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Abstract 

Plug loads are one of the most important energy consumption items in non-residential buildings 

and their weight is continuously increasing in new generation buildings with highly insulated 

envelopes and high efficiency HVAC systems. An accurate and realistic modeling of plug 

loads is therefore of paramount importance for building energy modeling and energy efficient 

operation, as well as for other emerging applications such as renewables integration and 

demand response. 

We present in the present paper a method for generating aggregated electric load profiles for 

plug loads in office buildings based on more than 6400 field-measured load profiles of 

individual appliances used in office buildings and a field survey covering more than 1000 

office building occupants which provides the distribution of the considered appliances in office 

buildings. We show that the aggregated load curves scale up following different laws 

depending on the considered appliances. We also provide aggregated load curve stabilization 

thresholds for all appliances: 43 for desktop computers, 32 for computer screens, 127 for 

laptops and 204 for multifunction devices if we mention the main office appliances Finally, by 

combining the individual appliances' aggregated load curves and the survey results, we propose 

a model for generating building-level aggregated plug load curves for three main building types 

defined through the survey data analysis. We show that the aggregated load curves do not scale 
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up differently when the number of occupants increases depending on the building type and the 

day type. Obtained results provide unique insights on plug load aggregated load profile shapes 

and behaviors and can be very useful for researchers and engineers interested in non-residential 

building energy modeling. 
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Abbreviations 

 

ALP Aggregated Load Profile 𝑛𝑜𝑐𝑐 Number of occupants 

BALP Building Level Load Profile 𝑛𝑡ℎ Stabilization threshold 

BEM Block Element Modifier NALP Normalized Aggregated Load Profile 

DF Diversity Factor SAALP Single Appliance Aggregated Load Profile 

HVAC Heating, Ventilation and Air 

Conditioning 
𝑟𝑖 Appliance per occupant ratio per appliance i 

𝑛𝑎𝑝𝑝,𝑖 Number of appliances for each 

appliance i 

  

 

1. Introduction 

 

Reducing building energy consumption and related greenhouse gas emissions is one of the major 

challenges for engineering and research on the built environment. Indeed, buildings account for 

29% of worldwide final energy consumption and 49% of the total electricity consumption [1], and 

this share is continuously increasing [2]. To tackle these issues, recent opportunities have risen in 

the development of smart infrastructures [3] and the significant role of smart meter deployment 

plans worldwide, in the United States of America [5] and Europe in particular[6] . The growing 

availability of data collected from advanced metering infrastructure is therefore a strong asset for 
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research and development towards a better and realistic understanding and modeling of building 

energy consumption.  

To take the full benefit of the amount of collected data, the current trend in building energy 

modeling is shifting from traditional physics-based modeling [7] to data-driven methods [8].  To 

capture the diversity of occupants’ behaviors, which is a key parameter for an accurate building 

energy model [9], stochastic methods are required and can be enhanced by the increasing amount 

of available energy demand data. Such data has been recently used with different data processing 

techniques for a variety of purposes related to building energy consumption modeling such as 

pattern recognition [10], [11], abnormal energy behavior identification [12], building energy 

demand characterization by load profiles clustering [13]  , demand side management for industrial 

[14] and residential [15] sectors, building energy consumption [16] and peak demand [17] 

forecasting. A comprehensive review can be found in [8].  These techniques are also used for 

various practical applications including the identification of priority targets for energy efficiency 

programs [18], the optimization of equipment sizing, energy storage, electric network 

operation[19], renewables integration [20] and commercial offers [21]. Studies have mainly 

covered residential households and then mixed industrial and commercial buildings as highlighted 

in [17]. Other non-residential buildings such as education, research or office buildings have more 

seldomly been considered [11], [22].   

We focus in the present work on office buildings. We specifically consider the problem of 

modeling and generating aggregated electric load curves for small power equipment in office 

buildings. The main loads in an office building are HVAC , lighting  and small power equipment 

or plug loads [23]. HVAC and lighting loads are mainly governed by weather conditions, the day 

duration and equipment technological features, while plug loads are mainly governed by the 
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occupants’ behavior and show no or very low sensitivity to weather conditions as highlighted in 

recent commercial buildings use cases in the United States[24], [25] and field monitoring 

campaigns in residential buildings in Australia. [26]. The non-sensitivity of plug loads to weather 

conditions is also admitted in several building professional guides such as ASHRAE Handbook of 

Fundamentals[27] or CIBSE Guide F[28] where office appliances and plug loads are accounted 

for using constant watt per surface area heat gain without seasonal modulation. The strong 

dependency of plug loads to occupants makes them harder to model since the occupancy is 

considered as one of the major factors of a building’s energy performance gap [29]. This is 

particularly critical in energy efficient buildings[30]. In addition, for such buildings, with their 

very low transmission envelopes, the weight of internal heat sources, such as plug loads, becomes 

more significant in the building energy budget. They should be carefully taken into account for 

accurate sizing and operation of such buildings and are therefore attracting an increasing attention 

from buildings operation[31] and research communities [32], especially for most recent and energy 

efficient buildings[33]. Plug loads are traditionally accounted for in BEM tools using benchmarked 

average energy consumption or power load density values [28], weighted by occupancy schedules 

provided as a limited number of typical occupancy profiles [34] as recommended by standard 

building energy modeling protocols[35]. A few recent works have highlighted the weaknesses of 

such an approach, especially for office buildings. They showed the relevance of using field 

measured data for small office power equipment energy consumption estimation compared to the 

recommendations of commonly used guidance documents [36], proposed different stochastic 

strategies to estimate the power demand  of such equipment based on random sampling of 

measured load profiles or a bottom-up construction of load profiles[37] and developed simplified 
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models to generate plug load profiles combining input occupancy profiles and random sampling 

over the learned load profiles patterns from measured data[38]. 

