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In this communication, we employ such a model to analyze the decay of the electron population observed in the TA signal of CdS NRs and CdS-CaI complexes in the 1-100 ns time window. We determine the intrinsic rate constants, i.e. probabilities per unit time that a particular microscopic relaxation event occurs, for three electron decay processes: electron-hole recombination in CdS NRs (𝑘 # ), electron trapping (𝑘 $% ), and ET to CaI (𝑘 !" ) (Scheme 1). In this model, the numbers of the electron trap sites and adsorbed CaI moieties follow independent Poisson distributions. We find 𝑘 # to be 1.5×10 7 s -1 , and 𝑘 $% to be 7-fold larger (1.1×10 8 s -1 ), with the average electron trap density (〈𝑁 $% 〉) of 0.59 per NR. From a series of CdS-CaI samples with varying CdS:CaI molar ratios, we find that 𝑘 !" (2.4×10 7 s -1 ) is within a factor of two of 𝑘 # . QEET in the ensemble sample is a function of both the ratios of the intrinsic rate constants and of the average numbers of traps and enzymes. While it depends strongly on the ratio 𝑘 !" /𝑘 # , the dependence on 𝑘 $% /𝑘 # is weak because 〈𝑁 $% 〉 is small, causing trapping to play a minor role in determining QEET for the ensemble. We find a quantitative agreement between ensemble QEET and the previously reported quantum yield of H2 generation using CdS-CaI complexes. 1 Thus the key to more efficient photochemical H2 generation lies in improving the efficiency of ET from CdS NRs to CaI by manipulating the individual contributions of 𝑘 !" and 𝑘 # . Finally, the model predicts that the fraction of CdS NRs that have no CaI adsorbed limits the maximum achievable value of QE !" for the ensemble. The kinetic model that accounts for heterogeneity of CdS-CaI complexes provides quantitative insights into factors that play a critical role in photochemical H2 generation.

Details of the preparation and characterization of the CdS NRs and CaI have been described previously. 1,2 CdS NRs used in this study had an average length of 21.5 nm and an average diameter of 4.3 nm. The CdS NR surface was functionalized with 3-mercaptopropanoic acid (3-MPA), which enabled aqueous solubility and an electrostatic interaction with CaI. CaI binds to the CdS NRs via the attraction between the negatively charged carboxylate groups of deprotonated 3-MPA and a positively charged region on the surface of the enzyme
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(Scheme 1). 1 This interaction is analogous to the in vivo binding of the electron-donating protein ferredoxin with the same positively charged region of the CaI protein surface. 1,5 The experimental details of sample preparation are described in Section I of the ESI †.

To monitor the relaxation kinetics of photoexcited CdS NRs with and without adsorbed CaI, we used TA spectroscopy. The laser setup has been described previously, 14 and relevant experimental details are described in Section II of the ESI †. Photoexcitation of CdS NRs at 400 nm gives rise to a transient bleach feature corresponding to the band gap at 471 nm (Fig. S2, ESI †). The magnitude of the bleach is proportional to the population of electrons filling the lowest lying 1σe electron level of CdS NRs and is independent of the valence band hole population. 15,16 Thus, the decay of the bleach signal for CdS NRs without CaI represents the kinetics of electrons depopulating the 1σe level by radiative and nonradiative recombination with the photoexcited hole and by electron trapping. We note that CaI does not have a detectable signature in the TA spectrum at the concentrations used here.

As discussed in Section IV, ESI † and shown in Fig. S3, ESI †, the TA decay curve for CdS NRs has a complicated functional form. This is commonly observed with semiconductor nanocrystals. 10,17 We observe three time windows of distinct decay shapes in the relaxation of the CdS NR bleach feature. At short delay times, a fast (~1 ps) exponential decay component constitutes 12% of the overall decay and has recently been assigned to exciton localization. 17 Most of the decay occurs in the intermediate time regime and can be fit with a stretched exponential. At long delay times (>100 ns), with the amplitude down to 2% of the initial value, the kinetics change to a much slower decay and the stretched exponential fails to describe its shape. The origin of this longlived component remains unknown and will not be addressed here. Although the decay of the CdS NR TA signal intensity occurs over a broad range of time, most of the change in the signal intensity upon addition of CaI occurs in the window of 1-100 ns. 2 Thus, the 1-100 ns time regime is the most relevant for understanding ET kinetics in this system and will be the focus for the remainder of this work.

To analyze the band edge bleach recovery of CdS NRs in the 1-100 ns time window, we use a kinetic model for excited state decay that explicitly includes the number distribution of electron trap sites per CdS NR in the ensemble sample. A similar model was developed for the study of quenching kinetics of luminescent probes in micellar systems, 18,19 and has more recently been employed to study the kinetics of carrier trapping in nanocrystals, 10,20 as well as energy, 21,22 

(𝑡) = ∑ 𝑃(𝑁 $% )𝑃 &'( (𝑡, 𝑁 $% ) ∞ ) &' *#
, where 𝑃(𝑁 $% ) is the probability that a NR has 𝑁 $% traps and 𝑃 &'( (𝑡, 𝑁 $% ) is the conditional survival probability for a NR that has 𝑁 $% traps. The model for 𝑃 &'( (𝑡, 𝑁 $% ) is the master equation:

𝑑𝑃 &'( (𝑡, 𝑁 $% ) 𝑑𝑡 = -(𝑘 # + 𝑘 $% 𝑁 $% )𝑃 &'( (𝑡, 𝑁 $% ). (1) 
Here 𝑘 # is the sum of rate constants for radiative and nonradiative recombination of the electron with the hole, and 𝑘 $% is the rate constant for electron trapping. At low concentrations of traps, one can find 𝑃(𝑁 $% ) using equilibrium statistical mechanics for non-interacting particles. In the grand canonical ensemble, 𝑃(𝑁 $% ) is a Poisson distribution. 

