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The concept of Nonlinear dispersion rela-
tion (NDR) is used in various fields of Physics
(nonlinear optics [1], hydrodynamics [2–4],
hydroelasticity [5], mechanics [6], quantum op-
tics [7], plasma physics [8],...) to characterize
fundamental phenomena induced by nonlinearity
such as wave frequency shift or turbulence.
Nonlinear random waves described by the one-
dimensional nonlinear Schrödinger equation
(1DNLSE) exhibit a remarkable form of tur-
bulence called ”integrable turbulence” where
solitons play a key role [9–13]. Surprisingly,
little attention has been paid to the NDR of
such universal wave systems up to a very recent
theoretical study [14]. Here, by using an original
strategy, we report the accurate measurement of
NDR of the slowly varying envelop of the waves
in one-dimensional deep water waves experi-
ments. We characterize precisely the frequency
shift and the broadening of the NDR, which
interestingly reveals the presence of solitons and
of high order effects. Our results highlight the
relevance of the NDR in the context of integrable
turbulence [9–13].

The dispersion relation plays a key role in wave tur-
bulence (WT) phenomena emerging in the propagation
of nonlinear random waves in dispersive media. In gen-
eral, WT is described by the resonant interactions among
the Fourier components of the wave field [15]. For ex-
ample, in a unidirectional wave system dominated by a
third-order nonlinearity, the resonance conditions read
ω1 +ω2 = ω3 +ω4 and k1 +k2 = k3 +k4, where ki = k(ωi)
satisfies the linear dispersion relation k(ω). In this frame-
work, the NDR can be simply defined as the space-time
double Fourier transform of turbulent fields [2, 4, 6]. The
nonlinearity-induced shift and broadening of the NDR
is a fundamental signature of wave turbulence phenom-
ena which has been extensively considered in previous
works [2, 4, 6, 16, 17].

In comparison with the standard WT, integrable tur-
bulence is of profoundly different nature because the

∗ Pierre.Suret@univ-lille.fr

non-trivial resonances are forbidden (see Refs [9–13] and
Methods). The propagation of solitons is one of the
most remarkable properties of integrable systems. Sev-
eral fundamental questions are still opened in the field of
integrable turbulence: what is the mechanism of emer-
gence of localized structures or rogue waves embedded
in a random field ? What is the contribution of soli-
tons to the statistical properties ? How does occur the
transition between weakly nonlinear random waves and
soliton gas [17–19] ? Characterizing and understanding
the NDR in integrable turbulence is a key step to address
these questions.

In their extensive and very interesting theoretical and
numerical work [14], Leisman et al. have recently ad-
dressed this question in 1DNLSE for various kinds of ini-
tial conditions.

For weak nonlinearity and random waves, the NDR
undergoes the well-known frequency shift called “Stokes
shift” in the context of water waves [20, 21] while the
NDR of a single soliton is a straight line having a slope
corresponding to its group velocity [14]. It is noteworthy
that, to the best of our knowledge, up to now, this
spectral signature of solitons has not been reported in
the context of integrable turbulence (nonlinear random
waves) experiments described by 1DNLSE.

In this letter, we examine experimentally and numeri-
cally the characteristic features of the NDR developing
in integrable turbulence. More precisely, we consider
partially coherent (random) waves initially composed
of numerous independent Fourier components (see
Methods) and propagating in a unidirectional water
tank.

We first performed numerical simulations of the
1DNLSE describing the evolution of the slowly varying
envelope ψ(t, z) of uni-directional deep water waves (see
Methods) for three different degrees of nonlinearity mea-
sured by the parameter Γ:

Γ =
zlin
znlin

=
γgP0

(2π∆f)2
with P0 = 〈|ψ(t, z = 0)|2〉 (1)

where 〈...〉 is the averaging over time and/or realizations,
γ is the third order nonlinear coefficient, g is the gravity
acceleration and ∆f is the initial spectral width at z = 0
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(see Methods). Fig. 1.a, represents the typical spatio-
temporal dynamics of integrable turbulence developing
from partially coherent waves in the focusing regime of
1DNLSE. Remarkably, solitons emerge from the turbu-
lent field when the nonlinearity increases.

