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Constrained Attitude Control of Uncertain
Spacecraft with Appointed-Time Control

Performance
Xuhui Lu, Yingmin Jia, Member, IEEE, Yongling Fu, and Fumitoshi Matsuno, Senior Member, IEEE

Abstract—This paper studies the appointed-time attitude
tracking control of the spacecraft on Special Orthogonal Group,
with the attitude forbidden zone, the parameter uncertainties,
and the external disturbances. A novel projection function is
proposed, such that the normalized boresight vector of the
sensitive instrument is mapped to a reduced dimensional vector
in the Euclidean space. If the reduced dimensional vector is
uniformly bounded, the constraint on the attitude forbidden
zone will be satisfied at all the time. By virtue of the de-
signed reduced dimensional vector and the associated auxiliary
vectors, a set of vector-based error functions, the appointed-
time performance constraints and the according switching law
are carefully constructed. The proposed vector-based adaptive
control scheme ensures that the spacecraft attitude can satisfy
the attitude constraint and appointed-time control performance
simultaneously, in the presence of parameter uncertainties and
external disturbances. Simulation results show the effectiveness
of the designed control scheme.

Index Terms—Attitude tracking control, Prescribed perfor-
mance control, Attitude constraint, Uncertainties.

I. INTRODUCTION

The spacecraft attitude control has attracted much attention
in recent years, due to its significance in many space missions
[1]-[5]. However, it is still challenging to design the attitude
control scheme of spacecraft. This is because the state space
of the spacecraft attitude constitutes a nonlinear manifold
named Special Orthogonal Group SO(3) [6]-[9]. Besides, the
spacecraft is inevitably subject to the parameter uncertainties
and the external disturbances in the space environment [10]-
[16]. The closed-loop stability of the spacecraft attitude control
system will be deteriorated if the parameter uncertainties
and the external disturbances are overlooked in the controller
design. In face of the above problems, several breakthroughs
have been made in the field of spacecraft attitude control [17]-
[22]. In [23], a novel nonlinear terminal sliding mode attitude
control input and the model predictive control method are
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combined to achieve the spacecraft attitude tracking, in the
presence of the inertia uncertainties, the external disturbances
and the actuator constraints. Several fault-tolerant attitude
control schemes are also proposed in [24]-[28], to improve the
robustness of the closed-loop system to the actuator faults.

Unfortunately, the above methods [17]-[28] are derived
based upon the attitude parameterization of the rotation matrix
on SO(3), like the Euler angles, the quaternion and the
modified Rodriguez parameters (MRPs). Notice that the Euler
angles and the MRPs encounter singularity problem, and the
quaternion-based continuous attitude control scheme suffers
from the unwinding phenomenon. Hence, it is of great impor-
tance to design the attitude control scheme directly on SO(3),
to prevent the above problems. Sanyal et al. [29] design an
attitude control scheme on SO(3) to achieve almost global
attitude tracking. In [30]-[31], the hybrid control method is
successfully applied into the attitude control on SO(3). In
[32]-[33], the attitude synchronization control schemes are
developed on SO(3), for the general time-varying and directed
communication graph. In [34], An adaptive passivity-based
control scheme is also proposed to realize attitude tracking on
SO(3). In [35], a distributed observer is designed on SO(3)
to estimate the leader’s state information, and the obtained
SO(3)-based attitude consensus control scheme can avoid the
measurement of the angular velocity.

However, notice that the methods in [17]-[35] do not
consider the attitude constraints of the spacecraft. In fact,
the boresight vectors of some sensitive instruments of the
spacecraft should prevent direct exposure to the specific ce-
lestial objects. Therefore, to meet the according attitude con-
straints, several effective attitude trajectory planning schemes
have been proposed [36]-[39]. Note that compared with the
trajectory planning method [36]-[39], the potential-function-
based attitude control method can ensure the closed-loop
stability. In [40], the artificial potential function on the attitude
constraints and the according constrained attitude stabilization
control scheme are elaborately designed. In [41]-[42], the
potential-function-based attitude stabilization control schemes
are also developed and are robust to the external disturbances.
A hierarchical controller is designed for the spacecraft attitude
stabilization in [43], where the attitude constraints and the
input saturation are both considered. Note that the methods
in [40]-[43] are derived on the quaternion. Hence in [44], an
adaptive constrained attitude control scheme is proposed on
SO(3), so that the robustness of the closed-loop system toward
the external disturbances is enhanced. In [45], a velocity-free
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constrained attitude synchronization control scheme is also
developed on SO(3).

Besides, the results in [29]-[34] and [40]-[44] only ensure
the closed-loop stability and the convergence of the attitude
tracking/regulation error. However, the transient and steady
control performance of the spacecraft attitude is essential
to realize several space missions, and is challenging to be
determined a priori [46]-[47]. Recently, the prescribed per-
formance control method [48]-[50] has been proposed, where
the prescribed performance control problem of the original
control system is converted into the stabilization problem
of an unconstrained nonlinear control system. Then several
quaternion-based and MRPs-based prescribed performance
attitude control schemes are designed [51]-[58]. In [59], a
velocity-free prescribed-time attitude synchronization control
scheme is derived on SO(3). Zhou et al. [60] also put
forward an SO(3)-based attitude tracking control scheme with
the prescribed control performance, by virtue of a carefully-
selected configuration error function. Unfortunately, note that
the results in both [40]-[44] and [59]-[60] cannot satisfy the
attitude constraint and achieve prescribed control performance
simultaneously. The main difficulty to achieve the SO(3)-
based constrained prescribed performance attitude tracking
control is that SO(3) is not a Euclidean space but a compact
manifold without boundary. Additionally, it will become more
complex to design the constrained attitude control scheme with
prescribed control performance, if the spacecraft is subject to
the parameter uncertainties and the external disturbances.

Motivated by above discussion and analysis, this paper
aims to study the attitude tracking control of the spacecraft
on SO(3) with appointed-time control performance, in the
presence of the attitude constraint, the parameter uncertainties
and the external disturbances. To meet the attitude constraint
and the appointed-time control performance simultaneously, a
novel projection function is carefully constructed, such that
the boresight vector of the sensitive instrument is mapped to a
reduced dimensional vector in the Euclidean space R2. If the
obtained reduced dimensional vector is uniformly bounded, the
spacecraft attitude will keep away from the attitude forbidden
zone. Then, based upon the reduced dimensional vector, the
according auxiliary vectors are also constructed. Correspond-
ingly, a set of vector-based error functions, the appointed-
time performance constraints and the vector-based switched
controller are carefully designed. Compared with the control
schemes in [40]-[44] and [59]-[60], by means of the designed
attitude control scheme, the spacecraft attitude on SO(3) can
meet the attitude constraint and the appointed-time control per-
formance simultaneously. Moreover, to attenuate the effects of
the parameter uncertainties and the external disturbances, two
dynamic gaining variables are designed and introduced into
the control input. Compared with the control schemes in [44]
and [59], by virtue of the designed dynamic gaining variables,
the proposed adaptive control scheme can be robust toward the
parameter uncertainties and the external disturbances, without
the need to estimate the uncertain parameters.

The rest of this paper is organized as follows. Section II is
the preliminaries, including the notations, the attitude motion
modeling of the spacecraft, the description of the attitude

constraint, the introduction of the appointed-time performance
function and the error transformation, and the problem formu-
lation. Section III is the controller design. Section IV is the
simulation results. The conclusions are drawn in Section V.

II. PRELIMINARIES

A. Notations

First, Rn and Rm×n are the real n-dimensional vector space
and the real (m × n)-dimensional matrix space respectively.
0n ∈ Rn is the zero vector, and En ∈ Rn×n is the identity
matrix. ∥z∥ is the 2-norm of the vector z ∈ Rn. ∥B∥, rank(B),
Tr(B) are the 2-norm, the rank and the trace of the matrix
B ∈ Rn×n respectively. For any matrix B ∈ Rm×n with
m ≤ n, B† is the pseudo-inverse of the matrix B, and
B† = BT (BBT )−1 if B is full row rank. For any vector
b = col(b1, b2, b3) ∈ R3, the function S(·) is defined as
S(b) = [0,−b3, b2; b3, 0,−b1;−b2, b1, 0], and the function
Pa(·) is defined as Pa(S(b)) = b. For any vector z = [zi]n ∈
Rn, tanh(z) , col(tanh(z1), . . . , tanh(zn)) is the hyperbolic
tangent function with tanh(zi) =

exp(zi)−exp(−zi)
exp(zi)+exp(−zi)

.
Moreover, the Special Orthogonal Group SO(3) is used to

describe the spacecraft attitude and is defined as [29]-[32]

SO(3) , {Q̄ ∈ R3×3 | Q̄T Q̄ = E3, det(Q̄) = 1}. (1)

Based on the Rodrigues′ formula, the rotation matrix Q̄ ∈
SO(3) can be represented as [60]

Q̄ = E3 +
sin(∥ϕQ∥)

∥ϕQ∥
S(ϕQ) +

1− cos(∥ϕQ∥)
∥ϕQ∥2

S2(ϕQ), (2)

where the vector ϕQ ∈ R3 satisfies ∥ϕQ∥ ≤ π.

B. Attitude Motion Modeling of the Spacecraft

First, the inertia frame and the body-attached frame of the
spacecraft are denoted by Fi and Fb respectively. The attitude
kinematics and dynamics of the spacecraft are [29]-[32]

Q̇ = QS(w), (3a)
Jẇ = −S(w)Jw + τ + d, (3b)

where Q ∈ SO(3) is the spacecraft attitude representing the
rotation from Fi to Fb expressed in Fb, w ∈ R3 is the
angular velocity of the spacecraft in Fb, τ ∈ R3 is the control
input, d(t) ∈ R3 are the time-varying and bounded external
disturbances, J ∈ R3×3 is the inertia matrix, and the matrix
S(w) ∈ R3×3 is defined in Notations. Besides, the following
property holds for the spacecraft [24]-[27].

