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1Université de Bordeaux, INRAE, BIOGECO, 33612 Cestas, France

2Pleiade, EPC INRIA-INRAE-CNRS, Université de Bordeaux, 33405
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Abstract2

Characterising biodiversity is one of the main challenges for the coming decades.3

Most diversity has not been morphologically described and barcoding is now com-4

plementing morphological-based taxonomy to further develop inventories. Both ap-5

proaches have been cross-validated at the level of species and OTUs. However, many6

known species are not listed in reference databases. One path to speed up inventories7

using barcoding is to directly identify individuals at coarser taxonomic levels. We8

therefore studied in barcoding of plants whether morphological-based and molecular-9

based approaches are in agreement at genus, family and order levels. We used Ag-10

glomerative Hierarchical Clustering (with Ward, Complete and Single Linkage) and11

Stochastic Block Models (SBM), with two dissimilarity measures (Smith-Waterman12

scores, kmers). The agreement between morphological-based and molecular-based13

classifications ranges in most of the cases from good to very good at taxonomic14

levels above species, even though it decreases when taxonomic levels increase, or15

when using the tetramer-based distance. Agreement is correlated with the entropy16

of morphological-based classification and with the ratio of the mean within- and17

mean between-groups dissimilarities. The Ward method globally leads to the best18

agreement whereas Single Linkage can show poor behaviours. SBM provides a useful19

tool to test whether or not the dissimilarities are structured by the botanical groups.20

These results suggest that automatic clustering and group identification at taxonomic21

levels above species are possible in barcoding.22

Keywords: taxonomy; barcoding; clustering; Stochastic Block Model; Ward method;23

French Guianan Trees24

1 Introduction25

Numerical taxonomy and hierarchical clustering have coevolved since the 1960s’ (Cole,26

1969; Sneath and Sokal, 1973). Both approaches rely on the assumption that the diversity27
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of life for taxonomy, or patterns in distances between some items in clustering, are organized28

as a nested hierarchy, modelled as a tree. This approach has survived the revolution of29

molecular-based taxonomy (Hillis et al., 1996) and molecular phylogenies (Felsenstein, 2004;30

Yang, 2006), with a current revival due to barcoding (Floyd et al., 2002; Hebert et al., 2003),31

and metabarcoding (López-Garćıa et al., 2001; Sogin et al., 2006; Hajibabaei et al., 2011;32

Taberlet et al., 2012; Kermarrec et al., 2013). As far as morphological-based taxonomy is33

concerned, most of the diversity in many clades of organisms is still unknown. Leray and34

Knowlton (2015) point out that between 33% and 91% of all marine biodiversity has never35

been named. Currently many effort are devoted to speeding up the process of producing36

large inventories with metabarcoding by bypassing identified obstacles (Bik et al., 2012).37

The notion of OTU (Operational Taxonomic Unit) has been coined (Floyd et al., 2002;38

Blaxter et al., 2005). Such units are produced by clustering sets of barcodes by aggregation39

at a level assumed to be similar to the level of species in morphological-based classifications.40

The authors in Blaxter et al. (2005) emphasize that they are ”agnostic” as to whether OTU41

are species or not. Identifying OTUs in an environmental sample and organising molecular42

diversity as the frequency of OTUs make it possible to produce molecular-based inventories43

at previously unparalleled speed.44

A classical approach is therefore to build OTUs and to map them on reference databases45

that contain reference barcodes. A standard tool for mapping is BLAST (Altschul et al.,46

1990), but other more sophisticated solutions exist (e.g., the use of Bayesian Phylogenetics,47

Munch et al., 2008). When taxonomic expertise and references exist at the species level,48

the agreement between molecular and morphological-based classification can be excellent49

(Ji et al., 2013), even if sometimes like for plants, introgression may blur the distinction50

between species (Petit and Excoffier, 2009). It may happen that such a comparison is not51

feasible when morphological-based taxonomy is unknown or when only partial references52

exist. Leray and Knowlton (2015) report in their study that less than 12% of their OTUs53

matched with GenBank or BOLD. The same observation was made in White et al. (2010)54
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regarding intestinal microbial flora. Hence most inventories with supervised learning are55

made at a grain often much coarser than the genus/species level.56

Trying to complete databases at the species level is highly time-consuming. Another57

solution is to build groups larger than OTUs, e.g. at the scale of families or orders, by58

clustering1 the barcodes. Then each group could be annotated as a taxon at this higher59

taxonomic level by looking for a match for one or several sequences of the group, in the60

reference database. This is in line with the conclusion of the study by Meiklejohn et al.61

(2019), on the accuracy of BOLD and GenBank: the authors suggest that a solution to62

address concerns with incorrect species identifications observed in their experiments would63

be to report the taxonomy at a higher level. This raises the question of the agreement64

between morphological-based and molecular-based taxonomy when clusters of sequences65

are built at a level coarser than species, e.g., class or order. Comparing morphological-66

based classifications and OTUs produced by barcode clustering has been thoroughly studied67

(see, e.g., White et al., 2010). Several methods have been recently designed and widely68

used for delineating species on the basis of barcodes (Pons et al., 2006; Fontaneto et al.,69

2008; Puillandre et al., 2012; Talavera et al., 2013; Zhang et al., 2013). However, to our70

knowledge, the question has seldom been addressed directly at coarser taxonomic levels71

such as orders.72

Our objective here is to study whether the clustering of barcodes in molecular-based73

taxonomy makes it possible to directly recover the taxa present in a sample, for a given74

taxonomic level coarser than species, and, if so, with which tool, accuracy and robustness.75

More precisely, we consider the clustering of the barcodes in a reduced number of groups76

compared to a clustering into species, and we ask the question whether the classification77

obtained is similar or not with the botanical classification at genus, family or order levels.78

This comparison is performed without annotating the classes: we only aim at comparing79

1In this article, the term clustering makes reference to any numerical method for the unsupervised
grouping of the individuals, while the term classification designates the method’s output, i.e. the partition
of individuals into classes.
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the two partitions of the sequences, the botanical one and the molecular-base one.80

We have selected for this study a dataset of barcodes of trees in ”Piste de Sainte Elie”81

research station in French Guiana. The corresponding plot has been inventoried botanically82

for decades (Madelaine et al., 2007). The data set represents about one third of the diversity83

of the French Guianan tree flora (1458 sequences, from 20 orders, 56 families, 182 genera and84

428 species) . We selected flowering plants because the botanical classification is well known,85

both morphologically (it is organised as a nested system of different taxonomic levels as86

a classification system) and molecularly with the Angiosperm Phylogeny Group initiative,87

even if it is under continuous revision (The Angiosperm Phylogeny Group et al., 2016).88

