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FROM THE RAVINE METHOD TO THE NESTEROV METHOD AND VICE VERSA: A
DYNAMICAL SYSTEM PERSPECTIVE

HEDY ATTOUCH∗ AND JALAL FADILI†

Abstract. We revisit the Ravine method of Gelfand and Tsetlin from a dynamical system perspective, study its convergence
properties, and highlight its similarities and differences with the Nesterov accelerated gradient method. The two methods are
closely related. They can be deduced from each other by reversing the order of the extrapolation and gradient operations in
their definitions. They benefit from similar fast convergence of values and convergence of iterates for general convex objective
functions. We will also establish the high resolution ODE of the Ravine and Nesterov methods, and reveal an additional
geometric damping term driven by the Hessian for both methods. This will allow us to prove fast convergence towards zero
of the gradients not only for the Ravine method but also for the Nesterov method for the first time. We also highlight
connections to other algorithms stemming from more subtle discretization schemes, and finally describe a Ravine version of the
proximal-gradient algorithms for general structured smooth + non-smooth convex optimization problems.

Key words. Ravine method; Nesterov accelerated gradient method; Hessian driven damping; high resolution ODE;
convergence rates; Lyapunov analysis; proximal algorithms.
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1. Introduction. In a real Hilbert space H, we revisit the Ravine method of Gelfand and Tsetlin
[32] from a dynamical system perspective, study its fast convergence properties, and compare it with the
Nesterov accelerated gradient method [42, 43], which we coin here NAG for short. We first consider the case
of smooth convex optimization

(1.1) min {f(x) : x ∈ H} ,

where f : H → R is a convex function of class C1, whose gradient ∇f is Lipschitz continuous, and which
satisfies argminH(f) 6= ∅. We will unveil the close links between the Ravine method and NAG which are
sometimes confused in the literature. Indeed, the two methods stem from different discretizations of similar
continuous dynamics and can be deduced from each other by reversing the order of the extrapolation and
gradient update operations in their definitions. Thus, they benefit from similar fast convergence properties.
On the other hand, the high resolution ODE of the Ravine and Nesterov methods reveal an additional
geometric Hessian-driven damping term. The Hessian damping, which is a special case of strong damping
in PDE’s, plays an important role in attenuating the oscillations. This paves the way to proving new results
on fast convergence towards zero of the gradients for both methods. To achieve even better attenuation of
the oscillations, we also highlight connections to other algorithms stemming from more subtle discretization
schemes of the high resolution ODE. We finally examine the case of ”smooth + nonsmooth” structured convex
optimization problems, and introduce a first-order inertial proximal gradient algorithm which is based on
the Ravine method.

2. Damped inertial dynamical systems for fast optimization. Damped inertial dynamics have
a natural mechanical and physical interpretation. Asymptotically, they tend to stabilize the system at a
minimizer of the global energy function. As such, they offer an intuitive way to develop fast optimization
methods. Let us briefly describe the main damped inertial dynamics used in optimization, their mechanical
interpretation, and how the Ravine method stands among them. The Ravine method was a precursor of
the accelerated gradient methods. It has long been ignored and, surprisingly enough, is at the forefront of
current research. According to the notes in [54] :

”Ravine method worked well and sparked numerous heuristics for selecting its parameters and improving
its behavior. However, its convergence was never proved. It inspired Polyak’s heavy-ball method, which seems
to have inspired Nesterov’s accelerated gradient method”.
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2.1. Heavy Ball with Friction (HBF). The heavy ball with friction method was introduced by Polyak
in 1964 [48, 49]. It describes the movement of a material point of positive mass subjected to a driving force
governed by the gradient of the function to be minimized and a viscous friction force. According to the
fundamental equation of mechanics, and having normalized the mass equal to one, it is written as follows

(HBF) ẍ(t) + γẋ(t) +∇f(x(t)) = 0,

where γ > 0 is a fixed viscous damping parameter. The (HBF) method proves to be a useful tool for exploring
the local minima of a smooth non-convex function [17]. For convex optimization, it is especially interesting in
the strongly convex case, where an appropriate choice of the damping coefficient provides linear convergence
with an optimal rate. Unfortunately, in the case of a general convex function, it only provides a sublinear
rate of convergence of values of order O

(
1
t

)
. A decisive step to improve it, and to pass from the rate O

(
1
t

)
to the faster rate O

(
1
t2

)
, has been accomplished by considering algorithms associated with inertial dynamics

with asymptotically vanishing damping coefficients. This is the motivation behind the dynamic (AVDα) and
associated algorithm (NAGα) described hereafter.

2.2. Nesterov Accelerated Gradient method (NAGα). In recent years, an in-depth study was
carried out linking the NAG method to inertial dynamics with vanishing viscosity, see [9, 10, 11, 14, 29, 30,
53]. Given α a positive parameter, the following second-order ODE

(AVDα) ẍ(t) +
α

t
ẋ(t) +∇f(x(t)) = 0,

was introduced in [53]. An appropriate temporal discretized version of this ODE with step size s > 0 gives
the scheme (NAGα) which reads

(NAGα)

{
yk = xk +

(
1− α

k

)
(xk − xk−1)

xk+1 = yk − s∇f(yk).

The scheme (NAGα) performs a gradient step at yk, which is an extrapolated point obtained from xk
and the previous iterate xk−1.

The method depends in an essential way on the tuning of the extrapolation parameter αk which takes
the form αk = 1− α

k in the (NAGα) scheme. So αk tends to one from below in a subtle controlled way. The
historical version of the accelerated gradient method of Nesterov corresponds to α = 3, with the asymptotic
convergence rate f(x(t)) − minH f = O

(
1
t2

)
for the continuous dynamic (AVDα), and f(xk) − minH f =

O
(

1
k2

)
for the corresponding scheme (NAGα). Taking α > 3 provides convergence of the trajectories and

the improved convergence rate, with small o instead of capital O in the above convergence rates. These
results are obtained by Lyapunov analysis [14, 21, 31], as summarized below.

Theorem 2.1. Suppose that f : H → R is a convex differentiable function such that ∇f is L-Lipschitz
continuous, and S = argminH(f) 6= ∅. Take α ≥ 3, and s ∈]0, 1/L]. Let (xk)k∈N be a sequence generated by

the (NAGα) algorithm. Set tk = k−1
α−1 , and define, for each integer k ≥ 1

Ek := t2k(f(xk)− f(z)) +
1

2s
‖xk−1 − z + tk(xk − xk−1)‖2.

Then, the sequence (Ek)k∈N is non-increasing, and as k → +∞

f(xk)−min
H

f = O
(

1

k2

)
, ‖xk − xk−1‖ = O

(
1

k

)
.

In addition, when α > 3,

f(xk)−min
H

f = o

(
1

k2

)
, ‖xk − xk−1‖ = o

(
1

k

)
, and w-limxk = x? ∈ S,

where w-lim stands for the weak limit.

There has been an active literature devoted to study these questions, from various perspectives, which
have given an in-depth understanding of the (NAGα) method; see for example [8, 9, 10, 14, 15, 26, 31, 36,
37, 40, 41, 50, 51, 53, 55].
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2.3. Ravine method. The Ravine method was introduced by Gelfand and Tsetlin [32] in 1961. It
mimics the flow of water in the mountains which first flows rapidly downhill through small, steep ravines
and then flows along the main river in the valley. It also models the transmission of nerve impulses. It has
been recently brought to the fore by Polyak [47]. According to the above mechanical interpretation, the
Ravine Accelerated Gradient method (coined RAG for short) generates sequences (yk)k∈N which satisfy

(RAGα)

{
wk = yk − s∇f(yk)

yk+1 = wk +
(
1− α

k+1

)
(wk − wk−1) .

Historically, the Ravine method was introduced with a fixed extrapolation coefficient. Taking the extrap-
olation coefficient equal to

(
1− α

k+1

)
makes the Ravine method in accordance with (NAGα) and is crucial

to obtain an accelerated method. A geometric view of (RAGα) is given in Figure 2.1.

•

•
•

•
•

yk−1
yk

wk−1 = yk−1 − s∇f(yk−1)

wk = yk − s∇f(yk)

yk+1 = wk +
(

1− α
k+1

)
(wk − wk−1)

S = argminH(f)

Fig. 2.1: A geometrical illustration of (RAGα).