Property 1: J is positive definite and is bounded, that is,
there exist two positive constants λJ,max and λJ,min such that
λJ,minE3 < J < λJ,maxE3. Besides, the disturbances d(t)
are uniformly bounded, meaning that there exists a constant
∆d > 0 so that ∥d(t)∥ < ∆d at all the time.
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C. Attitude forbidden zone of the spacecraft

Here the spacecraft should satisfy the attitude constraint. To
be specific, vb,1 ∈ R3 denotes the normalized boresight vector
of the sensitive instrument in Fb, and vr,1 , Qvb,1 ∈ R3 is the
according normalized boresight vector in Fi. Here the vector
vb,1 is constant. Besides, vf ∈ R3 denotes a normalized vector
in Fi, which stands for the orientation toward the undesired
space object. For the spacecraft, the angle between vr,1 and
vf should be larger than θf ∈ [0, π) which is the minimum
allowable angle between these two vectors. Correspondingly,
the constraint on the attitude forbidden zone can be formulated
as [39]

vTf vr,1 < cos θf . (4)

Then denote

η , cos θf − vTf vr,1. (5)

Note that the constraint (4) holds if and only if η(t) > 0.

D. Appointed-time performance function and error transfor-
mation

Here consider a general non-negative error function y(t) ≥
0. y(t) will possess the prescribed control performance, if it
satisfies the following constraint at all the time

y(t) < ρy(t), (6)

where ρy(t) = ρ(ρ0, ρ∞, t0, tf , t) is the according appointed-
time decaying function and is defined as

ρ(ρ0, ρ∞, t0, tf , t)

,
{

ρ0−ρ∞
t2f

(t0 + tf − t)2 + ρ∞, t0 ≤ t < t0 + tf ;

ρ∞, t ≥ t0 + tf ,

(7)

with the parameters ρ0, ρ∞, t0 and tf satisfying ρ0 > ρ∞ > 0
and tf > t0 ≥ 0. Besides, it is obtained from (6)-(7) that

ρ̇(ρ0, ρ∞, t0, tf , t)

=

{
−2(ρ0−ρ∞)

t2f
(t0 + tf − t), t0 ≤ t < t0 + tf ;

0, t ≥ t0 + tf .

(8)

Remark 1: The meanings and the effects of the parameters in
the appointed-time decaying function ρy(t) are discussed here
[48]-[58]. First, the parameters t0 is the activation time of the
constraint (6), meaning that from the time t0, the variable y(t)
should meet the constraint (6) (that is, y(t0) < ρy(t0)). The
parameter ρ0 is the initial value of the decaying function ρy(t),
that is, ρy(t0) = ρ0. The parameters ρ∞ and tf are the steady
value and the setting time interval of the decaying function
ρy(t) respectively, that is, ρy(t) ≡ ρ∞ when t ≥ t0 + tf .
Notice that if the constraint (6) holds for any t ≥ t0, the
function y(t) will fall into the interval [0, ρ∞) with the setting
time interval tf s, meaning that supt≥t0+tf

y(t) ≤ ρ∞.
In addition, since ρ∞ < ρ0, it is obtained from (7)-(8) that

dρy(t)
dt < 0 when t0 ≤ t < t0+tf . Therefore the function ρy(t)

monotonically decreases from ρ0 to ρ∞ in the time interval
[t0, t0 + tf ], and remains at ρ∞ when t ≥ t0 + tf . It can be
also seen in (7) that ρy(t) ≥ ρ∞ > 0 for any t ≥ t0.

According to the constraint (6), the following prescribed
performance error function is designed

We(yρ) , − ln(1− yρ), (9)

where yρ(t) , y(t)
ρy(t)

, and yρ(t) ≥ 0 since y(t) ≥ 0 and
ρy(t) > 0. Note that We = 0 if and only if yρ = 0, meaning
that We = 0 if and only if y = 0. Besides, We will tend
to positive infinity if yρ tends to 1, and We will be finite if
yρ < 1. Moreover, it is obtained from (9) that

dWe

dt
= Φ(yρ)(

1

ρy
ẏ − ρ̇y

ρ2y
y), (10)

if 0 ≤ yρ < 1, where

Φ(yρ) ,
∂We

∂yρ
=

1

1− yρ
. (11)

Note that Φ(yρ) ≥ 1 and

We(yρ) ≤ Φ(yρ)yρ ≤ Φ2(yρ)yρ, (12)

if 0 ≤ yρ < 1 (that is, the constraint (6) is satisfied).

E. Problem formulation

In this paper, the spacecraft is controlled to achieve atti-
tude tracking. The reference attitude, the reference angular
velocity, and the reference angular acceleration are denoted by
Qd(t) ∈ SO(3), wd(t) ∈ R3 and ad(t) ∈ R3 respectively, and
Fb,d denotes the body-attached frame of the desired spacecraft
attitude Qd. The reference attitude Qd(t) and the reference
angular velocity wd(t) obey the following equation

Q̇d = QdS(wd). (13)

Notice that the desired attitude Qd(t) represents the rotation
from Fi to Fb,d expressed in Fb,d, and wd(t) is the desired
angular velocity in Fb,d. Here the desired attitude Qd(t) meets
the constraint (4) at all the time, and wd(t) and ad(t) are both
uniformly bounded. This means that there exist two constants
∆w > 0 and ∆a > 0 such that ∥wd(t)∥ < ∆w and ∥ad(t)∥ <
∆a. Besides, denote vr,d,1 , Qdvb,1, Qer , QT

d Q, w̄d ,
QT

erwd, and wer , w − w̄d. It is obtained from (3a)-(3b) and
(13) that

Q̇er = QerS(wer), (14a)

Jẇer =− S(w̄d)Jw̄d − JQT
erad + S(Jw)wer

− (S(w̄d)J + JS(w̄d))wer + τ + d.
(14b)

Then the problem to be studied is provided as follows.
Problem 1: For the spacecraft with the parameter uncertain-

ties and the external disturbances, a control scheme should be
designed, so that the spacecraft attitude Q(t) can track the
trajectory Qd(t) with the appointed-time control performance,
and the attitude constraint (4) can be satisfied at all the time.

Besides, the following lemma will be used later.
Lemma 1: For a positive semidefinite matrix P ∈ R3×3

with rank(P ) ≥ 2, its eigenvalues are λP,i, i = 1, 2, 3, with
λP,1 ≥ λP,2 ≥ λP,3 ≥ 0. Then it follows that Tr(P −PQ̄) ≥
λP,2+λP,3

2 Tr(E3 −E3Q̄) for any rotation matrix Q̄ ∈ SO(3).

The proof of Lemma 1 can be seen in [61].
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III. CONSTRAINED APPOINTED-TIME ATTITUDE
CONTROLLER DESIGN

In this section, a control scheme will be designed to realize
constrained attitude tracking. First, vb,2 ∈ R3 and vb,3 ∈ R3

denote two unit vectors in Fb, so that vb,i, i = 1, 2, 3, are
perpendicular to each other, and vb,3 = S(vb,1)vb,2. It means
that vTb,ivb,j = 0 for any i = 1, 2, 3 and j = 1, 2, 3 with
i ̸= j. Denote vr,2 , Qvb,2, vr,d,2 , Qdvb,2, vr,3 , Qvb,3,
vr,d,3 , Qdvb,3, Ub , [vb,1, vb,2, vb,3], Ur , [vr,1, vr,2, vr,3]
and Ur,d , [vr,d,1, vr,d,2, vr,d,3]. Note that vr,3 = S(vr,1)vr,2,
vr,d,3 = S(vr,d,1)vr,d,2, ∥vr,i∥ = ∥vr,d,i∥ = 1 for any i =
1, 2, 3, UT

b Ub = UT
r Ur = UT

r,dUr,d = E3, Q = UrU
T
b , and

Qd = Ur,dU
T
b . Besides, if vr,1 = vr,d,1 and vr,2 = vr,d,2,

it is obtained that vr,3 = vr,d,3 and accordingly Q = Qd.
This means that if the vectors vr,1 and vr,2 converge to vr,d,1
and vr,d,2 respectively, the attitude Q will converge to Qd. In
addition, based upon (3a) and (13), the derivatives of vr,i and
vr,d,i are

v̇r,i = QS(w)vb,i = −S(vr,i)Qw, (15a)
v̇r,d,i = QdS(wd)vb,i = −S(vr,d,i)Qdwd. (15b)

A. The projection function on the attitude constraint

In this paper, the spacecraft attitude should meet the con-
straint (4) at all the time, and besides the attitude tracking
error should possess the appointed-time control performance.
However, the state space of the spacecraft attitude, that is,
SO(3), is not an Euclidean space like R3, which complicates
the control scheme design to meet the constraint (4) and the
appointed-time control performance simultaneously. Hence, a
novel reduced dimensional vector x ∈ R2 is designed as

x , Pr(vr,1), (16)

where

Pr(vr,1) ,
cos θf + 1

η
Nfvr,1, (17)

is the according projection function, η is defined in (5), and the
matrix Nf , [vTp,1; v

T
p,2] ∈ R2×3 satisfies ∥vp,1∥ = ∥vp,2∥ =

1, vTp,1vp,2 = 0 and S(vp,1)vp,2 = vf . It is obtained from the
definition of Nf that NfN

T
f = E2 and Nfvf = 02.

Similarly, we can also obtain the reduced dimensional vector
associated with vr,d,1, that is,

xd , Pr(vr,d,1) ∈ R2. (18)

In addition, for the vectors vr,1 and vr,d,1, and the reduced
dimensional vectors x and xd, the following lemmas hold.

Lemma 2: For the vectors vr,1 and x, if vr,1 satisfies the
constraint (4), x will be bounded.