In this paper, we follow this path generate building-level aggregated plug load profiles by summing 

individual appliance load profiles randomly selected from a large dataset of field-measured load 

profiles. This method has two main advantages: i) the individual appliance load profiles are not 

simplified models but real load profiles accounting for load variability while simplified models 

use occupancy-weighted average load values ii) occupancy information is partially included in 

individual appliance (such as computers, screens, etc.) measured load profiles. When a large 

number of different individual load profiles is aggregated, the diversity of the occupancy and the 

occupants’ behavior are implicitly accounted for. The main drawback of this method is the cost of 

field data collection, the lack of open datasets and the bias that can be induced by limited size 

datasets. In this work, we use a dataset of several thousand individual appliance load profiles 

collected in office buildings in Paris metropolitan area (France) from 2017 to 2019. We combine 

those load profiles with appliance per occupant ratios for each appliance type obtained through a 

field survey conducted in 2018 and 2019 amongst 1038 office building workers in France. Using 

the measured appliance load curves, we obtained aggregated load curves for each appliance and a 

diversity stabilization threshold, i.e. a number of appliances beyond which the aggregated load 

curve shape is not significantly affected by aggregating additional appliance load curves. The 

determination of this threshold is useful to optimize load curve generators. By combining the 

appliance load curves and the survey data, we were also able to generate building-level aggregated 

load curves for different buildings types and sizes. All developed algorithms have been integrated 

in a proprietary tool for load profile generation for building energy modeling used in the authors’ 

institutions. In the present paper, we present the main methods, algorithms and results of this work. 
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The present paper is constructed as follows. We present in section 2 the methods used for data 

acquisition, pre-processing, structuring and processing through the whole process leading to the 

computation of aggregated load curves. We focus more particularly on the algorithms used to 

obtain the stabilization threshold and the aggregated load curves. In section 3, we present and 

discuss the main result with respect to the used dataset statistics, the stabilization threshold for 

each appliance and the building-level aggregated load profiles where we specifically compare load 

profiles of buildings of different sizes, below and above the stabilization threshold. 

2. Methodology 

2.1. Data acquisition 

Collected data, individual appliance load curves for instance, have been measured in 3 different 

office buildings in Paris Region, France (additional information on the considered buildings are 

provided in appendix F), on different appliances commonly found and used in offices, either by 

individual users or as shared resources, such as desktop computers, laptops, screens, printers, 

multifunction devices, kettles, coffee machines, etc. 

Load curves have been measured on each device using Currentcost EnviR wireless plug load 

meters [39]. Each ten plug meters communicate with a gateway that has been customized using 

a Raspberry Pi to store collected data on an SD card. This inhouse solution enables to extend the 

storage capacity of the commercial device in an unlimited way depending only on the used SD 

memory card capacity. 

In addition to centralizing the measured data, the gateway also provides a time reference and 

ensures that the ten load curves are synchronized. 

Plug loads have been measured with a 6 second time step which is the shortest time step enabled 

by the used meters. Consequently, each daily load curve contains 14400 data points. Different 

measurement campaigns have been performed on different sites, buildings and appliances. Each 
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campaign lasted at least three weeks to ensure having both business day and closing day load 

curves. Many campaigns lasted more than two months.  

2.2. Data pre-processing: cleaning, meta-data, indexing, data-frames 

structures, etc. 

Collected data was pre-processed before being used in the final program for aggregated load 

curves generation. First, raw data was cleaned to remove outliers, for example values which are 

too large compared to the nominal load of each equipment (user defined thresholds for each 

equipment category are used to determine whether a value is an outlier or not. The threshold 

value for each appliance type is given in appendix F, section A6.2). In addition, load curves with 

many contiguous missing points were not considered. When missing data represents less than 10 

contiguous measurement points, one minute in our case given the time step of 6 seconds, we use 

mean imputation to replace them. 

2.3. Data structure 

For each monitored equipment, data is first stored in a date-indexed DataFrame with one daily 

load curve per line. Each line therefore contains 14400 measurement points. 

After a first data pre-processing, not presented here, we noticed that the appliance load curves 

can be classified into two clusters: business day clusters (mainly constituted of non-nil load 

curves suggesting that the appliance has been used) and closing day clusters (mainly constituted 

of nil load curves suggesting no use of the appliance during that day). Nevertheless, it may 

happen to have a nil load curve for a business day if one user is absent from office or a non-nil 

load curve for a closing day if, exceptionally, a user is present on the premises during one closing 

day. We therefore tag the different load curves either as a business day load curve, vacation load 

curve, or a clo     sing day load curve. The tag is only based on official calendars: business days 

(from Monday to Friday), closing days (Saturday, Sunday, and national holydays), vacation days 
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correspond to school vacation based on an official calendar provided by the Ministry of 

Education. Indeed, based on a previous work[40] of our group and national statistics[41], we note 

that school holidays affect in a non-negligible manner the presence of occupants in workplaces 

and therefore the aggregated load curves. In the following, the date index is not used anymore. 

Then, load curves of all appliances of the same type (desktop computers, laptops, etc.) are 

gathered in the same DataFrame with the line number (load curve number) used as an index. A 

day type tag is also added to each load curve based on the above mentioned rule. 