The dataset itself is composed of some 1,500 trees from French Guiana that have been89

botanically identified and sequenced with chloroplastic marker trnH-psbA using Sanger90

technology which produces high quality sequences (Caron et al., 2019). By selecting a91

small data set and a long resolutive sequence (trnH-psbA is about 450 bp long, with high92

variability), we are not confronted to the computational burden of treatment of massive93

data sets as in metabarcoding data, and we can therefore concentrate on the analysis of94

agreement. The question of the scaling to metabarcoding with massive data sets of shorter95

reads of the clustering methods will be the object of further studies.96

It can be expected that there is not a clear answer to the degree of agreement between97

the two types of classification (morphological-based or molecular-based). There may be98

favourable situations where the agreement is strong, and others where the two classifica-99

tions are surprisingly quasi-independent of each other. Moreover this can depend on the100

taxonomic level. To identify potential factors that may explain variations in agreement in101

our study: (i) we varied the taxonomic level at which the clustering is performed (order,102

family, genus, species), (ii) we used two definitions of dissimilarity between sequences; and,103

finally, (iii) we considered four numerical methods for the clustering of the molecular data.104

Altogether, this leads to 32 possible combinations105

More specifically, we first worked with 30 non random sub-samples of the whole dataset,106
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each sub-sample comprising either all the individuals of an order or of a family. In each case,107

we compared the botanical classification of the individuals at the next finer taxonomic level108

with the molecular-based classifications. In a second step, we studied whether the mean109

behaviour observed from these replicates is recovered when the set of individuals to be110

classified is larger and more diverse, by comparing the botanical classification of the whole111

dataset into orders with the molecular-based classification for the same number of classes.112

We also performed the comparison at the family, gender and species levels.113

Dissimilarities between sequences have been computed as edit distances (Levenstein,114

1966; Gusfield, 1997). The score of local pairwise alignment (Smith and Waterman, 1981)115

has been preferred to global pairwise alignment (Needleman and Wunsch, 1970) to avoid the116

cost of slight lengths variations due to technological reasons in Sanger sequencing (Gusfield,117

1997). Even if this algorithm relies on dynamic programming, thus making it very efficient118

(and exact), its complexity is in O(n2`2) if n is the number of barcodes or reads, and `119

their length. This becomes prohibitive for large datasets. A classical way to circumvent120

this difficulty is to use kmer-based distances (Sun et al., 2009; Mahé et al., 2014), a priori121

with a decrease in the quality of the estimation of the dissimilarity, but much faster to122

compute. A comparison between Smith-Waterman scores and kmer-based distances can123

be found in Sun et al. (2009). The question here is to explore whether the loss in quality124

remains acceptable and does not lead to a decrease in agreement between the botanical and125

the molecular-based classifications. This is a preliminary step for developing further studies126

on metabarcoding which require investment in scaling and accelerating the computation of127

distances.128

If the morphological-based taxonomic classification is a priori unique, this is not true129

for a molecular-based classification. A diversity of softwares for implementing hierarchical130

clustering has been proposed for more than a decade in metabarcoding with the objective131

of efficient scaling with respect to the growing size of environmental datasets. This in-132

cludes Uclust (Edgar, 2010), ESPRIT (Sun et al., 2009) and SWARM (Mahé et al., 2014,133
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2015, 2019), which make it possible to cluster millions of barcodes on a laptop. Nearly134

all of the hierarchical clustering algorithms mentioned above rely at one step or another135

on heuristics (like computing kmer-based distances, considering short distances only i.e.136

working with sparse distance matrices) to make computation feasible within a reasonable137

time with reasonable memory. SWARM uses kmers only as a first step to filter out pairs138

of sequences which are distant and cannot belong to a same compact community. In this139

study, we focus on understanding the agreement (or not) between molecular-based clas-140

sification from clustering and botanical classification, without computational constraints.141

We therefore consider Aggregative Hierarchical Clustering (AHC), whose above-mentioned142

algorithms can be seen as heuristic versions for scaling up, with three different aggrega-143

tion methods: Single Linkage, Complete Linkage, Ward (Murtagh, 1983; Müllner, 2013).144

Statistical models like Bayesian classifiers with mixture models have also been considered145

in the literature to cluster sequences (Hao et al., 2011). To extend the scope of statistical146

modeling in molecular-based taxonomy, we explore here the potential interest of a model-147

based clustering method, the Stochastic Block Model (SBM, Holland et al., 1983; Daudin148

et al., 2008; Lee and Wilkinson, 2019) as an alternative to AHC. SBMs are already widely149

applied with success in domains like the social sciences (Barbillon et al., 2017), the anal-150

ysis of ecological interaction networks (Miele and Matias, 2017) and neurology (Faskowitz151

et al., 2018). They rely on a more flexible definition of a cluster than AHC (searching for152

general groups and not just communities), and we hypothesised that SBM and AHC could153

be complementary in their capacity to distinguish meaningful groups of individuals in an154

inventory.155

In the following section, we provide a brief description of the dataset. We also de-156

scribe the method. Results on the quality of the agreement between molecular-based and157

morphological-based classifications obtained on replicates are presented in Section 3.2, the158

results obtained on the whole dataset are presented in Section 3.3.159
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2 Materials and methods160

2.1 Dataset and computation of dissimilarities161

This study relies on a dataset built from a collection of some 1,500 trees located in the162

”Piste de Saint-Elie” experimental plot in French Guiana, mainly composed of lowland163

tropical rainforest (Sabatier et al., 1997). The data used here are part of a dataset gath-164

ered for the study published in Caron et al. (2019), which focused on agreement or not165

between botanical-based and molecular-based classification at the species level over a wide166

range of diversity along the angiosperms tree. The main result in Caron et al. (2019) is167

that molecular-based clustering is highly consistent with species delineation in a majority of168

cases, and that introgression or incomplete lineage sorting are the most likely explanations169

in the case of non-agreement. We focus here on a similar question but at the level of genera,170

families and orders. The main elements for the material are recalled here, and the reader171

can refer to Caron et al. (2019) for details. Among this dataset, 1,458 individual trees172

were selected for this study. For each tree, we used the botanical name as given by field173

botanists working with the Cayenne Herbarium of the French National Research Institute174

for Sustainable Development, and a sequence of chloroplastic marker trnH-psbA, which is175

highly resolutive, despite the fact that it is variable in length. This drawback is mitigated176

because no multiple alignment is done: we work with pairwise distances only, computed ei-177

ther by local alignment or comparison of histogram of tetramer histograms. trnH-psbA has178

been used is several studies or benchmarks in plant metabarcoding (Hollingsworth et al.,179