𝑃 &'( (𝑡) = 𝑎 &'( exp{-𝑘 # 𝑡 + 〈𝑁 $% 〉(𝑒 +, &' --1)}, (2) 
where 〈𝑁 $% 〉 is the average number of traps in the ensemble. This model allows for the simultaneous determination of 𝑘 # , 𝑘 $% , and 〈𝑁 $% 〉. In section VI of the ESI † we derive an expression that allows for fluctuations in 𝑘 $% at the level of second cumulant approximation, but find that they do not lead to a statistically better fit. Thus, a single value of 𝑘 $% is sufficient to describe the data. Fig. 1 shows the TA decay of CdS NRs in the 1-100 ns time window with a fit to Eq. 2. Eq. 2 has an inherent correlation of parameters, meaning that different combinations of 〈𝑁 $% 〉 and 𝑘 $% , for example, can give the same fit. We used the bootstrapping Monte Carlo method to determine the average value and corresponding 95% confidence interval for each parameter (Section VII, ESI †). The resulting fit parameters are given in Table 1. The 𝑘 # value of 1.5×10 7 s -1 describes electron-hole recombination pathways and is dominated by recombination of a 1σe electron with a surface-trapped hole because hole trapping is very fast (ps) in CdS NRs. 25 Electron trapping is 7-fold faster than recombination, with a rate constant of 1.1×10 8 s -1 . The average number of traps is 0.59 in this sample, meaning that 33% of the NRs have one electron trap, and 55% have none. Because of the low electron trap density, the ensemble measurement of the excited state decay, and the associated average lifetime, is dominated by 𝑘 # . Similar trapping rates and trap densities have been previously determined for CdS NRs and CdSe QDs using the same kinetic model. 10,24 

Table 1

Electron decay parameters for CdS NRs and CdS-CaI complexes CaI:CdS molar ratio 𝑘 ! (10 7 s -1 ) a 〈𝑁 "# 〉 a 𝑘 "# (10 8 s -1 ) a 〈𝑁 ()* 〉 b 𝑘 $% (10 7 s -1 ) b 0.00:1 1.5 ± 0.1 0.59 ± 0.04 1.1 ± 0.2 --0.14:1 0.13 ± 0.02 2.4 ± 0.6 0.59:1 0.42 ± 0.04 1.14:1 0.68 ± 0.05 1.75:1 0.76 ± 0.06 a Values found by fitting CdS NR kinetic trace (Fig. 1) with Eq. 2. b Result of global fit of data in Fig. 2 to Eq. 3 by holding 𝑘 ! , 𝑘 "# , and 〈𝑁 "# 〉 fixed, defining 𝑘 $% as a global parameter between data sets containing CaI and allowing 〈𝑁 ()* 〉 to vary between data sets. Uncertainties associated with each fit parameter are 95% confidence intervals. 

CdS NRs Model

The presence of CaI introduces ET as an additional pathway by which photoexcited electrons in CdS NRs can decay. Fig. 2 shows the kinetic traces of CdS-CaI complexes with molar ratios of CaI:CdS in the range of 0.14:1 to 1.75:1. As the CaI:CdS molar ratio increases, the bleach feature of CdS recovers more quickly due to the increasing ET rate. 2 Mixing of CdS NRs and CaI to form complexes results in a distribution in the number of CaI adsorbed on each NR. At CaI:CdS molar ratios close to 1:1, we treat the adsorption events as independent of each other because CaI occupies a small fraction of the available surface area. 1 Thus, the number of CaI adsorbed on each CdS NR can be described by a Poisson distribution, 𝑃(𝑁 &./ ). To analyze the TA decays in Fig. 2, we use a similar treatment as described above to account for the Poisson distributions of both the electron traps and adsorbed electron acceptors. This allows us to determine 𝑘 !" and the average number of CaI moieties adsorbed and capable of accepting an electron, 〈𝑁 &./ 〉. Following a similar derivation as for 𝑃 &'( (𝑡) as above (Section VIII, ESI †), the TA decay of CdS-CaI complexes, 𝑃 &'(+&./ (𝑡), is found by averaging over both 𝑃(𝑁 $% ) and 𝑃(𝑁 &./ ). 24 The result is:

𝑃 &'(+&./ (𝑡) = 𝑎 &'(+&./ exp{-𝑘 # 𝑡 + 〈𝑁 $% 〉(𝑒 +, &' --1) + 〈𝑁 &./ 〉(𝑒 +, +, --1)}. (3) 
To minimize the number of adjustable parameters, the fitting of this equation to the kinetic traces of CdS-CaI complexes was performed by fixing the values of 𝑘 # , 〈𝑁 $% 〉 and 𝑘 $% found from fitting CdS NRs alone to Eq. 2 (Fig. 1). This reflects the assumption that ET introduces another decay pathway without changing the intrinsic CdS parameters in Table 1. This assumption is supported by the fact that allowing variation in 𝑘 # and 𝑘 $% upon addition of CaI does not statistically improve the fit. A global fit of Eq. 3 was performed such that recursive analysis converged upon the optimum value of 𝑘 !" that fits all four traces containing CaI in Fig. 2 simultaneously while allowing 〈𝑁 &./ 〉 to vary.

