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ON SOME NEW RESULTS ON ANISOTROPIC SINGULAR PERTURBATIONS OF
SECOND-ORDER ELLIPTIC OPERATORS

DAVID MALTESE! AND CHOKRI OGABI?

Abstract. In this article, we deal with some problems involving a class of singularly perturbed elliptic
operators. We prove the asymptotic preserving of a general Galerkin method associated to a semilinear
problem. We use a particular Galerkin approximation to estimate the convergence rate on the whole
domain, for the linear problem. Finally, we study the asymptotic behavior of the semigroup generated.

2020 Mathematics Subject Classification. 35J15, 35B60, 35B25, 47D03.

1. INTRODUCTION

Anisotropic singular perturbations problems were introduced by Chipot in [1], these problems can model
diffusion phenomena when the diffusion parameters become small in certain directions. We refer the reader
to [2], [3], [4], [5], [6], [7], [8], [9], [10], [11] for several works on this topic. In this article, we will study some
new theoretical aspects which have not been studied before for these problems.

Let us consider the following perturbed elliptic problem

Blue) — div(AcVue) = f in Q, (1)

supplemented with the boundary condition

ue = 0 on 09Q. (2)
Here, Q = w; X wy where w; and wo are two bounded open sets of R? and RV ~4, with N > ¢ > 1, and f € L?(Q).
We denote by x = (z1,...,2n5) = (X1, X2) € R? x RN79 i.e. we split the coordinates into two parts. With this

notation we set
Vx
V = (0p,,....0.,)" = 1),
(Ousro00) = (5

where
VX, = (02ys 0 0x,)" and Vi, = (Bugyys oo Ory) "
The function A = (aij)1<ij<n : @ = My (R) satisfies the ellipticity assumptions
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e There exists A > 0 such that for a.e. z € Q
A€ > N|¢|? for any & € RV,
e The coefficients of A are bounded, that is
aij € L>(Q) for any (i,5) € {1,2,...., N}*.
We have decomposed A into four blocks
A A
A= (i &)

where Ajq, Ago are g x g and (N — q) X (N — ¢) matrices respectively. For e € (0, 1] we have set

2A €A
A, = €A1 12) '
<€A21 Ago

The function 8 : R — R satisfies the following conditions:
B is continuous and nondecreasing with 5(0) = 0.

IM >0:Vs €R,|B(s)| < M (1+]s]).
The weak formulation of problem (1)-(2) is

Jo Blue)pdx + [, AcVue - Vodr = [, f edx, Vo € Hy(Q)
ue € HE (),

where the existence and the uniqueness follow from assumptions (3 — 6). The limit problem is given by

B(u) — divx,(A22Vu) = f on Q,
supplemented with the boundary condition
u(X1,) =0 in dws, for X; € wy.

We introduce the functional space

H}(Qws) = {v € L*() such that Vx,v € L*(Q)V "7 and for a.e. X € wi,v(X1,") € Hy(wa)},

equipped with the norm [|[Vx, ()| ;2(q)~x—-q- Notice that this norm is equivalent to

1/2
(H<-)Hiz<m + IIVXQ<-)HL2<Q>M) )

thanks to Poincaré’s inequality

||U||L2(Q) < Coy HVX2’U||L2(Q)N*Q , for any v € Hy(Q;w2).

One can prove that H{ (€;ws) is a Hilbert space. The space Hg(£2) will be normed by IVl 2@y -

check immediately that the embedding H}(Q) — Hg (2, ws) is continuous.

(10)

One can



The weak formulation of the limit problem (8) — (9) is given by

S, B (X1, )WdXs + [, Asa(X1, ) Vx,u(X, ) - Vx,9dXo
= fw2 f(Xl, ) ’t/JdXQ, V’lﬁ S H&(wg) (11)
w(X1,-) € H} (ws), for a.e. X; € wy

This problem has been studied in [9], and the author proved the following (see Proposition 4 in the above
reference)

Theorem 1.1. Under assumptions (3), (4), (5) and (6) we have:
ue = u in L*(Q), eVx,uc — 0 in L*(Q)? and Vx,u. — Vx,u in L2(Q)N "1

where e is the unique solution to (7) in H}(Q) and u is the unique solution to (11) in HJ(2;ws).

Remark that for ¢ € H(;ws), and for a.e X; in wy; we have ¢(X1,-) € H(ws). By testing with ¢(X7, )
in (11) and by integrating over w; we get

Bu)pdx —|—/ ApVx,u-Vx,pdr = / [ pdx, Yo € H} (9 ws). (12)
Q Q Q

This paper is organized as follows:

e As a first main result, we will prove the asymptotic preserving of the general Galerkin method for the
elliptic problem (1)-(2). This concept has been introduced by S. Jin in [12] and it could be illustrated
by the following commutative diagram

P;ﬂ) Pﬁ

€n
eﬁOl leﬂO
Pn n— 00 PO

here, P, is the Galerkin approximation of the infinite dimensional perturbed problem P, and P, is
the Galerkin approximation of the infinite dimensional limit problem P;. We will derive an estimation
of the error for a general Galerkin method, and by using a Céa type lemmas we prove the asymptotic-
preserving of the method.

e As a second main result, we will prove, in the linear case, a new result on the estimation of the global
convergence rate, such a result is of the form [|Vx,(ue — )|/ 2(qn-s < Ce. This estimation is an
improvement of the local one proved by Chipot and Guesmia in [3]. Our arguments are based on the
use of a particular Galerkin approximation constructed by a tensor product.

e In section 4, we will prove our third main result on the asymptotic behavior of the semigroup generated
by the perturbed elliptic operator div(A.V-), and we will give a simple application to linear parabolic
problems.

Finally, to make the paper readable, we put some intermediate technical lemmas in the appendix.

2. MAIN THEOREMS FOR THE ELLIPTIC PROBLEM

Definition 2.1. Let (V,,) be a sequence of finite dimensional subspaces of a Hilbert space H. We say that (V)
approximates H, if for every w € H.

inf [[w—wv||; — 0 asn — oc.
evﬂ



For a sequence (V,,) of a finite dimensional spaces of H}(Q), and for every € € (0,1] and n € N, we denote
Ue,n, the unique solution of

{ Jo Blten)pdr + [ AcVuern - Vodr = [ f pdx, Vo € V. (13)
Uen € Vi
We suppose that

Oz 055 € L(Q), 04,055 € L=(Q) fori=1,...,qand j =¢+1,...,N. (14)

We have the following:

Theorem 2.2. Let Q = wy X wy where wy and wy are two bounded open sets of R? and RN 9 respectively, with
N > q > 1. Suppose that f € L*(Q2) and assume (3),(4),(5), (6), and (14). Let (V,,) be a sequence of finite
dimensional spaces of Hg () which approzimates it in the sense of Definition 2.1. Let (uc.) be the sequence of
solutions of (13) then we have:

lim(limu, ,) = lim(limu, ,,) = u, in Hy(;ws),

. n
where u is the unique solution of (11) in HJ(%;ws).
Our second result concerns the estimation of the rate of convergence for problem (7) in the linear case, this
result could be seen as a refinement of the following result proved in [3] :
Vw] CC wy open : |V, (ue — u)||L2(w,1Xw2) =0O(e), and ||Vx, (ue — u)||L2(w1Xw2) =0(1). (15)
In the above reference, the authors have supposed that