2.4. From Ravine to Nesterov and vice versa. The Ravine method has been ignored for a long
time, and sometimes confused with (NAGα) in the literature. Indeed, the two methods can be deduced from
each other by reversing the order of the extrapolation and gradient operations. Even more confusing, they
come within the same equations. Specifically, the variable yk which enters the definition of (NAGα) follows
the (RAGα) algorithm. Despite the elementary proof of this result, we state it as a theorem, because of its
importance.

Theorem 2.2.
(i) Let (xk)k∈N be a sequence generated by the algorithm (NAGα). Let (yk)k∈N be the associated sequence

given by yk = xk +
(
1− α

k

)
(xk − xk−1). Then, (yk)k∈N follows the algorithm (RAGα).

(ii) Conversely, if (yk)k∈N is a sequence generated by (RAGα), then the sequence (xk)k∈N defined by
xk+1 = yk − s∇f(yk) obeys the algorithm (NAGα).

Proof. (i) Suppose that the iterates (xk)k∈N follow (NAGα). According to the definition of yk

yk+1 = xk+1 +

(
1− α

k + 1

)
(xk+1 − xk)

= yk − s∇f(yk) +

(
1− α

k + 1

)(
yk − s∇f(yk)− (yk−1 − s∇f(yk−1))

)
.

Set wk = yk − s∇f(yk) (which is nothing but xk+1). We obtain that the sequence (yk)k∈N obeys
(RAGα).
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(ii) Conversely, from the definition of yk and wk in (RAGα), we have

yk+1 = yk − s∇f(yk) +

(
1− α

k + 1

)(
yk − s∇f(yk)− (yk−1 − s∇f(yk−1))

)
.

Setting xk+1 := yk − s∇f(yk) as devised, we deduce that

yk+1 = xk+1 +

(
1− α

k + 1

)
(xk+1 − xk) .

Equivalently

yk = xk +
(

1− α

k

)
(xk − xk−1) .

Putting together the above relation with the definition of xk+1, we obtain that (xk)k∈N follows
(NAGα).

This completes the proof.

Remark 2.1. The order of the two operations, gradient and extrapolation is reversed in the two algo-
rithms. In (NAGα) first the extrapolation operation is performed, followed by a gradient step. In the Ravine
method (RAGα), it is the reverse order. Although different, this is reminiscent of the approach followed in
[24] which makes it possible to switch from forward-backward algorithms to backward-forward algorithms.

Equipped with Theorem 2.2, we now transfer convergence properties known for (NAGα) to (RAGα). In
particular, we will show that (NAGα) and (RAGα) share the same asymptotic convergence rates.

Theorem 2.3. Let f : H → R be a C1 convex function whose gradient is L-Lipschitz continuous, and
S = argminH(f) 6= ∅. Let (yk)k∈N be the sequence generated by (RAGα) with α ≥ 3 and sL ≤ 1. Then, the
following properties hold:

(i) f(yk)−minH f = O
(

1

k2

)
as k → +∞.

If, in addition, α > 3, then

(ii) f(yk)−minH f = o

(
1

k2

)
as k → +∞.

Let (xk)k∈N be the associated trajectory generated by (NAGα), i.e. xk+1 = yk − s∇f(yk). Then
(iii) w-lim yk = w-limxk ∈ S.

Proof. (i) According to Theorem 2.2, the sequence (xk)k∈N defined by

(2.1) xk+1 = yk − s∇f(yk)

follows (NAGα). Let us take advantage of the convergence properties of (NAGα), as described in
Theorem 2.1. We thus have

(2.2) f(xk)−min
H

f = O
(

1

k2

)
, ‖xk − xk−1‖ = O

(
1

k

)
.

According to (2.1), we have − 1
s (xk+1 − yk) = ∇f(yk). Using successively the convex subdifferential

inequality, the Cauchy-Schwarz inequality, and the triangle inequality, we obtain

f(yk)−min
H

f ≤ f(xk)−min
H

f +
1

s
〈xk+1 − yk, xk − yk〉

≤ f(xk)−min
H

f +
1

s
‖xk+1 − yk‖‖yk − xk‖,

≤ f(xk)−min
H

f +
1

s
(‖xk+1 − xk‖+ ‖yk − xk‖) ‖yk − xk‖.(2.3)

Using Theorem 2.2 on the equivalence between (RAGα) and (NAGα), we have

yk = xk +
(

1− α

k

)
(xk − xk−1) .
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Therefore

‖yk − xk‖ ≤ ‖xk − xk−1‖.(2.4)

Combining (2.3) with (2.4) we obtain

(2.5) f(yk)−min
H

f ≤ f(xk)−min
H

f +
1

s
(‖xk+1 − xk‖+ ‖xk − xk−1‖) ‖xk − xk−1‖.

According to (2.2) we conclude.
(ii) Similar arguments when α > 3 yield the o

(
1
k2

)
rate.

(iii) Since ‖yk − xk‖ ≤ ‖xk − xk−1‖, and ‖xk − xk−1‖ = O
(
1
k

)
→ 0, we have ‖yk − xk‖ → 0, i.e. yk − xk

converges strongly to zero. Combining this with the fact that w-limxk = x? ∈ S, see Theorem 2.1,
it follows that the sequence (yk)k∈N converges weakly to the same limit x?.

2.5. Inertial dynamics with Hessian driven damping. It the light of recent work in the study of
the acceleration of first order algorithms through the lens of dynamical systems, we will show that the high
resolution ODE’s of (RAGα) and (NAGα) contain an additional Hessian-driven geometric damping term.
The underlying dynamic, called (DIN-AVDα,β,b) is the subject of this section.

The Hessian driven damping plays an important role in various domains. As such, it can be introduced
from various perspectives: geometric (also called strong) damping of oscillating systems, which is a central
theme in PDE’s and mechanics, high resolution ODE of the Ravine method (this will be analyzed in sec-
tion 4), and regularization of the Newton method. In addition to the viscous damping already present in
(AVDα), taking into account the geometric damping which is driven by the Hessian of the function to be
minimized makes it possible to improve the performance of these methods by attenuating their oscillations
(see Figure 2.2). In the rest of this section, we follow the lines of [12], see also [51] for a special case and
motivation. When f is twice continuously differentiable, the dynamic is written as follows

(DIN-AVDα,β,b) ẍ(t) +
α

t
ẋ(t) + β∇2f(x(t))ẋ(t) + b(t)∇f(x(t)) = 0,

where b(t) takes into account the temporal scaling effect. The prefix DIN, which stands shortly for Dynamical
Inertial Newton, refers to the interpretation of this dynamic as a regularized continuous Newton method, see
[25, 18, 19]. At first glance, the presence of the Hessian may seem to entail numerical difficulties. Fortunately,
this is not the case as the Hessian intervenes in the form ∇2f(x(t))ẋ(t), which is nothing but the derivative
with respect to time of the function t 7→ ∇f(x(t)).

The temporal discretization of the dynamic (DIN-AVDα,β,b) with b(t) = 1 +β/t, provides the first-order
algorithm proposed in [12]

(IGAHD)

{
yk = xk +

(
1− α

k

)
(xk − xk−1)− β

√
s (∇f(xk)−∇f(xk−1))− β

√
s

k ∇f(xk−1)

xk+1 = yk − s∇f(yk),

where (IGAHD) stands for Inertial Gradient Algorithm with Hessian driven Damping. By comparison with
(NAGα), (IGAHD) has a correction term which contains the difference of the gradients at two consecutive
steps. While preserving the convergence properties of (NAGα), (IGAHD) provides fast convergence to zero
of the gradients, and reduces the oscillatory aspects. This is made precise in the following theorem, see
[12, 13].

Theorem 2.4. Let f : H → R be a C1 convex function whose gradient is L-Lipschitz continuous, and
S = argminH(f) 6= ∅. Suppose that α ≥ 3, 0 < β < 2

√
s, sL ≤ 1. Let (xk)k∈N be a sequence generated by

(IGAHD). Then, the following holds:

(i) f(xk)−minH f = O
(

1

k2

)
, and ‖xk − xk−1‖ = O

(
1

k

)
as k → +∞;

(ii)
∑
k k

2‖∇f(yk)‖2 < +∞ and
∑
k k

2‖∇f(xk)‖2 < +∞.

In addition, when α > 3,
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Fig. 2.2: Evolution of the objective (left) and trajectories (right) for (AVDα) (α = 3.1) and (DIN-AVDα,β,b)
(α = 3.1, β = 1) on an ill-conditioned quadratic problem in R2.