Fig. 2

TA kinetic decays of CdS-CaI complexes (points) at 470 nm for several ratios of CaI:CdS and fit functions from Eq. 3 (solid lines). The ratios listed are the mixing molar ratios during sample preparation.

The fits of Eq. 3 to the data are shown as solid lines in Fig. 2. Extracted global fit parameters for ET are given in the last two columns of Table 1. Similar values were obtained when fitting our previously published electron decay kinetics in CdS-CaI complexes using Eqs. 2 and 3 (Table S1, ESI †). Because of possible variations in the CdS NR interaction with CaI, we examined the possibility that there is a distribution in the value of 𝑘 !" . Using the second cumulant approximation, we included a parameter representing the variance in the values of 𝑘 !" . This additional parameter did not improve the fit to the data (Section VI, ESI †). This implies that, while variations in 𝑘 !" may exist, they do not make a measurable contribution to the TA decays reported here.

The value of 𝑘 !" (2.4×10 7 s -1 ) for ET from photoexcited CdS to CaI is within an order of magnitude of 𝑘 # and 𝑘 $% for CdS NRs, resulting in a direct competition between these processes. While 𝑘 # and 𝑘 $% are properties of CdS NRs, 𝑘 !" is determined by the electron pathway, which involves electron tunneling for a considerable distance from the NR surface to the distal [FeS] cluster of the enzyme. 2 The values of 〈𝑁 &./ 〉 in Table 1 increase with increasing CaI:CdS molar ratios and are consistently smaller than the mixing ratios. This observation may point to the presence of CaI adsorbed with orientations that prevent ET and/or to an equilibrium adsorption/desorption process that leaves some CaI free in solution.

For each individual CdS-CaI complex in the ensemble, competition between the processes described by 𝑘 # , 𝑘 $% and 𝑘 !" depends on the number of traps and enzymes adsorbed (𝑁 $% and 𝑁 &./ ). For each CdS-CaI complex, QE !" = 𝑘 !" 𝑁 &./ /(𝑘 # + 𝑘 $% 𝑁 $% + 𝑘 !" 𝑁 &./ ). For example, in the case of a CdS NR with zero traps and one CaI adsorbed, QE !" = 62%, while for a NR with one trap and one CaI, QE !" = 16%. Note that dividing the numerator and denominator of this expression by 𝑘 # reveals that QE !" does not depend on the individual values of the intrinsic rates. Rather, it depends only on the ratios 𝑘 !" /𝑘 # and 𝑘 $% /𝑘 # .

To understand the contribution of each electron decay process to photochemical H2 generation in solutions of CdS-CaI complexes, it is important to examine the behavior of QE !" for the ensemble sample, which can be calculated by integrating 𝑃 &'( (𝑡) and 𝑃 &'(+&./ (𝑡) (Eq. S30, Section X, ESI †). For this system, QE !" of the ensemble depends strongly on 𝑘 !" /𝑘 # but weakly on 𝑘 $% /𝑘 # , as shown in Fig. S6a (Section X of ESI †). To illustrate the behavior of ensemble QE !" , we take the example of 〈𝑁 &./ 〉 = 1 and calculate QE !" using Eq. S30. Using the values of 𝑘 # , 〈𝑁 $% 〉, 𝑘 $% and 𝑘 !" given in Table 1, the QE !" would be 41%. If 〈𝑁 $% 〉 = 0, the QE !" would only increase to 43%. The small impact that trapping has on QE !" reflects the fact that 〈𝑁 $% 〉 is already small. Increasing 〈𝑁 &./ 〉 above 1 would increase QE !" , but this strategy decreases H2 production, as we have shown previously. 1 H2 generation requires transfer of two electrons to the same CaI moiety, and if multiple CaI are adsorbed on each NR, they compete for the second electron. 1,2 In an ensemble, there is an upper limit on the maximum achievable value of QE !" , QE !" 012 . For a given 〈𝑁 &./ 〉, the fraction of NRs that do not have any CaI attached and thus do not undergo ET determines QE !" 012 . From Poisson statistics, the fraction of NRs with one or more CaI adsorbed is 1 -𝑒 +〈) -./ 〉 . The saturation value is therefore