Vx, f e L)Y, (16)

assumption (14), and that Vx, Ass € L>°(£2). Our contribution consists in extending (15) to the whole domain
), to obtain such a result we take some additional hypothesis on A and f, namely:

For a.e. Xo € wy: f(+, Xa) € H}(w1), (17)

and
The block Ay depends only on Xs. (18)

Theorem 2.3. Let Q = w; X wo where wy and wy are two bounded open sets of RY and RN~ respectively, with
N > q > 1. Suppose that 3 =0, and let us assume that A satisfies (3), (4), (14) and (18). Let f € L*(Q) such
that (16) and (17), then there exists C > 0 depending on f, A, Cy, and A such that:

Ve € (0,1] ¢ [[Vxa (e — )| ooy < Ce,

where u. is the unique solution of (7) in H}(Y) and u is the unique solution to (11) in H}(Q;ws). Moreover,
we have:

u € HY(Q) and Vx, (uc —u) — 0 weakly in L*(2)?, as € — 0.
The constant C'is of the form Cy[|Vx, f 2y + C2 ||l 12(q) where C1, C2 are dependent on A, A, C,.

The proof of this theorem will be done in two steps. First, we give the proof in the case f € H}(w1)® Hg (w2),
and next that we conclude by a density argument. Let us recall this density rule, which will be used throughout
this article: If (E,7) and (F,7’) are two topological spaces such that E C F, and E is dense in F and the
canonical injection E — F is continuous, then every dense subset in (E, 7) is dense in (F,7').
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Remark 2.4. The hypothesis (17) is necessary to obtain the global boundedness of V x, (ue — u). We can observe
that through this 2d example, we take

A =idy, [ (x1,22) — cos(z1)sin(z2), and Q = (0,7) x (0, 7).

In this case, we have u(x1,z2) = cos(z1)sin(xz). The quantity ||Vx,(ue —u)llp2(qy. could not be bounded.

Indeed, if we suppose the converse then according to Theorem 1.1 there exists a subsequence still labeled (u.)
such that Vx, (ue —u) — 0 weakly in L*(Q)?, and ||V x, (ue — W)l 2 -0 — 0. Whence u € HY(Q) which is a
contradiction.

Let us finish by giving this remark which will be used later in section 4.

Remark 2.5. Suppose that 5 : s — us, for some p > 0, and suppose that assumptions of Theorem 2.3 hold,
then we have the same results of Theorem 2.3 with the same constants. Assume, in addition, that the block Aqo
satisfies the following:

020,005 € LX), fori=1,..,q,j=q+1,..,N, (19)

then we have:
€
Ve € (Oa 1] : HVX2(UE - U)”L?(Q)Nw < ; (Oi ||VX1f||L2(Q)q + Cé ||fHL2(Q)> )
where C1,CY are only dependent on A, \, Cy,.

3. THE ANALYSIS OF A GENERAL (GALERKIN METHOD

3.1. Preliminaries
Let V C H3(Q) be a closed subspace of H} (€, w2). Notice that V' is closed in H{}(€2), thanks to the continuous
embedding Hg(Q) — H(Q,w2). Let f € L*(Q), we denote by uc,v,s the unique solution of

fﬂ Buev,5)pde + fQ ANVucv,s - Vodr = fQ fode,Np eV (20)
Ue,V,f € V.

We denote by uy, s the unique solution of

{ Jo Bluv,p)edr + [ AoV x,uv s - Vx,pde = [ f pde, Yo e V (21)
uy,f € V.

Under assumptions of Theorem 1.1, one can prove by using the Schauder fixed point theorem that u. v, ¢ exists.
For the existence of uy, s see Appendix C. The uniqueness, for the two problems, follows immediately from (3)
and (5). Now, let us begin by some preliminary lemmas

Lemma 3.1. Under assumptions of Theorem 1.1 and for any € € (0, 1], we have the following bounds:

Co ||f||L2 Q CQHf”m Q
IVuevsll 2y < T() and [|Vue gl 2y < T() (22)
Coon 1l 2202 Coon 1l 2202
Hvxguv,f”Lz(Q)qu S %()7 and ||VX2ufHL2(Q)N—q S = 0 b\ ( ) (23)

M 1 Gl e M + o Callfll e
15e vz < = <|Q|2 + f() cand ||8(ue,)l ) < 5 | 1917 + fﬁ L (24)



Co If L2 Cz, |f||L2(Q)> (25)

HB(“V,f)HLz(Q) <M <|Q|§ + f) ,and HB(uf)||L2(Q) <M <|Q|E + b\

Here, Cq is the Poincaré constant of Q, and u. s, us are the unique solutions of (7) and (11) respectively.

Proof. These bounds follow easily from a suitable choice of the test functions, monotonicity and ellipticity as-
sumptions. Let us prove, for example, the second inequality in (23) and the second inequality in (25). According
to Theorem 1.1 one can take ¢ = uy in (12), using ellipticity assumption and the fact that [, B(us)usdz >0

(thanks to (5)) we obtain
/\/ |Vx2uf|2d:17§/f updx.
Q Q

By the Cauchy-Schwarz inequality and Poincaré’s inequality (10), we obtain the second inequality of (23). Now,
by using assumption (6), we obtain

Bup)[* < M? (1+ |ug)®.
Integrating over Q and applying Minkowski inequality, (10), and (23) we obtain the second inequality of (25). O

By using the above lemma, one can prove the following Céa type lemma

Lemma 3.2. Under assumptions of Theorem 1.1 we have:

1
2

IV s = )y < Coca (06 195,00 = w5z ) (26)
and for any € € (0,1]:
o, 3
IV (uev,p — e )2y < =52 | inf V(0 —uep)llL2@n ) (27)
€ veV
where
1 1 G2 2Cu, | £l 2
2. =~ |2Mmc,, |19/ + Zwa W) ) ||A22HLOO(Q)27L(“) :
A A A
and
1 i+ G 2Co || f||
oL, = X 2MCq (|Q|é + pr(m + HA”L"O(Q)%%Q) :

Proof. The proofs of these two inequalities are similar. So, let us prove the first one. Using the Galerkin
orthogonality one has, for v € V :

/Q (Buv,g) = Blug))(uv,f = up)de + AV, (uv,f = up)|72qyn—a

< / (Bluv,g) — Blug))(v — ug)da + /QAzzvx2<uv.,f—uf>-vx2<v—uf>dz.