The proof of Lemma 2 can be seen in [61].
Lemma 3: For vr,1(t) and x(t), if vr,1(0) satisfies the

constraint (4) and x(t) is uniformly bounded in [0, t́), where
0 < t́ ≤ +∞, then the constraint (4) always holds in [0, t́).

The proof of Lemma 3 can be seen in [61].
Lemma 4: If both vr,1 and vr,d,1 satisfy the constraint (4),

then ∥vr,1 − vr,d,1∥ ≤ ∥x− xd∥ will hold. Moreover, ∥vr,1 −
vr,d,1∥ = ∥x− xd∥ if and only if vr,1 = vr,d,1.

The proof of Lemma 4 can be seen in [61].
Note that Qd(t) satisfies the constraint (4) at all the time,

and therefore it follows from Lemma 2 that xd(t) is uniformly
bounded at all the time. Moreover, in view of (15a) and (16)-
(17), the derivative of x is

ẋ = − 1

η2
Gw, (19)

where

G , (cos θf + 1)Nf (ηE3 + vr,1v
T
f )S(vr,1)Q. (20)

Accordingly, the following lemma holds for G ∈ R2×3.
Lemma 5: The matrix G is bounded. Besides, if the con-

straint (4) is satisfied, the matrix GGT will be positive definite.
This means that there exist two positive constants λG,min and
λG,max such that λG,minE2 ≤ GGT ≤ λG,maxE2.

The proof of Lemma 5 can be seen in [61].
Similarly, it is obtained from (15b) and (17)-(18) that

ẋd = − 1

η2d
Gdwd, (21)

where ηd , cos θf − vTf vr,d,1 and Gd , (cos θf +

1)Nf (ηdE3 + vr,d,1v
T
f )S(vr,d,1)Qd. Based upon Lemma 5, it

follows that the matrix Gd(t) is uniformly bounded, and since
ηd(t) > 0 at all the time and wd(t) is uniformly bounded, it
is further obtained that ẋd(t) is also uniformly bounded.

Remark 2: It should be noted that based upon the projection
function (17), the unit vectors vr,1(t) and vr,d,1(t) are mapped
to the reduced dimensional vectors x(t) and xd(t) in the
Euclidean space R2 respectively. Note that if x(t) is uniformly
bounded and the initial attitude Q(0) meets the constraint (4),
it is ensured in Lemma 3 that the attitude constraint (4) is satis-
fied at all the time. Besides, since xd(t) is uniformly bounded,
it further follows that in order to satisfy the constraint (4) at
all the time, the control scheme is only required to ensure the
uniformly boundedness of ∥x(t)−xd(t)∥, if vr,1(0) meets the
constraint (4).

B. Vector-based error functions and appointed-time perfor-
mance constraints

First, denote

xer , x− xd, (22)

as the tracking error with respect to xd. Then the following
auxiliary vectors are introduced

v̄r,d,2 , ṽr,d,2
∥ṽr,d,2∥

, (23a)

v̄r,d,3 , ṽr,d,3
∥ṽr,d,3∥

, (23b)

where

ṽr,d,2 , S(vr,1)vr,d,2, (24a)

ṽr,d,3 , (E3 − vr,1v
T
r,1)vr,d,2. (24b)

Based upon (23a)-(23b) and (24a)-(24b), it is further obtained
that vTr,1ṽr,d,2 = vTr,1v̄r,d,2 = vTr,1ṽr,d,3 = vTr,1v̄r,d,3 =
ṽTr,d,2ṽr,d,3 = v̄Tr,d,2v̄r,d,3 = 0. Since vTr,1v̄r,d,2 = vTr,1v̄r,d,3 =
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0, S(vr,2)vr,1 = −vr,3 and
∑3

i=1(ź
T vr,i)

2 = 1 for any unit
vector ź ∈ R3, it is obtained that

(v̄Tr,d,2S(vr,2)vr,1)
2 = (v̄Tr,d,2vr,3)

2 + (vTr,1v̄r,d,2)
2

= 1− (v̄Tr,d,2vr,2)
2,

(25a)

(v̄Tr,d,3S(vr,2)vr,1)
2 = (v̄Tr,d,3vr,3)

2 + (vTr,1v̄r,d,3)
2

= 1− (v̄Tr,d,3vr,2)
2.

(25b)

In view of (15a)-(15b) and (23a)-(23b), the derivatives of v̄b,d,2
and v̄b,d,3 are

˙̄vr,d,2 =
1

∥ṽr,d,2∥
Ψ2(−S(vr,1)S(vr,d,2)Qdwd

+ S(vr,d,2)S(vr,1)Qw),

(26a)

˙̄vr,d,3 =
1

∥ṽr,d,3∥
Ψ3(−(E3 − vr,1v

T
r,1)S(vr,d,2)Qdwd

+Ψ4Qw).

(26b)

where Ψ2 , E3 − v̄r,d,2v̄
T
r,d,2, Ψ3 , E3 − v̄r,d,3v̄

T
r,d,3 and

Ψ4 , (vTr,1vr,d,2E3 + vr,1v
T
r,d,2)S(vr,1).

Then, the following vector-based error functions are con-
structed

φ1 , 1

2
∥xer∥2, (27a)

φ2 , 1− v̄Tr,d,2vr,2, (27b)

φ3 , 1− v̄Tr,d,3vr,2. (27c)

On one hand, the appointed-time performance constraint on
φ1 is designed as

φ1(t) < ρ1(t), (28)

where ρ1(t) , ρ(ρ0,1, ρ∞,1, 0, tf,1, t) with 0 < ρ∞,1 <
min{ρ0,1, 1} and tf,1 > 0. Here the parameter ρ0,1 is designed
such that the constraint (28) holds at the initial instant.

On the other hand, two time instants ts and t̄f are designed
as

tc ,
{

tf,1, φ3(tf,1) ≤ 2− ϵ1;
tf,1 + tf,2, φ3(tf,1) > 2− ϵ1, (29a)

t̄f , tc + tf,3, (29b)

where 0 < ϵ1 < 1, tf,2 > 0 and tf,3 > 0. It can be seen in
(29a)-(29b) that tc = tf,1 and t̄f = tf,1+tf,3 when φ3(tf,1) ≤
2− ϵ1, and tc = tf,1 + tf,2 and t̄f = tf,1 + tf,2 + tf,3 when
φ3(tf,1) > 2 − ϵ1. In view of (29a), if φ3(tf,1) > 2 − ϵ1
and accordingly tc = tf,1 + tf,2, the following appointed-
time performance constraint on φ2 is constructed in the time
interval t ∈ [tf,1, tf,1 + tf,2)

φ2(t) < ρ2(t), (30)

where ρ2(t) = ρ(ρ0,2, ρ∞,2, tf,1, tf,2, t) with 0 < ρ∞,2 <
1 −

√
1− (1− ϵ1)2 and 1 +

√
1− (1− ϵ1)2 ≤ ρ0,2 < 2.

Then, when t ≥ tc, the following appointed-time performance
constraint on φ3 is constructed in the time interval [tc,+∞)

φ3(t) < ρ3(t), (31)

where ρ3(t) = ρ(ρ0,3, ρ∞,3, tc, tf,3, t), with 0 < ρ∞,3 < 1
and 2− ϵ1 < ρ0,3 < 2.

In addition, the following lemma holds for φ1(t) and φ3(t).

Lemma 6: If φ1 < ρ∞,1 and φ3 < ρ∞,3, the attitude
tracking error Qer will be in the set

ΘR , {Qer ∈ SO(3) | Tr(E3 −Qer) < 4ρ∞,1 + 2ρ∞,3},
(32)

which is a small neighborhood of the equilibrium E3.
The proof of Lemma 6 can be seen in Appendix A.
Remark 3: Here the choice of the parameter ρ∞,1 is

discussed as follows. On one hand, if ρ∞,1 < ρ0,1, it follows
from (8) that ρ̇1(t) < 0 when t ∈ [0, tf,1), and ρ̇1(t) = 0
when t ≥ tf,1. This means that the parameter ρ∞,1 should
be selected as ρ∞,1 < ρ0,1, so that the function ρ1(t) is
strictly monotonically decreasing in the time interval [0, tf,1),
and remains its value when t ≥ tf,1 (that is, ρ1(t) = ρ∞,1

when t ≥ tf,1).
On the other hand, if φ1(t) meets the constraint (28), it

follows from Lemma 4 that 1 − vTr,d,1(t)vr,1(t) < ρ1(t).
Especially, if φ1(t) < ρ∞,1, it also follows from Lemma 4
that

1− vTr,d,1(t)vr,1(t) =
1

2
∥vr,1(t)− vr,d,1(t)∥2 < ρ∞,1. (33)

Accordingly, if the parameter ρ∞,1 is set as ρ∞,1 < 1, it can
be obtained from (33) that

vTr,d,1(t)vr,1(t) > 1− ρ∞,1 > 0. (34)

Besides, according to (24a)-(24b), it is obtained that

∥ṽr,d,2(t)∥2 = ∥ṽr,d,3(t)∥2 = 1− (vTr,1(t)vr,d,2(t))
2. (35)

Notice that źTUr,dU
T
r,dź =

∑3
i=1(v

T
r,d,iź)

2 = 1 for any unit
vector ź ∈ R3. Accordingly, from (34)-(35), it follows that

∥ṽr,d,2(t)∥2 =∥ṽr,d,3(t)∥2

=(vTr,1(t)vr,d,1(t))
2 + (vTr,1(t)vr,d,3(t))

2

≥(vTr,1(t)vr,d,1(t))
2

>(1− ρ∞,1)
2

>0,

(36)

if ρ∞,1 < 1. Since ∥ṽr,d,2(t)∥ = ∥ṽr,d,3(t)∥ > (1−ρ∞,1) > 0
when ρ∞,1 < 1, the vectors v̄r,d,2(t) (23a) and v̄r,d,3(t) (23b)
can be obtained. This means that the parameter ρ∞,1 should
be selected as ρ∞,1 < 1, in order to obtain the vectors v̄r,d,2(t)
(23a) and v̄r,d,3(t) (23b) when φ1(t) < ρ∞,1. Based upon the
above analysis, it is obtained that the parameter ρ∞,1 should
be chosen as ρ∞,1 < min{ρ0,1, 1}.