QE !" 012 = 1 - 𝑒 +〈) -./ 〉 . For 〈𝑁 &./ 〉 = 1, QE !" 012 = 63%.
The ensemble value of 41% at 〈𝑁 &./ 〉 = 1 achieved with the rate constants characteristic of our current system is already ~2/3 of QE !" 012 . A relatively modest increase in 𝑘 !" /𝑘 # by a factor of 10-100 would be sufficient to approach QE !" 012 (Fig. S6b, ESI †). This could be achieved through synthetic modifications of nanocrystal surface chemistry and band structure. For example, surface-capping ligands can strongly influence ET rates from a nanocrystal to an acceptor. 26 Thus 𝑘 !" could be increased through ligand manipulation. Alternatively, type-II nanocrystals with long-lived charge separated states could decrease 𝑘 # . 27,28 Finally, we compare a previously reported value of quantum yield of H2 generation with QE !" of a corresponding ensemble sample of CdS-CaI. In our prior work, H2 quantum yield was 20% for a CdS-CaI solution with a CdS:CaI molar ratio of 0.67. 1 Interestingly, the value of QE !" with the same value of CdS:CaI, obtained by interpolating between data points in Table 1, is 21%. This similarity suggests that CaI converts electrons from photoexcited CdS NRs into H2 with close to 100% efficiency and illustrates the remarkable electrocatalytic properties of CaI. 29 It also highlights the point that the key to improving H2 production is in increasing QE !" . In summary, we have shown that a kinetic model that includes distributions in electron traps and adsorbed enzymes describes the kinetics of ET between CdS NRs and CaI in the time window of 1-100 ns. The model allows us to determine the intrinsic rate constants for electron-hole recombination, electron trapping, and ET. QE !" depends strongly on the ratio of the rate constants for ET and electron-hole recombination, but only weakly on electron trapping. The maximum QE !" saturates at a value determined by the fraction of NRs with no CaI moieties adsorbed. The current CdS-CaI system has a QE !" value that is two-thirds of the maximum. The relatively simple model used here captures the essential kinetics of ET and provides guidance on the relevant design parameters that could be manipulated to optimize photochemical redox reactions using nanocrystal-enzyme hybrids.
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I. Sample preparation and characterization

The synthesis of CdS nanorods (NRs) was carried out following previously reported methods. [1][2][3] UV-visible absorption spectra were recorded at room temperature in 2 mm quartz cuvettes using an Agilent 8453 spectrophotometer equipped with tungsten and deuterium lamps (Fig. S1a). The sizes of the NRs were determined by measuring over 200 particles in TEM images (Fig. S1b) using ImageJ software, 4 giving an average length of 21.5 ± 5.2 nm and an average diameter of 4.4 ± 0.6 nm. TEM samples were made by drop casting CdS NR solution onto 300 mesh, copper grids with carbon film from Electron Microscopy Science. Images were taken using a Phillips CM100 TEM at 80 kV with a bottom-mounted 4 megapixel AMT v600 digital camera. CdS NR surfaces were functionalized, subsequent to NR synthesis, with 3mercaptopropanoic acid (3-MPA) using a previously reported ligand exchange procedure. 2,3,5 This enabled aqueous solubility and an electrostatic interaction with CaI. The molar absorptivity of the CdS NRs was found by comparison of UV-visible absorption spectra (Fig. S1) with Cd 2+ concentrations, found by elemental analysis (ICP-OES), after acid digestion of NR samples. The estimated molar absorptivity at 350 nm was 1.1×10 7 M -1 cm -1 for this sample. The expression and purification of CaI from Escherichia coli has been described elsewhere. 6 CdS-CaI complexes were prepared under Ar by mixing solutions of CdS NRs and CaI in buffer (50 mM Tris-HCl, 5 mM NaCl, 5% glycerol, pH 7) with no hole scavenger added.

II. Transient absorption (TA) spectroscopy

The complete experimental setup for the TA measurements has been previously described. 3 In all mixtures used for TA experiments, the concentration of CdS was held constant at about 0.7 µM, as determined from UV-visible absorption spectra and the molar absorptivity, and the concentration of CaI was varied relative to this in order to give different molar ratios CaI:CdS. Samples were sealed under Ar in 2 mm quartz cuvettes equipped with air-tight valves. TA samples were rapidly stirred and pumped with a beam that was ~240 µm in diameter with pulse energies of ~10 nJ. The pump power was low enough that TA decay kinetics were independent of power to prevent signal from multiple excitons 7 and isolate the kinetics of one electron transferring to CaI. TA kinetics for data sets in Fig. 1, 2 and S5 were taken with a time resolution of 0.3 ns. 

IV. Fitting of TA kinetics

The TA decay over the time span of 0.1 ps -30 µs (Fig. S3) has three time windows with distinct decay shapes. form. The single exponential plus a stretched exponential fit function used in to fit the TA band edge bleach decay of CdS NRs in Fig. S3 is

𝑓 𝑡 = 𝐴 !"# 𝑒 !!/! !"# + 𝐴 !"#$"%& 𝑒 ! !/! !"#$"%& ! .
(Eq. S1)

The resulting fit parameters by applying Eq. S1 are 𝐴 !"# = -0.12, 𝜏 !"# = 1.8 ps, 𝐴 !"#$"%& = -0.88, 𝜏 !"#$"%& = 24 ns and 𝛽 = 0.47. The fast 1.8 ps single exponential decay component constitutes 12% of the overall decay and has been attributed to exciton localization to a part of the nanorod with the largest diameter, or weakest quantum confinement. 8 Most of the decay (86%) occurs in the intermediate time window and can be described with a stretched exponential with a time constant of 24 ns and a stretching exponent of 0.47. There is also a long-lived component that makes up about 2% of the ∆A amplitude that is not described by the stretched exponential fit. The origin of this component is not understood and not addressed here.

In this communication, we focus on the 1-100 ns time range because most of the TA signal change associated with ET occurs within this range. 9 The fit to Eq. 2 produces similar parameter values to those in Table 1 when we expand the range to 0.01-100 ns.

V. The kinetic model for excited state relaxation in NRs and CdS-CaI complexes

For completeness, we present the derivation of the model of the CdS survival probability, 𝑃 !"# 𝑡 . Though this derivation closely follows previously published works, 10 it is a foundational part of our description for electronic relaxation in the presence of both traps and enzyme with and without rate constant fluctuations (Section VII).