Using the fact that [, (8(uv,f) — B(ug))(uy,f —ug)dx > 0, then by Cauchy-Schwarz and Poincaré’s inequalities
we derive

MV, (wy g = up) | F2@yv-a < [Cm 18(uv,£) = Bug)ll 2y + [[A22]l oo (@) IV, (wrvr = Uf)||L2(sz)N—q}

X |V, (v —up)| 2 )n—a-



Now, by using (23), (25) and the triangle inequality we obtain

IV, (uvy — “f)”%mz)N—q <

CZ, Il L2 @) Con 1£1l 20

2 | MC., (|Q|E+f>+|x422nmmf X 1Vx, 0 = up) L p2(pv—o,

and (26) follows. O

Remark 3.3. 1) If B =0 (the linear case), then we have for any e € (0,1] :

Al Lo () .
[Vue,v,r — Ve gl 2@y < e Ulg‘f/ Vo = Vue ¢l L2@yn -
| A2zl .
IVx,uviy = Vayupllipzopy-a < ———— ©@ Inf [Vx,v = Vayugllrapv-a.

2) If B is Lipschitz, then we can obtain estimations similar to those of the linear case.

3.2. Error estimates in the Galerkin method

Lemma 3.4. Under assumptions of Theorem 1.1, suppose in addition that (14) holds, then we have for every
e€ (0,1]:

1V (e, = vl aqyn-a < € (CLIVx v fll oy + Co Il oy )

and )
||VX1 (Ue,Vyf _ UV)f)HLQ(Q)q < ﬁ (Ol ||vX1uV>fHL2(Q)q + Cy Hf”p(m) s

where )
4(C+C")\? 2v/C"C,,
C1 = (7)\ ) and Cy = e 2.
Here, C,C", and C" are given by (29), (31) and (32). Notice that these constants are independent of €,V and f.

Proof. By subtracting (21) from (20) we get, for every v € V :

/(5(ue,v,f) — B(uv,y))vdz + 62/ AnVxuev,s - Vxvde
Q Q
+ 6/ A12VX2’U,57VJ . VledI + 6/ A21VX1’U,57VJ . VX21)dI
Q Q
+ / A2V x, (uev,f —uv,s) - Vx,vdr =0,
Q

Testing with v = u. v,y — uy,f, we obtain

/ (Bue,v,p) = Buv,p))(uev,r — uv,p)dr + / ANV (ue, v, —uv,g) - V(uev,r — uv,z)
Q Q
= —62/ AV, uv,p - Vi, (uev,f — uy,f)dr — 6/ A2V x,uv,p - Vi, (e, s — uv,p)de
Q Q

- 6/ AnVx,uv s Vx,(Ue v,y — uv,r)dz.
Q
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whence, by using (5) and the ellipticity assumption we get

62>\/ Vi, (ue,v,p — wvg))? do + /\/ IV, (wev,p — uv,g)| do <
Q Q
- 62/ AuVx,uv - Vi, (uev,s — uy,f)de — 6/ A1V x,uv,p - Vx, (e, s — uv,f)d
Q Q

—¢e [ AnVx,uv - Vx,(uev,s — uy,s)dr.
Q

Let us estimate the first and the last term of the second member in the above inequality. By using Young’s
inequality we obtain

— 62/ AnVx,uy - Vx, (e v,y —uy,p)de
Q

€2\ ||A11||ioo Q
< 7/ Vi, (ue,v,p — wyvp)) do + GQT()/ |V x,uvg|” de,
Q Q

and

a E/ A1 Vx,uv,p - Vi, (uev,f — uy,p)dx
Q
A1 17 < (o A
<@ )/|VX1UV-,f|2dCC+—/ IV, (ue,v, g — uv.p)|” de,
2\ Q 2 Q

thus

62)\ 2 )\ 2
5 IV (e iy = uvip)lie ) + 5 1Vxa (ueviy = uvip)lle )

2
< 062/ IVx,uvy| dﬂf—e/ A12Vx,uvp - Vi, (Uev,f — uv,f)dz,
Q Q

(28)

where

14211700 (0 + [ 411117 0

C= . 29

) (29)

Now, we estimate —e [, A1aVx,uv,s - Vx, (Ue,v,f — uv,)dz. Since ucv,p —uy,y € Hj(Q) and 9,,a:5 € L>(1),

Og,0i5 € L>(Q) fori =1,...,qg and j = ¢+ 1,..., N, (assumption (14)) then we can show by a simple density
argument that for i = 1,...,qand j =q+1,...., N, 9y, (aij (ue,v,f —uv,f)) € L*(Q) and:

Oy (aij(ue v,f —uv ) = (Ue,v,f — uv,f)0z, i + aijO, (uev,f — uv,y), for k=1,7).



Whence
q N
—5/AlequV,f'le(ue,Vyf—UV,f)dI = —EZ Z /aijax].uV_’fazi(uéyvﬁf—’U,V_’f)dCC
Q2 i=1 j=q+17¢
q N
= =3 > [ Oy — w0, v da
i=1 j=q+17%
q N
ey Y /(ue,v,f—uv,f)awiaijawjuv,fdw
i=1 j=q+1 7%
q N
= ) > /azj(aij(ue,VJ_UVJ'))aIiUVJ'dI
i=1 j=q+17
q N
=y /(Ue,V,f_UV,f)aziaijazjuV,fdxa
i=1 j=q+1 7

where we have used [, 9z, (aij(te,v,f — wv,f))0r, uy,pdx = [ Or, (as; (e, v,y — uv,f))0z, uy, pdz which follows by
a simple density argument (recall that uy, € Hg(Q2)). Therefore

q N

—e [ AuVx,uvs -V (ugvg —uvyp)de = —ey > /(ue,v,f—uv,f)azjaijamuv,fdw (30)
“ =1 j=q+1

q N

3" S [ an ey — wrg)n i
i=1 j=q+1”%
q N

#eD B [ s~ 0nadn v
i=1 j=q+17

By Young’s and Poincaré’s inequalities we obtain

A
— E/ A12VX2UVJ' . VXl ('UJE,V,f — UV)f)d:Z? S Z/ |VX2 ('UJE,V,f — UV)f)|2 dx
Q Q

—I—C/EQ/ |VX1uV7f|2dCC+O//€2/ |VX2UV)j'|2d:Z?,
Q Q

where
2 2
, [Cw21<i<quli)1(<j<zv 19z @i o ) (N = q)] +3 (1<i<q{gli§<j<N @]l oo () (IV = Q)>
“- A (31)
and
2
3190 max O, i || o ]
c" = [ *1<i<qq+1<j<N | il ' )

A
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By using (23) we obtain

- 6/ A1aVx,uvp - Vi, (uev,y —uv,f)de <
Q

2
A Con I
- / |VX2 (ue)vj - uv7f)|2 dx + 0/62/ |VX1uV7f|2 dx + 620// M .
4 Ja Q A
(33)
Combining (28) and (33) we get
62)\ 2 A 2
- IVxa(ueviy —uvip)lleiya + 7 11Vxa (ue v = uvip) 2 gy
2
Cu
§€2 (C+C/)/ |leuV7f|2 d(E—f—C” (M) ,
Q
and the proof is finished. O

Using the triangle inequality, the above Lemma and (26) we obtain the following estimation of the global
error between u. v, ; and uy.