The space-time double Fourier spectrum |ψ̃(ω, k)|2 of
one realization of ψ(z, t) is plotted in blue in Fig. 1.b.
As pointed out in [14], solitons observed in Fig. 1.a cor-
respond to straight lines in the k − ω space and the
number of such lines increases when the value of Γ is
increased. Performing a statistical, we also plot the

spectrum 〈|ψ̃(ω, k)|2〉 averaged over several realizations
in Fig. 1.c. The linear dispersion of 1DNLSE reads
k(ω) = ω2/g [22] and is plotted in dashed black lines in
Figs 1.b and 1.c. We first evaluate numerically the well-
known (Stokes) shift of the dispersion relation induced by
nonlinearity. For weak nonlinearities and narrow Fourier
spectra made of numerous components, the theoretical
nonlinear dispersion relation of 1DNLSE reads [14, 22]:

k̃(ω, P0) = k(ω)− 2γP0. (2)

Eq. (2) is plotted in red dashed line in Figs 1.b and
1.c. Qualitatively, the shift of the NDR computed from
numerical simulations of 1DNLSE follows this theoretical
prediction. Moreover, one notices the broadening of the
NDR when Γ increases. This phenomenon is induced by
the energy exchange among Fourier modes and is well-
known in standard WT with resonant interactions [2, 4,
6]. Here, it is remarkable to observe similar behaviour in
integrable turbulence in the absence of resonance.

The concept of effective dispersion relation investi-
gated in the theoretical study [14, 23] corresponds to the
line joining the maxima of the NDR evaluated for each
value of ω. In order to quantify not only the shift of this
maximum but also the broadening of the NLDR, we plot

the k−spectrum at ω = 0, i.e. 〈|ψ̃(0, k)|2〉 in Fig. 1.d.
For small values of Γ, the maximum of this curve

coincides with the value predicted by the weakly non-
linear theory (Eq. (2) , red dashed line in Fig 1.d).
For this weak nonlinearity regime, note that, at ω = 0,
the NDR can be empirically fitted by a Lorentzian
distribution (purple dashed line in Fig. 1.d). To the
best of our knowledge, this remarkable fact is not known
for integrable turbulence and has not been described at
the theoretical level. At higher nonlinearities, the shift
of the maximum of the NDR is slightly smaller than
predicted by the weak nonlinearity theory. Moreover,
the broadening of the NDR toward the low values of
k observed in Fig 1.c becomes then asymmetric as it
is strongly influenced by the emergence of solitons,
individually observed in Figs. 1.a and 1.b. (Γ = 0.65).

In order to investigate experimentally the NDR de-
scribed above, we have used the setup described in [24].
Unidirectional waves are generated at one end of a 148
m long, 5 m wide and 3 m deep wave flume by using
a computer-assisted flap-type wavemaker (see Fig. 2.a).

The flume is equipped with an absorbing device strongly
reducing wave reflection at the opposite end. The sur-
face elevation η is measured by using 20 equally spaced
resistive wave gauges that are installed along the water
tank at distances zj = 6 j m, j = 1, 2, ...20 from the
wavemaker located at z = 0 m. This provides an effec-
tive measuring range of 120 m and a resolution of the
k−spectrum of 2π/120 rad m−1 (see Methods). The en-
velope ψ(t, z = 0) of the surface elevation having a central
frequency f0 = 1.15 Hz is designed with the same proce-
dure as the one used in our numerical simulations. The
degree of nonlinearity is varied by changing the averaged
amplitudes or the initial spectral width ∆f of the waves
generated in the water tank.

A typical temporal evolution of the surface elevation
experimentally recorded at the first gauge (z = 6 m) is
plotted in the Fig. 2.b. The slowly varying amplitude
ψ(z, t) is determined by using Hilbert Transform. Typi-
cal spatio-temporal evolution of |ψ| is plotted in Fig. 3.a
where the wave evolution is shown in a retarded frame
moving at the group velocity of the carrier wave. When
Γ increases, the structures become narrower and most of
them achieve a negative speed in the (t, z) diagram.