The TA signal is proportional to the number of electrons in the 1σ e excited state at time 𝑡 , which is the survival probability of the electron in excited state, 𝑃 !"# 𝑡 , multiplied by the total number of electrons excited at time zero. Thus the survival probability fully characterizes the time-dependent relaxation embodied in the TA signal, ∆A(𝑡). The total survival probability, 𝑃 !"# 𝑡 , is related to the conditional survival probability for a NR that has a given number 𝑁 !" of traps, 𝑃 !"# (𝑡, 𝑁 !" ), by the law of total probability 𝑃 !"# 𝑡 = 𝑃 𝑁 !" 𝑃 !"# (𝑡, 𝑁 !" )

! ! !" !!
. Because each NR is independent, one can view 𝑃 !"# (𝑡, 𝑁 !" ) as the total number of electrons in the excited state at time 𝑡 divided by the total number of electrons that were excited at time zero for the subpopulation where 𝑁 !" is fixed. 𝑃 𝑁 !" is the (time-independent) probability that one NR has 𝑁 !" traps and can be computed from equilibrium statistical mechanics. The equation of motion for 𝑃 !"# (𝑡, 𝑁 !" ) is the master equation, 11

𝑑𝑃 !"# (𝑡, 𝑁 !" ) 𝑑𝑡 = -𝑘 ! + 𝑘 !" 𝑁 !" 𝑃 !"# (𝑡, 𝑁 !" ). (Eq. S2)
The factor of 𝑘 !" 𝑁 !" is the total probability, per unit time, that an electron reacts with any of the 𝑁 !" traps. The rate constant 𝑘 ! is the probability per unit time that the electron relaxes by any process other than trapping. This model assumes that the photophysics occurs in the "well-mixed" limit, i.e., that the electron samples the spatial extent of the NR on a timescale that is fast compared to the trapping time. This means that the time required for an electron to find a trap is not dominated by diffusion in this time window. The solution to Eq. S2 is

S5 𝑃 !"# (𝑡, 𝑁 !" ) = 𝑃 !"# (𝑡 ! , 𝑁 !" )𝑒 ! ! ! !! !" ! !" (!!! ! ) .
(Eq. S3)

The survival probability decays in the short time window (0.1 ps -10 ps) in a way that is independent of 𝑁 !" 8 so that the initial condition becomes 𝑃 !"# (𝑡 ! , 𝑁 !" ) = 𝑃 !"# 𝑡 ! , the amplitude at time 𝑡 ! after the relaxation of CdS between time 0 and 𝑡 ! .

We describe the distribution of electron trap sites, 𝑃 𝑁 !" , as an ensemble of NRs coupled to an ideal solution of traps that are noninteracting with one another but are at fixed chemical potential, temperature and volume so that the number of traps at equilibrium, 𝑁 !" , in a NR follows a Poisson distribution:

𝑃 𝑁 !" = 𝑁 !" ! !" 𝑒 ! ! !" 𝑁 !" ! . (Eq. S4)
where 𝑁 !" is the average number of traps at thermal equilibrium. The decay of the ensemble of complexes, 𝑃 !"# 𝑡 , computed from probability theory is then equivalent to a thermal ensemble average,

𝑃 !"# 𝑡 = 𝑃 𝑁 !" 𝑃 !"# 𝑡, 𝑁 !" , ! ! !" !! (Eq. S5) = 𝑃 !"# 𝑡 ! 𝑒 !! ! ! 𝑃(𝑁 !" )𝑒 !! !" ! !" ! ! ! !" !! , (Eq. S6) = 𝑃 !"# 𝑡 ! exp -𝑘 ! (𝑡 -𝑡 ! ) + 𝑁 !" 𝑒 !! !" (!!! ! ) -1 . (Eq. S7)
Because 𝑘 ! 𝑡 ! ≪ 1 and 𝑘 !" 𝑡 ! ≪ 1, we simplify the fit equation by omitting 𝑡 ! and writing 𝑃 !"# 𝑡 ! as the amplitude, 𝑎 !"# :

𝑃 !"# 𝑡 = 𝑎 !"# exp -𝑘 ! 𝑡 + 𝑁 !" 𝑒 !! !" ! -1 . (Eq. S8)
This is the model (Eq. 2) we use to describe the TA decay kinetics in Fig. 1. We arrive at Eq. 3 in the manuscript starting with a model for the conditional survival probabilities for photoexcited electrons in CdS NRs with both traps and adsorbed CaI moieties, 𝑃 !"#!!"# (𝑡, 𝑁 !" , 𝑁 !"# ). The master equation for

𝑃 !"#!!"# (𝑡, 𝑁 !" , 𝑁 !"# ) is 𝑑𝑃 !"#!!"# (𝑡, 𝑁 !" , 𝑁 !"# ) 𝑑𝑡 = -𝑘 ! + 𝑘 !" 𝑁 !" + 𝑘 !" 𝑁 !"# 𝑃 !"#!!"# (𝑡, 𝑁 !" , 𝑁 !"# ). (Eq. S9)
Just like the model discussed above, the term 𝑘 !" 𝑁 !"# is the probability per unit time to decay to any of the 𝑁 !"# enzymes on the NR. The solution to Eq. S9 is

𝑃 !"#!!"# (𝑡, 𝑁 !" , 𝑁 !"# ) = 𝑃 !"#!!"# (𝑡 ! , 𝑁 !" , 𝑁 !"# )𝑒 ! ! ! !! !" ! !" !! !" ! !"# (!!! ! ) . (Eq. S10)

S6

Again, factorizing the initial conditions, 𝑃 !"#!!"# 𝑡 ! , 𝑁 !" , 𝑁 !"# = 𝑃 !"#!!"# 𝑡 ! .