(iii) f(xk)−minH f = o

(
1

k2

)
and ‖xk − xk−1‖ = o

(
1

k

)
;

(iv) w-limxk ∈ S.

A number of other recent papers have contributed to this subject or closely related ones, see [1, 2, 28,
35, 38].

Let us mention another important advantage of (DIN-AVDα,β,b), which confirms its natural connection
with first-order methods. When β > 0, the presence of the Hessian driven damping in the dynamics
(DIN-AVDα,β,b) allows to formulate (DIN-AVDα,β,b) as an equivalent first-order system both in time and in
space, without explicit evaluation of the Hessian. This makes it possible to extend the existence of trajectories
and the convergence results to the non-smooth case f ∈ Γ0(H) (the class of proper, lower semicontinuous
and convex functions on H), by simply replacing the gradient of f by the subdifferential ∂f . This approach
was initiated in [6] and [22, 23], and used in the perturbed case in [16]. From a mechanical perspective,
non-smooth f permits to model non-elastic shocks in unilateral mechanics, see [20].

In (DIN-AVDα,β,b), the Hessian appears explicitly. A closely related ODE is obtained by considering an
approach where the Hessian driven damping appears in an implicit form. This was initiated in [5], see also
[41] for a related autonomous system in the case of a strongly convex function f . This ODE, coined (ISIHD)
for Inertial System with Implicit Hessian Damping, takes the form

(ISIHD) ẍ(t) +
α

t
ẋ(t) +∇f

(
x(t) + β(t)ẋ(t)

)
= 0,

where α ≥ 3 and β(t) = γ + β
t , γ, β ≥ 0. The rationale justifying the use of the term “implicit” comes

from the observation that by a Taylor expansion (as t→ +∞ we have ẋ(t)→ 0 which justifies using Taylor
expansion), one has

∇f
(
x(t) + β(t)ẋ(t)

)
≈ ∇f(x(t)) + β(t)∇2f(x(t))ẋ(t),

hence making the Hessian damping appear indirectly in (ISIHD). As for (DIN-AVDα,β,b), this ODE was
found to have a smoothing effect on the oscillations.

3. The dynamical system perspective of (NAGα). This sections reviews the close ties between
the (NAGα) algorithm and the associated (AVDα) system. They will serve as a basis for exploring similar
questions for (RAGα). In doing so, we highlight general methods and tools that allow moving from continuous
dynamics to algorithms via temporal discretization, and vice versa.
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3.1. From continuous dynamics to algorithms and vice versa. A general and successful recipe to
pass from continuous gradient dynamics to gradient algorithms is to follow the following two-step procedure:

i) First consider the implicit discretization of the continuous dynamic, and so obtain a proximal al-
gorithm. It is a well known fact that the implicit discretization usually preserves the asymptotic
convergence properties of the continuous dynamic. This fact has been well documented for first-order
evolution dynamics associated with convex optimization problems [46], and explains the importance
of the proximal algorithm. This type of property is also directly linked with the exponential formula
and the Trotter-Lie-Kato formula for the generation of contraction semigroups generated by maxi-
mally monotone operators. However, the proximal operator proxsf := (I + s∇f)−1, s > 0, may not
be easy to compute, which justifies the next step.

ii) In the so obtained proximal algorithm, replace the proximal step associated with the operator proxsf
by a gradient step associated with the operator I − s∇f . By taking s sufficiently small (typically
less than or equal to the inverse of the Lipschitz constant of the gradient of the function which is to
be minimized), one can expect to preserve the convergence properties.

A major advantage of this procedure is that the proximal and gradient steps have a similar structure
and are therefore likely to be combined in proximal gradient algorithms for structured optimization.

3.2. Passing from (AVDα) to (NAGα) by temporal discretization. Let us illustrate the above
procedure in the case of the (AVDα) dynamic. Implicit time discretization of (AVDα), with step size h > 0,
gives

xk+1 − 2xk + xk−1
h2

+
α

kh

xk − xk−1
h

+∇f(xk+1) = 0.

After multiplication by s = h2, we obtain

(3.1) (xk+1 − xk)− (xk − xk−1) +
α

k
(xk − xk−1) + s∇f(xk+1) = 0.

Equivalently

(3.2) xk+1 + s∇f(xk+1) = xk +
(

1− α

k

)
(xk − xk−1),

which gives

(3.3) xk+1 = proxsf

(
xk +

(
1− α

k

)
(xk − xk−1)

)
.

So, we obtain the inertial proximal algorithm{
yk = xk +

(
1− α

k

)
(xk − xk−1)

xk+1 = proxsf (yk) .

This algorithm was initiated by Güler in [33, 34]. It is a key ingredient of the FISTA method [27]. Replacing
the proximal step by a gradient step, we obtain the (NAGα) method.

Remark 3.1. One may wonder if a full implicit discretization, which also involves the damping term,
leads to the same algorithm. So consider

xk+1 − 2xk + xk−1
h2

+
α

kh

xk+1 − xk
h

+∇f(xk+1) = 0.

Similar calculation as above gives the inertial proximal algorithmyk = xk + 1
1+α

k
(xk − xk−1)

xk+1 = prox s
1+α

k
f (yk) .
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The gradient version of the above algorithm takes the formyk = xk +
k

k + α
(xk − xk−1)

xk+1 = yk − sk
k+α∇f (yk) .

The above form of the extrapolation coefficient, namely k
k+α is often used by practitioners, though they

maintain the step size equal to s rather than sk
k+α , which is obviously asymptotically equal to s. This leads to

results similar to those with the extrapolation coefficient 1− α
k which is clearly asymptotically equivalent. This

is well documented in [10], where the case of general damping and extrapolation coefficients is considered.

3.3. Passing from (NAGα) to (AVDα). We use here a standard limiting argument to pass from
(NAGα) to (AVDα) (see also [53]). First write (NAGα) equivalently as

xk+1 = xk +
(

1− α

k

)
(xk − xk−1)− s∇f

(
xk +

(
1− α

k

)
(xk − xk−1)

)
.

Thus, with s = h2, this is also equivalent to

(3.4)
xk+1 − 2xk + xk−1

h2
+

α

kh

xk − xk−1
h

+∇f(yk) = 0.

For each k ∈ N, set tk = kh, and we use the ansatz xk = X(tk) for some smooth curve t 7→ X(t) defined for
t ≥ t0 > 0. Performing a Taylor expansion in powers of h, when h is close to zero, of the different quantities
involved in (NAGα), we obtain

xk+1 = X(tk+1) = X(tk) + hẊ(tk) +
1

2
h2Ẍ(tk) +O(h3)(3.5)

xk−1 = X(tk−1) = X(tk)− hẊ(tk) +
1

2
h2Ẍ(tk) +O(h3).(3.6)

By adding (3.5) and (3.6), we obtain

xk+1 − 2xk + xk−1
h2

= Ẍ(tk) +O(h).

Moreover, (3.6) gives

xk − xk−1
h

= Ẋ(tk) +O(h).

According to the L-Lipschitz continuity property of ∇f , the definition of yk and 1− α/k ≤ 1, we have

‖∇f (yk)−∇f (xk) ‖ ≤ L‖yk − xk‖
≤ L‖xk − xk−1‖.

Therefore

(3.7) ∇f (yk) = ∇f (X(tk)) +O(h).

Plugging (3.5), (3.5) and (3.7) into (3.4), we obtain

(3.8) Ẍ(tk) +
α

tk
Ẋ(tk) +∇f (X(tk)) +O(h) = 0.

When h is small, we can neglect the O(h) term which, at the limit, gives that X(·) follows the ODE (AVDα).
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3.4. High resolution ODE of (NAGα). The high resolution method is extensively used in fluid
mechanics, where physical phenomena occur at multiple scales, see for example [45] for a comprehensive
presentation of geophysical fluid dynamics. The idea in our context is not to let h → 0, but to take into
account the terms of order h =

√
s in the asymptotic expansions, and to discard the terms of order h2 = s

and higher. Moreover, to make the Hessian appear explicitly (see also the discussion on the system (ISIHD)
above), we will have to refine the Taylor expansion (3.7). By doing so for (NAGα), we now show that a
Hessian-driven damping term appears in the associated continuous inertial ODE. This is a distinctly new
feature and we are not aware of any such a result for (NAGα).

Theorem 3.1. Assume that f is C2. The high resolution ODE with temporal step size
√
s of (NAGα)

gives the inertial dynamic with Hessian driven damping

(3.9) Ẍ(t) +
√
s∇2f(X(t))Ẋ(t) +

α

t
Ẋ(t) +

(
1 +

α
√
s

2t

)
∇f(X(t)) = 0.