2009, 2011; Pang et al., 2012). These trees encompass 20 orders, 56 families, 182 genera180

and 428 species.181

182

Three 1458× 1458 matrices of pairwise distances or dissimilarities between sequences were183

built, a first one using the Smith-Waterman algorithm for local sequence alignment (Smith184

and Waterman, 1981), and two other ones for the distance between kmers distributions185
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(k = 4 and k = 6). The local alignment score is the most precise quantification of genetic186

dissimilarities between sequences, but it is time consuming. Several methods for building187

OTUs therefore rely on alternatives to local alignment scores. A classical way to circumvent188

this computational burden is to build kmer counts for each sequence, and then compute189

the distance between the normalised counts. A kmer is a contiguous sub-sequence of length190

k in a given sequence. We selected short kmers here with k = 4: there are 44 = 64 dif-191

ferent tetramers which is a good compromise between longer ones with more resolution,192

but too sparse histograms of counts, or smaller ones with coarse resolution and less empty193

categories. If k = 6, there are 46 = 4096 different hexamers. The length of the sequences194

is about 450 bp, which means that at least 9 hexamers out of 10 have 0 count. For k = 8,195

this increases up to 993 out of 1000. Moreover, for short sequences with bases labelled196

N , there may be no hexamer without a N (met once in the dataset, this sequence has197

been eliminated). We designed an efficient algorithm that counts the frequency of each198

kmer in each sequence, and a short program that computes a distance between any pair199

of frequency distributions as the `1 norm, i.e., the sum of absolute values of difference of200

frequencies per kmer. We give here as an illustration the computation times on a standard201

laptop. For Smith-Waterman scores, exact local alignment with dynamical programming,202

programmed in C language: 5 hours, 39 minutes and 34 seconds. For kmer distances, with203

k = 4, programmed in C language as well: 13 minutes and 4 seconds. The time for k = 6204

is 32 minutes and 6 seconds.205

206

The dataset used in the rest of this paper is composed of three files (see Frigerio et al.,207

2021):208

• a csv file of botanical names for each sequence for order, family, genus and species;209

• a csv file of pairwise dissimilarities computed with the Smith-Waterman algorithm;210

• a csv file of pairwise distances based on the comparison of tetramer and hexamer211
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histograms (same format as Smith-Waterman dissimilarities)212

2.2 Visualisation of the whole dataset using MDS and t-SNE213

A preliminary step is to propose a global picture of the dataset based on the dissimilarity214

matrices, without a classification objective. Multidimensional Scaling (MDS) is a method215

that, once a dissimilarity matrix between items is given, builds a point cloud in a Euclidean216

space of prescribed dimension where each point corresponds to an item (here a sequence),217

and such that the Euclidean distance between any two points is as close as possible to218

the dissimilarity given in the matrix (Cox and Cox, 2001; Izenman, 2008). In our case,219

we selected the so-called Classical Scaling, as proposed initially in Torgerson (1952). It is220

expected that the projection of the point cloud on the first axis encompasses much of the221

information about the structure of the point cloud. MDS was run with the dissimilarity222

matrices built with the Smith-Waterman algorithm and as distances between tetramer223

histograms. We also applied the t-SNE algorithm (van der Maaten and Hinton, 2008) to224

obtain a complementary 2D representation of the point cloud. The t-SNE algorithm is225

another technique for reduction dimension. It is based on the minimisation of a divergence226

between a distribution probability on points’ neighbours in the original space and in the227

visualisation space. While MDS approximates at best the global structure of the distance228

array, t-SNE gives a better summary of local structures (van der Maaten and Hinton, 2008).229

MDS and t-SNE have been run on the whole data set (1458 sequences).230

2.3 General approach231

Depending on the specific question addressed, we selected a different sample of the whole232

dataset. However, in all cases, the general approach for comparing two classifications was233

the same and can be broken down into four steps.234

In step 1, we selected the sub-sample: either the whole dataset with filters, or only235

10



the individuals of a particular order, or of a particular family. We then extracted the236

sub-matrix corresponding to the n individuals in the sample, from the global dissimilarity237

matrix based on the Smith-Waterman score. We also extracted the sub-matrix of the global238

kmer-based dissimilarity matrix, for k = 4 and k = 6. The next steps were applied for each239

sub-matrix.240

In step 2, we built the classifications corresponding to AHC with the three aggregation241

methods, Ward, Complete Linkage (CL) and Single Linkage (SL), and to SBM (see SI for242

a description of these methods). The number of clusters K was provided by the botanical243

classification of the individuals of the sub-sample. For instance if we wanted to study244

agreement between the classification into families and the molecular-based ones, we cut the245

AHC hierarchy of classifications at K equal to the number of families in the sample, and246

we ran SBM for the same value. At the end of step 2, we had five different classifications247

of the individuals in the sub-sample.248

In step 3, we compared the classifications, two by two, for each possible pair of classifi-249

cations (10 pairs in total). We used a visual tool for preliminary analysis of the agreement250

between two classifications: Sankey plots. A Sankey plot is a flow chart in which the251

width of an arrow is proportional to the flow. For instance, if there are nkk′ sequences that252

are in class k for the botanical classification and k′ for a molecular-based classification,253

there is a flow of width proportional to nkk′ between those two clusters. We computed254

an index as well, to quantify the agreement. Classification comparison is equivalent to255

the comparison of two partitions of the same set, a dynamic research area with several256

surveys (Pfitzner et al., 2009). Several indices were proposed and we chose the Normalised257

Mutual Information (NMI1 in Pfitzner et al., 2009, see the Supplementary Information258

for a formal definition). It is not empirical and has a sound basis in information theory,259

as opposed to indices based on counting pairs of elements that may be non-symmetric or260

non-bounded or even be dependent on K or n, making comparison difficult. The Nor-261

malised Mutual Information is normalised and, as such, bounded by 0 and 1, facilitating262
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interpretation and comparison of indices. A Normalised Mutual Information of 0 indicates263

independence between the two classifications, while a Normalised Mutual Information of 1264

indicates a perfect agreement. For an easier interpretation, we also defined threshold on265

the Normalised Mutual Information values, to define domains of very good, good, average,266

poor and very poor agreement between two classifications. The method to compute the267

thresholds is based on simulated partition. It is presented in the Supplementary Material,268

together with the thresholds values (section 4 and Figure 1.269

Finally, when replicates of the experiment are performed like in Section 2.4, in a fourth270

step, we analysed the distributions of the Normalised Mutual Information for a given pair271

of classifications in order to study trends in the agreement using histograms and boxplot272

representations.273

2.4 Comparison of botanical and molecular-based classification274

at the family and genus levels, on replicates275

In order to have information on the variability of the results, we created 10 sub-samples276

of the whole dataset each of them corresponding to the individuals of a particular order,277

and 20 sub-samples each of them corresponding to the individuals of a particular family.278