Assuming that the coverage of both enzymes and traps is low and that they do not interact, i.e., each is at a fixed chemical potential, the joint probability factorizes, 𝑃 𝑁 !" , 𝑁 !"# = 𝑃 𝑁 !" 𝑃(𝑁 !"# ). Using the same model for each species as above,

𝑃(𝑁 !" ) = 𝑁 !" ! !" 𝑒 ! ! !"
𝑁 !" ! (Eq. S11)

𝑃(𝑁 !"# ) = 𝑁 !"# ! !"# 𝑒 ! ! !"# 𝑁 !"# ! . (Eq. S12)
Where 𝑁 !"# and 𝑁 !" are the average numbers of enzyme attached to the CdS NR and traps in the NR, respectively, at thermal equilibrium. 𝑃 !"#!!"# 𝑡 is therefore

𝑃 !"#!!"# 𝑡 = 𝑃(𝑁 !"# )𝑃(𝑁 !" )𝑃 !"#!!"# (𝑡, 𝑁 !" , 𝑁 !"# ) ! ! !" !! ! ! !"# !! (Eq. S13) = 𝑃 !"#!!"# 𝑡 ! 𝑒 !! ! ! 𝑃(𝑁 !" )𝑒 !! !" ! !" ! ! ! !" !! 𝑃(𝑁 !"# )𝑒 !! !" ! !"# ! ! ! !"# !! (Eq. S14) = 𝑃 !"#!!"# 𝑡 ! 𝑒 !! ! !!! ! exp 𝑁 !" 𝑒 !! !" (!!! ! ) -1 exp 𝑁 !"# 𝑒 !! !" (!!! ! ) -1 S15) = 𝑃 !"#!!"# 𝑡 ! exp -𝑘 ! (𝑡 -𝑡 ! ) + 𝑁 !" 𝑒 !! !" (!!! ! ) -1 + 𝑁 !"# 𝑒 !! !" (!!! ! ) -1 (Eq. S16)
Again, as we did in going from Eq. S7 to Eq. S8, we replace 𝑃 𝑡 ! in favor of the amplitude, 𝑎 !"#!!"# :

𝑃 !"#!!"# 𝑡 = 𝑎 !"#!!"# exp -𝑘 ! 𝑡 + 𝑁 !" 𝑒 !! !" ! -1 + 𝑁 !"# 𝑒 !! !" ! -1 (Eq. S17)

VI. Fluctuations in both numbers and intrinsic rate constants for traps and CaI

Here we derive an equation for the survival probability in the presence of fluctuations for the intrinsic rate constants. Fluctuations in the intrinsic rate constants can occur when there are additional sources of disorder in the system beyond the number fluctuations modeled above. For example, distributions in distances between the enzyme and the NR or conformational fluctuations of the enzyme might influence electron transfer rates. In this section we derive the expression for the survival probability for electron trapping when there are fluctuations in the trapping rates. Suppose there are 𝑁 !" traps in a NR and that the rate constant for each trap is a random variable chosen from some distribution, 𝑘 ! = 𝑘 !" + 𝛿 ! , where 𝑘 !" is the mean of the distribution and 𝛿 ! is the fluctuation away from the mean for a given trap, 𝑖. The distribution function for each 𝛿 ! , 𝑝 𝛿 ! , in the set 𝛿 = (𝛿 ! , … , 𝛿 ! !" ) is identical and has finite first and second moments. The master equation for the survival probability 𝑃 !"# (𝑡, 𝑁 !" , 𝛿 ) is

S7 𝑑𝑃 !"# (𝑡, 𝑁 !" , 𝛿 ) 𝑑𝑡 = -𝑘 ! + 𝑘 !" 𝑁 !" + 𝛿 ! ! !" !!!
𝑃 !"# (𝑡, 𝑁 !" , 𝛿 ), (Eq. S18)

which is the survival probability for a given 𝑁 !" and a given realization of the random variable 𝛿 . Solving the differential equation, and again omitting 𝑡 ! and replacing 𝑃 !"# (𝑡 ! , 𝑁 !" , 𝛿 ) in favor of the amplitude 𝑃 !"# (𝑡 ! ) gives

𝑃 !"# (𝑡, 𝑁 !" , 𝛿 ) = 𝑃 !"# (𝑡 ! ) 𝑒 ! ! ! !! !" ! !" ! ! ! ! !" !!! ! (Eq. S19)
Because the initial condition is independent of 𝑁 , it must also be independent of the values for the intrinsic rate constants. Thus, for a given 𝑁 !" we can average over the fluctuations in the intrinsic first, and then average over the number fluctuations,

𝑒 ! ! ! ! !" !!! ! = 𝑑𝛿 ! 𝑝 𝛿 ! 𝑒 ! ! ! ! !" !!! ! ! !" !!! , ! !! !" (Eq. S20) 𝑒 ! ! ! ! !" !!! ! = 𝑑𝛿 ! 𝑝 𝛿 ! 𝑒 !! ! ! , ! !" !!! ! !! !" (Eq. S21) 𝑒 ! ! ! ! !" !!! ! = 𝛿 𝑒 !!" ! !! !" ! !" , (Eq. S22) 𝑒 ! ! ! ! !" !!! ! = 𝑝(𝑡) ! !" .
(Eq. S23)

The simplification from Eq. S21 to Eq. S22 comes from the fact that all 𝛿 ! are independent, identically distributed random variables chosen from the same distribution. 𝑝(𝑡) in Eq. S23 is the moment generating function for the distribution of trapping rate fluctuations, 𝑝 𝑡 = 𝑑𝛿𝑝 𝛿 𝑒 !!"