Remark 4: It should be noticed that if the constraint (28)
holds at all the time, it is obtained from Remark 2 that the
attitude constraint (4) is satisfied at all the time. Besides, if
the constraint (28) holds at all the time, it follows that that Eq.
(33) holds when t ≥ tf,1. From (33), it further follows that

∥vr,1(t)− vr,d,1(t)∥ <
√
2ρ∞,1, (37)

when t ≥ tf,1. It can be seen in (37) that the smaller the
parameter ρ∞,1 is, the smaller the error between the vectors
vr,1(t) and vr,d,1(t) becomes when t ≥ tf,1.

Remark 5: Here, the choice of the range of the parameters
ρ0,2, ρ∞,2, ρ0,3 and ρ∞,3 is discussed as below. First, when
φ3(tf,1) ≤ 2 − ϵ1, it follows from (29a) and (31) that tc =
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tf,1 and accordingly the error function φ3(t) should obey the
constraint (31) for any t ≥ tf,1. Hence, the parameter ρ0,3 is
set as ρ0,3 > 2−ϵ1, meaning that φ3(tf,1) ≤ 2−ϵ1 < ρ0,3 and
the constraint (31) is satisfied when t = tf,1. The parameter
ρ∞,3 is then set as 0 < ρ∞,3 < 1 such that ρ∞,3 < 1 <
2− ϵ1 < ρ0,3, meaning that the requirement on the monotonic
decrease of the function ρ3(t) can be satisfied.

Besides, when φ3(tf,1) = 1 − v̄Tr,d,3(tf,1)vr,2(tf,1) >
2 − ϵ1, it follows from (29a) that tc = tf,1 + tf,2. S-
ince the parameter ρ0,2 is set as 1 +

√
1− (1− ϵ1)2 ≤

ρ0,2 < 2, it follows from vTr,1v̄r,d,2 = vTr,1v̄r,d,3 =
v̄Tr,d,2v̄r,d,3 = vTr,1vr,2 = 0 and v̄Tr,d,3(tf,1)vr,2(tf,1) < −1 +

ϵ1 that φ2(tf,1) ≤ 1 +
√
(v̄Tr,d,2(tf,1)vr,2(tf,1))

2 = 1 +√
1− (v̄Tr,d,3(tf,1)vr,2(tf,1))

2 < 1 +
√
1− (1− ϵ1)2 ≤ ρ0,2,

meaning that the constraint (30) is satisfied when t = tf,1.
In addition, since the parameter ρ∞,2 is set as ρ∞,2 < 1 −√

1− (1− ϵ1)2, if φ2(tc) = 1−v̄Tr,d,2(tc)vr,2(tc) < ρ∞,2, it is
similarly obtained from vTr,1v̄r,d,2 = vTr,1v̄r,d,3 = v̄Tr,d,2v̄r,d,3 =

vTr,1vr,2 = 0 that φ3(tc) ≤ 1 +
√
(v̄Tr,d,3(tc)vr,2(tc))

2 =

1+
√
1− (v̄Tr,d,2(tc)vr,2(tc))

2 < 2−ϵ1 < ρ0,3. This means that
if the constraint (30) is satisfied when t = tc, the according
constraint (31) will also hold when t = tc.

In all, the range of the parameter ρ0,2 is set to ensure that
the constraint (30) holds when t = tf,1 and φ3(tf,1) > 2− ϵ1,
the ranges of the parameters ρ0,3 and ρ∞,2 are set to guarantee
that the constraint (31) holds when t = tc, and the range of
the parameter ρ∞,3 is set to ensure that the function ρ3(t) is
monotonically decreasing.

Remark 6: If the constraint (28) holds at all the time, and
the constraint (31) always holds when t ≥ tc, it follows that
φ1(t) < ρ∞,1 and φ3(t) < ρ∞,3 when t ≥ t̄f . Hence, to
realize the desired control performance, the control scheme
should be designed so that the constraint (28) holds at all the
time, and the constraint (31) always holds when t ≥ tc.

Besides, based on Remark 1, if the parameters ρ∞,i, i =
1, 2, 3, get larger (smaller), the steady values of the functions
ρi(t), i = 1, 2, 3, will be larger (smaller), the size of the
residual set ΘR (32) will be larger (smaller), and the steady-
state error of the tracking error Rer(t) will also be larger
(smaller). In addition, based on Remark 1, if the parameters
tf,i, i = 1, 2, 3, get larger (smaller), the setting time intervals
of the functions ρi(t), i = 1, 2, 3, will be larger (smaller), and
the setting time t̄f (29b) of the tracking error Rer(t) will also
be larger (smaller).

C. Virtual controller design

First, based upon the error functions (27a)-(27c), and the
appointed-time performance constraints (28) and (30)-(31), the
virtual attitude controller is designed as

wc = wc,1 + λcvb,1, (38)

where

wc,1 , kc,1
η2

G†Φ1xer, (39a)

λc ,


0, 0 ≤ t < tf,1;
−kc,2Φ2v̄

T
r,d,2S(vr,2)vr,1, tf,1 ≤ t < tc,

−kc,3Φ3v̄
T
r,d,3S(vr,2)vr,1, t ≥ tc.

(39b)

In (39a)-(39b), kc,1 > 0, kc,2 > 0, kc,3 > 0, Φ1 , Φ(φ1

ρ1
),

Φ2 , Φ(φ2

ρ2
), Φ3 , Φ(φ3

ρ3
), G† is the pseudo inverse of the

matrix G, and η is defined in (5).
Correspondingly, the sliding variable is denoted by

wr , wer − wc. (40)

When t ≥ tf,1, it is obtained from (38), (40), wer = w − w̄d

and vr,1 = Qvb,1 that

S(vr,1)Qw = S(vr,1)Q(wr + w̄d + wc,1 + λcvb,1)

= S(vr,1)Q(wr + w̄d + wc,1).
(41)

Then, for the error function φ1, the associated Lyapunov
function candidate is constructed as Vk,1 , We(

φ1

ρ1
), where

the function We(·) is defined in (9). According to (10)-(11),
(19)-(20), (22), (27a), (38)-(39a), (40)-(41), Lemma 5 and
the Young’s inequality, if the constraint (28) is satisfied, the
derivative of Vk,1 is scaled as

V̇k,1 = −kc,1Φ
2
1

η4ρ1
∥xer∥2 −

Φ1

η2ρ1
xT
erGwr −

Φ1

ρ1
xT
erẋd

− ρ̇1Φ1

2ρ21
∥xer∥2 −

Φ1

η2ρ1
xT
erGQT

erwd

≤ −5kc,1Φ
2
1

8η4ρ1
∥xer∥2 +

4λG,max

kc,1ρ1
∥wr∥2

+
4λG,max

kc,1ρ1
∥wd∥2 +

2η4

kc,1ρ1
∥ẋd∥2 +

ρ̇21η
4

2kc,1ρ31
∥xer∥2.

(42)

Besides, when φ3(tf,1) > 2 − ϵ1, the Lyapunov function
candidate on φ2 is set in [tf,1, tf,1 + tf,2) as Vk,2 , We(

φ2

ρ2
).

Based on (10)-(11), (15a), (25a), (26a), (27b), (38), (39a)-
(39b), (40)-(41) and vr,1 = Qvb,1, if the constraints (28) and
(30) hold in [tf,1, tf,1 + tf,2), the derivative of Vk,2 is

V̇k,2 =
Φ2

ρ2
v̄Tr,d,2S(vr,2)Q(wr + w̄d)

− kc,2Φ
2
2

ρ2
(1− (v̄Tr,d,2vr,2)

2)− Φ2
ρ̇2
ρ22

(1− v̄Tr,d,2vr,2)

+
kc,1Φ2

ρ2η2
v̄Tr,d,2S(vr,2)QG†Φ1xer

+
Φ2

ρ2∥ṽr,d,2∥
vTr,2Ψ2S(vr,1)S(vr,d,2)Qdwd

− Φ2

ρ2∥ṽr,d,2∥
vTr,2Ψ2S(vr,d,2)S(vr,1)Q(wr + w̄d)

− kc,1Φ1Φ2

ρ2η2∥ṽr,d,2∥
vTr,2Ψ2S(vr,d,2)S(vr,1)QG†xer.

(43)
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Based on the Young’s inequality, (36) and Lemma 5, the
derivative of Vk,2 (43) is scaled as

V̇k,2 ≤− kc,2Φ
2
2

4ρ2
(1− (v̄Tr,d,2vr,2)

2) +
c1
ρ2

∥wr∥2

+
c2Φ

2
1

ρ2η4
∥xer∥2 +

c3
ρ2

∥wd∥2

+
2ρ̇22(1− v̄Tr,d,2vr,2)

kc,2ρ32(1 + v̄Tr,d,2vr,2)
,

(44)

if the constraints (28) and (30) hold, where c1 ,
4

kc,2
( 1
(1−ρ∞,1)2

+ 1), c2 , 2k2
c,1

kc,2λG,min
(1 + 1

(1−ρ∞,1)2
) and

c3 , 2
kc,2

(2 + 3
(1−ρ∞,1)2

).
Additionally, in the time interval [tc,+∞), the Lypuanov

function candidate on φ3 is constructed as Vk,3 , We(
φ3

ρ3
).