2.4. Data processing  

The goal of data processing is to generate aggregated load profiles. Two types of aggregated load 

profiles are considered: Single Appliance type Aggregated Load Profiles (SAALP), an 

aggregation of load profiles for n computers for example, and Building level Aggregated Load 

Profiles (BALP) including different kinds of appliances. For SAALP, the goal is to determine 

whether the aggregated load profile shape stabilizes for a large number of appliances. For this 

purpose, we calculate the diversity factor defined and commented in section 2.4.1. For BALP, 

the goal is to generate building-level load profiles that can be used for different purposes such as 

building energy modeling, renewable generation device sizing, demand response, etc. For this 

purpose, generated load profiles need to be realistic. We present in section 2.4.2 the model used 

for BALP generation which is strongly based on field collected data. 

To generate the aggregated load profiles (ALP) presented in this paper, a house made code was 

developed. We show in Figure 1 the workflow of the used program. 
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Figure 1: Workflow of the aggregated load curve generator. 

First the user imports a dataset containing measured and pre-processed appliance load profiles. 

Then he can choose between three main functions: generating a SAALP, a BALP or determining 

the stabilization threshold, defined in the following paragraph, for a given appliance. The main 

steps of the three available functions are described below. 

2.5. Diversity factor  

The diversity factor (DF) is defined by: 

𝐷𝐹 (𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒 𝑡𝑦𝑝𝑒, 𝑛) =  
∑ max(𝐼𝐴𝐿𝑃𝑖 )

𝑛
𝑖=1

max(∑ 𝐼𝐴𝐿𝑃𝑖
𝑛
𝑖=1 )

    
(1) 

 

where 𝐼𝐴𝐿𝑃𝑖 is an individual appliance load curve and 𝑛 the number of appliances considered for 

aggregation. The sum in the denominator is a point wise sum of IALPi. 
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To compare the aggregated load curve shapes we also defined a normalized aggregated load 

curve as follows:  

𝑁𝐴𝐿𝑃 =
𝑆𝐴𝐴𝐿𝑃

𝑚𝑎𝑥(𝑆𝐴𝐴𝐿𝑃)
 

(2) 

where 𝑆𝐴𝐴𝐿𝑃 is the aggregated load profile defined as: 

𝑆𝐴𝐴𝐿𝑃(𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒 𝑡𝑦𝑝𝑒, 𝑛)  =  ∑ 𝐼𝐴𝐿𝑃𝑖 

𝑛

𝑖=1

 
(3) 

one should note here that 𝑁𝐴𝐿𝑃, 𝑆𝐴𝐴𝐿𝑃 and 𝐼𝐴𝐿𝑃𝑖  are time-series of 14400 points 

corresponding to daily load profiles with a time step of 6 seconds. 

2.6. Stabilization threshold  

For a given appliance, when a large number of load curves 𝑛 are summed to obtain a SAALP, 

the shape of the NALP is expected to stabilize for 𝑛 large enough. The number 𝑛 at which the 

NALP stabilizes is called the stabilization threshold and noted 𝑛𝑡ℎ. 

Empirically, we systematically observe that DF tends to and stabilizes around a constant value 

for a number of appliances 𝑛 larger than 𝑛𝑡ℎ. 

To determine the stabilization threshold, we can also calculate the Euclidean distance between 

two consecutive NALP, i.e. between 𝑁𝐴𝐿𝑃(𝑛 + 1) and 𝑁𝐴𝐿𝑃(𝑛). This difference is expected 

to tend to zero for 𝑛 large enough. 

In the following, the stabilization threshold is determined using the DF as follows: 

The DF is calculated for 𝑁 appliances where 𝑁is the number of load curves available in the input 

dataset for a given appliance. If the DF stabilizes, i.e if 𝐷𝐹(𝑛 + 1)  −  𝐷𝐹(𝑛) goes towards zero 

for 𝑛 large enough, we determine 𝑛𝑡ℎ as the number of appliances at which 

|𝐷𝐹(𝑛) − 𝐷𝐹(𝑁)| < 𝜖 × 𝐷𝐹(𝑁) ∀𝑛 > 𝑛𝑡ℎ  (4) 

 

In the following, we use 𝜖 = 0.1. 
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Figure 2: Example of DF stabilization 

To determine 𝑛𝑡ℎfor each appliance we make 50 simulations in which we compute DF(i) for 𝑖 ∈

[1, 𝑁] where N is the number of load curves for the considered appliances in our dataset, i.e. the 

size if the dataset and consequently the maximum number of such appliance load curves that we 

can sum. For each simulation we determine the number of appliances 𝑛𝑡ℎ which satisfies 

inequality 4. Then we calculate the average of the 50 values of 𝑛𝑡ℎ obtained which is then 

considered as the stabilization threshold of appliance under consideration. 

2.7. Building level aggregated load profile model 

In this paragraph, we present the method used to generate building-level aggregated load profiles. 

For a given building, several input parameters are user-defined such as: the number of occupants, 

the main activity and the location which enable the determination of appliance per user ratios for 

all appliances present in office buildings. Such ratios are determined based on the results of an 

inquiry conducted by authors in 2018 and 2019 which covers 1038 occupants of office buildings 

in France. The analysis and clustering of the inquiry answers lead to three main building 

categories whose appliance per user ratios are provided in Appendix A. 