We selected only orders (respectively families) composed of at least 15 individuals, and279

structured into more than one family (respectively genus). The number of individuals in280

the sub-samples at order level varies between 15 and 321. For the sub-samples at family level281

it varied between 17 and 127. Then, for the samples at the order level, we performed the282

four molecular-based clustering with K equals to the number of families in that order. For283

the samples at the family level, we chose K equals to the number of genera. The orders are284

Malpighiales, Ericales, Sapindales, Laurales, Myrtales, Magnoliales, Gentianales, Rosales,285

Oxalidales and Malvales.286

We structured the empirical analysis of the Normalised Mutual Information obtained287
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(30× 10 values) into four different analyses addressing the following questions: (i) What is288

the level of agreement between the botanical classification and each of the four molecular-289

based ones? (ii) Are the classifications provided by the four molecular-based clusterings290

similar? (iii) Can we identify elements of the dissimilarity matrix that explain the vari-291

ability observed in the answer to question (i) and that would be indicators of the agree-292

ment/independence between the botanical classification and the molecular-based ones? (iv)293

How does the agreement change between the botanical classification and the molecular-294

based ones when substituting kmer-based distances for Smith-Waterman dissimilarities?295

In practice, for question (i), we only considered the Normalised Mutual Information in-296

volving the botanical classification and any of the four molecular-based ones, whereas for297

question (ii), we only considered the Normalised Mutual Information between any pairs of298

the molecular-based classifications. For question (iii), we studied three factors: the taxo-299

nomic level of the groups, the entropy of the botanical classification (defined as the entropy300

of the normalised vector of the groups sizes), and the structure of the dissimilarity matrix.301

The latter was measured by three different ratios between the within-group dissimilarities302

and the between-group dissimilarities (see Supplementary Information).We only present303

here the one for which we observed a relationship with the Normalised Mutual Informa-304

tion values on the data: rmean, defined as the mean of the larger within-class dissimilarity305

over the mean of the smaller between-class dissimilarity. Intuitively when the dissimilarity306

matrix is well structured into several groups each with a small within-class dissimilarity,307

then rmean will be lower than 1. On contrary, when there are no clearly delimited groups308

of similar individuals then rmean will be larger than 1. This is illustrated of Figure 2 in the309

Supplementary Information.310
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2.5 Comparison of botanical and molecular-based classification311

on the whole data set312

We looked at whether or not clustering on the whole dataset could directly retrieve botanical313

classification at levels higher than species (genera, families, orders). In addition, the same314

comparison was performed for species as well, as a benchmark. Since several taxa are315

singletons, regardless of the level, or have a very small number of sequences (e.g. Apiales316

are represented by three sequences only in the whole sample), we built one sub-sample317

for each taxonomic level by filtering out taxa with less sequences than a given threshold.318

The size of those sub-samples are given in Table 1, with the number of sequences and of319

different taxa per level, and the threshold selected for filtering sequences.320

For a given taxonomic level, we ran SBM and AHC with Ward, CL and SL, on the321

sub-matrix of the associated sub-sample and for K equal to the number of taxa present322

in this sub-sample. This was done both on the matrix of dissimilarities between scores323

of the Smith-Waterman algorithm and on distances between tetramer frequencies. We324

compared each of these four classifications with the botanical one using Normalised Mutual325

Information. Note that a good Normalised Mutual Information at a low taxonomic level326

does not automatically imply a good Normalised Mutual Information at a higher level. If327

there are Ks species and Kg genera, the SBM classification into Kg classes is build without328

using the SBM classification into Ks classes. By construction the AHC classification into329

Ks classes is embedded into the one into Kg but depending on the structure of the dis-330

similarity matrix, the successive merges can make the AHC move away from the botanical331

classification.332

As for the study of the replicates, we also computed the entropy and the rmean ratio of333

the botanical orders, families, genera and species classifications. For each of the taxonomic334

levels, we produced a visual graphical analysis by generating Sankey plots.335
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3 Results336

3.1 Visualisation of the whole dataset using MDS and t-SNE337

We represented the shape of the point cloud on the first two axes built with MDS on338

the dissimilarity matrix, with points coloured according to the order that they belong to339

(see Figure 1, left). For Smith-Waterman-based dissimilarities, axis 1 clearly distinguishes340

Ericales (in purple) and Sapindales (dark green), and axis 2, Malpighiales (in light green).341

Axis 3 distinguishes Fabales (blue), and the set of Laurales and Magnoliales (red and342

orange), which are primitive Eudicots. When using t-SNE (see Figure 1, right), clusters of343

sequences appears more clearly, with less overlapping than with MDS. These clusters are in344

general composed of sequences of the same order. However an order can be split into several345

clusters. This phenomenon is reduced for families (see Figure 3, right, in Supplementary346

Information), which indicated a stronger link between dissimilarities and families, than347

between dissimilarities and orders.348

The organisation of the point cloud is different for tetramer-based dissimilarities (see349

Figure 4 in Supplementary Information). For MDS, the point cloud is more compact. Axis350

1 distinguishes the same set of Laurales and Magnoliales, and axis 2 distinguishes Fabales.351

With t-SNE also, the separation between groups is less obvious when using tetramer-based352

dissimilarities. Clearly, the shape of the point cloud based on Smith-Waterman distances is353

more closely related to the organisation of specimens in botanical orders. Such a connection354

is blurred for tetramer-based distances. This allowed us to predict that agreement between355

the botanical classification and the molecular-based ones will be lower when using tetramer-356

based distances.357
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3.2 Comparison of botanical and molecular-based classification358

at the family and genus levels on replicates359

We present first the results obtained with Smith-Waterman scores for points (i) to (iii)360

raised in Section 2.4. We then show how results change when working with kmer-based361

distances (point (iv)).362

(i) Level of agreement between the botanical classification and the molecular-363

based ones. For SBM, Ward, and CL, the shape of the histogram of the 30 Normalised364

Mutual Information is the same (see Figure 5 of Supplementary Material). The mode is365

observed at large values and 50 % of the values correspond to good to very good agree-366

ment, according to our definition of Normalised Mutual Information categories (see Figure367

2). Then, intermediate values of the Normalised Mutual Information (corresponding to an368

average agreement according to our thresholds) are not often observed. In the case of the369