! !! !"
. Finally, averaging over the Poisson distribution in 𝑁 !" gives the survival probability in the presence of both sources of fluctuations,

𝑃 !"# 𝑡 = 𝑃(𝑁 !" )𝑃 !"# (𝑡, 𝑁 !" , 𝛿) ! ! !" !! , (Eq. S24) = 𝑃 !"# (𝑡 ! ) 𝑃(𝑁 !" )𝑒 !! ! ! ! ! !" !! 𝑒 !! !" ! !" ! 𝑒 ! ! ! ! !" !!! ! , (Eq. S25) = 𝑃 !"# (𝑡 ! ) 𝑒 !! ! ! 𝑒 ! ! !" 𝑁 !" 𝑒 !! !" ! 𝑝(𝑡) ! !" 𝑁 !" ! ! ! !" !! , (Eq. S26)
S8 which upon replacing 𝑃 !"# (𝑡 ! ) with 𝑎 !"# yields the final result

𝑃 !"# 𝑡 = 𝑎 !"# exp -𝑘 ! 𝑡 + 𝑁 !" 𝑒 !! !" ! 𝑝(𝑡) -1 . (Eq. S27)
To gauge the importance of intrinsic rate fluctuations, we approximate 𝑝(𝑡) at the level of the second cumulant,

𝑝 𝑡 ≈ 𝑒 ! ! ! ! ! . (Eq. S28)
Including 𝛿 ! in the model functions leads to a negligible decrease in the reduced chi-square value (2% decrease) without appreciably changing the other fit parameters. Therefore, 𝛿 ! is a statistically insignificant parameter and the TA data are insensitive to fluctuations in the intrinsic rates.

A similar derivation for CdS-CaI complexes gives

𝑃 !"#!!"# 𝑡 = 𝑎 !"#!!"# exp -𝑘 ! 𝑡 + 𝑁 !" 𝑒 !! !" ! 𝑝 !" 𝑡 -1 + 𝑁 !"# 𝑒 !! !" ! 𝑝 !" (𝑡) -1 (Eq. S29)
where 𝑝 !" 𝑡 and 𝑝 !" (𝑡) are the moment generating functions for the distributions trapping and ET rate fluctuations, 𝑝(𝛿 !" ) and 𝑝(𝛿 !" ), respectively. Using the second cumulant approximation 𝑝 !" (𝑡) ≈ 𝑒 ! !" ! ! ! /! , including fluctuations in the rates for ET does not statistically improve the fit (reduced chi-squared decreases by 0.05%), indicating that a model with one representative value of 𝑘 !" is sufficient to describe the TA data reported here.

VII. Error analysis for 𝒌 𝟎 , 𝑵 𝐭𝐫 , 𝒌 𝐭𝐫 , 𝑵 𝐂𝐚𝐈 and 𝒌 𝐄𝐓 To determine the fit parameters 𝑘 ! , 𝑁 !" , 𝑘 !" , 𝑁 !"# and 𝑘 !" and their uncertainties, we employed the bootstrapping Monte Carlo method. 12 Distributions for model parameters and their correlations come from generating 10,000 synthetic datasets by resampling the original data with replacement and performing nonlinear least squares fits for each set. The fit parameters that minimize the chi-square value from this process are distributed around the parameters of best fit (Table 1). Joint parameter distributions for particular pairs appear in Fig. S4.