According to the user-defined input parameters, the considered building is assigned to one of the 

three categories and the ratios of the resulting category, as shown in Appendix A, are used for 

simulation. For each equipment 𝑖, the appliance / occupant ratio 𝑟𝑖 is multiplied by the user 
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defined number of occupants 𝑛𝑜𝑐𝑐 to obtain the number of appliances for each appliance 𝑛𝑎𝑝𝑝,𝑖 =

𝑟𝑖 × 𝑛𝑜𝑐𝑐. Then, for each appliance 𝑖, 𝑛𝑎𝑝𝑝,𝑖 load curves are randomly sampled from the load 

profile datasets and summed. We obtain an aggregated load profile for each appliance type 𝑖 : 

𝐴𝐿𝑃(𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒 𝑖, 𝑛𝑎𝑝𝑝,𝑖)  =  ∑ 𝐼𝐴𝐿𝑃𝑗 

𝑛𝑎𝑝𝑝,𝑖

𝑗=1

 

(5) 

where 𝐼𝐴𝐿𝑃𝑗 are randomly chosen from the load profiles dataset. 

The sum in equation 5 is a point wise sum of IALPj vectors. We remind that with a 6-second 

timestep, each IALP contains 14400 data points corresponding to a 24h load profile. 

Considering that a number 𝑚 of different appliances can be encountered and used in an office 

building (those different appliances were obtained from the above-mentioned inquiry), the 

aggregated load profile is then obtained by summing the aggregated load profiles of each 

appliance type as follows: 

𝐵𝐴𝐿𝑃 = ∑ 𝐴𝐿𝑃(𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒 𝑘, 𝑛𝑎𝑝𝑝,𝑘) 

𝑚

𝑘=1

 
(6) 

where the sum is also a point wise sum. 

Building-level aggregated load profiles are then calculated for business days, closing days and 

vacation days which are intermediate occupancy days. The calculation of BALP for these three 

day types results from the observation of three different clusters corresponding to those day types 

in a previous work of the authors on the clustering of non-residential building load profile [40]. 

3. Results and discussion 

3.1. Collected data statistics 

Several measurement campaigns were performed in different office buildings for load profile 

measurements, 113 different appliances were monitored for a total of 767 days. In total, 6408 

load curves were collected to account for the diversity of used devices and the occupants’ 
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behaviors. We show in Figure 3 the distribution of the collected load profiles per appliance type 

and day-type. 

 
 

(a) (b) 

Figure 3: Distribution of load profiles per appliance (a) and per day type (b). 

 

We can note that 14 different types of appliances were monitored during the different measurement 

campaigns. The majority of collected load profiles, 91% for instance, were measured on typical 

office equipment: desktop computers, laptops, computer screens, printers, etc. A much smaller part 

of the dataset, 9% in our case, were measured on less frequently used appliances such as coffee 

machines, kettles, telephones, water fountains and office presentation overhead projectors.  

The measurement campaigns covered different day types: business days, closing days and vacation 

days. Closing days include weekends and statutory holidays. Vacation days include school 

holidays. In this work, we consider three day types instead of the commonly used two-day type 

classification since we have shown in a previous work that vacation day load profiles can be 

distinguished from closing and business day load profiles for several office buildings [35]. Indeed, 

occupancy during holidays is often lower than a typical business day while being larger than zero. 

The distribution of collected load profiles with respect to day types is as follows:  46% of business 
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days, 32% of closing days and 22% of vacation days. When comparing the distribution of the days 

measured and the distribution of days in the French calendar, it can be concluded that the days of 

measurement are an adequate representation of the distribution of the different day types in a year. 

 

3.2. Single appliance aggregated load profiles stabilization threshold 

We calculated the diversity factor defined in equation 1 for all the appliances present in our dataset. 

Since the calculation of the DF is based on a random sampling of appliance load profiles, 50 runs 

have been performed for the DF calculation to assess the dependence of the results to the random 

sampling. As mentioned in section 2.5, the stabilization threshold 𝑛𝑡ℎ depends on the stabilization 

interval width [𝐷𝐹(𝑁) − 𝜖, 𝐷𝐹(𝑁) + 𝜖], the stabilization threshold was calculated for 𝜖 = 0.05 

and 𝜖 = 0.1 for each appliance type. Obtained results for two different appliances, desktop 

computers and kettles for instance, are plotted in Figure 4 for 𝜖 = 0.05 and 𝜖 = 0.1. Similar results 

for all appliances are provided in Appendix B. The dotted red line represents 𝐷𝐹(𝑁) and the area 

in between the dotted grey lines indicates the stabilization interval [𝐷𝐹(𝑁) − 𝜖, 𝐷𝐹(𝑁) + 𝜖]. The 

green dotted line indicates the stabilization threshold 𝑛𝑡ℎ. 

  

(a) (b) 
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(c) (d) 

Figure 4: Diversity factors for 𝜖 = 0.05 (left) and 𝜖 = 0.1 (right) for desktop computers (a)(b) and kettles (c)(d). 

    

As can be observed in all subfigures of Figure 4, the DF tends to and stabilizes around a constant 

value for 𝑛 > 𝑛𝑡ℎ. This is particularly obvious for desktop computers, computer screens, and 

laptops. Obtained results are summarized in Table 1 where we provide an average value of 𝑛𝑡ℎ 

calculated after 50 runs for all appliances. The values of 𝑛𝑡ℎ for the 50 runs are provided in 

Appendix C, Figure A.3 which enable to assess the dispersion of this value as a function of the 

random sampling of aggregated daily load profiles. For common office equipment such desktop 

computers, computer screens and laptops, a stabilization threshold lower than 300 for a 

stabilization interval width of 0.1 × 𝐷𝐹(𝑁) and up to 127 for a stabilization interval width of 

0.2 × 𝐷𝐹(𝑁) are obtained. Such numbers of appliances is likely to be encountered in average-

sized office buildings [42]. 