Normalised Mutual Information between SL and the botanical classification, the mode is370

also observed at values corresponding to very good agreement, however the second mode371

is for values of very poor agreement. So globally we observe a range of values that cor-372

respond to good to very good agreement between the botanical and the molecular-based373

classification, with better performance for the Ward method.374

(ii) Mutual agreement of the responses of the four molecular-based clustering375

methods. There is a good agreement between the three AHC methods (see Figure 3). We376

observed larger Normalised Mutual Information between Ward and CL than between Ward377

and SL or CL and SL, but the median values are all in the categories good or very good.378

The SBM classification is globally in good agreement with Ward, in average agreement379

with CL and in poor agreement with SL, if we consider the median value of the Normalised380

Mutual Information.381

(iii) Factors explaining variability in the results. We observed no clear difference382

in the distribution of the Normalised Mutual Information (between the botanical classifi-383
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cation and the molecular-based ones) when computed on replicates whose groups are at384

the family level or those at the genus level or when pooling the replicates (see Table 2).385

We observed a trend towards an increase in agreement between botanical and molecular-386

based classifications when the entropy of the sub-sample increases (Figure 4 left). We also387

observed a clear decrease of the agreement when the ratio rmean increases (see Figure 4388

right). When a dissimilarity matrix is associated with a ratio larger than 1, it can be the389

case that several sequences exist that are closer to sequences belonging to a different genus390

or family than to sequences in their own genus or family. This can lead to low Normalised391

Mutual Information.392

(iv) Influence of the choice of dissimilarity. We observed a decrease of the Nor-393

malised Mutual Information when substituting the Smith-Waterman dissimilarity with the394

tetramer-based or 6mer-based distances (Table 2). For k = 4, this decrease ranged between395

6 % to 39 % depending on the taxonomic level of the groups and the molecular-based clus-396

tering method. For k = 6 it is lower and ranged between 0 % and 28 %. As with the397

Smith-Waterman dissimilarity, the agreement with the botanical classification is the high-398

est for the Ward-based classification, and we still observed the influence of the entropy of399

the botanical classification and of rmean on the agreement (Figures 6 and 7 in Supplemen-400

tary Material). From now on, we present only results for the Smith-Waterman dissimilarity401

and for tetramer-based distances, to illustrate the best and the worst case.402

403

In conclusion, agreement between the botanical classification and molecular-based ones404

can be good to very good. However, there are also situations were the agreement is low.405

We have identified several factors that can influence the level of agreement: the choice406

of the clustering method, with Ward leading to the greatest agreement; the choice of the407

dissimilarity, with a greater agreement for Smith-Waterman dissimilarities than for kmer-408

based distances; the entropy of the botanical classification, with greater agreement for409

larger entropies; rmean, with greater agreement for lower ratios.410
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3.3 Comparison of botanical and molecular-based classification411

on the whole data set412

The results presented here extend the results on the replicates with four new experiments:413

we compared, on the one hand, the botanical classifications of the whole dataset partitioned414

into 11 orders, 20 families and 36 genera, as well as 55 species as a benchmark, (see Table 1)415

and, on the other hand, the molecular-based classifications obtained for the same number416

of classes.417

(i) Level of agreement between the botanical classification and the molecular-418

based ones. On Figure 5 one curve is associated to one numerical method and gives the419

value of the Normalised Mutual Information for the taxonomic levels ordered from the finer420

to the coarser: species, genera, families and orders. All curves, regardless of the molecular-421

based clustering method and the dissimilarity, display a decrease from species to orders.422

All of the methods are excellent for identifying species (Normalised Mutual Information are423

in categories good or very good), and decreases depend on the method: a slight decrease424

for the Ward method, a sharp decrease for the SL method, and an intermediate decrease425

for CL or SBM. When groups are at orders or even families levels, SL seems to lead to426

the lower indices, regardless of the dissimilarity used. This result illustrates that it is not427

granted that the aggregation from fine to coarse level follows the same path in botanics428

and in the dendrogram of the AHC. The cut of the dendogram at Ks groups, Ks being the429

number of species, can be in good agreement with the botanical classification into species,430

but the next merging steps of AHC may not be consistent with families and orders.431

The correspondence between botanical, Ward and SBM classifications obtained with432

Smith-Waterman dissimilarities are graphically visualised in Figure 6 for orders and Figure433

7 for families, with Sankey plots. We can note two types of behaviour: a botanical group434

is split into several groups in Ward or SBM classifications or, on the contrary a Ward or435

SBM group is composed of individuals from several botanical groups. The latter is more436

18



problematic when interpreting molecular-based classifications. On Figure 8, we can observe437

that the low Normalised Mutual Information for SL at the order level is due to the creation438

of a giant cluster formed by almost all of the orders present in the dataset.439

(iii) Factors explaining variability in the results. The fact that agreement be-440

tween the molecular-based and the botanical-based classifications decreases when the tax-441

onomic level of the groups searched increases is in agreement with the influences of the442

entropy and of the rmean observed on the replicates. Indeed entropy here decreases and443

rmean increases when moving from the classification into species and genera towards families444

and orders (see Table 3).445

(iv) Influence of the choice of dissimilarity. Regardless of the clustering method,446

when groups are species or genera, the Normalised Mutual Information is equivalent for447

Smith-Waterman-based dissimilarities and for kmer-based distances (the variation is at448

most of 6%). When the groups are families or orders there is a decrease in the Normalised449

Mutual Information when performing HAC with tetramer-based distances : Normalised450

Mutual Information varied between 2% and 60% with the larger decrease observed for451

SL. On contrary, for SBM, we observe a larger Normalised Mutual Information with the452

tetramer-based distance, when groups are families or orders.453

Note that for AHC, the running times varied between 1 and 3 seconds, whatever the454

subset of sequences considered and the level of the groups searched. For clustering with455

SBM on tetramer distances, we used the Gaussian distribution and the running time was456

about 5 minutes for clustering the whole data set into orders and about 1 hour for clustering457

the whole data set into families. Running time was multiplied by two when using SBM on458

the Smith-Waterman dissimilarity with the Poisson distribution.459
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4 Discussion460

In this study, several numerical methods were compared on a dataset of approximately 1,500461

specimens of trees in a French Guianese forest for the purpose of quantifying the agreement462

between, on the one hand, botanical classification and, on the other hand, molecular-based463

classification on an array of genetic distances, on deep taxonomic levels of the classification.464