According to (10)-(11), (15a), (25b), (26b), (27c), (38), (39a)-
(39b), (40), (41) and vr,1 = Qvb,1, if the constraints (28) and
(31) hold in [tc,+∞), the derivative of Vk,3 is

V̇k,3 =
Φ3

ρ3
v̄Tr,d,3S(vr,2)Q(wr + w̄d)− Φ3

ρ̇3
ρ23

(1− v̄Tr,d,3vr,2)

− kc,3Φ
2
3

ρ3
(1− (v̄Tr,d,3vr,2)

2)

+
kc,1Φ1Φ3

ρ3η2
v̄Tr,d,3S(vr,2)QG†xer

− Φ3

ρ3∥ṽr,d,3∥
vTr,2Ψ3Ψ4Q(wr + w̄d)

− kc,1Φ1Φ3

ρ3∥ṽr,d,3∥η2
vTr,2Ψ3Ψ4QG†xer

+
Φ3

ρ3∥ṽr,d,3∥
vTr,2Ψ3(E3 − vr,1v

T
r,1)S(vr,d,2)Qdwd.

(45)

Notice that

ΨT
4 Ψ4 ≤ 4(vTr,1vr,d,3)

2E3 ≤ 4E3. (46)

Based on the Young’s inequality, (36), (46) and Lemma 5, the
derivative of Vk,3 (45) is scaled as

V̇k,3 ≤− kc,3Φ
2
3

4ρ3
(1− (vTr,2v̄r,d,3)

2) +
c4
ρ3

∥wr∥2

+
c5Φ

2
1

ρ3η4
∥xer∥2 +

c6
ρ3

∥wd∥2

+
2ρ̇23(1− v̄Tr,d,3vr,2)

kc,3ρ33(1 + v̄Tr,d,3vr,2)
,

(47)

if the constraints (28) and (31) hold, where c4 , 4
kc,3

(1 +

4
(1−ρ∞,1)2

), c5 , 2k2
c,1

kc,3λG,min
(1 + 4

(1−ρ∞,1)2
), c6 , 2

kc,3
(2 +

9
(1−ρ∞,1)2

).
Moreover denote

Vk ,

 Vk,1, 0 ≤ t < tf,1;
Vk,1 + c7Vk,2, tf,1 ≤ t < tc;
Vk,1 + c8Vk,3, t ≥ tc,

(48)

where c7 , kc,1ρ∞,2

8c2ρ0,1
and c8 , kc,1ρ∞,3

8c5ρ0,1
. On one hand, when

tf,1 ≤ t < tc, it is obtained from (8) that ρ̇1(t) = 0 and,

together with (42) and (44), that the derivative of Vk = Vk,1+
c7Vk,2 is scaled as

V̇k ≤− kc,1Φ
2
1

2η4ρ1
∥xer∥2 −

kc,2c7Φ
2
2

4ρ2
(1− (vTr,2v̄r,d,2)

2)

+ (
4λG,max

kc,1ρ1
+

c1c7
ρ2

)∥wr∥2 +
2η4

kc,1ρ1
∥ẋd∥2

+ (
c3c7
ρ2

+
4λG,max

kc,1ρ1
)∥wd∥2 +

2c7ρ̇
2
2(1− vTr,2v̄r,d,2)

kc,2ρ32(1 + vTr,2v̄r,d,2)
,

(49)

if the constraints (28) and (30) hold. On the other hand, if
t ≥ tc, it can be also obtained from (8) that ρ̇1(t) = 0. Hence,
based upon (42) and (47), if the constraints (28) and (31) hold,
the derivative of Vk = Vk,1 + c8Vk,3 is bounded as

V̇k ≤− kc,1Φ
2
1

2η4ρ1
∥xer∥2 −

kc,3c8Φ
2
3

4ρ3
(1− (vTr,2v̄r,d,3)

2)

+ (
4λG,max

kc,1ρ1
+

c4c8
ρ3

)∥wr∥2 +
2η4

kc,1ρ1
∥ẋd∥2

+ (
c6c8
ρ3

+
4λG,max

kc,1ρ1
)∥wd∥2 +

2c8ρ̇
2
3(1− v̄Tr,d,3vr,2)

kc,3ρ33(1 + v̄Tr,d,3vr,2)
.

(50)

D. Control Input Design

Based upon the designed virtual controller (38) and (39a)-
(39b), the actual control input will be put forward in this
subsection. First, in view of (14b) and (40), it is obtained
that

Jẇr = (S(Jw)− S(w̄d)J − JS(w̄d))wr + τ + Ξ1, (51)

where

Ξ1 =− Jẇc − S(w̄d)Jw̄d − JQT
erad + S(Jw)wc

− (S(w̄d)J + JS(w̄d))wc + d.
(52)

The Lyapunov function candidate on wr is Vw,r = 1
2w

T
r Jwr,

and in view of (51), and its derivative is

V̇w,r = wT
r τ + wT

r Ξ1. (53)

Notice that Ξ1(t) is the term on the uncertain inertia parame-
ters and the external disturbances, and in view of Property 1
and the Young’s inequality, it follows that

wT
r Ξ1 ≤

λ2
J,max

2ϵ2
∥wd∥2∥wc∥2∥wr∥2 +

λ2
J,max

4ϵ2
∥ẇc∥2∥wr∥2

+
λ2
J,max

4ϵ2
∥w∥2∥wc∥2∥wr∥2 + 3ϵ2

− wT
r S(w̄d)Jw̄d − wT

r JQ
T
erad + wT

r d.
(54)

Correspondingly, it follows from (53)-(54) that

V̇w,r ≤wT
r (−S(w̄d)Jw̄d − JQT

erad + d) + 3ϵ2

+
λ2
J,max

2ϵ2
∥wd∥2∥wc∥2∥wr∥2 +

λ2
J,max

4ϵ2
∥ẇc∥2∥wr∥2

+
λ2
J,max

4ϵ2
∥w∥2∥wc∥2∥wr∥2 + wT

r τ,

(55)
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where ϵ2 > 0. Owing to the uniform boundedness of wd(t)
and ad(t), it follows that there exist two constants ∆1 > 0
and ∆2 > 0 such that ∥−S(w̄d(t))Jw̄d(t)− JQT

er(t)ad(t) +
d(t)∥ ≤ λJ,max∥wd(t)∥2+λJ,max∥ad(t)∥+∥d(t)∥ < ∆1 and
λ2
J,max

2ϵ2
∥wd(t)∥2+

λ2
J,max

4ϵ2
< ∆2. Correspondingly, based upon

the relation ∥wr∥ ≤ wT
r tanh( 1

ϵ3
wr) + 3ϵ3δ1 with ϵ3 > 0 and

δ1 = 0.2785 [62], it is further obtained from (55) that

V̇w,r ≤wT
r tanh(

1

ϵ3
wr)∆1 + 3ϵ3δ1∆1 + wT

r τ + 3ϵ2

+∆2(∥ẇc∥2 + ∥wc∥2 + ∥wc∥2∥w∥2)∥wr∥2.
(56)

Then, the control input is designed as

τ =− kw,cwr − ru,1 tanh(
1

ϵ3
wr)

− ru,2(∥ẇc∥2 + ∥wc∥2 + ∥wc∥2∥w∥2)wr,
(57)

where kw,c > 0, ru,1(t) and ru,2(t) are dynamic gaining
variables satisfying the following equations

ṙu,1 = Γu,1w
T
r tanh(

1

ϵ3
wr)− ku,1ru,1, (58a)

ṙu,2 =Γu,2(∥ẇc∥2 + ∥wc∥2 + ∥wc∥2∥w∥2)∥wr∥2

− ku,2ru,2,
(58b)

with the parameters Γu,1 > 0, Γu,2 > 0, ku,1 > 0 and
ku,2 > 0 and the function tanh(·) defined in Notations. Here
ru,1(0) ≥ 0, ru,2(0) ≥ 0, and according to (58a)-(58b),
it is obtained that ru,1(t) ≥ 0 and ru,2(t) ≥ 0. Denote
Vu,1 , 1

2Γu,1
(ru,1 − ∆1)

2, Vu,2 , 1
2Γu,2

(ru,2 − ∆2)
2 and

Vd , Vw,r + Vu,1 + Vu,2, and based upon (56), (57), (58a)-
(58b), and the Young’s inequality, the derivative of Vd is
bounded as

V̇d ≤− kw,c∥wr∥2 −
3ku,1
2

Vu,1 −
3ku,2
2

Vu,2 + ∆́c, (59)

where ∆́c , 3ϵ3δ1∆1 + 3ϵ2 +
ku,1∆

2
1

Γu,1
+

ku,2∆
2
2

Γu,2
. In addition,

denote Vc , Vk + c9Vd, where c9 , 2
kw,c

{ 4λG,max

kc,1ρ∞,1
+ c1c7

ρ∞,2
+

c4c8
ρ∞,3

}, and it follows from (12), (42), (49)-(50) and (59) that

V̇c ≤ −Πc +Πe +∆c, (60)

where

Πc ,Πc,1 +
c9kw,c

λJ,max
Vw,r

+
3c9ku,1

2
Vu,1 +

3c9ku,2
2

Vu,2,

(61a)

Πc,1

,


kc,1Φ1

16 Vk,1, 0 ≤ t < tf,1;
kc,1Φ1

16 Vk,1 +
kc,2c7Φ2(1+vT

r,2v̄r,d,2)

4 Vk,2, tf,1 ≤ t < tc;
kc,1Φ1

16 Vk,1 +
kc,3c8Φ3(1+vT

r,2v̄r,d,3)

4 Vk,3, t ≥ tc,
(61b)

Πe ,


8ρ̇2

1

kc,1ρ3
1
∥xer∥2, 0 ≤ t < tf,1;

2c7ρ̇
2
2(1−v̄T

r,d,2vr,2)

kc,2ρ3
2(1+v̄T

r,d,2vr,2)
, tf,1 ≤ t < tc;

2c8ρ̇
2
3(1−v̄T

r,d,3vr,2)

kc,3ρ3
3(1+v̄T

r,d,3vr,2)
, t ≥ tc,

(61c)

and ∆c(t) , c9∆́c+
32∥ẋd∥2

kc,1ρ∞,1
+(

4λG,max

kc,1ρ∞,1
+ c3c7

ρ∞,2
+ c6c8

ρ∞,3
)∥wd∥2.