Bootstrapping data indicate strong correlations between fit parameters as one might expect from such a nonlinear, multi-parameter data model. These correlations imply that standard error estimates of each parameter taken individually are insufficient to represent the uncertainties for all parameters simultaneously. The uncertainties reported for the fit parameters in Table 1 include covariances between parameters and represent the 95% confidence in the multidimensional parameter space. where 𝑃 !"# 𝑡 and 𝑃 !"#-!"# (𝑡) are the fits of TA kinetics of CdS NRs to Eq. 2 and CdS-CaI complexes to Eq. 3, respectively. 15 Changing integration variables in the expression for the quantum yield from 𝑡 to 𝑘 ! 𝑡 as in the second part of Eq. S30 shows that the quantum yield of electron transfer depends only on the ratio of rate constants, so that there are two degrees of freedom and not three for fixed values of 𝑁 !" and 𝑁 !"# . That is, QE !" 𝑘 ! , 𝑘 !" , 𝑘 !" = QE !" (𝑘 !" /𝑘 ! , 𝑘 !" /𝑘 ! ). Fig. S6a shows QE !" (𝑘 !" /𝑘 ! , 𝑘 !" /𝑘 ! ), evaluated by numerical integration of Eq. S30 for 𝑁 !" = 0.59 and 𝑁 !"# = 1. QE !" shows a very weak dependence on 𝑘 !" /𝑘 ! because 𝑁 !" is already very small, so the most important parameter in determining the quantum efficiency for electron transfer is 𝑘 !" /𝑘 ! . Because the most important quantity in determining QE !" is 𝑘 !" /𝑘 ! , increasing 𝑘 !" , decreasing 𝑘 ! , or changing both to increase the ratio increases the quantum efficiency for electron transfer. Fig. S6b shows the predicted values of QE !" as a function of 𝑘 !" /𝑘 ! , for fixed values of 𝑁 !" and 𝑘 !" when 𝑁 !"# = 1. The circles in Fig. S6a and S6b mark the QE !" = 41% calculated when the values for all parameters take on those that are measured in this communication (Table 1). QE !" saturates to ≈ 63% when 𝑘 !" /𝑘 ! ≈ 100. This is because at 𝑁 !"# = 1, 37% of CdS NRs in the sample have no CaI adsorbed and therefore do not undergo ET. 𝑘 !" /𝑘 ! 𝑘 !" /𝑘 ! Fig. S6. Quantum efficiency of electron transfer, QE !" , for 𝑁 !"# = 1. (a) Contour plot of QE !" as a function of 𝑘 !" /𝑘 ! and 𝑘 !" /𝑘 ! . Contour lines of constant QE !" , where the labels denote the values of the contours, run roughly parallel to the y-axis indicating that the quantum yield for electron transfer depends very weakly on 𝑘 !" /𝑘 ! when 𝑁 !" = 0.59. The gray dashed line in (a) marks the slice of the data plotted in (b). The circle indicates the point in parameter space where the CdS-CaI system currently lies. QE !" = 41% when 𝑘 ! , 𝑁 !" , 𝑘 !" and 𝑘 !" take on the values presented in Table 1 (𝑘 !" /𝑘 ! = 7.3 and 𝑘 !" /𝑘 ! = 1.6). (b) QE !" as a function of 𝑘 !" /𝑘 ! where 𝑘 ! , 𝑁 !" and 𝑘 !" values given in Table 1. This trace corresponds to the gray dashed line in (a). The circle shows the point where QE !" = 41% (𝑘 !" /𝑘 ! = 1.6), which is the QE !" we find from the fits to the TA data (Table 1).

Fig. 1 .

 1 Fig. 1. TA kinetics of CdS NRs in the time window of 1-100 ns showing the fit of the kinetic model (Eq, 2) in blue.

Fig. S1 .

 S1 Fig. S1. (a) UV-visible absorption spectrum of CdS NRs in buffer. (b) TEM image of CdS NRs.

  Fig. S2.TA spectra of CdS NRs after 400 nm excitation at various time delays. Photoexcitation of CdS NRs at 400 nm gives rise to a transient bleach feature peaked at 471 nm in this particular sample, corresponding the band gap. Kinetic traces are obtained by monitoring the ∆A amplitude at 471 nm. The induced absorption feature at 485 nm is due to carrier cooling and is short lived (<1 ps).

Fig. S3 .

 S3 Fig. S3. TA kinetics of the band gap feature in CdS NRs probed at 471 nm over a time window of 0.1 ps-30 µs with a time resolution of 150 fs. The signal is shown as -∆A on log-log axes. The inset shows the same data on a split time axis that is linear for the first 10 ps and logarithmic thereafter. A fit function that includes a fast single exponential plus a stretched exponential is shown in red. The plots reveal the existence of three time windows with distinct functional forms.
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  hole16 and electron transfer23 in nanocrystal-acceptor complexes. The merit of this model is that it reveals the intrinsic rate constants for electron relaxation. The decay of the TA signal can be modeled as the survival probability of the electron in the 1σe electron state, 𝑃 &'( (𝑡), because 𝑃 &'( (𝑡) is directly proportional to ∆𝐴(𝑡). This model assumes that, in this time window,

	trapping, recombination, and ET are not dominated by
	diffusion.	For	an	ensemble	of	NRs,	𝑃 &'(

  10,24 After solving Eq. 1 and averaging over the Poisson distribution 𝑃(𝑁 $% ) (Section V, ESI †), 𝑃 &'( (𝑡) has the solution24 
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VIII. Kinetic modeling of another CdS-CaI dataset

To assess the reproducibility of fit parameters found in this communication, we apply our analysis to previously published data on the decay kinetics of CdS-CaI complexes. 13 The CdS NRs used for that data set come from the same synthesis batch as the ones used in the manuscript. The fitting parameters obtained by fitting the data in Fig. to Eqs. 2 and 3 are summarized in Table S1. 0.99 ± 0.05 a Values found by fitting CdS NR kinetic trace (Fig. S5) according to Eq. 2. b Result of global fit of data in Fig. S5 to Eq. 3 by holding 𝑘 ! , 𝑘 !" , and 𝑁 !" fixed, defining 𝑘 !" as a global variable between data sets containing CaI, and allowing 𝑁 !"# to vary. Uncertainties associated with each fit parameter are 95% confidence intervals.

The values of 𝑘 ! , 𝑘 !" , and 𝑁 !" in Table S1 are consistent with those in Table 1 within the 95% confidence integral, indicating that the behavior described here is reproducible for CdS NRs made in the same synthesis. The value of 𝑘 !" obtained from this data set also agrees with that of the data set in the manuscript, within the confidence interval.

IX. 𝐐𝐄 𝐄𝐓 as a function of the intrinsic rate constants

While the QE !" for an individual CdS-CaI complex can be calculated by QE !" = 𝑘 !" 𝑁 !"# / 𝑘 ! + 𝑘 !" 𝑁 !" + 𝑘 !" 𝑁 !"# , calculation of QE !" for an ensemble requires the inclusion of the distribution in the number traps and adsorbed CaI. This can be done using signal intensities according to 14