Accordingly to the numerical simulations reported
above, the experimental NDR broadens around the
known theoretical shifted parabola given by Eq. 2 (see
Figs. 3.b and 3.c). As expected, when the degree of
nonlinearity increases, the measured NDR broadens and
shifts toward the negative values of k. Moreover, it be-
comes asymetric with ω and deviates significantly from
the numerical simulations. This asymetry is a signature
in the (k − ω) space of the negative speed of the coher-
ent structures in the (t, z) diagram. This phenomenon
is the well-known “frequency downshift” of surface grav-
ity waves induced by high order nonlinearities [25]. The
High-order spectral (HOS) simulations of our experi-
ments confirm that this shape of the NDR is induced
by high order effects (see Methods and Supplementary).

Moreover, we found that for Γ ≤ 1, straight lines in the
(k − ω) space -signatures of solitons- appear much less
frequently than in 1DNLSE simulations. However, we
have observed this remarkable soliton spectra for small
values of the initial spectral width ∆f corresponding to
extremely high nonlinearity (see the fourth column of
Fig 3).

We now show that the quantitative analysis of the shift
and of the broadening of the NDR also reveals the central
role played by solitons in (quasi-) integrable turbulence.
In Fig. 4, we plot the maximum kM (Γ) and the full width

at half maximum ∆k(Γ) of the NDR 〈|ψ̃(0, k)|2〉 mea-
sured in experiments and computed from numerical sim-
ulations of full Euler equations (HOS) and 1DNLSE. The
nonlinear phase shift acquired by solitons during their
propagation places the solitonic lines well below the dis-
persion parabola Eq. (2) (see Fig 1.b). The NDR broad-
ens thus asymmetrically and strongly toward negative
values of k (see Fig 1.c) while the position of the maxi-



3

Γ=0.12 Γ=0.33 Γ=0.65
a

b

c

d

k (rad/m)k (rad/m)k (rad/m)

k 
(r

ad
/m

)
k 

(r
ad

/m
)

(rad/sec) (rad/sec) (rad/sec)

FIG. 1. Numerical simulations of the 1-D NLS equation. Three columns correspond to three different values of Γ 0.12,
0.33, and 0.65, respectively. The central frequency of the carrier wave and the initial width of the wave spectrum are set to
f0 = 1.15 Hz and ∆f = 0.2 Hz which corresponds to values used in experiments. (a) Spatiotemporal diagram for the complex

envelope amplitude |ψ(t, z)|. (b) Corresponding nonlinear dispersion relation |ψ̃(ω, k)|2 normalized to the maximum. Black
and red curves represent linear dispersion relation and its nonlinear correction according to the expression (2). (c) Nonlinear
dispersion relation averaged over 1000 realizations and normalized to the maximum. Propagation distance is 500 m. (d)
Cross-section of the averaged nonlinear dispersion relation at ω = 0 (along the blue line in (c)). Dashed purple line shows a
Lorentzian fit. Black and red dashed lines represent the linear dispersion Eq. (10) and its nonlinear correction Eq. (2).

mum of the NDR seems almost to saturate (see Fig. 4.a).
As a consequence, for large values of Γ (i.e. high non-
linearity), kM (Γ) measured in experiments and in simu-
lations evolve more slowly than predicted by the weakly
nonlinear theory - see Eq. (2).

Moreover, Fig. 4 also reveals the soliton inhibition
induced by high order effects. Indeed, the shift of
kM toward negative values of k in experiments and
HOS simulations is lower than the one predicted by
1DNLSE simulations while the broadening of the NDR
is significantly higher in the latter case. Note finally
that, remarkably, the shapeq of the experimental and of
HOS NDRs coincide with a Lorentzian function for all
values of Γ while the NDR predicted from the 1DNLSE
becomes asymmetric at high nonlinearity (see Fig. 3.c).