Notice that Πc,1(t) ≥ 0, Πc(t) ≥ 0, Πe(t) ≥ 0, and ∆c(t) is
uniformly bounded at all the time.

Then the following theorem is obtained.
Theorem 1: For the control scheme (38), (39a)-(39b), (40),

(57), and (58a)-(58b), if the initial spacecraft attitude meets
the constraints (4) and (28), ru,1(0) ≥ 0 and ru,2(0) ≥ 0,
then the variables Qer(t), w(t), ru,1(t) and ru,2(t) are all
uniformly bounded with ru,1(t) ≥ 0 and ru,2(t) ≥ 0. Besides,
the constraint (4) is satisfied at all the time, and Qer(t) can
fall into the set ΘR (32) with the setting time t̄f s.

Proof: The proof of this theorem includes four steps.
a). The uniform boundedness of Vc(t) in [0, tf,1).
First, it will be proved by contradiction that the func-

tion Vk,1(t) is uniformly bounded in [0, tf,1). Suppose that
the above claim is invalid. Hence there is a time instant
th,1 ∈ (0, tf,1) so that limt→t−h,1

Vk,1(t) = +∞ and Vk,1(t)

is finite for any t ∈ [0, th,1). It follows from (9) that the
constraint (28) is satisfied in [0, th,1), and xer(t) is uniformly
bounded in [0, th,1). Then according to (59), it is obtained that
wr(t), ru,1(t), ru,2(t) and Vd(t) are all uniformly bounded in
[0, th,1). Based on the uniform boundedness of xer(t), wr(t),
ẋd(t) and wd(t) in [0, th,1), it follows from (42) that Vk,1(t)
is uniformly bounded in [0, th,1), which contradicts with the
above assumption. Hence, the above assumption is invalid,
meaning that in the time interval [0, tf,1), Vk,1(t) is uniformly
bounded, the constraints (4) and (28) hold, and xer(t), Φ1(t),
G†(t) and wc(t) = wc,1(t) (39a) are all uniformly bounded.

Then, it will be verified that Vc(t) is uniformly bounded
in [0, tf,1). First, since the constraint (28) holds in [0, tf,1),
Eq. (60) holds in [0, tf,1). From (7)-(8), it follows that
ρ1(t) ≥ ρ∞,1, ρ̇1(t) is uniformly bounded and, together with
the uniform boundedness of xer(t) in [0, tf,1), that Πe(t)
is uniformly bounded in [0, tf,1). Since ∆c(t) is uniformly
bounded, it follows from (60) that Vc(t) is also uniformly
bounded in [0, tf,1), meaning that Qer(t), wr(t), ru,1(t) and
ru,2(t) are all uniformly bounded in [0, tf,1). Besides, due to
the uniform boundedness of wr(t), wc(t) and w̄d(t) in [0, tf,1),
it follows that w(t) is also uniformly bounded in [0, tf,1).

b). The uniform boundedness of Vc(t) in [tf,1, tc) when
φ3(tf,1) > 2− ϵ1.

First, if φ3(tf,1) = 1− v̄Tr,d,3(tf,1)vr,2(tf,1) > 2− ϵ1, it is
obtained from (29a)-(29b) and Remark 5 that tc = tf,1+ tf,2,
t̄f = tf,1 + tf,2 + tf,3, and the constraint (30) holds when
t = tf,1. Accordingly, it is obtained that Vk,2(tf,1) < +∞.

Besides, similar to the proof procedure of part a), it follows
that in the time interval [tf,1, tf,1+ tf,2), Vk,1(t) is uniformly
bounded, the constraints (4) and (28) always hold, and xer(t),
Φ1(t), G†(t) and wc,1(t) are also uniformly bounded.

Then it will be proved by contradiction that Vk,2(t) is
uniformly bounded in [tf,1, tf,1 + tf,2). Suppose the above
claim is invalid. Notice that Vk,2(tf,1) < +∞, and hence
there exists a time instant th,2 ∈ (tf,1, tf,1 + tf,2) so that
limt→t−h,2

Vk,2(t) = +∞ and Vk,2(t) < +∞ when t ∈
[tf,1, th,2). From (59), it is obtained that wr(t), ru,1(t) and
ru,2(t) are all uniformly bounded in [tf,1, th,2), and it is
also obtained from the uniform boundedness of Vk,1(t) in
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[tf,1, tf,1 + tf,2) that the term c2Φ
2
1(t)

ρ2(t)η4(t)∥xer(t)∥2 in (44) is
also uniformly bounded in [tf,1, tf,1 + tf,2). Moreover, since
Vk,2(t) < +∞ in [tf,1, th,2), it is obtained that the constraint
(30) holds in [tf,1, th,2), 1+ vTr,2(t)v̄r,d,2(t) > 2−ρ0,2 > 0 in
[tf,1, th,2), and

kc,2Φ
2
2

4ρ2
(1− (v̄Tr,d,2vr,2)

2) ≥ kc,2(2− ρ0,2)

4
Vk,2, (62a)

2ρ̇22(1− v̄Tr,d,2vr,2)

kc,2ρ32(1 + v̄Tr,d,2vr,2)
≤ 4ρ̇22

kc,2ρ32(2− ρ0,2)
. (62b)

Based upon the uniformly boundedness of c2Φ
2
1(t)

ρ2(t)η4(t)∥xer(t)∥2,
wr(t), wd(t), and Eqs. (44) and (62a)-(62b), it is obtained that
Vk,2(t) is uniformly bounded in [tf,1, th,2), which contradicts
with the above assumption. Hence, the above assumption is
invalid, and Vk,2(t) is uniformly bounded in [tf,1, tf,1+ tf,2).
This means that in the time interval [tf,1, tf,1 + tf,2), φ2(t)
meets the constraint (30) and is uniformly bounded with
φ2(tf,1 + tf,2) < ρ∞,2, and both Φ2(t) and λc(t) (39b) are
also uniformly bounded. Due to the unform boundedness of
wc,1(t) and λc(t) in [tf,1, tf,1 + tf,2], it follows that wc(t)
(38) is also uniformly bounded in [tf,1, tf,1 + tf,2].

Additionally, similar to the proof procedure of part a), it
is obtained that in Vc(t) is uniformly bounded in [tf,1, tf,1 +
tf,2). Correspondingly, Qer(t), wr(t), ru,1(t), ru,2(t), wc(t)
and w(t) are all uniformly bounded in [tf,1, tf,1 + tf,2).

c). The uniform boundedness of Vc(t) in [tc,+∞).
First, it will be proved that Vk,3(tc) < +∞. On one hand, if

φ3(tf,1) ≤ 2−ϵ1, it is obtained from (29a)-(29b) and Remark
5 that tc = tf,1, t̄f = tf,1+tf,3 and φ3(tc) meets the constraint
(31), meaning that Vk,3(tc) < +∞. On the other hand, if
φ3(tf,1) > 2−ϵ1, it can be also obtained from (29a)-(29b) and
the proof procedure of part b) that tc = tf,1+tf,2, t̄f = tf,1+
tf,2+ tf,3, and φ2(tf,1+ tf,2) < ρ∞,2. Accordingly, it follows
from Remark 5 that φ3(tc) also meets the constraint (31) and
Vk,3(tc) < +∞. In all, it is obtained that Vk,3(tc) < +∞.

Besides, based upon the similar proof procedure of part a),
it is obtained that Vk,1(t) is uniformly bounded in [tc,+∞).
This means that in the time interval [tc,+∞), φ1(t) < ρ∞,1,
xer(t) and Φ1(t) are both uniformly bounded, the attitude
constraint (4) always holds, G†(t) is uniformly bounded, and
wc,1(t) (39a) is also uniformly bounded.

Then it will be verified by contradiction that the function
Vk,3(t) is uniformly bounded in [tc,+∞). Suppose that this
claim is invalid, which implies that there exists a time instant
th,3 with tc < th,3 ≤ +∞, such that limt→t−h,3

Vk,3(t) = +∞
and Vk,3(t) < +∞ when t ∈ [tc, th,3). Similar to the proof
procedure of part a), it is obtained that wr(t), ru,1(t) and
ru,2(t) are all uniformly bounded in [tc, th,3). Besides, since
in the time interval [tc,+∞), xer(t) and Φ1(t) are both uni-
formly bounded, ρ3(t) ≥ ρ∞,3, and the attitude constraint (4)
always holds, it is obtained that the term c5Φ

2
1(t)

ρ3(t)η4(t)∥xer(t)∥2
in (47) is uniformly bounded in [tc,+∞). Moreover, since
Vk,3(t) < +∞ in [tc, th,3), it is obtained that in [tc, th,3), the
constraint (31) is satisfied and 1+vTr,2(t)v̄r,d,3(t) > 2−ρ0,3 >

0. Correspondingly, in view of (12), it follows that

kc,3
4ρ3

Φ2
3(1− (vTr,2v̄r,d,3)

2) ≥ kc,3(2− ρ0,3)

4
Vk,3, (63a)

2ρ̇23(1− v̄Tr,d,3vr,2)

kc,3ρ33(1 + v̄Tr,d,3vr,2)
≤ 4ρ̇23

kc,3ρ33(2− ρ0,3)
. (63b)

Based on the uniform boundedness of wr(t), wd(t) and
c5

ρ3(t)η4(t)Φ
2
1(t)∥xer(t)∥2, and Eqs. (47) and (63a)-(63b), it

follows that Vk,3(t) is uniformly bounded in [tc, th,3), which
contradicts with the previous assumption. Hence, the previous
assumption is invalid, and Vk,3(t) is uniformly bounded in
[tc,+∞), which means that in the time interval [tc,+∞),
the constraint (31) holds, φ3(t) and Φ3(t) are both uniformly
bounded, and λc(t) (39b) is also uniformly bounded. Due to
the uniform boundedness of wc,1(t) and λc(t) in [tc,+∞), it
follows that wc(t) (38) is also uniformly bounded in [tc,+∞).

