Then denote A R v b,1 v T b,1 + v b,2 v T b,2 . Based upon [START_REF] Thunberg | Distributed attitude synchronization control of multi-agent systems with switching topologies[END_REF], (68) and the relations v r,i = Qv b,i and v r,d,i = Q d v b,i , if φ 1 < ρ ∞,1 and φ 3 < ρ ∞,3 , then Tr(A R -A R Q er ) is scaled as

Tr(A R -A R Q er ) = 2 -v T r,d,1 v r,1 -v T r,d,2 v r,2 < 1 -(1 -ρ ∞,1 )(1 -ρ ∞,3 ) + ρ ∞,1 < 2ρ ∞,1 + ρ ∞,3 .
(69)

Moreover, since the eigenvalues of A R are 1, 1 and 0, it is further obtained from Lemma 1 and (69) that

Tr(E 3 -E 3 Q er ) ≤ 2Tr(A R -A R Q er ) < 4ρ ∞,1 + 2ρ ∞,3 , (70) 
if φ 1 < ρ ∞,1 and φ 3 < ρ ∞,3 .

3

 3 and a d (t) ∈ R 3 respectively, and F b,d denotes the body-attached frame of the desired spacecraft attitude Q d . The reference attitude Q d (t) and the reference angular velocity w d (t) obey the following equation Qd = Q d S(w d ).
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 4 

-Fig. 1 :

 1 Fig. 1: Simulation results of three control schemes. Case 1: The proposed scheme. Case 2: The first compared scheme. Case 3: The second compared scheme.

η of case 3 Fig. 2 :

 32 Fig. 2: Variable η(t) of three control schemes. Case 1: The proposed scheme. Case 2:The first compared scheme. Case 3: The second compared scheme.

TABLE I :

 I The values of system parameters of the spacecraft Parameter Value J (kg • m 2 ) diag(973.4, 424.85, 771.06)

TABLE II :

 II The values of the control parameters of the proposed control scheme

	Parameter	ρ 0,1	ρ ∞,1	t f,1	ϵ 1	ρ 0,2	ρ ∞,2	t f,2
	Value	30	0.3	25	0.4	1.8	0.2	10
	Parameter	ρ 0,3	ρ ∞,3	t f,3	ϵ 3	k c,1	k c,2	k c,3
	Value	1.8	0.2	15	0.2	0.14	0.14	0.14
	Parameter Γ u,1	k u,1	Γ u,2	k u,2	kw,c		
	Value	0.01	0.06	0.01	0.06	11