By focusing our analysis on the slowly varying ampli-
tude ψ, we were able to measure very accurately slight de-
viations from the predicted nonlinear dispersion relation.
The results reported here provide new insights into an old
fundamental problem of hydrodynamics : the measure-
ment of the dispersion relation of random surface gravity
waves (see for example [3] and refs. therein). Various
theoretical and experimental works have been devoted to
this question, see e.g. [3, 22, 26–32]. The central point of
our strategy is to remove the carrier wave frequency in
order to retrieve the NDR of the slowly varying envelope.
Our study thus enables an accurate measurement of the
nonlinear shift of the dispersion curve together with the
broadening and the shape of the NDR by using a very
limited number of 20 gauges (see Methods). For high
nonlinearity, our measurements reveal the emergence of
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FIG. 2. Experimental facility. (a) Schematic representation of the 120m-long water tank facility at École Centrale de
Nantes. The surface elevation is recorded by a set of probes equidistantly-placed every 6 m of the water tank length. The water
tank is equipped by a parabolically-shaped absorbing beach (≈8 m long) with the addition of pool lanes which provides low
back reflection. (b) Typical experimental wave train (surface elevation η, blue line) and its envelope (orange line) reconstructed
by using the Hilbert transform.
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FIG. 3. Experimental reconstruction of the nonlinear dispersion relation. Four columns correspond to four different
values of Γ 0.12, 0.33, 0.65, and 6.18, respectively. (a) Spatiotemporal diagram of the wave envelope amplitude |Ψ(t, z)|. Data
received from 20 probes have been post-processed and arranged in 20 vertical rows subtracting waves’ group velocity. (b)
Nonlinear dispersion relation reconstructed from the evolution of the complex wave envelope. Γ = 0.12, 0.33, 0.65 correspond

to an initial spectral width ∆f = 0.2 Hz and 〈|ψ̃(ω, k)|2〉 is averaged over several realization (see Methods). In order to observe
the signature of a single soliton, the NDR is not averaged for Γ = 6.18 (corresponding to ∆f = 0.037 Hz). (c) Cross-section of
the nonlinear dispersion relation at ω = 0. Dashed purple line shows a Lorentzian fit, blue line shows corresponding results of
NLS simulation.

solitons embedded in the turbulent field.

Up to now, integrable turbulence has been mainly
investigated in optical fibers [10, 13, 33]. This study

demonstrates that, uni-directional water tanks represent
remarkable complementary platforms to investigate the
Physics of integrable turbulence. In particular, it is im-
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a

b

FIG. 4. Quantitative comparison of the experimental
results with different numerical models. (a) Position
of the NDR maximum at central frequency as a function of
the parameter Γ. Blue and green dots correspond to NLS
and HOS simulations while orange dots show experimental
data. Red line represents the theoretical curve eq. (2). (b)
Full width at half maximum of the NDR at zero frequency as
a function of the parameter Γ. Note that the vertical scale
is different for experiments/HOS simulations (left scale) and
1DNLSE simulations (right scale). For all points in (a) and
(b), f0 = 1.15 Hz, ∆f = 0.2 Hz.

portant to note that it is an extremely challenging and
open question to measure the NDR of random waves in
optical fibers.

The generation of soliton gases in water waves has been
recently demonstrated [18, 19]. Our work sheds a new
light on the importance of the role of solitons in nonlinear
random waves. We hope that our work will trigger new
experimental and theoretical investigations of NDR in
several fields of Physics. In particular, the approach de-
veloped in the context of Fermi-Pasta-Ulam-Tsingou sys-
tem may be promising to predict theoretically the shape
and the broadening of the NDR observed here [34].

METHODS

One-dimensional Nonlinear Schrödinger equation,
variables and parameters

In the context of uni-directionnal deep water waves,
1DNLSE reads:

i
∂ψ

∂z
=

1

g

∂2ψ

∂t2
+ γ|ψ|2ψ, (3)

where z is the propagation distance, t is the time mea-
sured in the frame co-propagating a the group veloc-
ity cg = g/(2ω0) evaluated at the carrier frequency
f0 = ω0/(2π). In the limit of infinite depth, the third
order nonlinear coefficient is:

γ = k3
0 (4)

where k0 = ω2
0/g is the modulus of the wavevector of

carrier wave. The surface elevation η(t, z) is related at
the leading order to the slowly varying complex envelope
ψ as:

η(t, z) =
1

2

(
ψ(t, z)ei(k0z−ω0t) + c.c.

)
; (5)

From (5) the following relation can be derived :

〈|ψ|2〉 = 2〈η2〉 = 2σ2, (6)

where 〈...〉 implies averages over time and σ2 is the vari-
ance of the rapidly oscillating wave field.