Corollary 3.5. Under assumptions of Lemma 3.4 we have for any e € (0,1] :

[ME

IVx, (tevr = up)ll p2iqynv-a S € (01 IVx,uv sl p2iqy + C2 ”fHL?(Q)) + Ceéa (1}161{; IV, (v — Uf)HL?(Q)Nq)

Now, we give an important remark which will be used to prove the inequality given in Remark 2.5 .

Remark 3.6. When B(s) = us for some p > 0 and when the block A1 satisfies assumption (19), then by
performing some integration by parts in the last term of (30), and by using the fact that

||uV7fHL2(Q) < ||f||L2(Q) )

==

we can obtain the following estimation:

O/
Ve € (0,1] ¢ ||V, (ue,vp — uV-,f)”Lz(Q)N—q Se (O{ ||VX1UV,J"HL2(Q)q + 72 ||f||L2(Q)) ’

where C7, C4 > 0 are independent of f, V, u and e.

3.3. Proof of Theorem 2.2

Let (V,,) be a sequence of finite dimensional subspaces which approximates H}(2) in the sense of Definition
2.1. Using the density of H}(Q) in HJ(2,w2) (Lemma A.1, Appendix A), one can check easily that (V},)
approximates H}(€,ws) in the same sense. Therefore, one has:

For every € € (0,1] : 16n‘£ V(v — e )l 2@~ — 0asn — oo, (34)



and

vien‘ﬁn ||VX2 (’U - ’U,f)”Lz(Q)N—q — 0 as n — oo.

According to Lemma 3.4, (26) and (27) we have, for every n € N and € € (0,1] :

||VX2 (ue,Vnﬁf - ume)”[ﬁ(Q)Nw <e (Ol ||VX1UVn,f||L2(Q)q + O ||f||L2(Q)) s

2

1V x, (UVn,f - Uf)HLz(Q)N—q < Ceéa <vien\£ 1V x,(v— Uf)||L2(Q)NQ> )

and

Nl=

/

Océa :
IV (ue,v,p = te f)ll L2y~ < €2 <Je“vf V(v — Ue,f)||L2(sz)N)

e Fix € and pass to the limit in (38) by using (34), we get

Ue v, f — Uep @S0 — 00 in HE(Q),
in particular, by using the continuous embedding Hg () — HE(Q,ws2) we deduce
Ue v, f — Ue,p a8 1 — 00 in HY(Q, wa).
Now, passing to the limit as € — 0 by using Theorem 1.1, we get
lim(liinueymf) =uy in Hy(Q,ws).
e Fix n and passe to the limit as ¢ — 0 in (36), we get
Uey,.; — Uy, ;as e — 0in Hy(Q,ws).
Now, passing to the limit as n — oo in (37) by using (35), we get
lim(lilefnueymf) =uy in Hy(Q,ws).
Finally, Theorem 2.2 follows from (39) and (40).

3.4. Proof of Theorem 2.3

11

Throughout this subsection, we will suppose that 5 = 0. The key of the proof of Theorem 2.3 is based on

the control of the quantity ||Vx, uv,f[|2q), independently of V. In fact, we need the following:

Lemma 3.7. Let us assume that A satisfies (3), (4), and that Asz satisfies (18). Let Vi and Va be two finite
dimensional subspaces of H}(w1) and H}(ws) respectively. Let f € Vi @ Va, and let uy, s be the unique solution

mV =V,®V;, to:
/ AQQ(XQ)VXZUVJ : VXQ’UCLT = / f’l)d!E, Yo eV ® Vs,
Q Q
then we have:
IVxiuv. il ey < Cs VX fllL2 e s

where C3 is given by C3 = @.

(41)
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Proof. The proof is based on the difference quotient method (see for instance [13] page 168). Let v = o ® ¢ €

V1®@Vs. The function X — fm Ao (X2)Vx,uy, (X1, X2) - Vx,0dXs belongs to Vi. Infact uy,p = >, ©; @,
finite

and whence fm Ao (X2)Vx,uv, 5 Vx,dXs is a linear combination of ¢;, thanks to the linearity of the integral.

Similarly, the function X; — wa f(X1, X2)1dXs belongs to Vi. Now, testing with v in (41), we derive:

/ ( {A22(X2)Vx,uv, s - Vx,00 — fo} dXz) wdX; =0,

thus, when ¢ run through a set of an orthogonal basis of the euclidean space Vi equipped with the L?(w;)—scalar
product, one can deduce that for a.e. X1 € wy :

/ As(X2)V xyuy (X1, Xz) - Vi, hd Xz — / (X1, Xo)$dXa, Vb € Vi,

Now, fix ¢ € {1,...,q}. Let wj CC wy open, for any 0 < h < d(w},0w1) and for any (X1, X2) € w] X wy we
denote Tpuv, ¢(z) = uy, f(x1, .7 + h, ..., x4, X2). According to the above equality, we get for a.e. X; € w| and
for every ¢ € V5 :

/ A (X2)V x, {mhuv, (X1, X2) —uv, f (X1, X2)} Vx,0d Xy = / {mnf(X1, Xo) — f( X1, X2)} ¥dXs.

w2

For every w € Vi1 ® Va, and for every X; fixed the function w(Xi,-) belongs to Vi, so one can take ¢ =
Thuy, (X1,-) — uy,r(X1,-) as a test function in the above equality. Therefore, by using the Cauchy-Schwarz
inequality, the ellipticity assumption, and Poincaré’s inequality (10), we obtain:

Cy
mnuv,p (X1, ) — uy, (X1, )]? dXy < )\—22/ I f (X1,) — f(X1, ) dXo.
w2 w2

Now, integrating the above inequality over wj, yields

C4
/ [Thuv,y — uyg|* do < =22 / i f — fI da.
Wi Xwa A W] Xw2

Since Vx, f € L*(2)?, then

Finally, we obtain

2
ThUV,f — UV, f Qda: < O:l)z ||VX1f||L2(Q)q
h = ¥ '

[t = e < 19 e
W Xwa
Therefore

2

/w w
1 Xwa2
w2

||Dﬂﬂz'uV7fHL2(Q) < T ”lefHL?(Q)q )
and hence

IVx,wv sl 2oy < Cs IV fll L2y s

2
with C3 = —\/qfwz . .
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Remark 3.8. We have a similar result when (41) is replaced by

lu//uv,fvdz‘F/AQQ(XQ)VX2UV)J‘"VX2'UCZ$:/f’de, Yo eV ® Vs,
Q Q Q

where p > 0. In this case, we obtain the following:

q
IV s, lgsan < L2195, g

Now, we can refine the estimations of Lemma 3.4 as follows

Lemma 3.9. Under assumptions of Lemmas 3./ and 3.7 we have:

||VX2U5,V,f - szufHLz(Q)N—q <e (0103 ||VX1f||L2(Q)q +Co ||f||L2(Q))

A2l L) .
L IV y = Vi ugll oy

and

1
IVste: sz < 75 (G108 IV aagane + Co I fliaey) + oIV g
Proof. We have
||VX2UJE,V,f - VX2UJJ"||L2(Q)N7q < ||VX2U€1V7f - szuV,fHL?(Q)qu + ||VX2UV,J" - VX2uf||L2(Q)N*q .