In addition, it will be verified that Vc(t) is uniformly
bounded in [tc,+∞). First, since Vk,1(t) and Vk,3(t) are both
uniformly bounded in [tc,+∞), it follows that Eq. (60) holds
in [tc,+∞). It can be seen in (61c) and (63b) that Πe(t)
is uniformly bounded in [tc,+∞). Besides, it follows from
Φ1(t) ≥ 1, (61a)-(61b) and (63a) that in [tc,+∞),

Πc ≥c̄1Vc, (64)

where c̄1 , max(
kc,1

16 ,
kc,3(2−ρ0,3)

4 ,
kw,c

λJ,max
, ku,1, ku,2) > 0.

Hence, based on (60), (64), and the uniform boundedness of
Πe(t) and ∆c(t) in [tc,+∞), it follows that Vc(t) is uniformly
bounded in [tc,+∞). This means that in [tc,+∞), Qer(t),
wr(t), ru,1(t), ru,2(t) and w(t) are all uniformly bounded.

d). The prescribed performance of the tracking error Qer(t).
First, based upon the above proof procedure, it is obtained

that Vk,1(t), Vc(t), Qer(t), w(t), ru,1(t) and ru,2(t) are all
uniformly bounded, and the constraints (4) and (28) hold at
all the time, which means that φ1(t) < ρ∞,1 when t ≥ tf,1.
Since Vk,3(t) is also uniformly bounded in [tc,+∞) and the
constraint (31) always holds in the time interval [tc,+∞), it
follows that φ3(t) < ρ∞,3 when t ≥ t̄f . Hence, according to
Lemma 6, it follows that Qer(t) will always be within the set
ΘR (32) when t ≥ t̄f . Moreover, in view of (58a)-(58b), it
follows that ru,1(t) ≥ 0 and ru,2(t) ≥ 0 at all the time. The
proof of Theorem 1 is complete.

Remark 7: The distinctions between the proposed control
scheme and those in [40]-[44] and [59]-[60] are discussed
as follows. First, in this paper, a novel projection function
Pr(·) (17) is designed to map the boresight vector vr,1(t)
to a reduced dimensional vector x(t). On one hand, notice
that the reduced dimensional vectors x(t), and the according
auxiliary vectors v̄r,d,2(t) and v̄r,d,3(t) are located in either R2

or R3, and therefore the attitude control scheme constructed
based upon the above vectors can circumvent the topological
obstruction of the nonlinear manifold SO(3). On the other
hand, by means of the designed vectors, the requirement of
the satisfaction of the attitude constraint (4) is transformed as
the requirement of the uniform boundedness of the reduced
dimensional vector x(t), which is shown in Lemma 3. The
appointed-time performance requirement of the attitude track-
ing is transformed as the appointed-time tracking performance
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TABLE I: The values of system parameters of the spacecraft

Parameter Value
J (kg ·m2) diag(973.4, 424.85, 771.06)

vf col(0, 0, 1)
vb,1 col(1, 0, 0)

θf (rad) π
6

requirement of the according vectors (that is, the vectors
x(t) and vr,2(t) should track the vectors xd(t) and v̄r,d,3(t)
respectively, with the appointed-time control performance),
which is shown in Lemma 6.

Besides, based upon the above properties, the according
vector-based error functions (27a)-(27c), the appointed-time
performance constraints (28) and (30)-(31), and the vector-
based switching virtual controller (38)-(39b) are carefully
constructed. By means of the above design, it is ensured
that the vector x(t) is uniformly bounded, the constraint (28)
always holds at all the time, and the vector vr,2(t) can always
satisfy the constraint (31) when t ≥ tc. This means that
the attitude constraint (4) is satisfied at all the time, and the
attitude tracking error Qer(t) can always remain in the residual
set ΘR (32) when t ≥ t̄f .

In all, based on the designed projection function (17), the
appointed-time performance constraints (28) and (30)-(31),
and the vector-based switching virtual controller (38)-(39b),
the proposed attitude control scheme on SO(3) can meet the
attitude constraint and the appointed-time control performance
simultaneously, and hence differs from those in [40]-[44]
and [59]-[60]. On one hand, the artificial-potential-function-
based constrained attitude stabilization schemes in [40]-[44]
can ensure the satisfaction of the attitude constraint. However,
compared with the proposed control scheme, the control
schemes in [40]-[44] cannot achieve appointed-time attitude
tracking of the spacecraft. On the other hand, by virtue of the
designed SO(3)-based prescribed performance constraints, the
control schemes in [59]-[60] can ensure the appointed transient
and steady control performance. However, compared with the
proposed control scheme, the control schemes in [59]-[60]
cannot satisfy the attitude constraint (4).

Remark 8: In this paper, two dynamic gaining factors ru,1(t)
and ru,2(t) are employed into the control input (57). Note
that in the dynamic equation (51), there is a term Ξ1(t) (52)
which is related to the uncertain parameters and the external
disturbances and will affect the closed-loop stability of the
spacecraft attitude. Therefore, in order to deal with the term
Ξ1(t), two dynamic gaining variables ru,1(t) (58a) and ru,2(t)
(58b) are constructed to adjust the gaining parameters of the
control input. It can be seen in (59)-(60) and Theorem 1 that by
means of the designed variables ru,1(t) and ru,2(t), the closed-
loop stability of the spacecraft attitude can be guaranteed, and
the influence of the parameter uncertainties and the external
disturbances (that is, the term Ξ1(t)) is attenuated. This means
that, compared with [44] and [59], the spacecraft attitude
can possess the appointed-time control performance and meet
the attitude constraint, even in the presence of the parameter
uncertainties and the external disturbances, without the need
to estimate the uncertain parameters. It should be noted that
due to the presence of the external disturbances, it is only

TABLE II: The values of the control parameters of the proposed control scheme

Parameter ρ0,1 ρ∞,1 tf,1 ϵ1 ρ0,2 ρ∞,2 tf,2
Value 30 0.3 25 0.4 1.8 0.2 10

Parameter ρ0,3 ρ∞,3 tf,3 ϵ3 kc,1 kc,2 kc,3
Value 1.8 0.2 15 0.2 0.14 0.14 0.14

Parameter Γu,1 ku,1 Γu,2 ku,2 kw,c

Value 0.01 0.06 0.01 0.06 11

guaranteed that the attitude tracking error of the spacecraft
converges into the according residual set ΘR (32) with the
setting time t̄f s.

Remark 9: Notice that the selection of the vectors vb,2
and vb,3 can change the values of the error functions φ2(t)
and φ3(t), and can also change the value of the control
input u(t). However, it is worth mentioning that by means
of the designed switching laws (29a)-(29b) and the switching
virtual controller (38)-(39b), the design of the functions φ2(t),
φ3(t), ρ2(t) and ρ3(t) is unaffected by these vectors, and the
obtained control scheme can still achieve the appointed-time
control performance of the spacecraft and satisfy the attitude
constraint, as long as the unit vectors vb,2 and vb,3 satisfy
vTb,1vb,2 = 0 and vb,3 = S(vb,1)vb,2. Besides, since the value
of the control input u(t) is influenced by the vectors vb,2 and
vb,3, it deserves further investigation on the optimal selection
of the vectors vb,2 and vb,3 in the future.

IV. SIMULATION RESULTS

In the section, the simulation results will be provided to
show the effectiveness of the proposed scheme. First, the
values of the system parameters refer to [15] and can be seen
in Table I. Besides, in this paper, the external disturbances
of the spacecraft d(t) include the gravity-gradient torque
dg(t), the aerodynamic torque da(t) and the Earth magnetic
torque de(t). According to [15] and [63]-[65], the form of
the above disturbance torques are dg = 3µ

∥βg∥5S(βg)Jβg ,
da = − 1

2cDsDϱaS(Lp)∥Va∥Va, and de = S(Me)Be, where
µ = 3.9787∗1014 m3s−2 is the Earth’s gravitational constant,
βg ∈ R3 is the relative position from the center of the
Earth to the spacecraft centroid in Fb, ϱa is the atmospheric
density, sD is the area of the spacecraft cross-section, cD is
the drag coefficient, Lp ∈ R3 is the relative position from
the spacecraft centroid to the center of the pressure in Fb,
Va ∈ R3 is the spacecraft velocity in Fb, Be ∈ R3 is
geocentric magnetic flux density in Fb, and Me ∈ R3 is the
sum of the magnetic moments due to permanent, spacecraft-
generated current loops and induced magnetism in Fb. The
values of the above parameters and vectors can be seen in
[15].

In addition, here the spacecraft is subject to the measure-
ment noises. Correspondingly, denote Qm(t) , Q(t)Qdis(t) ∈
SO(3) and wm(t) = w(t) + wdis(t) ∈ R3 as the measured
attitude and the measured angular velocity of the spacecraft,
respectively, where Qdis(t) = E3 + sin(∥ϕR(t)∥)

∥ϕR(t)∥ S(ϕR(t)) +
1−cos(∥ϕR(t)∥)

∥ϕR(t)∥2 S2(ϕR(t)) ∈ SO(3) and wdis(t) = 0.002 ∗
rand(t)13 ∈ R3 are the measurement noises of the spacecraft
attitude and the spacecraft angular velocity respectively, with
ϕR(t) = 0.005 ∗ rand(t)13 ∈ R3. Notice that the spacecraft
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Fig. 1: Simulation results of three control schemes. Case 1: The proposed scheme. Case 2: The first compared scheme. Case 3: The second compared scheme.
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Fig. 2: Variable η(t) of three control schemes. Case 1: The proposed scheme. Case 2:
The first compared scheme. Case 3: The second compared scheme.

cannot obtain the exact information of its attitude and angular
velocity, and therefore the above measured attitude Qm(t)
and the measured angular velocity wm(t) are employed in
the attitude controller.