In order to design the experiment, it is useful to in-
troduce a linear and a nonlinear propagation length as
follows:

zlin =
g

∆ω2
and znlin =

1

γP0
, (7)

where ∆ω = 2π∆f is a typical spectral bandwidth and
P0 = 〈|ψ0|2〉 is the average value of the envelope square
both calculated at z = 0.

The degree of nonlinearity of the wave propagation is
given by the parameter:

Γ =
zlin
znlin

=
γgP0

∆ω2
. (8)

In the context of ocean waves, Γ = BFI2 where BFI is
the Benjamin-Feir Index [35, 36]. It has been shown that
initial conditions with a large value of Γ will eventually
lead to the formation of rogue waves characterized by
heavy-tailed probability density function of the surface
elevation [10, 13, 37, 38].

BFI index can be expressed as follows:

BFI =
ε

(∆f/f0)
, (9)

where ε = k0

√
2σ is the wave steepness, and ∆f and f0

are average spectral width and central frequency of the
initial wave packets.

Resonances in the 1DNLSE

The non trivial resonances are forbidden in integrable
turbulence [39]. We consider the third order nonlinear
interaction of four monochromatic waves i = 1, 2, 3, 4 of
pulsation ωi and wavenumber ki(ωi) in a unidirectional
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dispersive media. In this context, the resonances condi-
tions of four wave mixing in the standard wave turbu-
lence read ω1 +ω2 = ω3 +ω4 and k1 +k2 = k3 +k4 where
ki = k(ωi). The linear dispersion relation of deep water
waves and of the Eq. (3) is:

k(ω) =
ω2

g
(10)

Exact resonances thus lead to:

ω1(ω3 − ω2) = ω3(ω3 − ω2) (11)

i.e. ω1 = ω3 and ω2 = ω4 or ω2 = ω3 and ω1 = ω4.
Exact resonances of non trivial interactions (ω1 6= ω3

and ω1 6= ω4) are thus forbidden.

Initial conditions in simulations and experiments:
Partially coherent waves

In the numerical simulations and in the experiments,
the initial conditions are partially coherent waves [33].
The slow varying amplitude of the initial condition at
z = 0 reads:

ψ(t, z = 0) = A0

+N/2∑
l=−N/2

e−
1
2 (fl/∆f)2ei 2π fl teiφl (12)

where fl = l/Tmax, Tmax is the temporal duration of
the experiments and φl are independently and randomly
distributed over [0, 2π].

Note that the statistical characteristics of partially co-
herent waves are very different than plane waves initially
perturbed by noise which is also investigated in [14]. For
a comparison between the two cases, refer e.g. to [40].

Numerical Simulations

Numerical simulations of Eq.3 are realized using step-
adaptive high order Runge-Kutta method. We construct
different initial conditions using the random phase ap-
proach where a uniformly distributed phase is added to
every Fourier component of a Gaussian spectrum with
∆f = 0.2 Hz. Typical temporal windows used in the
numerical simulations correspond to 100 seconds. Three
parameters of simulations depend on the value of the
steepness : the number of points N , the length of prop-
agation Lmax and the number of realizations Nsample.
We separate the numerical studies into three ranges of
steepness ε:

N Lmax(m) Nsample
ε ≤ 0.05 2048 500 10000

0.05 < ε ≤ 0.09 2048 500 500
0.09 < ε ≤ 0.19 1024 2000 100

In order to reconstruct numerically NDR, we multiply
the spatiotemporal diagram by a Super-Gaussian window
with power 15 along z direction avoiding thereby undesir-
able effects related to the Fourier analysis of non-periodic
signals.

Resolution of the measurement of k

The key point in our approach is to remove the car-
rier wave before computing the NDR. This allows us to
reveal the details of the NDR of the slowly varying en-
velop. Note that we only use 20 gauges in the water
tank. They are separated by 6 m and the maximum
measurable wavevector is around 1.05 m−1. As a con-
sequence, contrary to Taklo et al. who use 384 probes,
we do not resolve the wavevectors of the carrier wave
2π/λ0 ' 5.3 m−1 and of the harmonics. Our strategy
enables the accurate measurement of the NLDR of the
slow varying envelop of the wave by using only 20 probes.
This provides an effective measuring range of 120 m with
a resolution of the measurement of the k−spectrum of
∆kmin = 2π/120 rad m−1. Note finally that, in [3], the
accuracy of the measurement of k given by the length
of the water tank is ∆kmin/k0 = 0.014 while our setup
enables an accuracy of ∆kmin/k0 < 0.01.