By using Lemma 3.4 and Lemma 3.7 we obtain that

IVx,tev,r = Vaouvigll pogn-a <€ (0103 IVx, fll L2y + C2 ||f||L2(Q)> :

and by using Remark 3.3, we deduce

A oo
[A2llreey Vo0 = Vi upllp2)v—a.

||VX2uV,f - VX2uf||L2(Q)N*q - A vEVI®V2

By using the above inequalities, we get the expected result. The second inequality follows from the triangle
inequality and Lemmas 3.4 and 3.7. O

Remark 3.10. Let 5(s) = us, for a certain u > 0. Under assumptions of the above Lemma and (19) we obtain,
by combining Remarks 3.6 and 3.8, the estimation:

€
Ve € (0,102 1V (e = vy < = (VAL IV Fllzaqays + Ch Loy )

Now, we are able to give the first convergence result

Lemma 3.11. Suppose that assumptions of Lemmas 3.4 and 3.7 hold. Let f € Hg(w1)® HE(w2), then we have
for any € € (0,1]:

IV x5 ue s — VX2UJ"||L2(Q)N—q Se (0103 ||VX1f||L2(Q)q + C2 ||f||L2(Q)) )

and

1
IVxitefll 2y < 7 (0103 IVx, fll L2y + C2 ||f||L2(Q)) + C3 |V, fllp2 (o -
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Proof. Let (Vn(l))nzo and (Vn(z))nzo be two nondecreasing sequences of finite dimensional subspaces of H}(w1)

and H}(ws2) respectively, such that UV and UV,? are dense in H}(w1) and Hg(wq) respectively, and such

that f € Vo(l) ® V0(2), such sequences always exit. Indeed, let {e(-l)} N and {egz)} N be Hilbert bases of
ic i€

K2

H}(w1) and H}(w2) respectively, then Unzospan(e(gl), ...,e,(zl)) and Unzospan(eéz), ...,67(12)) are dense in H{ (w1)
and H}(ws) respectively, in the other hand we have f = > fi(l) X fi(2) for some m € N and fl-(l) € Hi(w),
i=0

f-(z) € H}(ws) for i =0, ...,m, then we set, for every n € N :

K2

v = span(eél), €

vV .= span(eéz), o€

—

1)7 fO(l)v ceey f7(r%))7
2)7 f0(2)7 ey fg))
Now, since f belongs to each Vn(l) ® V752) then according to Lemma 3.9 one has, for every € € (0,1], n € N :

3

—

S

IVttt = Vatigll ooy < € (CLC3 IV x L agaye + C2 Il ey )

||A22||L°°(Q) .
+ . Vv = Viugll e

where V,, = Vé” ® Vn(2). According to Corollary A.5 in Appendix A, UnZO(Vn(l) ® Vn(2)) is dense in H}(Q).

Using the fact that the sequence (V,,)n>0 is nondecreasing, then we obtain that

Ve € (0,1]: lim inf [[Vv — Vue g L2~ =0,

n—00 vEV,
and therefore, by using (27) we get

Ve (0,1): Tim [[Vuev, ;= Ve g2~ =0,
and thus

vee (0,1): Tm [[Va,uev, r = Vaxguefllz@n-a = 0, and lim [[Vx,ue v, f = Vixyue fll2@)e = 0.

Using the fact that HJ(2) is dense in H}(Q,w2) (Lemma A.1, Appendix A) and that the embedding H}(Q) —
HL(S, ws) is continuous then U, o(ViiY @ Vi) is dense in HE(2, ws). Using the fact that the sequence (Vi )n>o
is nondecreasing, then we obtain that

Aim inf IV, v = Vool 2 @yw— = 0-

Now, passing to the limit, as n — 0o, in the above inequality we deduce
Ve € (0,1] : [[Vixytie, f — VXptgll p2gyn— S € (0103 VX, fll L2y + C2 ||f||L2(Q)> :

Finally, by using the second inequality of Lemma 3.9 we get
1
V2

and the passage to limit as n — oo shows the second estimation of the lemma. ([

Ve e (0,1]: ||VX1U6,Vn,f||L2(Q)q < (0103 ||VX1f||L2(Q)q + C2 ||f||L2(Q)) +Cs ||VX1f||L2(Q)q )
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Now, we are able to give the proof of Theorem 2.3. Let us introduce the space
Hj(Qw1) = {v € L*(2) such that Vx,v € L*(Q2)? and for a.e. X5 € wa,v(,X2) € Hy(w1)},

normed by the Hilbertian norm ||V, ()|l z2(q)y. - We have the Poincare’s inequality
ol sy < Con 95,0l g Tor amy v € H3(Q:c00) (12)

Let f € L*(Q) such that (16) and (17), thus f € H(;w1). According to Lemma A.3 of Appendix A
H}(w1) ® HY (wa) is dense in H}(Q), and according to Remark A.2 of Appendix A H}(Q) is dense in H}(Q;w1),
then it follows that H}(w1) ® Hi(we) is dense in HJ(2;w;), thanks to the continuous embedding H{ () —
HY(Q;w1). Therefore, for § > 0 there exists gs € Hg(w1) ® HE(w2) such that

IVx, (f = g6)||L2(Q)q <. (43)

Let we g, be the unique solution of (7) with f replaced by gs. Testing with u, 5 — ue g, in the difference of the
weak formulations (recall that 8 = 0)

/ AV (Ue,f = Ue,g;) - Vipdz = / (f — gs)pdx, Vo € Hy (),
Q Q

we obtain

Co, Cy Cu,Cu
%6, and [|Vx, te,r — Vx, e gsll 20 < —3 0,

||szu6,f - szué,gs”Lz(Q)N—q < < e

where we have used the ellipticity assumption, Poincaré’s inequalities (10), (42), and (43). By passing to the
limit as € — 0 in the first inequality above, using Theorem 1.1, we get

Cu, Co,

0.
A

IVx,ur — Vix,ug, ||L2(Q)N—q <
Applying Lemma 3.11 on u¢ 4; and ug, we obtain
IV x,te,gs — VXz“gaHLz(Q)N—q <€ (ClCS ||VX195||L2(Q)q +Cy ||g6||L2(Q)> g
and from (43) we derive
IVx,te,gs = Vixotgsll pogyv-a <€ (0103(||Vxlf||m(sz)q +6)+C2 ||g5||L2(Q)) :