 

Appliance 

Stabilization threshold (average of 50 runs) 

𝜖 = 0.05 𝜖 = 0.1 

Computer screen 93 32 

Desktop computer  167 43 
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Laptop with one screen 348 127 

Coffee machine 709 417 

Individual heater 368 129 

Multifunction device 443 204 

Kettle 616 258 

Table 1: Average stabilization thresholds 𝑛𝑡ℎ for 50 runs for all appliances for 𝜖 = 0.05 and 𝜖 = 0.1. 

However, for other appliances such as multifunction devices, coffee machines and kettles which 

are often used as shared resources, or individual heaters which are much less frequently 

encountered, the stabilization occurs for a threshold too large compared to the number of such 

appliances that can be found in a reasonably sized building. For example, for specific devices such 

as kettles, stabilization is even much harder which explains the very large stabilization threshold. 

This could be explained by the discontinued use of these appliances throughout the day resulting 

in discontinuous load profiles with very sharp peaks a few times a day. Consequently, the diversity 

of individual kettle daily load profiles is very large. Therefore, the aggregation of a large number 

of appliances is required in order to observe a stabilized aggregated load profile. As can be shown 

later when discussing building-level aggregated load profiles, realistic scenarios of office buildings 

do not enable reaching the stabilization threshold for all appliances, especially for shared 

appliances. 

We show in Figure 6 some examples of aggregated load profiles at the stabilization threshold per 

appliance type and per day type. Similar aggregated load profiles calculated for all appliance types 

are provided in Appendix D. 
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(a) (b) (c) 

   

(d) (e) (f) 

Figure 6: Aggregated load profiles at 𝑛𝑡ℎ per day type (left: business day, center: vacation day, right: closing day) 

for desktop computers (a)-(c) and single computer screens (d)-(f). The time, in seconds, shown in the x axis is 

representative of a 24-hour period. 

 

For all appliances, as can be expected, the business day load profiles exhibit the highest power 

levels, while closing days show the lowest electric demand levels. Electric power demand in 

weekdays in a vacation period exhibit intermediate levels between typical business days and 

closing days because of a lower occupancy since employees may take time off according to their 

children’s vacations. 

In addition to the load profiles, one can extract the occupancy information from aggregated load 

profiles of individual appliances such as personal computers or screens. Indeed, we observe the 

load increase in the morning suggesting a gradual arrival of the employees, a valley at noon around 

lunch break and a gradual decrease in the afternoon corresponding to the gradual departure of the 

employees.  
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The aggregated load profiles of some shared devices such as coffee machines and kettles show 

multiple peaks throughout the day. These appliance load profiles exhibit numerous short peak 

loads at specific times but are used less frequently than personal devices. Those peaks are often 

observed at the beginning of the day and at the beginning of the afternoon, as well as sporadically 

throughout the day. From the energy consumption point of view, the weight of those devices is not 

significant despite their very large peak loads because of their short duration of use.  

Aggregated load profiles of desktop computers, laptops, computer screens and multifunction 

devices show non-zero power demand on closing days and during the night, up to 25% of their 

business day maximum load for desktop computers for example (Figure 6-a). During those times, 

these appliances could have possibly been left on standby mode. Optimizing the management of 

those appliances by a systematic shutdown during non-working hours, for example, could be a 

step towards reducing an office building’s electric energy consumption. Even though this point 

has been highlighted decades ago [43], it still seems not to be systematically implemented yet. 

Aggregated load profiles such as those shown in Figure 6 and Appendix D can also be very useful 

for building energy modeling enhancement. Indeed, beyond a certain number of occupants, for 

most of the appliances, one aggregated load profile could be used to simulate the electric power 

demand of the appliances’ stock in an office building. However, this strategy cannot be used for 

small buildings or for appliances with a high stabilization threshold such, where a random 

sampling of single appliances load curves can be used. We further explore this idea in the following 

section. 

3.3. Building level aggregated load profiles per building type 

 

In this section, we calculate and discuss the building-level aggregated load profiles (BALP) for 

different office building types and sizes and for the above-mentioned three day types. A BALP is 
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a load profile including the load profiles of a number of different appliances according to a given 

distribution. The different distributions were obtained based on a field survey which collected and 

analyzed the responses of more than 1000 office building occupants in France in 2019. An 

automatic clustering [8] of the responses provided three main clusters resulting in three office 

buildings types considered in the following paragraphs. Each building type is characterized by a 

set of appliances per occupant ratio for all considered appliances. Those ratio values range from 0 

to 1. For example, for an individual appliance such as a personal computer in a building where all 

occupants have their own personal computer, the ratio is equal to 1. For a shared device, such as a 

multifunction device for example shared between n users, the ratio is equal to 1/n. All ratios 

calculated and used in the present work are provided in Appendix A. The highest ratios for building 

type 1 are for desktop computers, computer screens and laptops. The highest ratios for building 

type 2 are for laptops and computer screens. For building type 3, the highest ratios are for coffee 

machines, kettles, desktop computers and laptops. For each building type, we consider two 

building sizes, represented here by the number of occupants n and compared to the stabilization 

thresholds of existing appliances. We consider 𝑛1 <  𝑛𝑡ℎ,𝑚𝑖𝑛 and 𝑛2  ≥  𝑛𝑡ℎ,𝑚𝑎𝑥for the three 

building types where 𝑛𝑡ℎ,𝑚𝑖𝑛 is the smallest stabilization threshold amongst the appliances present 

in each building type and 𝑛𝑡ℎ,𝑚𝑎𝑥 is the largest stabilization threshold in the same building type. 