Proof. Recall the equivalent formulations of (NAGα) in (3.4) with s = h2. For each k ∈ N, set tk :=
h(k + c) for a real parameter c to be adjusted later, and use the ansatz that xk = X(tk) for some smooth
curve t 7→ X(t) defined for t ≥ t0 > 0. Performing a Taylor expansion in powers of h, when h is close to
zero, of the different quantities involved in (NAGα), we obtain

xk+1 = X(tk+1) = X(tk) + hẊ(tk) +
1

2
h2Ẍ(tk) + +

1

6
h3

...
X(tk) +O(h4)(3.10)

xk−1 = X(tk−1) = X(tk)− hẊ(tk) +
1

2
h2Ẍ(tk)− 1

6
h3

...
X(tk) +O(h4).(3.11)

By adding (3.10) and (3.11), we obtain

xk+1 − 2xk + xk−1
h2

= Ẍ(tk) +O(h2).

Moreover, (3.11) gives
xk − xk−1

h
= Ẋ(tk)− 1

2
hẌ(tk) +O(h2).

We also have

∇f(yk) = ∇f
(
xk +

(
1− α

k

)
(xk − xk−1)

)
= ∇f

(
xk + h

(
1− α

k

) xk − xk−1
h

)
= ∇f

(
X(tk) + h

(
1− α

k

)(
Ẋ(tk)− 1

2
hẌ(tk) +O(h2)

))
= ∇f

(
X(tk) + h

(
1− α

k

)
Ẋ(tk) +O(h2)

)
= ∇f(X(tk)) + h

(
1− α

k

)
∇2f(X(tk))Ẋ(tk) +O(h2).

Putting this with (3.10) and (3.11) into (3.4), we obtain

(3.12) Ẍ(tk) +
α

kh

(
Ẋ(tk)− 1

2
hẌ(tk)

)
+∇f(X(tk)) + h

(
1− α

k

)
∇2f(X(tk))Ẋ(tk) +O(h2) = 0.

Equivalently,

(3.13)
(

1− α

2k

)
Ẍ(tk) +

α

kh
Ẋ(tk) +∇f(X(tk)) + h

(
1− α

k

)
∇2f(X(tk))Ẋ(tk) +O(h2) = 0.

Dividing by
(
1− α

2k

)
gives

Ẍ(tk) +
α

h(k − α
2 )
Ẋ(tk) +

(
1 +

αh

2h(k − α
2 )

)
∇f(X(tk)) + h

(
1−

α
2

k − α
2

)
∇2f(X(tk))Ẋ(tk) +O(h2) = 0.
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Set c = −α2 and thus tk := h(k − α
2 ). We obtain

Ẍ(tk) +
α

tk
Ẋ(tk) +

(
1 +

αh

2tk

)
∇f(X(tk)) + h

(
1−

αh
2

tk

)
∇2f(X(tk))Ẋ(tk) +O(h2) = 0.

By neglecting the term of order s = h2, and keeping the terms of order h =
√
s, we obtain the claimed

inertial dynamic with Hessian driven damping. This completes the proof.

4. The dynamical system perspective of the Ravine method. Let us examine successively the
low then the high resolution ODE of the Ravine method.

4.1. Low resolution ODE of (RAGα). According to the definition of the Ravine method, we have

yk+1 = yk − s∇f(yk) +

(
1− α

k + 1

)(
yk − s∇f(yk)− (yk−1 − s∇f(yk−1))

)
= yk +

(
1− α

k + 1

)
(yk − yk−1)− s∇f(yk)− s

(
1− α

k + 1

)(
∇f(yk)−∇f(yk−1)

)
.

After division by s = h2, we obtain, equivalently

(4.1)
yk+1 − 2yk + yk−1

h2
+

α

kh+ h

yk − yk−1
h

+∇f(yk) +

(
1− α

k + 1

)
(∇f(yk)−∇f(yk−1)) = 0.

We now follow an argument similar to the one in section 3.3. For each k ∈ N, set tk = kh, and assume that
yk = Y (tk) for some smooth curve t 7→ Y (t) defined for t ≥ t0 > 0. Performing a Taylor expansion in powers
of h, when h is close to zero, of the different quantities involved in (4.1), we obtain

Ÿ (tk) +
α

tk
Ẏ (tk) +∇f(Y (tk)) +O(h) = 0.

Letting h → 0 gives that Y (·) is a solution trajectory of (AVDα). We therefore obtain the same inertial
dynamics as that associated with (NAGα).

4.2. High resolution ODE of (RAGα). By letting h → 0 in (4.1), the term
(
1− α

k+1

)
(∇f(yk) −

∇f(yk−1)) disappears at the limit. Indeed, as we will see, this term is numerically important. To take it into
account, we will perform a high resolution of (4.1). The approach will be similar to that developed in [51],
which will make appear the Hessian-driven damping in the associated continuous inertial equation. This is
made precise in the following theorem.

Theorem 4.1. Assume that f is C2. The high resolution ODE with temporal step size
√
s of (RAGα)

gives the inertial dynamic with Hessian driven damping

(4.2) Ÿ (t) +
α

t
Ẏ (t) +

√
s∇2f(Y (t))Ẏ (t) +

(
1 +

α
√
s

2t

)
∇f(Y (t)) = 0.

Proof. Let us start from the equivalent formulation (4.1) of (RAGα), which we rewrite as follows

(4.3)
yk+1 − 2yk + yk−1

h2
+

α

k + 1

yk − yk−1
h2

+∇f(yk) +
k + 1− α
k + 1

(∇f(yk)−∇f(yk−1)) = 0.

Let us arrange the above formula, so as to prepare it for its analysis by Taylor expansion. After multiplying
(4.3) by k+1

k+1−α , we get

(4.4)
k + 1

k + 1− α
yk+1 − 2yk + yk−1

h2
+

α

k + 1− α
yk − yk−1

h2
+

k + 1

k + 1− α∇f(yk) +∇f(yk)−∇f(yk−1) = 0.
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Notice then that
yk − yk−1

h2
=
yk+1 − yk

h2
− yk+1 − 2yk + yk−1

h2
.

Thus, (4.4) can be formulated equivalently as follows( k + 1

k + 1− α −
α

k + 1− α

)yk+1 − 2yk + yk−1

h2
+

α

k + 1− α
yk+1 − yk

h2

+
k + 1

k + 1− α∇f(yk) +∇f(yk)−∇f(yk−1) = 0.

After reduction we obtain, equivalently

(4.5)
yk+1 − 2yk + yk−1

h2
+

α

(k + 1− α)h
yk+1 − yk

h
+

(
1 +

α

k + 1− α

)
∇f(yk) +∇f(yk)−∇f(yk−1) = 0.

Building on (4.5), we are now following a device similar to the one developed in section 3.3, and which uses
Taylor expansions, but now taken at a higher order. For each k ∈ N, set tk := (k + c)h, where c is a real
parameter that will be adjusted later. Assume that yk = Y (tk) for some smooth curve t 7→ Y (t) defined for
t ≥ t0 > 0. Performing a Taylor expansion in powers of h, when h is close to zero, of the different quantities
involved in (4.5), we obtain

yk+1 = Y (tk+1) = Y (tk) + hẎ (tk) +
1

2
h2Ÿ (tk) +

1

6
h3

...
Y (tk) +O(h4)(4.6)

yk−1 = Y (tk−1) = Y (tk)− hẎ (tk) +
1

2
h2Ÿ (tk)− 1

6
h3

...
Y (tk) +O(h4).(4.7)

By adding (4.6) and (4.7) we obtain

yk+1 − 2yk + yk−1
h2

= Ÿ (tk) +O(h2).

Moreover, (4.6) gives
yk+1 − yk

h
= Ẏ (tk) +

1

2
hŸ (tk) +O(h2).

By Taylor expansion of ∇f we have

∇f(yk)−∇f(yk−1) = ∇2f(Y (tk))Ẏ (tk)h+O
(
h2
)
.

Plugging all of the above results into (4.5), we obtain

(
Ÿ (tk) +O(h2)

)
+

α

(k + 1− α)h

(
Ẏ (tk) +

1

2
hŸ (tk) +O(h2)

)
+

k + 1

k + 1− α
∇f(Y (tk)) +

(
h∇2f(Y (tk))Ẏ (tk) +O

(
h2
))

= 0.