Notice that ||gs|z2(q) = Ifllz2(q) @s 6 = 0, thanks to (43) and Poincaré’s inéquality (42). Finally, the triangle
inequality gives

||Vque,f - VXszHLz(Q)N—q < HVX2UEJ' - VX2u5796||L2(Q)N*q

TVt gs = Vo tgs |2 gyv—a + I Vxatigs = Vo ugllp2g)v-a
Cuw, Cu,
A

< (G Hlagape +0) + Ca lgsll oy ) +2 5.
Passing to the limit as § — 0 we obtain

||VX2Ue,f - VX2“J"||L2(Q)N—q <e (0103 ||VX1f||L2(Q)q +Co ||f||L2(Q)) )
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which is the estimation given in Theorem 2.3.
For the estimation in the first direction, we have

Ve € (0,1] : ||VX1u67fHL2(Q)q < ||VX1u6,f - le“‘@QéH[P(Q)Q + HVXIUE;QSHL?(Q)Q

Cu, Cu 1
< D254 (GG IV sl + Ca lsslliaay) + Co IV xs86l e
where we have applied the triangle inequality and Lemma 3.11. Passing to the limit as 6 — 0 by using (43), we
obtain

1
ﬁ

Hence, passing to the limit in L?(Q2) — weak as e — 0, up to a subsequence, we show that us belongs to H} (),
and by a contradiction argument, using the metrizability (for the weak topology) of weakly compact subsets
in separable Hilbert spaces, one can show that the global sequence (Vx, ue r)e converges weakly to Vx, us in
L?(Q)9, and this completes the proof of Theorem 2.3.

Ve e (0,1]: ||VX1u57fHL2(Q)q < (0103 HVXLfHL?(Q)q + Oy ||f||L2(Q)) +Cs ||VX1fHL2(Q)q :

Remark 3.12. In the case B(s) = ps with p > 0, we repeat the same arguments of this subsection by using
Remark 3.10, and then we obtain the estimation of Remark 2.5.

4. ANISOTROPIC PERTURBATIONS OF SEMIGROUPS

4.1. Preliminaries

For the standard basic theory of semigroups of bounded linear operators, we refer the reader to [14]. Let us
begin by some reminders. Let E be a real Banach space. An unbounded linear operator A : D(A) CE — E
is said to be closed if for every sequence (z,) of D(A) such that (z,) and (A(z,)) converge in E, we have
limz, € D(A) and lim A(z,,) = A(lim z,,). An operator is said to be densely defined on E if its domain D(A)
is dense in F. Let 1 € R, we said that p belongs to the resolvent set of A if (ul — A) : D(A) —E is one-to-one
and onto and such that R, = (ul — A" : E = D(A) CE is a bounded operator on E. Notice that R, and
A commute on D(A), that is Vo € D(A) : R, Az = AR, x. Let A be a densely defined closed operator. The
bounded operator

Ay = pA(pl — A)" = pAR, = i’ Ry, — pl,
is called the Yosida approximation of A. We check immediately that A, and A commute on D(A) that is for
every z € D(A) we have A,z € D(A) and AA,x = A, Az. Furthermore, since A is closed then e'“» and A
commute on D(A), that is

Vt € R,V € D(A), e 2 € D(A), (44)
and
Aethig = etAn Az = Z H(A#)kAxv
k=0

indeed, we can check by induction that if z € D(A) then (A, )"z € D(A), and that (A,)* and A commute on
D(A). Recall also that if (uI —.A)~" exists for x> 0 and such that H(ul - A)le < i then
et‘qu“

YVt Z 0: ||€t'A“H = X Hefﬂtlu S et#QHRu” X e*,u‘t S 17

where ||-|| is the operator norm of L(E). A Cp semigroup of bounded linear operators on F is a family of
bounded operators (S(t))i>0 of L(E) such that: S(0) = I, for every ¢t,s > 0 : S(t +s) = S(¢)S(s), and
for every x € E : ||S(t)x — x|z — 0 as t — 0. (S(t))t>0 is called a semigroup of contractions if for every
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t>0:]5(t)|z <1. Now, let us recall the well-known Hill-Yosida theorem in its Hilbertian (real) version: An
unbounded operator A is the infinitesimal generator of a Cy semigroup of contractions (S(t)):>o if and only if A
is maximal dissipative, that is when ul — A is surjective for every p > 0 and for every x € D(A ) : (Ax,z) <0.
Recall that, in this case D(A ) is dense and A is closed and its resolvent set contains ]0, +o0o[. Furthermore, for
every t > 0, eA» converges, in the strong operator topology, to S(t), as u — 400 i.e. Vo € E : etvx — S(t)z
in B as 4 — 4o00.

Let  as in the introduction. The basic Hilbert space in the sequel is E = L?(2). For € € (0, 1], we introduce
the operator A, acting on L?(Q) and given by the formula

Acu = div(AVu),
where A, is given as in the introduction of this paper. The domain of A, is given by
D(A.) = {u € H}(Q) | div(A.Vu) € L*(Q)},
where div(A.Vu) € L?() is taken in the distributional sense. Now, we introduce the operator Ay defined on
D(Ap) = {u € Hj(Qws) | divx, (A2Vx,u) € L*(Q)},

by the formula

.Ao’u = diVX2 (AQQVXz u)
We check immediately, by using assumptions (3—4), that A, and Ay are maximal dissipative and therefore, they
are the infinitesimal generators of Cj semigroups of contractions on L?(Q), denoted (Se(t)),~, and (So(t)),s¢
respectively. For y > 0 we denote by R. , the resolvent of A.. Similarly, we denote by Ry, the resolvent of Ay.
For f € L*(2), we denote u, , the unique solution in Hj () to

u/ Ue, 1 pdT —|—/ ANVue - Vodr = / fwdx, Yo € H&(Q),
Q Q Q

we have Re , f = uc, and ||Rc .|| < %, where ||-|| is the operator norm of £(L?(£2)). Similarly, let ug , be the
unique solution in H}(Q;ws) to

u/ uo,ugodx—i—/ A2V x,uo,, - Vx,pde = / [ edx, Vo € Hol(Q;OJQ), (45)
Q Q Q

we have Ro ,f = uo,, and || Ro, .|| < % According to Remark 2.5, we have the following
Lemma 4.1. Assume (3), (4), (14), (18) and (19). Let f € H}(Q;w1), then there exists Ca g > 0 depending
only on A and Q. such that:
€
Ve € (0,1], Vu>0: [[Reuf — R07Mf||L2(Q) < Caq % i x (”lefHL?(Q) + ||fHL2(Q)) : (46)

4.2. The asymptotic behavior of the perturbed semigroup

In this subsection, we study the relationship between the semigroups (Se(t));~, and (So(t));~o- We will
assume that
AeWhe@)N (47)
Notice that (47) shows that, for any e € (0, 1]:

H}(Q) N H?*(Q) € D(Ag) N D(A,).