We discuss here the results obtained.465

4.1 Agreement between botanical and molecular-based classifi-466

cations467

There is one pattern common to the study based on the clusterings of the 30 replicates and468

the clusterings performed on the whole dataset: regardless of the combination between tax-469

onomic level and dissimilarity, AHC with the Ward aggregation criterion provides the best470

agreement. Other methods rank differently depending on these combinations. Agreement471

can be high (good or very good values of Normalised Mutual Information), in particular472

when the molecular-based clustering is based on the Smith-Waterman dissimilarity. How-473

ever, we also occasionally observed low agreement, and we will discuss the reasons for this.474

When interpreting Normalised Mutual Information values, it is important to have in mind475

that Normalised Mutual Information is conservative in the sense that a strong agreement476

is required to obtain a large Normalised Mutual Information value. The strength of the477

agreement could be higher with another choice of index, but we selected Normalised Mutual478

Information partly for this conservative behaviour.479

A strong assumption in our study is that the number of groups K in the botanical480

classification is known when performing the molecular-based clustering. This is obviously481

not the case in real situations, like in metabarcoding of environmental samples. When K482

is not available, the Integrated Classification Likelihood criterion (Biernacki et al., 2000)483

for model selection can be used to estimate a number of groups that lead to a trade-off484
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between a good explanation of the dissimilarity matrix and parsimony. This criterion485

has the advantage to take into account the objective of clustering when comparing two486

models (i.e. two values for K). A version for selecting K in a SBM has been proposed487

in Daudin et al. (2008). For AHC, choosing K amounts to choosing where to cut the488

dendogram, and heuristics have been proposed (Husson et al., 2010; Zumel and Mount,489

2014) However, these approaches do not include a goal of agreement with the botanical490

classification. In White et al. (2010), to compare molecular-based clustering at the OTU491

level and the taxonomic classification, the authors used partial assignment of the sequences492

and the VI-cut algorithm (Navlakha et al., 2010) to automatically determine the number493

of OTUs that optimally matches this partial knowledge. The method relies on the Value of494

Information to compare two classifications, which we did not select for our study because it495

is not normalised. However, the VI-cut method could easily be extended to the Normalised496

Mutual Information and therefore provide a way to estimate the number of groups, driven497

by the partial taxonomic knowledge that is available on some sequences of the inventory.498

Although neighbor-joining (Saitou and Nei, 1987) is one of the reference methods in499

phylogenies, and based on distances, we have not retained it in our study for two rea-500

sons. First, the agreement between orders and clades2 (monophyly of orders) in the tree501

is not excellent (see section 5 and Figure 8 in Supplementary Information), and second,502

neighbor-joining is not a clustering method (Limpiti et al., 2014): the outcome cannot be503

automatically organized as a partition into clusters.504

4.2 Agreement of botanical classification and the AHC classifi-505

cations506

In our result, a variability of agreement is observed according to the linkage method. If507

the dataset is organised as a set of isolated clusters, all linkage methods will find them508

2A clade here is an internal node with its descent.
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and provide the same classification. If not, different linkage methods will yield differ-509

ent classifications. Not surprisingly, we recover these behaviours in our experiments on510

molecular-based clustering of the tree specimens.511

Ward method: The Ward method nearly always led to the best agreement with botan-512

ical classification, regardless of the measurement of distance (Smith-Waterman or kmers)513

and the taxonomic level of the groups (Sections 3.2 and 3.3).514

Complete linkage Method The CL method generally led to the second-best agreement515

with the botanical classification. It provided classifications very similar to those obtained516

with the Ward method (see Table 3).517

Single linkage method: In contrast, agreement between the classification provided by518

the SL method and the botanical classification was highly variable and could be either very519

good or very poor. The agreement was very poor with the classification into orders of the520

whole dataset (the Normalised Mutual Information is equal to 0.06 for Smith-Waterman dis-521

similarities and to 0.02 for tetramer-based distances, which is very close to independence),522

better but still low for the classification into families (the Normalised Mutual Information523

is equal to 0.44 for Smith-Waterman dissimilarities, and to 0.34 for tetramer-based dis-524

tances). As we explained, reason for that can be seen on Figure 8: the SL classification is525

composed of a huge cluster, containing sequences from all orders, and a set of much smaller526

clusters, each containing one, seldom two, orders. The creation of the huge cluster may527

be due to low dissimilarities existing between the orders. By nature, the SL criterion will528

link these orders by the well known ”chaining effect” which produces long and thin clusters529

which are not compact (Ros and Guillaume, 2019).530
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4.3 Interest of SBM models for molecular-based classification531

Even if the SBM clustering and the botanical one are in very good agreement in some of532

the experiments, globally, the Normalised Mutual Information values for SBM are lower533

than the Normalised Mutual Information for the best AHC method (see Table 2 and Figure534

5). When agreement with the botanical classification is good, then the SBM classification535

resembles the one obtained with the Ward method. This is the case when the dissimilarity536

matrix is well structured into communities, and all clustering methods will perform well.537

When agreement is low, our interpretation is the following. The main difference between538

AHC and SBM clustering is that AHC looks for groups with small within-group dissimi-539

larity (communities), while SBM does not impose such a constraint on the groups. It seeks540

for groups such that (i) all individual in group k share the same pattern of connections541

with the other groups, and (ii) members of group k are almost at the same distance to542

each others. However, this distance is not necessarily small, meaning that SBM groups543

should not be systematically interpreted as communities. When the matrix of the pairwise544

dissimilarities is not clearly structured according to the botanical groups, SBM clustering545

can create groups with individuals that are far from each other. This is what we observed546

on the SBM classification of the whole dataset into orders (both for the Smith-Waterman547

and the kmer-based clustering). For several SBM groups, the estimated parameter char-548

acterising the mean within group distance was larger than the lower mean distance with549

the other groups. In these situations, the Normalised Mutual Information between the550

botanical and the SBM classification is obviously low, and the ratio rmean is large. A SBM551

classification with groups of large within-group mean distances should be a warning that552

the matrix of dissimilarities is not entirely structured according to the botanical classes.553

For similar reasons, SBM is also able to detect outlier individuals by gathering them into a554

group, while methods looking for communities will force them to enter a community. For555

these reasons, we think SBM should be considered as a valuable tool for (meta)barcoding.556
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4.4 Factors explaining the variations in the agreement.557