After multiplication by (k+1−α)h
α , and reduction of the terms involving Ÿ (tk), we obtain

h

α

(
k + 1− α

2

)
Ÿ (tk) + Ẏ (tk) +

(k + 1)h

α
∇f(Y (tk)) + h

(k + 1− α)h

α
∇2f(Y (tk))Ẏ (tk) +O(h3) = 0.

Dividing by h
α (k + 1− α

2 ) yields

Ÿ (tk) +
α

(k + 1− α
2 )h

Ẏ (tk) +

(
1 +

α
2

k + 1− α
2

)
∇f(Y (tk))

+ h

(
1−

α
2

k + 1− α
2

)
∇2f(Y (tk))Ẏ (tk) +O(h2) = 0.
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Take c = 1− α
2 and thus tk := (k + 1− α

2 )h. We obtain

Ÿ (tk) +
α

tk
Ẏ (tk) +

(
1 +

αh

2tk

)
∇f(Y (tk)) + h

(
1− αh

2tk

)
∇2f(Y (tk))Ẏ (tk) +O(h2) = 0.

By neglecting the term of order s = h2, and keeping the terms of order h =
√
s, we obtain the claimed

inertial dynamic with Hessian driven damping. This completes the proof.

A few remarks are in order.

Remark 4.1. The high resolution ODE’s of (RAGα) and (NAGα) have the same structure but have
also differences. First, they are given in terms of two different variables: x for (NAGα) and y for (RAGα).
Observe also that to get the high resolution ODE (3.9), the Hessian appears after applying an extra Taylor
expansion on the gradient, which is reminiscent of our discussion on the implicit Hessian damping ODE
(ISIHD). On the other hand, the Hessian appears from an explicit discretization in the ODE (4.2) associated
to (RAGα).

Remark 4.2. Recall that the dynamic with Hessian driven damping (DIN-AVDα,β,b) which supports the
inertial gradient algorithm (IGAHD) developed in [12] is given by

(4.8) ẍ(t) +
α

t
ẋ(t) + β∇2f(x(t))ẋ(t) +

(
1 +

β

t

)
∇f(x(t)) = 0.

It is in accordance with the high resolution ODE’s (3.9) and (4.2) of respectively (NAGα) and (RAGα), and
allows to interpret the Hessian driven damping coefficient β of (4.8) as a temporal step size. This also paves
the way to proving fast convergence to zero of the gradients which is the subject of the next section.

5. Fast convergence to zero of the gradients for (RAGα) and (NAGα). Let us come to another
central point of our study, which concerns the fast convergence towards zero of the gradients. Closely
related results were obtained in [12], and [51, 52] in different contexts and discretizations. In [12], the
algorithm considered is (IGAHD), whose underlying dynamic is (DIN-AVDα,β,b), but the discretization is
different. It is inspired by the Nesterov scheme, which contrasts with the Ravine method which is based
on an explicit discretization scheme. In [51], the structure of the algorithm is the same as that of (RAGα),
but the extrapolation parameter is different, which requires an independent proof. Other discretizations are
also discussed in [52] after a first-order equivalent reformulation of (4.8). The fast convergence rates on
the gradients shown in [51, 52] turn out to be weaker than ours. Observe also that developing the Ravine
method with a general extrapolation parameter, as was done by Attouch and Cabot in [10] for the accelerated
gradient method, is an interesting research venue that we leave to a future work.

5.1. The case of (RAGα). For the convenience of the reader, we give a self-contained proof, which
is based on Lyapunov analysis. We will rely on the following equivalent formulation of the Ravine method
which was obtained in (4.1), and which gives rise to the dynamic interpretation with the damping driven by
the Hessian:

(5.1)
yk+1 − 2yk + yk−1

h2
+

α

(k + 1− α)h

yk+1 − yk
h

+

(
1 +

α

k + 1− α

)
∇f(yk) +∇f(yk)−∇f(yk−1) = 0.

To make the notations shorter, it is convenient to introduce the discrete velocity vk which is defined for each
k ∈ N by

vk =
1

h
(yk+1 − yk).

So, the constitutive equation (5.1) can be equivalently written as

(5.2) vk − vk−1 = − α

(k + 1− α)
vk − h

(
∇f(yk)−∇f(yk−1

)
− h k + 1

k + 1− α
∇f(yk).

Given x? ∈ argminH(f), our Lyapunov analysis is based on the energy sequence (Ek)k∈N defined by

Ek := h2(k + 2− α)(k + 1)(f(yk)− f(x?)) +
1

2
‖zk‖2(5.3)

zk := (α− 1)(yk+1 − x?) + h(k + 2− α)
(
vk + h∇f(yk)

)
.(5.4)
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Theorem 5.1. Let f : H → R be a C1 convex function whose gradient is L-Lipschitz continuous. Let
(yk)k∈N be the sequence generated by (RAGα), where α ≥ 3 and sL < 1. Then the sequence (Ek)k∈N defined
by (5.3)-(5.4) is non-increasing, and the following convergence rate is satisfied:∑

k

k2‖∇f(yk)‖2 < +∞.

In addition, when α > 3, ∑
k

k(f(yk)− f(x?)) < +∞.

Proof. By definition of Ek, we have

Ek+1 − Ek = h2(k + 2− α)(k + 1)(f(yk+1)− f(yk)) + h2(2k + 4− α)(f(yk+1)− f(x?))

+
1

2
‖zk+1‖2 −

1

2
‖zk‖2.(5.5)

Let us compute this last expression with the help of the elementary identity

(5.6)
1

2
‖zk+1‖2 −

1

2
‖zk‖2 = 〈zk+1 − zk, zk+1〉 −

1

2
‖zk+1 − zk‖2.

First observe that the constitutive equation (5.2) gives

(5.7) (vk + h∇f(yk))− (vk−1 + h∇f(yk−1)) = − α

(k + 1− α)
vk − h

k + 1

k + 1− α
∇f(yk).

Therefore,

(k + 1− α)(vk + h∇f(yk))− (k + 1− α)(vk−1 + h∇f(yk−1) = −αvk − h(k + 1)∇f(yk).

Equivalently,

(5.8) (k + 1)(vk + h∇f(yk))− (k + 1− α)(vk−1 + h∇f(yk−1)) = −h(k + 1− α)∇f(yk).

Using successively the definition of zk and (5.8), we obtain

zk+1 − zk = (α− 1)(yk+2 − yk+1)

+h(k + 3− α)
(
vk+1 + h∇f(yk+1)

)
− h(k + 2− α)

(
vk + h∇f(yk)

)
= h(α− 1)vk+1 + h(k + 3− α)

(
vk+1 + h∇f(yk+1)

)
− h(k + 2− α)

(
vk + h∇f(yk)

)
= h(k + 2)

(
vk+1 + h∇f(yk+1)

)
− h(k + 2− α)

(
vk + h∇f(yk)

)
− h2(α− 1)∇f(yk+1)

= −h2(k + 2− α)∇f(yk+1)− h2(α− 1)∇f(yk+1)

= −h2(k + 1)∇f(yk+1).

Plugging this into (5.6), we obtain

1

2
‖zk+1‖2 −

1

2
‖zk‖2 = −1

2
h4(k + 1)2‖∇f(yk+1)‖2

−h2(k + 1)
〈
∇f(yk+1), (α− 1)(yk+1 − x?) + h(k + 2− α)

(
vk + h∇f(yk)

)
− h2(k + 1)∇f(yk+1)

〉
=

1

2
h4(k + 1)2‖∇f(yk+1)‖2

−h2(k + 1)
〈
∇f(yk+1), (α− 1)(yk+1 − x?) + h(k + 2− α)

(
vk + h∇f(yk)

)〉
.
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Let us rearrange this last expression so that we have terms involving only ∇f(yk+1). For this, we use (5.7)
that we write as follows

vk + h∇f(yk)) = vk+1 + h∇f(yk+1) +
α

k + 2− α
vk+1 + h

k + 2

k + 2− α
∇f(yk+1).

Therefore,

(α− 1)(yk+1 − x?) + h(k + 2− α)
(
vk + h∇f(yk)

)
= (α− 1)(yk+1 − x?) + h(k + 2− α)

(
vk+1 + h∇f(yk+1) +

α

k + 2− α
vk+1 + h

k + 2

k + 2− α
∇f(yk+1)

)
= (α− 1)(yk+1 − x?) + h(k + 2)vk+1 + h2(2k + 4− α)∇f(yk+1).