Remark also that (47) implies (14). Now, we can give the main theorem of this section.
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Theorem 4.2. Let 2 = wy X wy be a bounded domain of R4 x RN=49. Assume (3), (4), (18), (19) and (47). Let
g € L3(Q) and T > 0, we have:

sup [[Se(t)g — So(t)g ||L2(Q) — 0 ase—0.
t€[0,T)

In particular, for g € (Hj N H?*(w1)) ® (H} N H?(ws)) there exists Cg a0 > 0 such that :

Ve € (0,1] : s[up] [Se(t)g — So(t)gllp2(q) < Cga0 x T X e
tel0,T

Let us begin by this important lemma

Lemma 4.3. Suppose that assumptions of Theorem 4.2 hold. Let f € H}(Q) N D(Ap) such that

divx, (A1 Vx, f), divx, (A12Vx, f), divx,(An1Vx, f) € L*(Q), and Aof € Hj(Qwr),
then there exists a constant Cy a0 > 0 such that for every pn > 0, € € (0, 1] we have:

[Ac,uf = Aoufllp2) < Cran X e,
where Ac,, and Ao, are the Yosida approximations of A and Ay respectively. The constant Cy a.q s given by:
Cra0 = ||divx, (A Vx, f)ll 20 + |divx, (A12Vx, )l 12(0)
+ lldivx, (A9 x, Dl sy + Caa (1Vx0 A0S g2y + 10l ) -
Proof. Let € € (0,1] and p > 0. The bounded operators A, ,,, Ao, of L(L?(Q2)) are given by:
Ac = pAcRe,, and Ao, = ARy -
Now, under the above hypothesis we obtain that f € D(A.) N D(Ap). We have:

||~’467uf - A07Mf||L2(Q) = M ||~A6Re7uf - AoRO,uf”m(Q) =K ||R€,H~Aef - R07MA0f||L2(Q)
= p ||R€7M'A6f - R€7MA0f||L2(Q) + ||R67u~’40f - RO;HAOfHL?(Q)
1% ||Re,u|| X ||~Aef - -AOf”L?(Q) +p ||R€7M‘A0f - ROvMAOfHL?(Q) :

IA A

Since Aof € HE(Q;w1) by hypothesis, then by using (46) (where we replace f by Agf) and the fact that
| Re,.ull < %, we obtain

[ Aeuf = Aoufll L2y

IN

[Aef = Aofllp2(q) + €Can (||VX1Aof||L2(Q) + ||A0f||L2(Q))

e lldivx, (A Vi, fll 2oy + 1divx, (A12Vx, f)ll 120,
€ .
+[|diva, (421 Vx, f)||L2(Q) +Can (||VX1A0f||L2(Q) + ||A0f||L2(Q))
< Cfaa Xe,

where we have used the identity:
.Aef - Aof = €2diVX1 (Allel f) + édiVX1 (AlgvXQf) + 6diVX2 (Azlel f),

and the proof of the lemma is finished. O
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Lemma 4.4. Under assumptions of Theorem 4.2, we have for any g € (Hj N H?(w1)) ® (H} N H*(w2)) :
V> 0,Vt > 0,Ve € (0,1] : HetA€~“g — etA°~"gHL2(Q) < Cga0 XtXe,

where Cy a0 is independent of p and e.

Proof. Let > 0and ¢ > 0 and € € (0,1] , we have

t
et-AO,M _ et-Ae,u _ i (e(t_s)AGwHeS‘AOwH> ds
0 dS

t
/ =94 (Ao, — Ao )esAonds.

0

Hence, for g € L?(Q) we have

t
||etAe,ug _ etAo,MgHLz(Q) < /0 ||A0,#68Ao,ug _ Ae,uesAO’”gup(Q) ds, (48)

where have used ||e(t*5)“4€’“ || <1, since t — s > 0.
Now, we suppose that g € (Hj N H?(w1)) ® (H} N H*(w2)) (remark that g € D(Ap)). For s > 0 and p > 0
we set:
fos = e0ng
We can prove that fg , , fulfills the same hypothesis satisfied by the function f of Lemma 4.3. Moreover, for
every i,j = 1,...,q we have D7 . f, € L*(Q) with:

2 2
T B S Y T ™
and
”(Aofg,sw)”m(g) < HA09||L2(Q)7 ”Dri(AOfg,S,u)HL?(Q) < HDri(AOg)”L?(Q) ) (50)
also for every i = 1,...,q, j = ¢+ 1,..., N we have D, f,s, € L*(Q) with :
102 Foveselongey < 5 [Mogll gy ol a |z < 2 Ds Aol ey | Dol (51)
;[ r2(@) =y 110912 () 1912 (o) an s fo.s.m L) = A 09llL2() =9l L2 () -

The proof of these assertions follows from the identity e*401 (g ® go) = g1 ® €501 g, (see Appendix B). Notice
that the above bounds are independent of s, €, and .
Now, apply Lemma 4.3, we get

||diVX1 (Alle1 fg,s,u)”p(g) + ||diVX1 (Al?szfg,s,u)Hm(Q)
[Aoue* g — Acpe™r gl ) <€ v, (A21 Vx5 Fossa) 2oy +
CA,Q (”leAO»f.Q;&MHL?(Q) + ||A0fg;S7HHL2(Q)>

By using (49 — 51) with (47), one can show that the quantity in parentheses in the above inequality is bounded
by some Cy 4,0 > 0 independent of s, €, and y, thus

| Ao ek g — Ac e Aorg @ < Coan X e

Finally, integrate the above inequality in s over [0,¢], and use (48), we get the desired result. ([
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Now, we are able to prove Theorem 4.2. First we prove the case when g € (Hj N H?(w1)) ® (Hj N H?(w2))
and we conclude by a density argument. So, let g as mentioned above, by Lemma 4.4 we have

Vi >0, > 0,Ve € (0,1] : [|e g — e ong|| o < Coan xtxe (52)
Passing to the limit in (52) as p — +0o we get (see the preliminaries, the abstract part)
Vt > 0,Ve € (0,1] : [[Se(t)g — So(t)gll 20y < Cga0 X t X €,

whence for T > 0 fixed we obtain

Ve (0,1]: sup [1S.(t)g — So(t)gll sz < Coto X T x c. (53)
te[0,T)
Whence
sup |[Se(t)g — So(t)gll 12y — 0 as e = 0. (54)
t€[0,T]

Now, let g € L*(Q2) and let § > 0, by density there exists g5 € (Hj N H?(w1)) ® (Hy N H?(w2) such that

=] >

g = 95/l p2(0) <

According to (54) there exists €5 > 0 such that

N

Ve € (0,¢5] + sup [[Se(t)gs — So(t)gs |l 2y <
t€[0,T]

Whence, by the triangle inequality we get

0
Ve € (0,¢5]: sup [Se(t)g = So(t)gll o) < 5+ sup (ISe(®)ll + 1So(t)]) X llgs = 9l 2o -
te[0,T] t€[0,T7]

Using the fact that the semigroups (Se(t)),> and (So(t));>( are of contractions, we get

We € (0,¢5): sup [[Sc(t)g — So(t)gll 2(qy < 0.
t€[0,T]

So, supyeqo,r) [[Se(t)g — So(t)gllp2(q) — 0 as e — 0. The second assertion of the theorem is given by (53) and
the proof of Theorem 4.2 is completed.