We show in Figure 7 and 8 the aggregated load profiles for these two cases for the three buildings 

types and the three day types. 

 

Case 1: below the stabilization threshold (𝑛1 <  𝑛𝑡ℎ,𝑚𝑖𝑛) 
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For this case, any number below the stabilization threshold of all the appliances could be 

considered. We considered n1 = 100 in our calculations to obtain the aggregated load profiles 

for each building type shown in Figure 7. 

   

(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

Figure 7: Aggregated load profiles for 𝑛1= 100 occupants per day type (left: business day, center: vacation day, 

right: closing day) for building type 1 (a)-(c), building type 2 (d)-(f) and building type 3 (g)-(i). 

 

We observe the same trend of a decreasing electric power load as for SAALP when switching from 

business days, to vacation days to closing days. We also observe non-nil electric load during 

closing days for buildings types 1 and 2 where the dominating plug appliances are individual office 

appliances such as computers and screens. 



21 

 

 

We observe similar maximum power-demand levels for buildings 1 and 2 while building 3 exhibits 

a much larger maximal power. Indeed, buildings 1 and 2 are characterized by similar appliance to 

occupant ratios This can be explained by the large appliance per occupant ratio for heat production 

appliances such as individual heaters, kettles and coffee machines in this building type. Those 

appliances’ nominal electric power demand is much larger than that of typical office equipment 

which explains the particularly large load levels in Figure 7-g.  

Case 2: above the stabilization threshold (𝑛2  ≥  𝑛𝑡ℎ,𝑚𝑎𝑥)  

Using Table 1 as a reference, any number of occupants larger than the largest stabilization 

threshold should be sufficient for all appliances SAALP to stabilize and therefore to obtain a 

stabilized BALP. A simple calculation shows that 2 573 occupants are required for this purpose 

(Appendix A). However, as discussed in the previous sections, the dominating plug appliances in 

an office building are individual appliances, except for buildings with on plug individual electric 

heating as shown in Figure 7-g. As a reasonable assumption, we consider the stabilization 

threshold of desktop computers, laptops and computer screens only. Consequently, 500 occupants 

are considered in the following since it enables reaching those appliances’ stabilization thresholds. 

Obtained BALP are shown in Figure 8. Similar trends to those of Figure 7, i.e. for buildings with 

100 occupants, are observed here when comparing different day types and different buildings 

types.  
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(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

Figure 8: Aggregated load profiles for 𝑛2= 500 occupants per day type (left: business day, center: vacation day, 

right: closing day) for building type 1 (a)-(c), building type 2 (d)-(f) and building type 3 (g)-(i) 

 

To compare the aggregated load profiles for different building occupancy numbers (𝑛 =

𝑛1 𝑎𝑛𝑑 𝑛 = 𝑛2), we calculated the difference between the normalized BALP for 𝑛1= 100 and 𝑛2= 

500 for the different buildings types and different day types. The use of normalized load profiles 

to calculate the difference enables the comparison of load profiles shapes only without considering 

the difference in loads base levels which also depend on the number of occupants and would 

obviously diverge with increasing occupancy contrary to what is expected for the load profile 

shape. Obtained results are shown in Figure 9. 
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(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 

Figure 9: Difference between the normalized aggregated load profiles for 𝑛1= 100 and 𝑛2= 500 occupants per 

day type (left: business day, center: vacation day, right: closing day) for building type 1 (a), building type 2 (b) 

and building type 3 (c) 

 

We clearly observe a non-negligible difference between building 1 and 2 BALP for n1 and n2 

occupants while the difference is much closer to zero for building type 3. We can conclude that 

the BALP does not stabilize for building 1 and 2 for 𝑛 = 𝑛1 while, by construction, we are sure 

for this stabilization for 𝑛 = 𝑛2. Consequently, to generate aggregated load curves for 𝑛 ≤ 𝑛𝑡ℎ,𝑚𝑎𝑥 
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for those two building types, a random sampling is recommended in order to account for the 

diversity of the appliance’s electric loads and the use of the stabilized BALP is not recommended. 

For building type 3, the very small difference between calculated BALP for 𝑛 = 𝑛1 and 𝑛 = 𝑛2 is 

because this building type’s aggregated load profile is dominated by heat generation equipment 

such as individual heaters which exhibit very small diversity since they are often operated 

continuously. Therefore, the diversity of typical office equipment load profiles which require a 

large number of appliances to observe BALP stabilization has less importance here. One should 

note that we do not account here for the obvious seasonal effect that will reduce heater usage 

during the summer and warm days. This third category of buildings can probably be distinguished 

from the other two in cold days when heating load is not negligible.  

On vacation and closing days for all building types, the normalized aggregated load profiles for 

both cases are quite similar or almost flat, which explains the very small difference between 

𝑛1=100 and 𝑛2 = 500. This is probably due the lower diversity of power demand during these 

days. Consequently, a simple strategy consisting in using a stabilized load profile multiplied by 

the number of occupants can be adopted for these day types which may be useful to simplify such 

data computational time and provide simple realistic input to building energy models.   