The values of the control parameters can be seen in Table
II. The initial values of the control and system variables
are Q(0) = [0, 1, 0; 0.943, 0, 0.333; 0.333, 0,−0.943], w(0) =
col(−0.045,−0.075, 0.15) rad/s, ru,1(0) = 1 and ru,2(0) =
1.5. The reference angular velocity and reference angular
acceleration are wd(t) = (0.08 + 0.01 sin(0.2t))nr rad/s

and ad(t) = 0.002 cos(0.2t)nr rad/s2 with nr =
col(0.9923, 0, 0.1240), and the initial value of the reference
attitude is Qd(0) = [0, 1, 0;−1, 0, 0; 0, 0, 1].

To show the performance of the proposed scheme, two
control schemes are introduced as the compared schemes.
The control scheme similar to [44] is employed as the first
compared scheme, and the according virtual controller is

wc = −kc,1(BReQ,C + CReQ,B), (65)

where BR = 1 − kc,2 ln(
η

1+cos θf
), CR = 1

2Tr(Ac(E3 −
Qer)), eR,B = −kc,2

η S(QT vf )vb,1, eR,C = 1
2Pa(AcQer),

the operator Pa(·) is defined in Notations, and Ac =
diag(ac,1, ac,2, ac,3) with ac,i > 0 for i = 1, 2, 3 and
ac,i ̸= ac,j for any i ̸= j. The control input (57) and the
according adaptive laws (58a)-(58b) are still employed in the
above compared control scheme. Note that the repulsive term
BR(Qer(t)) on the attitude constraint (4) and the associated
vector eR,B(Qer(t)) are contained in the virtual controller
(65). The function of the term BR(Qer(t)) and the vector
eR,B(Qer(t)) is to make the spacecraft attitude keep away
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from the attitude forbidden zone [44]. The design procedure
on the above virtual controller wc (65) and the rigorous proof
of satisfying the attitude constraint can be seen in [44].

Besides, the prescribed performance attitude control scheme
similar to [60] is also introduced as the second compared
control scheme, and the associated virtual controller is

wc = w̄d +B−1
Q (Beeζ −B−1

ζ ζ), (66)

where eζ = col(eζ,1, eζ,2, eζ,3) = 1

2
√

1+Tr(Qer)
Pa(Qer) ∈

R3, BQ = 1

2
√

1+Tr(Qer)
(Tr(Qer)E3−QT

er +2eζe
T
ζ ) ∈ R3×3,

ζ = (Tζ,1(eζ,1/ρζ,1), Tζ,2(eζ,2/ρζ,2), Tζ,3(eζ,3/ρζ,3)) ∈ R3,
Bζ = diag(

dTζ,1

d(eζ,1/ρζ,1)ρζ,1
,

dTζ,2

d(eζ,2/ρζ,2)ρζ,2
,

dTζ,3

d(eζ,3/ρζ,3)ρζ,3
) ∈

R3×3, Be = diag(
ρ̇ξ,1

ρξ,1
,
ρ̇ξ,2

ρξ,2
,
ρ̇ξ,3

ρξ,3
), with Tζ,i(·) and ρζ,i(t),

i = 1, 2, 3, being the prescribed performance transformation
functions and the decaying functions respectively [60]. The
control input (57) and the according adaptive laws (58a)-(58b)
are still used in the above compared control scheme. It is worth
mentioning that the above control schemes similar to [60] can
possess the prescribed control performance.

The simulation results of three control schemes can be seen
in Figs. 1-2, where the green dotted lines in Figs. 1(b)-(d) are
the decaying functions ρ1(t), ρ2(t) and ρ3(t), respectively. The
regions surrounded by the green dotted line and the x-y axes
are the according appointed-time performance constraints. The
functions φ1(t), φ2(t) and φ3(t) can meet the appointed-time
control performance, if they are located in the above regions.

First, it can be seen in Figs. 1(e)-(h) that within 80 s,
w(t), ru,1(t), ru,2(t) and τ(t) of three control schemes are
all bounded, ru,1(t) ≥ 0 and ru,2(t) ≥ 0. However, it can
be seen in Figs. 1(a)-(d) and Fig. 2 that the attitude tracking
performance of the proposed scheme differs from that of these
two compared schemes.

For the proposed scheme, on one hand, the attitude tracking
error Qer(t) in Fig. 1(a) converges into the small neighbor-
hood of the equilibrium E3 within 50 s and remains in this
neighborhood after 50 s. This is because the appointed-time
performance requirements (28), (30) and (31) are considered
in the proposed scheme. In fact, in Fig. 1(b), different from the
first compared control scheme (65), the error function φ1(t)
of the proposed control scheme always satisfies the constraint
(28) within 50 s, meaning that the error function φ1(t) of
the proposed control scheme can converge into the interval
[0, 0.3) within 25 s and can remain in this interval after 25 s.
Besides, in Figs. 1(c)-(d), different from the first compared
control scheme (65) and the second compared control scheme
(66), the error function φ2(t) of the proposed control scheme
satisfies the constraint (30) when 25 s ≤ t ≤ 35 s, and the error
function φ3(t) of the proposed control scheme also satisfies
the constraint (31) when t ≥ 35 s. Based upon Theorem 1,
this means that the attitude tracking error Qer(t) can remain
in the set ΘR (32) after 50 s. On the other hand, in Fig. 2,
the proposed control scheme can meet the attitude constraint
(4) within 80 s. The reason is that by virtue of the projection
function (16)-(17), the designed control scheme can meet the
attitude constraint (4) at all the time.

However, it can be seen in Figs. 1(a)-(d) and Fig. 2 that the
compared control schemes cannot meet the attitude constraint

and the appointed-time control performance simultaneously.
On one hand, for the first compared control scheme (65), it is
shown in Fig. 2 that the associated spacecraft attitude can meet
the attitude constraint (4) within 80 s. However, compared with
the proposed scheme, the corresponding attitude tracking error
Qer(t) in Fig. 1(a) does not possess the small convergence
time and the small steady-state error. This is because the
appointed-time performance constraints (28), (30) and (31) are
not considered in the first compared scheme, and therefore in
Figs. 1(b)-(d), the according error functions φ1(t), φ2(t) and
φ3(t) violate the constraints (28), (30) and (31). On the other
hand, for the second compared control scheme (66), it is shown
in Fig. 1(a) that the according spacecraft attitude can fast track
the reference attitude. However in Fig. 2, the corresponding
spacecraft attitude cannot meet the attitude constraint (4). This
reason is that the second compared control scheme does not
consider the attitude constraint (4). In all, it is concluded
from Figs. 1-2 that, distinct with the above compared control
schemes, the proposed control scheme can meet the attitude
constraint and the appointed-time control performance simul-
taneously, even in the presence of the parameter uncertainties,
the external disturbances and the measurement noises.

V. CONCLUSIONS

This paper studies the constrained attitude tracking control
of the spacecraft with the appointed-time control performance.
A novel projection function is developed to map the boresight
vector to the according reduced dimensional vector, and the
attitude constraint will be satisfied if the reduced dimensional
vector is uniformly bounded. Then a set of vector-based error
functions, the appointed-time performance constraints, and the
corresponding adaptive controller are carefully constructed.
Based on the derived SO(3)-based attitude control scheme,
the spacecraft attitude can possess the appointed-time control
performance and avoid the attitude forbidden zone simultane-
ously, and is robust to the parameter uncertainties and the
external disturbances. In the future, inspired by [40]-[45],
the authors intend to investigate the prescribed performance
attitude synchronization control of multiple spacecraft with
the attitude constraints.

APPENDIX A
PROOF OF LEMMA 6

First, it is obtained from φ1 < ρ∞,1 and Remark 3 that
the Eqs. (33)-(34) and (36) hold. Besides, it is obtained from
(23b), (24b) and vTr,2vr,1 = 0 that

vTr,2vr,d,2 = vTr,2(E3 − vr,1v
T
r,1)vr,d,2

= ∥ṽr,d,3∥vTr,2v̄r,d,3.
(67)

Therefore, based upon φ3 = 1 − vTr,2v̄r,d,3 < ρ∞,3 < 1, (36)
and (67), it is further obtained that

1− vTr,2vr,d,2 = 1− ∥ṽr,d,3∥vTr,2v̄r,d,3
< 1− (1− ρ∞,1)(1− ρ∞,3).

(68)
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Then denote AR , vb,1v
T
b,1 + vb,2v

T
b,2. Based upon (33), (68)

and the relations vr,i = Qvb,i and vr,d,i = Qdvb,i, if φ1 <
ρ∞,1 and φ3 < ρ∞,3, then Tr(AR −ARQer) is scaled as

Tr(AR −ARQer) = 2− vTr,d,1vr,1 − vTr,d,2vr,2

< 1− (1− ρ∞,1)(1− ρ∞,3) + ρ∞,1

< 2ρ∞,1 + ρ∞,3.
(69)

Moreover, since the eigenvalues of AR are 1, 1 and 0, it is
further obtained from Lemma 1 and (69) that

Tr(E3 − E3Qer) ≤ 2Tr(AR −ARQer)

< 4ρ∞,1 + 2ρ∞,3,
(70)

if φ1 < ρ∞,1 and φ3 < ρ∞,3.
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