One of the two main factors influencing the quality of agreement between the botanical558

and the molecular-based classifications is the relative difference between the dissimilarities559

within and between groups in botanical classification. This notion was well captured by560

the rmean ratio and, we obtained a clear tendency for Normalised Mutual Information561

to decrease when the ratio increases on the 30 replicates (Figure 4). When considering562

the clustering of the whole dataset, the same tendency was observed. The other factor563

influencing the quality of agreement is the value of the entropy of the distribution of564

the group sizes in the botanical classification. We observed a tendency for an increase in565

agreement when entropy increases, both on the 30 replicates and when clustering the whole566

dataset at different taxonomic levels.567

In the latter experiments we obtained a clear decrease of agreement for high taxonomic568

levels, whereas in the experiments on the 30 replicates, agreement was better at the family569

level than at the genus level. These apparent contradictory results are actually explained by570

the fact that they correspond to two different protocols. On the 30 replicates the targeted571

set of sequences to cluster is different for each replicate: we did not search for families and572

genera among the same set of individuals. We instead searched for families (respectively573

genera) of sequences of the same order (respectively family).574

The negative influence of the rmean ratio and the positive influence of the entropy are575

global tendencies. We also observed variations around these main tendencies, which means576

that they are probably not the only factors explaining the Normalised Mutual Information577

values. Still, they are strong signals.578

4.5 Biological interpretation579

There may be several approaches to analyse the reasons for agreement/disagreement be-580

tween botanical and molecular-based numerical classification. We first examine possible581
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reasons arising from the structure of the molecular data, and second we propose some in-582

terpretations arising from the literature in plant molecular phylogenies.583

584

In our study on the whole dataset, the agreement between the molecular-based and the585

botanical-based classification is better when groups are at a low taxonomic level, hence586

more numerous, regardless of the method and the distance (see Figure 5). As discussed587

in Section 4.4, the rmean ratio, involving distances within a group over distances between588

groups, is smaller at the family level than at the order level. This suggests that families are589

better delineated than orders by pairwise distances. The results shown in Figure 5 extend590

this observation to species over genera, and show that molecular-based delineation of taxa591

is more accurate at fine taxonomic levels than at coarse ones.592

This is consistent with the evolution of plant classification system, where confidence593

about delineation of higher groups, like orders, is lower than for lower groups, like gen-594

era. APG (Angiosperm Phylogeny Group) regularly updates phylogenetic classification of595

plants, focusing on families and orders. Initial goal in APG has been to classify families596

in orders, and later revisions have focused on delineations. In the first proposal, in 1998,597

there were 40 orders and 462 families. In the fourth one, called APG IV (The Angiosperm598

Phylogeny Group et al., 2016), there were respectively 64 orders and 416 families. This599

is consistent with a stabilisation of family delineations, while there is still ongoing work600

for stabilising orders. This might be an explanation for the drop in agreement for orders,601

whereas the quality of agreement for families is similar to the one for genera and species602

for some methods (see figure 5).603

The commonly accepted notion for molecular-based classification is monophyly in molec-604

ular phylogenies (Hillis et al., 1996). The evolutionary distance between two species is the605

age of their Most Recent Common Ancestor. It is related to genetic distance as measured606

here by Smith-Waterman score, provided that the molecular clock hypothesis is accepted607

(see Yang (2006), chapter 7, for an overview). Even if the marker selected here is neutral608
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(intergenic spacer), it is highly likely that evolution rates over tens of millions of years across609

all lineages have not remained constant. Main clades of angiosperms have radiated quickly610

in Late Cretaceous (this is Darwin’s ”abominable mystery”, see Friedman (2009) for a his-611

torical perspective), whereas they have diverged earlier in late Jurassic / Early Cretaceous.612

Diversification occurred with heterogeneities in space and time (Ramirez-Barahona et al.,613

2020). It is highly likely that such heterogeneities have been reflected even partially in614

evolution rates of markers, which may in turn lead to heterogeneities in agreement between615

molecular based and botanical classifications at the level of orders. As a consequence, as-616

suming that botanical classification reflects monophyletic clades can lead to a decrease of617

agreement between botanical and molecular- based classification for higher taxa, especially618

at the order level.619

Our interpretation is that uncertainties on classification of plants (e.g. APG system)620

are currently higher at high levels of taxonomy (orders and higher), and that this is shared621

by clustering of barcodes (our numerical result).622

4.6 Comparison between Smith-Waterman and kmer-based dis-623

similarities624

Computing Smith-Waterman dissimilarity between two sequences is the most precise way625

to compare them. However, it is time-consuming. Computing kmer-based distances is626

much quicker, but at the cost of approximations. The histograms of Smith-Waterman dis-627

similarities and kmer-based (k = 4 and 6) distances are provided in Figures 9 and 10 of628

Supplementary Information. A coarse correlation can be observed between both quantifi-629

cations of dissimilarities (see Figure 11 in the Supplementary Information), stronger for630

small dissimilarities. However, a significant number of pairs of sequences exists with a631

very low Smith-Waterman dissimilarity and a significant tetramer-based distance. This632

is due to the high variability in length of the trnH-psbA marker. For instance, a small633
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Smith-Waterman dissimilarity means that the smallest sequence is nearly identical to a634

contiguous sub-sequence of the larger one. However, due to the dissimilarity in length of635

the two sequences, the kmer histograms cannot be similar, and the kmer-based distance is636

large. Therefore, some small values of the Smith-Waterman dissimilarity can be associated637

with median values of the kmer-based distance. Since the AHC classification (regardless638

of the linkage) builds groups of individuals with small within group distances, it can be639

expected that the Smith-Waterman-based and the kmer-based classifications will be dif-640

ferent. In practice, as expected, we observed that agreement decreases when substituting641

kmers for Smith-Waterman regardless of the combination between the taxonomic level and642

the clustering method (but for SBM sometimes). However, substituting kmer-based dis-643

tances for Smith-Waterman dissimilarities did not strongly modify the agreement between644

the molecular-based classifications and the botanical one.645

4.7 Perspectives for metabarcoding646

The dataset is sufficiently small for all calculations to be run on a laptop in a reasonable647

time, making it possible to focus on the comparison of the methods. Some methods are648

clearly more accurate than others to retrieve orders or families in our dataset. The expec-649

tation is that those methods are those that will permit inventories or clustering at higher650

taxonomic levels such as families, orders or phyla in metabarcoding studies. However, we651

underline two issues.652

We have worked with trnH-psbA which is highly resolutive but longer than markers653

currently used in metabarcoding of environmental samples or with degraded DNA. It is654

an issue to study whether the results found here can be extended either to other groups655

than plants in barcoding or with shorter markers for metabarcoding. A second issue is the656

scaling of the clustering methods used in the study, to data sets with hundreds of thousands657

of reads.658

We recommend first using AHC with the Ward method for clustering regardless of the659
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taxonomic level, and not using AHC with Single Linkage which may produce poor results,660

despite the observation that current softwares scaling up with NGS massive data sets make661

it possible to use it (like MOTHUR) or yield results very close to it (like SWARM). It662

can be observed that SWARM has a step for preventing the formation of giant clusters663

by irrelevant aggregation between two clusters from different seeds, see Mahé et al. (2014,664