 

4. Conclusions 

We presented in this paper a study of aggregated plug load profiles in office buildings based on 

more than 6400 field-measured office appliances load profiles and a field survey with more than 

1000 responses from office buildings occupants in France to quantify the different appliance 

distributions in office buildings. First, we considered single appliance type aggregated load 

profiles. We showed that the aggregated load profile shapes stabilize for a number of aggregated 

appliances large enough and that the stabilization threshold depends on the appliance type. 
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Aggregated load profiles of individual appliances like desktop computers, laptops and screens are 

more likely to stabilize in buildings of a few hundred occupants, which enables the use of stabilized 

load profiles to simulate realistic plug load profiles for such buildings, while for other appliances, 

such as multifunction devices, the stabilization threshold is so high that its aggregated load profile 

is not likely to stabilize in a reasonably sized building. In this case, a random sampling of a specific 

number of appliance load profiles is more suitable for an aggregated load profile generation. This 

stabilization threshold is calculated and discussed for all considered appliances for the first time 

in the literature. These two main conclusions were then implemented in a tool for building-level 

aggregated plug load profile generation. The analysis of the survey results enables the definition 

of three buildings categories exhibiting different appliance distributions. We generated aggregated 

plug load profiles for these three building categories for different day types and sizes. We show 

different dependencies of the aggregated load profile shapes to the buildings sizes and day types 

which suggest different possible strategies for aggregated load profile generation to account for 

the diversity of appliances and the occupants’ behaviors. An important future step of the present 

research will be the validation of the generated load curves through field load curves monitoring 

for different buildings at the building level as well as the appliances stock level inside one specific 

building. This validation will require other measurement campaigns or open dataset of relevant 

data for cross validation. Obtained results might be useful for a large community of researchers 

and engineers interested in the energy consumption and load profiles of office buildings for various 

applications such as demand response, renewable energy generation systems sizing and energy 

efficiency. 
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7. Appendices 

7.1. Appendix A: Appliance / occupant ratio per appliance type for office 

buildings 
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To determine the different building types and their appliance per occupant ratios, an inquiry was conducted 

among 1033 participants. 109 different building profile types, based on a building’s workforce size, location 

and main activity, were represented in the responses. In order to identify a smaller (reasonable) number of 

typical building profiles, the k-means clustering algorithm was applied to the 109 building profiles. The 

key feature for cluster formation is  the appliance per occupant ratio for each appliance type. Indeed, it is 

the key information needed for our aggregated load curves generation algorithm. Four clusters were 

obtained, however, one of the fours clusters contained one single value. Therefore, only three clusters were 

conserved. As a result, three “typical” building types, as well as their appliance per occupant ratios were 

determined. The appliance per occupant ratios for each cluster is the average of the ratios of the individuals 

in the cluster. 

From the 109 building profiles, 47% are represented in building type 1, 44% in building type 2 and 9% in 

building type 3. 

 

Appliance Building type 1 Building type 2 Building type 3 

Computer screen 0.890965 0.207358 1.1675 

Desktop computer  0.608468 0.142564 0.840833 

Coffee machine 0.295835 0.246464 1.1325 

Laptop computer with 

one screen 

0.55412 0.912062 0.7725 

Individual heater 0.266988 0.200852 0.973333 

Multifunction device 0.181958 0.109208 0.291667 

Kettle 0.265219 0.270015 0.893333 

Table A1: Appliance per occupant ratios for each building type 

The following table summarizes the number of appliances per appliance type in a building with 

500 occupants. At 500 occupants, the stabilization threshold of computer screens, desktop 

computers, laptops with one screen and coffee machines are reached. Through further calculations, 
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to reach the stabilization threshold of all the appliances and for each building type, the office 

building must have 1 692 occupants. 

 

 

Appliance 

 

Stabilization 

threshold 

Number of appliances in a  

500 occupant building 

Building type 1 Building type 2 Building type 3 

Computer screen 32 445 104 584 

Desktop computer  43 304 71 420 

Coffee machine 417 148 123 566 

Laptop with one screen 127 277 456 386 

Individual heater 129 133 100 487 

Multifunction device 204 91 55 146 

Kettle 258 133 135 447 

Table A2: Number of appliances in a 500-occupant building 

 

7.2. Appendix B: Diversity factor stabilization for different appliances 

 

The following figure of diversity factors stabilization provides additional information with respect to 

other appliances not shown in Figure 4. 

 

  

(a) (b) 
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(e) (f) 

  

(g) (h) 
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(k) (l) 

  

(m) (n) 

Figure B1: Diversity factors for 𝜖 = 0.05(left) and 𝜖 = 0.10(right) for desktop computers (a)(b), laptops with 

one screen (c)(d), computer screens (e)(f), multifunction devices (g)(h), individual heaters (i)(j), coffee machines 

(k)(l) and kettles (m)(n)  
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7.3. Appendix C: Stabilization threshold and random sampling 

 

There is a significant gap between the stabilization thresholds of 𝜖 = 0.05 and 𝜖 = 0.10. To 

determine which 𝜖 had more uniform results, the stabilization thresholds for the 50 runs for each 

appliance and each 𝜖 were plotted in the following scatter plots.  