In order to measure the averaged spectra and NDR,
we use 3,6 and, 3 experimental runs with a duration of
512 s for Γ = 0.12, 0.33, 0.65, respectively. One run of
128 s have been used for Γ = 6.18.

Note that in NLS and HOS simulations, the chosen
lengths of propagation depend on the parameters and
vary typically from 300 to 500 m. The uncertainty of
measurement of kM and ∆k is therefore significantly
lower in simulations than in experiments.

Evaluation of the full width at half maximum ∆k of
the position of the maximum kM

In Fig. 4, we report the evaluation of the full width at
half maximum ∆k and of the position of the maximum

kM of the function f(k) = |ψ̃(k, ω = 0)|2 in 1DNLSE,
HOS simulations and in experiments. The accuracy of
the measurement of ∆k and kM is limited both by the
discretization of k (see above the uncertainty ∆kmin) and
by the random fluctuations of f(k). In order to overcome
these difficulties, when it is appropriate, we evaluate ∆k
and kM by using best fitting procedure with Lorentzian
function.
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SUPPLEMENTARY MATERIAL

The purpose of this Supplementary Information is to
provide some mathematical and numerical details on the
High-Order Spectral (HOS) method that is utilized as a
reference in the manuscript. Simulation results (spatio-
temporal diagrams and NDR) obtained with the model
are also presented.

High-Order Spectral method

One-dimensional Nonlinear Schrödinger equation (Eq.
(3) of manuscript) is established under the assumptions
of weak nonlinearity of the wave field as well as the nar-
rowbandedness of its energy content. Different degrees
of nonlinearity (Γ parameter) have been tested during
the wave tank experiments reported in the manuscript.
Then, it appears of great interest to have a high-fidelity
numerical model able to replicate the experiments.

This is achieved thanks to the direct numerical simula-
tion of the Euler’s equation solved using the High-Order
Spectral (HOS) method [41, 42]. The present numerical
results have been obtained with the open-source solver
HOS-NWT [43]. This model solves the spatio-temporal
evolution of the free surface elevation η(z, t) in a so-called
numerical wave tank. It reproduces all the physical fea-
tures of the experimental (physical) facility including i)
the generation of waves thanks to a wave maker and ii)
the absorption of those waves when they reach the op-
posite wall. More details on the HOS-NWT numerical
model as well as different validations performed against
wave tank experiments can be found in [44, 45].

This digital twin is utilized as a complement to
the experiments. In the present study, the main
advantage of the numerical solution is that it allows
to overcome the limitation associated with the finite
extent of the physical wave tank (and the associated
measuring range Lm = 120 m). As long as the spatial
discretization is kept identical, the numerical wave
tank can be of arbitrary size. Increasing the size
results in a more accurate resolution ∆kmin for the
estimation of wave number k, essential to the evaluation
of the NDR and its properties (Fig. 4 of the manuscript).

Numerical Simulations

In a wave tank environment, numerical and physi-
cal experiments start from temporal initial conditions
η(z, t = 0) at rest. Waves are generated thanks to a
wave maker that imposes the spatial initial condition
η(z = 0, t). The HOS digital twin of the École Cen-
trale de Nantes water tank facility (Fig. 2.a of origi-
nal manuscript) uses the exact same wave maker mo-
tions than the experimental ones. This allows the direct
deterministic comparison between the experimental and

numerical wave probes measurements for validation pur-
poses.

Numerical parameters are chosen after a careful
convergence study that ensures the accuracy of the nu-
merical solution. The time integration, achieved thanks
to a step-adaptive Runge-Kutta method, is controlled
by a tolerance parameter chosen as 10−8 for the present
long-time integration. An HOS order of nonlinearity
set to 5 ensures an accurate numerical solution for all
configurations tested. Regarding the spatial discretiza-
tion, the total length of the numerical domain is set to
Lx = 560 m, discretized with Nx = 12288 points/modes
free of aliasing errors.