2015).665

Second we recommend using SBM classification to detect, via the estimated distribution666

of within cluster distances, situations where the molecular-based classifications may be667

poorly related to the morphological-based one (because the dissimilarity matrix is not668

clearly structured into communities).669

These results and observations lead us to recommend the pursuit of methodological670

efforts to analyse metabarcoding data for building inventories at the coarse level (i.e.,671

between phyla and orders). Inventories at the coarse level are a first step towards the672

global exploration of diversity of unknown groups. This can be done in two ways. First,673

nearly all surveys about clustering emphasize that there is no method that is perfect and674

better than some others for all evaluation criteria (see, e.g., Fahad et al., 2014). Therefore,675

it may be useful to produce classifications by several numerical methods and to extract676

the shared elements. These are the ones in which the user can be more confident that677

they actually reflect an actual structure in the data. Second, scaling-up methods that678

have proven themselves to properly perform on well-known datasets, like AHC with Ward679

linkage or SBM-based clustering, is a key issue. A very efficient method for clustering may680

be to ”divide and conquer”: first, dividing the problem by building connected components681

in a graph built from pairwise distances and, second, conquering by implementing AHC682

Ward or SBM in each connected component. More globally, connecting these efforts with683

studies on wider classes of methods under development for clustering for big-data (Fahad684

et al., 2014) is a challenging issue for metabarcoding.685
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8 Tables869

Taxonomic level Number of sequences Number of taxa Minimal size of a taxon
Species 313 55 5
Genera 845 36 10
Families 1349 30 10
Orders 1357 11 15

Table 1: Characteristics of the four subsamples of sequences, one per taxonomic level. The
number of sequences in the sample is lower for low taxonomic levels because we selected
only taxa composed of a minimal number of sequences, and there are less sequences of a
given species than of a given genera, etc. Each subsample is used for a comparison between
the molecular-based clustering methods and the botanical classification.

Families Genera Pooled
Method SW 4mer 6mer SW 4mer 6mer SW 4mer 6mer
AHC Ward 1 0.61 0.72 0.83 0.73 0.74 0.87 0.71 0.74

SL 0.51 0.48 0.65 0.75 0.59 0.72 0.70 0.58 0.68
CL 0.85 0.63 0.66 0.75 0.71 0.75 0.75 0.67 0.68

SBM 0.67 0.52 0.51 0.82 0.62 0.71 0.73 0.61 0.68

Table 2: Normalised Mutual Information between the botanical classification (into families
or into genera) and the four molecular-based classifications (row) for two dissimilarities
(column). SW stands for Smith-Waterman, 4mer for kmer-based distances computed with
kmers of length k = 4 and 6mer for kmer-based distances computed with kmers of length
k = 6

). Results for families are median values over 10 samples and results for genera are
median values over 20 samples. A sample is the set of sequences of an order (10 of them)

or a family (20 of them).
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Orders Families Genus Species
Entropy 2.15 3.01 3.39 3.98
rmean with SW 2.22 1.3 0.60 0.30
rmean with kmer 1.89 1.29 0.77 0.14

Table 3: Entropy and rmean ratio (describing the ratio between mean larger within-group
and mean smaller between-group dissimilarities) for the botanical classifications of the
dataset into orders, families, genera and species. SW stands for Smith-Waterman and
kmer for kmer-based distances computed with kmers of length k = 4. Samples (one per
taxonomic level) are those which have been built with the filters presented in Table 1.
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9 Figures870
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Figure 1: Visualisation of the sequences of the whole data set, as a point cloud. One dot is
one sequence. The points of the eight more numerous orders are coloured, while the others
are in grey. Dissimilarities are computed with the Smith-Waterman algorithm. Left: MDS,
projected on axis 1 and 2. Right, t-SNE.
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Figure 2: Boxplots on the distribution of the Normalised Mutual Information computed
between each molecular-based classification and the botanical one. The data are the Nor-
malised Mutual Information obtained on 30 replicates (10 classifications into families and
20 into genera). A replicate is the set of sequences of an order (10 of them) or a family (20
of them). Results obtained using the Smith-Waterman dissimilarity.
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Figure 3: Boxplots on the distribution of the Normalised Mutual Information computed
between each pair of molecular-based classifications. The data are the Normalised Mutual
Information obtained on 30 replicates (10 classifications into families and 20 into genera).
A replicate is the set of sequences of an order (10 of them) or a family (20 of them). Results
obtained using the Smith-Waterman dissimilarity.

38



0.5 1.0 1.5 2.0

0
.2

0
.4

0
.6

0
.8

1
.0

Entropy

N
M

I
Normalised Mutual Information as a function of the entropy

SBM 

Single Linkage

Ward

Complete Linkage

0 1 2 3

0
.2

0
.4

0
.6

0
.8

1
.0

r mean ratio

N
M

I

Normalised Mutual Information as a function of the r mean ratio

SBM 

Single Linkage

Ward

Complete Linkage

Figure 4: Normalised Mutual Information as a function of the entropy (left) and the ratio
rmean (right) computed on the botanical classification. Each point corresponds to one of
the four molecular-based clustering method applied to one of the 30 replicates. The x-axis
is the value of the entropy or ratio rmean computed on the botanical classification, the
y-axis is the Normalised Mutual Information between the botanical classification and the
molecular-based one. The Clustering is made using the Smith-Waterman dissimilarity.
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Figure 5: Agreement between molecular-based classifications and botanical classification
from low to higher taxonomic levels. x axis: taxonomic levels, y axis: Normalised Mutual
Information between molecular-based classification and botanical classification. One curve
corresponds to one molecular-based classification. The Normalised Mutual Information are
computed for classifications obtained on the samples (one per taxonomic level) presented
in Table 1. Left: Smith-Waterman dissimilarities. Right: tetramer-based distances.
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Figure 6: Sankey plot of correspondences between AHC with Ward (left column), botanical
(central column) and SBM classification (right column) at the order level. The width of a
flow between two classes is proportional to the number of sequences belonging to the two
classes.

40



Figure 7: Sankey plot of correspondences between AHC with Ward (left column), botanical
(central column) and SBM classification (right column) at the family level. The width of a
flow between two classes is proportional to the number of sequences belonging to the two
classes.
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Figure 8: Sankey plot of correspondences between botanical classification (left column) and
AHC with Single Linkage (right column), at the order level. The width of a flow between
two classes is proportional to the number of sequences belonging to the two classes.
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