Collecting the above results we obtain

1

2
‖zk+1‖2 −

1

2
‖zk‖2 =

1

2
h4(k + 1)2‖∇f(yk+1)‖2

− h2(k + 1)
〈
∇f(yk+1), (α− 1)(yk+1 − x?) + h(k + 2)vk+1 + h2(2k + 4− α)∇f(yk+1)

〉
.

Combining this inequality with (5.5) we get

(5.9)

Ek+1 − Ek = h2(k + 2− α)(k + 1)(f(yk+1)− f(yk)) + h2(2k + 4− α)(f(yk+1)− f(x?))

+
1

2
h4(k + 1)2‖∇f(yk+1)‖2

− h2(k + 1)
〈
∇f(yk+1), (α− 1)(yk+1 − x?) + h(k + 2)vk+1 + h2(2k + 4− α)∇f(yk+1)

〉
.

According to the basic gradient inequality for convex differentiable functions whose gradient is L-Lipschitz
continuous, we have

f(yk) ≥ f(yk+1) + 〈∇f(yk+1), yk − yk+1〉+
1

2L
‖∇f(yk+1)−∇f(yk)‖2,

f(x?) ≥ f(yk+1) + 〈∇f(yk+1), x? − yk+1〉 .

Combining the above inequalities with (5.9), we obtain

Ek+1 − Ek ≤ −h2(k + 2− α)(k + 1)
(
〈∇f(yk+1), yk − yk+1〉+

1

2L
‖∇f(yk+1)−∇f(yk)‖2

)
+h2(2k + 4− α)(f(yk+1)− f(x?)) + h2(k + 1)(α− 1)(f(x?)− f(yk+1))

+
1

2
h4(k + 1)2‖∇f(yk+1)‖2 − h2(k + 1)

〈
∇f(yk+1), h(k + 2)vk+1 + h2(2k + 4− α)∇f(yk+1)

〉
.

Equivalently,

Ek+1 − Ek ≤ h2(k + 2− α)(k + 1)
(
〈∇f(yk+1), hvk〉 −

1

2L
‖∇f(yk+1)−∇f(yk)‖2

)
−h2

(
k(α− 3) + 2α− 5

)
(f(yk+1)− f(x?))− h2(k + 1) 〈∇f(yk+1), h(k + 2)vk+1〉

−1

2
h4(k + 1)(3k + 7− 2α)‖∇f(yk+1)‖2.

Let us put together the terms involving the scalar product with ∇f(yk+1). We get

Ek+1 − Ek ≤ −h2(k + 2− α)(k + 1)
1

2L
‖∇f(yk+1)−∇f(yk)‖2

+h3(k + 1) 〈∇f(yk+1), (k + 2− α)vk − (k + 2)vk+1〉

−h2
(
k(α− 3) + 2α− 5

)
(f(yk+1)− f(x?))− 1

2
h4(k + 1)(3k + 7− 2α)‖∇f(yk+1)‖2.
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According to (5.8) we have

(5.10) (k + 2− α)(vk + h∇f(yk))− (k + 2)(vk+1 + h∇f(yk+1)) = h(k + 2− α)∇f(yk+1).

Therefore

(5.11) (k + 2− α)vk − (k + 2)vk+1 = −h(k + 2− α)∇f(yk) + h(2k + 4− α)∇f(yk+1).

Combining the above results we get

Ek+1 − Ek + h2
(
k(α− 3) + 2α− 5

)
(f(yk+1)− f(x?))

≤ − h
2

2L
(k + 2− α)(k + 1)‖∇f(yk+1)−∇f(yk)‖2

+h3(k + 1)
(
〈∇f(yk+1),−h(k + 2− α)∇f(yk) + h(2k + 4− α)∇f(yk+1)〉

)
−1

2
h4(k + 1)(3k + 7− 2α)‖∇f(yk+1)‖2.

Equivalently

(5.12) Ek+1 − Ek + h2
(
k(α− 3) + 2α− 5

)
(f(yk+1)− f(x?)) +R(∇f(yk),∇f(yk+1)) ≤ 0,

where

R(X,Y ) =
h2

2L
(k + 2− α)(k + 1)‖Y −X‖2 +

1

2
h4(k + 1)(3k + 7− 2α)‖Y ‖2

− h3(k + 1)
(
〈Y,−h(k + 2− α)X + h(2k + 4− α)Y 〉

)
.

To conclude, we just need to prove that the quadratic form R is positive definite. A simple procedure consists
in computing infX R(X,Y ). For fixed Y , the minimum of R(·, Y ) is achieved at X̄ with X̄ − Y = −h2LY .
Therefore

inf
X
R(X,Y ) =

h4L

2
(k + 2− α)(k + 1)h2‖Y ‖2 +

1

2
h4(k + 1)(3k + 7− 2α)‖Y ‖2

− h3(k + 1)
( 〈
Y,−h(k + 2− α)(1− h2L)Y + h(2k + 4− α)Y

〉
.

After reduction, we get

inf
X
R(X,Y ) =

h4(k + 1)

2
‖Y ‖2

(
k(1− Lh2) + Lh2(α− 2) + 3− 2α

)
.

Returning to (5.12) we obtain

Ek+1 − Ek + h2
(
k(α− 3) + 2α− 5

)
(f(yk+1)− f(x?))

+
h4(k + 1)

2
‖∇f(yk+1)‖2

(
k(1− Lh2) + Lh2(α− 2) + 3− 2α

)
≤ 0.

So, when α ≥ 3 and Lh2 ∈]0, 1[, we obtain that (Ek)k∈N is a non-negative non-increasing sequence, hence
convergent. By summing the above inequalities over k, we finally obtain∑

k

k2‖∇f(yk+1)‖2 < +∞.

Also note that when α > 3 we obtain∑
k

k(f(yk+1)− f(x?)) < +∞.
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Remark 5.1. It is easy to see that our result entails

min
1≤i≤k

‖∇f(yi)‖2 = O
(

1

k3

)
,

which recovers the rate found in [51, 52].

5.2. The case of (NAGα). We have the following fast convergence of gradients to zero for (NAGα).
Surprisingly, this result has never been established before in the literature.

Theorem 5.2. Let f : H → R be a C1 convex function whose gradient is L-Lipschitz continuous. Let
(xk)k∈N be the sequence generated by (NAGα), where α ≥ 3 and sL < 1. Then the following convergence
rate is satisfied: ∑

k

k2‖∇f(xk)‖2 < +∞.

In addition, when α > 3, ∑
k

k(f(xk)− f(x?)) < +∞.

Proof. The analysis relies on the energy function

Ek(t) = t2k(f(xk)−min
H

f) +
1

2s
‖xk−1 − x? + tk(xk − xk−1)‖2,

where tk := k−1
α−1 . We will also need the following refined version of the descent lemma

(5.13) f(y − s∇f(y)) ≤ f(x) + 〈∇f(y), y − x〉 − s

2
‖∇f(y)‖2 − s

2
‖∇f(x)−∇f(y)‖2

valid for any (x, y) ∈ H2 and s ∈]0, 1/L].
Let us write successively (5.13) at y = yk and x = xk, then at y = yk and x = x?. Recalling that

xk+1 = yk − s∇f(yk), we obtain the two inequalities

f(xk+1) ≤ f(xk) + 〈∇f(yk), yk − xk〉 −
s

2
‖∇f(yk)‖2 − s

2
‖∇f(xk)−∇f(yk)‖2,(5.14)

f(xk+1) ≤ min
H

f + 〈∇f(yk), yk − x?〉 − s‖∇f(yk)‖2.(5.15)

Multiplying (5.14) by tk+1 − 1 ≥ 0, then adding (5.15), we derive that

tk+1f(xk+1) ≤ (tk+1 − 1)f(xk) + min
H

f + 〈∇f(yk), (tk+1 − 1)(yk − xk) + yk − x?〉

− s

2
(tk+1 + 1)‖∇f(yk)‖2 − s

2
(tk+1 − 1)‖∇f(xk)−∇f(yk)‖2.(5.16)

Observing that tk verifies the identity αk := 1− α

k
=
tk − 1

tk+1
, we obtain

(tk+1 − 1)(yk − xk) + yk = tk+1 yk − (tk+1 − 1)xk

= xk + tk+1 αk(xk − xk−1)

= xk−1 + (1 + tk+1 αk)(xk − xk−1)

= xk−1 + tk(xk − xk−1).