The wave conditions simulated cover a wide range of
nonlinearity with Γ = [0.05; 0.12; 0.33; 0.48; 0.65]. The
spatiotemporal diagram of the wave enveloped amplitude

|Ψ(t, z)| as well as the corresponding NDR |ψ̃(k, ω)|2 are
presented in Figures 5 to 9 with an increasing level of
nonlinearity.

Taking into account the evolution of the nonlinear
scale znlin with Γ (Eqs. (7) and (8) of manuscript), the
analysis is performed on a length of 531 m for Γ = 0.05
and Γ = 0.12 in Figs. 5 and 6 respectively. With an
increased nonlinearity Γ = [0.33; 0.48; 0.65], the analysis
is conducted on a shorter length of 378 m. Similarly to
the experimental facility, the numerical results use wave
gauges that are equally spaced in the computational
domain every 6 m.

Overall, the HOS numerical simulations confirm obser-
vations in the physical wave tank. As expected, compar-
ing left column of Fig. 1 in the manuscript and Fig. SI 6,
for small values of Γ 1DNLSE and HOS results are very
similar with a small departure from linear dispersion re-
lation. Then, an increased nonlinearity is associated with
coherent structures that are more visible in the (t, z) di-
agram, see Fig. SI 9 for instance. However, compared to
the 1DNLSE results (Fig.1 right column of manuscript),
the corresponding straight lines are less frequent in the
Euler’s simulations. In addition, the evolution of those
structures is clearly subjected to a negative speed when
taking into account high-order nonlinear and dispersion
effects. The corresponding frequency down-shift is also
clearly visible in the NDR.
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FIG. 5. Numerical simulation using high-order spectral methods Γ = 0.05, ε = 0.04. (top) Spatiotemporal diagram
of the wave envelope amplitude |Ψ(t, z)| evolution over the 531 m of the numerical water tank having 177 probes. (bottom)

Nonlinear dispersion relation |ψ̃(ω, k)|2 reconstructed from the evolution of the complex wave envelope.

FIG. 6. Numerical simulation using high-order spectral methods Γ = 0.12, ε = 0.06. (top) Spatiotemporal diagram of the wave
envelope amplitude |Ψ(t, z)| evolution over the 531 m of the numerical water tank having 177 probes. (bottom) Nonlinear

dispersion relation |ψ̃(ω, k)|2 reconstructed from the evolution of the complex wave envelope.
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FIG. 7. Numerical simulation using high-order spectral methods Γ = 0.33, ε = 0.1. (top) Spatiotemporal diagram of the wave
envelope amplitude |Ψ(t, z)| evolution over the 378 m of the numerical water tank having 126 probes. (bottom) Nonlinear

dispersion relation |ψ̃(ω, k)|2 reconstructed from the evolution of the complex wave envelope.

FIG. 8. Numerical simulation using high-order spectral methods Γ = 0.48, ε = 0.12. (top) Spatiotemporal diagram of the wave
envelope amplitude |Ψ(t, z)| evolution over the 378 m of the numerical water tank having 126 probes. (bottom) Nonlinear

dispersion relation |ψ̃(ω, k)|2 reconstructed from the evolution of the complex wave envelope.
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FIG. 9. Numerical simulation using high-order spectral methods Γ = 0.65, ε = 0.14. (top) Spatiotemporal diagram of the wave
envelope amplitude |Ψ(t, z)| evolution over the 378 m of the numerical water tank having 126 probes. (bottom) Nonlinear

dispersion relation |ψ̃(ω, k)|2 reconstructed from the evolution of the complex wave envelope.
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[23] Lee, W., Kovačič, G. & Cai, D. Renormalized resonance
quartets in dispersive wave turbulence. Phys. Rev. Lett.
103, 024502 (2009). URL https://link.aps.org/doi/

10.1103/PhysRevLett.103.024502.
[24] Bonnefoy, F. et al. From modulational instability to fo-

cusing dam breaks in water waves. Phys. Rev. Fluids 5,
034802 (2020).

[25] Trulsen, K., Stansberg, C. T. & Velarde, M. G. Labora-
tory evidence of three-dimensional frequency downshift
of waves in a long tank. Physics of Fluids 11, 235–237
(1999).