   

(a) (b) (c) 

   

(d) (e) (f) 

 

 

 

 (g)  

Figure C1: Dispersion of 𝑛𝑡ℎ for 𝜖 = 0.05and 𝜖 = 0.10 for desktop computers (a), laptops with one screen (b), 

screens (c), multifunction devices (d), individual heaters (e), coffee machines (f) and kettles (g) for 50 calculations  

 

For desktop computers, laptops with one screen, and screens, the diversity stabilization thresholds 

for 𝜖 = 0.10 show more uniform results, than for 𝜖 = 0.05. It is unclear which 𝜖 generates more 
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uniform results for individual heaters, multifunction devices, kettles and coffee machines. Since 

those appliances, either do not stabilize or their stabilization threshold is unrealistic, they can be 

disregarded. The diversity stabilization thresholds for 𝜖 = 0.10 will be considered. 

We show in table A3 the average and standard deviation of the stabilization threshold obtained for 

all appliances for 𝜖 = 0.05 and 𝜖 = 0.1. 

Appliance 
Stabilization threshold 

𝜇(𝜖 = 0.1) 𝜎(𝜖 = 0.1) 𝜇(𝜖 = 0.05) 𝜎(𝜖 = 0.05) 

Screen 31,7 23,0 92,8 61,3 

Desktop Computer 43,3 29,1 166,6 79,7 

Laptop 127,3 106,0 348,3 178,7 

Heater 128,6 102,1 367,9 155,1 

mfd 204,1 118,7 442,9 171,6 

Kettle 257,6 132,5 615,9 169,8 

Coffee maker 417,4 194,3 709,5 147,1 
Table A3 : stabilization threshold average and standard deviation for all appliances for 𝜖 = 0.05 and 𝜖 = 0.1. 

obtained after 50 runs for each appliance. 

7.4. Appendix D: Single Appliance type Aggregated Load Profiles 

 

The following figure of single appliance type aggregated load profiles is complementary to Figure 6. 

 

   

(a) (b) (c) 

   

(d) (e) (f) 
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(t) (u) (v) 

Figure D1: Aggregated load profiles at 𝑛𝑡ℎper day type (left: business day, center: vacation day, right: closing 

day) for desktop computers (a)-(c), laptops with one screen (d)-(f), computer screens (g)-(i), multifunction devices 

(j)-(l), individual heaters (m)-(o), coffee machines (p)-(s) and kettles (t)-(v) 

 

7.5. Appendix E: Representativity of the survey responses distribution with 

respect to office buildings stock in France 

 

The inquiry was conducted during 2018-2019 with office workers to determine different building 

profiles based on five parameters: the company’s main activity, workforce size, building location, 

employee status and whether or not the building was the head office. The inquiry had 1038 

participants in France. The participants were asked questions based on their workplace 

characteristics (main activity, size, location, etc.), work hours (work schedule, break times, etc.) 

and equipment types (office and personal equipment). 

The distribution of the work sectors in the inquiry responses were compared to that of the INSEE 

(National Institute of Statistics and Economic Studies)1 to determine if the data collected by the 

inquiry is representative of the main activities in office buildings in France. 

                                                
 
1 https://www.insee.fr/fr/statistiques/2569348?sommaire=2587886  
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Figure E1: Distribution of the work sectors according to the inquiry responses and the INSEE. 

 

At a first glance, the distributions are different. 92.1% of the present inquiry responses were mainly 

from people working in sectors where their main workplace is an office building. In the INSEE 

statistics, the same sectors represent 56.6% of the population. The inquiry mainly targeted office 

buildings occupants which explains the discrepancy. Since we are focusing in office buildings, the 

covered population is relevant for the present research and its diversity largely covers the main 

office buildings activities. 

 

7.6. Appendix F: Experimentally measured load profiles statistics and pre-

processing 

 

In this appendix, we provide additional information on the collected data statistics such as the 

location, size and workforce, the number of monitored appliances, the number of measurement 

days, etc. 
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We also provide additional information on the data pre-processing step described in section 2.2. 

In particular, we provide the thresholds used to clean data and remove the outliers from measured 

load profiles. 

 

7.7.1. Measured load profiles statistics 

 

Load profile measurements were carried out on three separate buildings in France, Paris 

Metropolitan Area. The measured load profile statistics and the characteristics of these buildings 

are detailed in the following table. 

 

Building Location Main activity  Number 

of 

occupants 

Area  

(m²) 

Number 

of 

monitore

d 

appliance

s 

Number of 

monitoring 

days 

B1 

 

Paris 

Metropol

itan area 

Education, 

research, public 

administration 

2500 30 000 45 236 

B2 

 

Paris 

Metropol

itan area 

Production and 

distribution of 

electricity, gas, 

steam and air 

conditioning 

 

44 1000 36 104 

B3 Paris 

Metropol

itan area 

Research and 

development, 

public 

administration 

636 48000 

(including 

exeperime

ntal 

facilities) 

32 427 

Table F1 : key information on the buildings where load profiles were measured and the statistics of measured load 
profiles. 

7.7.2. Pre-processing:  filtering and outliers removal 
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In the pre-processing stage, outliers in the load profile data were filtered out. These outliers are 

data points that exceed a power threshold considered as the maximum reachable load for each 

appliance. The thresholds are user-defined based on the observation of typical load profiles of the 

dataset and are provided in the following table: 

 

Appliance type Threshold load (W) 

Laptop 200 

Desktop computer 500 

Computer screen 60 

Multifunction 

device (printer) 

2500 

Laptop with 1 

screen 

300 

Coffee maker 2000 

Kettle 2500 

Personal heater 3000 
Table F2 : threshold for outliers detection per appliance type. 

 