Setting zk = xk−1 + tk(xk − xk−1), we then deduce from (5.16) that

tk+1(f(xk+1)−min
H

f) ≤ (tk+1 − 1)(f(xk)−min
H

f) + 〈∇f(yk), zk − x?〉

−s
2

(tk+1 + 1)‖∇f(yk)‖2 − s

2
(tk+1 − 1)‖∇f(xk)−∇f(yk)‖2.(5.17)
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On the other hand, observe that

zk+1 − zk = xk + tk+1(xk+1 − xk)− xk−1 − tk(xk − xk−1)

= tk+1(xk+1 − xk)− (tk − 1)(xk − xk−1)

= tk+1(xk+1 − xk − αk(xk − xk−1))

= tk+1(xk+1 − yk) = −s tk+1∇f(yk).

It ensues that

(5.18) ‖zk+1 − x?‖2 = ‖zk − x?‖2 − 2stk+1〈∇f(yk), zk − x?〉+ s2t2k+1‖∇f(yk)‖2.

By using this equality in (5.17), we find

tk+1(f(xk+1)−min
H

f) ≤ (tk+1 − 1)(f(xk)−min
H

f) +
1

2stk+1
(‖zk − x?‖2 − ‖zk+1 − x?‖2)

+
stk+1

2
‖∇f(yk)‖2 − s

2
(tk+1 + 1)‖∇f(yk)‖2 − s

2
(tk+1 − 1)‖∇f(xk)−∇f(yk)‖2.(5.19)

which is equivalent to

t2k+1(f(xk+1)−min
H

f) +
1

2s
‖zk+1 − x?‖2 ≤ (t2k+1 − tk+1)(f(xk)−min

H
f) +

1

2s
‖zk − x?‖2

−
st2k+1

2

(
‖∇f(yk)‖2 + (tk+1 − 1)‖∇f(xk)−∇f(yk)‖2

)
.

Using the expression of the sequence (Ek)k∈N, we obtain

Ek+1 ≤ Ek + (t2k+1 − t2k − tk+1)(f(xk)−min
H

f)−
st2k+1

2

(
‖∇f(yk)‖2 + (tk+1 − 1)‖∇f(xk)−∇f(yk)‖2

)
.

Elementary algebraic computation gives

‖∇f(yk)‖2 + (tk+1 − 1)‖∇f(xk)−∇f(yk)‖2 ≥ tk+1 − 1

tk+1
‖∇f(xk)‖2.

We finally obtain

(5.20) Ek+1 +
s

2
tk+1(tk+1 − 1)‖∇f(xk)‖2 ≤ Ek + (t2k+1 − t2k − tk+1)(f(xk)−min

H
f).

By definition of tk, we have t2k+1 − t2k − tk+1 = −k(α−3)+1
(α−1)2 ≤ 0 for α ≥ 3. Thus, (Ek)k∈N is a non-increasing

non-negative function, and summing (5.20), we obtain∑
k

k(k + 1− α)‖∇f(xk)‖2 < +∞.

When α > 3, summing again we get the second claimed estimate∑
k

(k(α− 3) + 1)(f(xk)−min
H

f) < +∞.

Remark 5.2. Another way to show Theorem 5.2 is to use Theorem 5.1 and the equivalence result in
Theorem 2.2 between (NAGα) and (RAGα).
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Remark 5.3. Theorem 5.2 yields the rate

min
1≤i≤k

‖∇f(xi)‖2 = O
(

1

k3

)
,

which matches the complexity bound in [44, Item 2.]. In [44, Item 3.], a better complexity bound is obtained
by applying (NAGα) with α = 3 to a Tikhonov regularization of f with an asymptotically vanishing pa-
rameter. From those complexity bounds, one can straightforwardly show that this parameter has to scale as

O
((

log k
k

)2)
leading to a rate on the gradients

‖∇f(xk)‖2 = O

((
log k

k

)4
)
.

This is in agreement with our result in Theorem 5.2. On the other hand, one infers from our result that

‖∇f(xk)‖2 must decrease at least as fast as O
(

1
k3(log k)ν

)
, for ν > 1.

6. The Ravine accelerated proximal gradient method. Let us now extend the Ravine method
(RAGα) to the case of additively structured ”smooth + non-smooth” convex minimization problems

(6.1) min
x∈H
{θ(x) := f(x) + g(x)} ,

where we make the following assumptions

(H)


f : H → R is a C1 convex function and ∇f is L-Lipschitz continuous;

g : H → R ∪ {+∞} is proper, convex and lower semicontinuous;

S := argminH(θ) 6= ∅.

Note that by the above assumptions, θ : H → R ∪ {+∞} is a proper, convex and lower semicontinuous
function. A natural extension of (NAGα) to this setting is

(6.2)

{
yk = xk +

(
1− α

k

)
(xk − xk−1)

xk+1 = proxsg (yk − s∇f(yk))

which generalizes FISTA [27]. Let us recall the convergence properties of this algorithm, which are valid
under the assumption sL ≤ 1:

• α = 3: According to [27], one has

θ(xk)−min
H

θ = O
(

1

k2

)
as k → +∞.

• α > 3: According to [31] and [21]

θ(xk)−min
H

θ = o

(
1

k2

)
, ‖xk − xk−1‖ = o

(
1

k

)
as k → +∞, and w-limxk ∈ S.

• α ≤ 3: According to [7] and [15]

θ(xk)−min
H

θ = O
(
k−

2α
3

)
.

Before presenting our algorithm, let us introduce the operator Ts : H → H defined by

(6.3) Ts(y) =
1

s

(
y − proxsg (y − s∇f(y))

)
.
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Note that solving (6.1) is equivalent to find a zero of Ts. In addition, the operator Ts reduces to the gradient
operator ∇f when g = 0. Thus the algorithm (6.2) can be formulated in an equivalent way in the following
form {

yk = xk +
(
1− α

k

)
(xk − xk−1)

xk+1 = yk − sTs(yk).

As a consequence, all the algebraic developments concerning the Ravine method (RAGα) can be extended
to the structured additive setting, by just replacing the gradient operator ∇f by Ts. Indeed, one can easily
show that for sL ≤ 1, the two operators share the following properties: monotonicity, co-coercivity and
Lipschitz continuity which play a central role in the Lyapunov analysis.

With the help of this analogy, we are now in position to introduce the Ravine Accelerated Proximal
Gradient algorithm ((RAPGα) for short):

(RAPGα)

{
wk = yk − sTs(yk)

yk+1 = wk +
(
1− α

k

)
(wk − wk−1).

Figure 6.1 gives some geometric insight into the scheme (RAPGα).

•

•
•

•
•

yk−1
yk

wk−1 = proxsg (yk−1 − s∇f(yk−1))

wk = proxsg (yk − s∇f(yk))

yk+1 = wk +
(

1− α
k+1

)
(wk − wk−1)

S = argminH(f + g)

Fig. 6.1: Geometrical illustration of the (RAPGα) algorithm.

By following an argument similar to that of Theorem 4.1, the high resolution ODE of the algorithm
(RAPGα) gives

(6.4) Ÿ (t) +
α

t
Ẏ (t) +

√
s
d

dt

(
Ts(Y (t))

)
+

(
1 +

α
√
s

2t

)
Ts(Y (t)) = 0,

where the term d
dt

(
Ts(Y (t))

)
is interpreted as the distributional derivative of the absolutely continuous

function t 7→ Ts(Y (t)). The ODE (6.4) is a Regularized Inertial Newton dynamic which has been recently
studied in [3, 4] and [18, 19]. The existence and uniqueness of a strong solution to the Cauchy problem
associated with (6.4) has been proved in [3, Theorem 2.1]. It is based on the equivalent reformulation of
(6.4) as a first-order system.

Let us establish some fast convergence properties of (RAPGα) which can be deduced from the well
established results concerning (6.2).
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Theorem 6.1. Suppose that (H) holds, α ≥ 3, and sL ∈]0, 1]. Let (yk)k∈N and (wk)k∈N be the sequences
generated by (RAPGα). Then the following properties are satisfied:

θ(wk)−min
H

θ = O
(

1

k2

)
as k → +∞;

When α > 3,

θ(wk)−min
H

θ = o

(
1

k2

)
and w-lim yk = w-limwk ∈ S.

Proof. As a key ingredient, we use the following analog of the gradient descent lemma for composite
optimization, see [27], [31]: for any (x, y) ∈ H2

(6.5) θ(y − sTs(y)) ≤ θ(x) + 〈Ts(y), y − x〉 − s

2
‖Ts(y)‖2.