[26] Whitham, G. Non-linear dispersion of water waves. Jour-
nal of Fluid Mechanics 27, 399–412 (1967).

[27] Huang, N. E. & Tung, C.-C. The dispersion relation for
a nonlinear random gravity wave field. Journal of Fluid
Mechanics 75, 337–345 (1976).

[28] Crawford, D. R., Lake, B. M. & Yuen, H. C. Effects
of nonlinearity and spectral bandwidth on the dispersion
relation and component phase speeds of surface gravity
waves. Journal of Fluid Mechanics 112, 1–32 (1981).

[29] Wang, D. W. & Hwang, P. A. The dispersion rela-
tion of short wind waves from space–time wave measure-
ments. Journal of Atmospheric and Oceanic Technology
21, 1936–1945 (2004).

[30] Gibson, R. & Swan, C. The evolution of large ocean
waves: the role of local and rapid spectral changes. Pro-
ceedings of the Royal Society A: Mathematical, Physical
and Engineering Sciences 463, 21–48 (2007).

[31] Leckler, F. et al. Analysis and interpretation of

https://link.aps.org/doi/10.1103/PhysRevE.87.033003
https://link.aps.org/doi/10.1103/PhysRevE.87.033003
https://link.aps.org/doi/10.1103/PhysRevLett.122.214502
https://link.aps.org/doi/10.1103/PhysRevLett.122.214502
https://link.aps.org/doi/10.1103/PhysRevLett.103.024502
https://link.aps.org/doi/10.1103/PhysRevLett.103.024502


12

frequency–wavenumber spectra of young wind waves.
Journal of Physical Oceanography 45, 2484–2496 (2015).

[32] Taklo, T. M. A., Trulsen, K., Krogstad, H. E. & Borge, J.
C. N. On dispersion of directional surface gravity waves.
Journal Of Fluid Mechanics 812, 681–697 (2017).

[33] Randoux, S., Walczak, P., Onorato, M. & Suret, P.
Nonlinear random optical waves: Integrable turbulence,
rogue waves and intermittency. Physica D: Nonlinear
Phenomena – (2016). URL http://www.sciencedirect.

com/science/article/pii/S0167278916301506.
[34] Lvov, Y. V. & Onorato, M. Double scaling in the re-

laxation time in the β-fermi-pasta-ulam-tsingou model.
Physical review letters 120, 144301 (2018).

[35] Janssen, P. A. E. M. Nonlinear four-wave interactions
and freak waves. J. Phys. Oceanogr. 33, 863 (2003).

[36] Onorato, M., Osborne, A. R., Serio, M. & Bertone, S.
Freak waves in random oceanic sea states. Phys. Rev.
Lett. 86, 5831–5834 (2001).

[37] El Koussaifi, R. et al. Spontaneous emergence of rogue
waves in partially coherent waves: a quantitative exper-
imental comparison between hydrodynamics and optics.
Physical Review E 97, 012208 (2018).

[38] Suret, P. et al. Single-shot observation of optical rogue
waves in integrable turbulence using time microscopy.
Nat. Commun. 7 (2016).

[39] Suret, P., Picozzi, A. & Randoux, S. Wave turbulence in
integrable systems: nonlinear propagation of incoherent
optical waves in single-mode fibers. Opt. Express 19,
17852–17863 (2011).

[40] Copie, F., Randoux, S. & Suret, P. The physics of
the one-dimensional nonlinear schrödinger equation in
fiber optics: rogue waves, modulation instability and
self-focusing phenomena. Reviews in Physics 5, 100037
(2020).

[41] Dommermuth, D. G. & Yue, D. K. A high-order spectral
method for the study of nonlinear gravity waves. Journal
of Fluid Mechanics 184, 267–288 (1987).

[42] West, B. J., Brueckner, K. A., Janda, R. S., Milder, D. M.
& Milton, R. L. A new numerical method for surface hy-
drodynamics. Journal of Geophysical Research: Oceans
92, 11803–11824 (1987).

[43] Ecole Centrale Nantes, LHEEA. Open-source release of
HOS-NWT. https://github.com/LHEEA/HOS-NWT.

[44] Bonnefoy, F., Ducrozet, G., Le Touzé, D. & Ferrant, P.
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