Taking x = wk−1 and y = yk, we deduce that

(6.6) θ(wk) ≤ θ(wk−1) + 〈Ts(yk), yk − wk−1〉 .

By Cauchy-Schwarz inequality, we get

(6.7) θ(wk) ≤ θ(wk−1) + ‖Ts(yk)‖‖yk − wk−1‖.

By definition of (RAPGα), and by using the link with (6.2) (recall that wk = xk+1 where (xk)k∈N are the
iterates generated by (6.2)), we have

‖Ts(yk)‖ =
1

s
‖wk − yk‖

≤ 1

s
(‖wk − wk−1‖+ ‖yk − wk−1‖)

≤ 1

s
(‖wk − wk−1‖+ ‖wk−1 − wk−2‖)

=
1

s
(‖xk+1 − xk‖+ ‖xk − xk−1‖) = O

(1

k

)
,

where the latter rate is known from [14, 21]. In a similar way,

(6.8) ‖yk − wk−1‖ ≤ ‖wk−1 − wk−2‖ = ‖xk − xk−1‖ = O
(1

k

)
.

By plugging the above estimates into (6.7), we obtain

θ(wk)−min
H

θ ≤ θ(xk)−min
H

θ +
C

k2
= O

( 1

k2

)
.

where the rate O(1/k2) on θ(xk)−minH is known from [27].

For α > 3, we know from [14, 21] that θ(xk)−minH = o
(

1
k2

)
and ‖xk − xk−1‖ = o

(
1
k

)
. We thus argue

as above to obtain the claimed o
(

1
k2

)
rate. In addition, we have from (6.8) that ‖yk − xk‖ → 0, i.e. yk − xk

converges strongly to zero. Since the sequence (xk)k∈N converges weakly when α > 3, see [14, 21], it follows
that the sequence (yk)k∈N converges weakly to the same limit as (xk)k∈N.

7. The strongly convex case. In this section, we briefly discuss the strongly convex case. Recall that
f : H → R is said to be µ-strongly convex for some µ > 0 if f − µ

2 ‖ · ‖
2 is convex. In this case, a proper

tuning of the viscous damping coefficient in the dynamic (HBF) of Polyak provides exponential convergence
rate with optimal rate.
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Theorem 7.1. Suppose that f : H → R is a C1 and µ-strongly convex function for some µ > 0. Let
x(·) : [t0,+∞[→ H be a solution trajectory of (HBF) with γ = 2

√
µ, i.e.

(7.1) ẍ(t) + 2
√
µẋ(t) +∇f(x(t)) = 0,

with initial condition (x(t0), ẋ(t0)), t0 ≥ 0. Then, for all t ≥ t0

f(x(t))−min
H

f ≤ Ce−
√
µ(t−t0)

where C := f(x(t0))−minH f + µ ‖x(t0)− x?‖2 + ‖ẋ(t0)‖2.

According to the procedure described in section 3.1, we consider three different discretizations of (7.1)
inspired by the inertial proximal algorithm, then the Nesterov method, and finally the Ravine method. Let
h > 0 be the temporal step size.

Inertial proximal algorithm. Implicit time discretization of (7.1) gives

xk+1 − 2xk + xk−1
h2

+
√
µ
xk+1 − xk−1

h
+∇f(xk+1) = 0.

After multiplication by s = h2, we obtain

(7.2) (1 + h
√
µ)(xk+1 − xk) + s∇f(xk+1 = (1− h√µ)(xk − xk−1),

which gives

(7.3) xk+1 = prox s
1+

√
µs f

(
xk +

1−√µs
1 +
√
µs

(xk − xk−1)

)
.

So, we obtain the inertial proximal algorithm

(7.4)

{
yk = xk +

1−√µs
1+
√
µs (xk − xk−1)

xk+1 = prox s
1+

√
µs f

(yk)

Nesterov method. Replacing the proximal step by a gradient step in (7.4), we obtain{
yk = xk +

1−√µs
1+
√
µs (xk − xk−1)

xk+1 = yk − s
1+
√
µs∇f(yk).

Ravine method. Interverting the role of the variables xk and yk we obtain the Ravine method
wk = yk −

s

1 +
√
µs
∇f(yk)

yk+1 = wk +
1−√µs
1 +
√
µs

(wk − wk−1).

This scheme is closely related to the classical form of the Nesterov accelerated gradient method for strongly
convex minimization. Note however that our approach makes appear a gradient step size s

1+
√
µs which is

slightly different from the most usually used step size s. A detailed Lyapunov analysis for this scheme is an
interesting subject that we leave for a future work.

8. Comparison to related algorithms. The following table gives a bird’s eye view of the relationships
between (NAGα), (RAGα).
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Comparison of (NAGα) with (RAGα)

Algorithm (NAGα) (RAGα)

Dual structure Extrapolation, then Gradient step Gradient step, then Extrapolation

Low resolution ODE (AVDα) (AVDα)

High resolution ODE Hessian driven damping (variable x) Hessian driven damping (variable y)

Fast convergence of the gradients Yes Yes

Convergence rate, α > 3 f(xk) − minH f = o

(
1

k2

)
f(yk) − minH f = o

(
1

k2

)

Convergence of iterates, α > 3 Yes Yes

Proximal version, α > 3 f(xk) − minH f = o

(
1

k2

)
f(proxsf (yk)) − minH f = o

(
1
k2

)

Comparison with (IGAHD). Recall that the algorithm (IGAHD), introduced by the authors in [12],
is based on the dynamic (4.8), a special case of (DIN-AVDα,β,b), with damping parameters α ≥ 3 and β ≥ 0.
This dynamic is essentially the same as the high resolution ODE (4.2) associated to (RAGα) (the same
holds for the ODE resp. (3.9) of (RAGα)). The two dynamics can be deduced from each other by a linear
temporal reparameterization, which preserves their convergence properties. However, an important message
to keep in mind here is that the algorithms (RAGα) and (IGAHD) markedly differ in the type of temporal
discretization used to obtain them. The algorithm (RAGα) is obtained by explicit discretization of (4.2),
namely

(8.1)
yk+1 − 2yk + yk−1

h2
+

α

(k + 1− α)h

yk+1 − yk
h

+

(
1 +

α

k + 1− α

)
∇f(yk) +∇f(yk)−∇f(yk−1) = 0.

On the other hand (IGAHD) is obtained by the time discretization of (4.8)

1

s
(xk+1 − 2xk + xk−1) +

α

ks
(xk − xk−1) +

β√
s

(∇f(xk)−∇f(xk−1)) +
β

k
√
s
∇f(xk−1) +∇f(yk) = 0,

with yk is an extrapolated point inspired by Nesterov’s scheme. The convergence properties of (IGAHD),
recalled in Theorem 2.4 are similar to those (RAGα) and (NAGα) (see Theorem 2.1, Theorem 2.3, Theo-
rem 5.1 and Theorem 5.2). In a nutshell, from a theoretical point of view, these methods behave similarly.
Nevertheless, it was shown in [12] that, numerically, (IGAHD) enjoys much less oscillations that (NAGα)
(and thus (RAGα)). We conjecture that this is a consequence of the more subtle discretization underlying
(IGAHD). So far, this lacks clear theoretical justification and we believe that it is a nice research program
to undertake in the future.

9. Conclusion, Perspective. This work was intended to unveil the relationship between the Nesterov
accelerated method and the Ravine method, which as been ignored for a long time and sometimes confused
with the Nesterov. We have shed light on these connections through the perspective of dynamical systems.
We believe that this work paves the way to many important questions that remain to be answered. Among
them, we mention the following ones:

• Design better structure-preserving discretization schemes/algorithms for inertial systems, and un-
derstand their fundamental limits/performance.

22



• For additively structured ”smooth + nonsmooth” convex minimization problems, develop a Lya-
punov analysis showing the fast convergence to zero of the operators (which correspond to the
gradients for the Ravine accelerated gradient method).

• Develop a Ravine accelerated method for linearly constrained optimization problems, which is based
on the augmented Lagrangian approach, and the ADMM algorithm.

• Study the introduction of perturbation, errors into the Ravine method, so as to prepare the stochastic
versions of this algorithm.

• Generalization and tuning of the extrapolation parameter.
• The case of monotone inclusions.

Acknwoledgements. We would like to thank N. Boumal who brought the reference [44] to our atten-
tion.
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