4.3. An application to linear parabolic equations

Theorem 4.2 gives an opening for the study of anisotropic singular perturbations of evolution partial differ-
ential equations from the semigroup point of view. In this subsection, we give a simple and short application
to the linear parabolic equation

Oue
ot
supplemented with the boundary and the initial conditions

— div(AVu,) =0, (55)

uc(t,r) = 0in 9Q for t € (0,400) (56)
ue(0,) = uep. (57)
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The limit problem is

9]
8_1; - diVX2 (AQQVqu) = O, (58)
supplemented with the boundary and the initial conditions
u(t,r) = 0inw; X dws for t € (0, +00) (59)
u(0,) = wup. (60)

The operator forms of (55 — 57) and (58 — 60) read

du.
—£ — A = 0, with u (0) = uco, (61)
and
du .
i Agu = 0, with u(0) = uo. (62)

Suppose that ug € D(Ap) and ueog € D(A). Assume that (3), (4) hold, then it follows that (61), (62) have
unique classical solutions

ue € C1([0,4+00); L2(Q)) N C([0, +00); D(A.)), and u € C ([0, +00); L*(Q)) N C(]0, +00); D(Ap))

We have the following convergence result.

Proposition 4.5. Suppose that ug € D(Ag) and u.o € D(A.) such that uco — ug in L*(Q), then under
assumptions of Theorem 4.2, we have for any T > 0:

sup lue(t) — u(t)llp2(q) — 0 as e = 0. (63)
t€[0,T]

Moreover, if ueo and ug are in H*(Q) such that (uco) is bounded in H?*(Y) and |Vx,(uco — o) r2(0) — 0,
Hv?xz (Ue0 — u0)||L2(Q) — 0 as € = 0, then:

d

— (ue(t) = u(t))

sup dt

te[0,T)

L2(Q)
Proof. 1t is well known that the solutions u., u are given by
Ue(t) = Se(t)ue,0 and uo(t) = So(t)uo, for every t > 0.

Let T' > 0, we have

IN

sup ||ue(t) — u(t)l| f2(q) sup ||Se(t)ueo — Se(t)uollp2iq) + sup [ISe(t)uo — So(t)uollL2(q)
te[0,T] te[0,T) te[0,T]

l[te,0 = woll 20y + sup [ISe(t)uo — So(t)uoll2(q) -
tel0,T

IN

Passing to the limit as ¢ — 0 by using Theorem 4.2, we get sup;c(o 7 [[te(t) — u(t)|| 20y — 0.
For the second affirmation, we have:
|t - ute)

= [ISe(t) Actic,0 — So(t) Aouoll 2 (q)
L2(Q)

S ||Aeue,0 - AOUOHLQ(Q) + teSEépT] ||S€(t)AOuO - SO(t)AOUO||L2(Q) .
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As (ucp) is bounded in H?(Q2), ug € H2(Q) and ||V, (uco — uo) | 2() — 0, ||v§(2 (te,0 — uo)||L2() — 0 as
€ — 0, then by using (47) we get immediately || Acue o — A0u0||L2(Q) — 0 as e — 0, and we conclude by applying
Theorem 4.2. O

Remark 4.6. Consider the nonhomogeneous parabolic equations associated to (55) and (58) with second member
f(t,x). Suppose that f is regular enough, for evample f € Lip([0,T]; L*(Y)), then the associated classical
solutions u. and u exist and they are unique. In this case, we have the same convergence result (63). The proof
follows immediately from the use of the following integral representation formulas

t t
uc(t) = Se(t)uc,o +/ Se(t =) f(r)dr, u(t) = So(t)uo +/ So(t —r)f(r)dr, t €[0,T],
0 0
Theorem 4.2, and Lebesgue’s theorem.
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APPENDIX A. DENSITY LEMMAS
Let w; and wy be two open bounded subsets of R? and RN~ respectively. Recall that
Hy(Qws) = {u € L*(Q) | Vx,u € L*(Q)V 77, and for a.e.X; € wi,u(X1,-) € Hj(ws)},

normed by [|[Vx; ()|l 12(q) - We have the following
Lemma A.1. The space H () is dense in HE(Q;ws).
Proof. Let u € H}(Q;ws) fixed. Let [ be the linear form defined on Hg () by

Vo€ HY(Q) : l(p) = / Vx,u- Vx,pdz.

Q

[ is continuous on H{(2), indeed we have

Vo € Hy(Q) : [U(0)] < IVxaull g2y 1 VX2l 2 5

and then,
Vo € H&(Q) ()] < ||VX2“HL2(Q) ||V90||L2(Q)'
For every n € N*, we denote u,, the unique solution to

711_2 f(l Vx,un - Vx, pdr + fQ Vi un - Vg pde = 1(p), Vo € Hy(Q) (64)
un, € H§ (),

where the existence and the uniqueness follow from the Lax-Milgram theorem. Testing with u,, in (64) we get,
for every n € N*

1
7 [P do+ [ [V do < 19l Vsl
then, we deduce that
Vn € N*: ||VX2un||L2(Q) < ||VX2UHL2(Q)7 (65)
and

L 1
Vn e N*: " HVX1U'"||L2(Q) < HVquHL2(Q) : (66)
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Using (65) and Poincaré’s inequality we obtain:
¥ € N' - Junll ey < Co IV xstl gy (67)

Reflexivity of L?(Q) shows that there exists, uoo,ul ,u”, € L?(2) and a subsequence still labeled (u,) such
that

1 :
Up — Uso, Vx,ty — by and —Vx, u, — u in L*(Q), weakly.
n

Using the continuity of derivation on D’(Q)) we get
1
Up — Uoo, VXpln — Vix,Uee and —Vx, u, — 0 in L*(Q), weakly. (68)
n

1) we have u., € Hi(Q;w2) : By the Mazur Lemma, there exists a sequence (U,,) of convex combinations
of {un} such that
Vx,Un = Vi, s in L*(Q) strongly, (69)

then by the Lebesgue theorem there exists a subsequence (U, ) such that:
For a.e. X1 € wy : Vx,Upn, (X1,-) = Vx,too(X1,-) in L?(ws) strongly. (70)
Now, since (U,, ) € H} ()N then
For a.e.X; € wy : (Up, (X1,-)) € Hp(w2)". (71)
Combining (70) and (71) we deduce:
For a.e. X1 € wy, uso(X1,-) € H&(Wg),

and the proof of us, € Hg(2;w2) is finished.
2) we have u., = u : Passing to the limit in (64) by using (68) we obtain

/ szuoo-vxchd:vz/ Vx,u-Vx,pdz, V@EH&(Q). (72)
Q Q
For every ¢; € Hg(w1) and 2 € H} (w2) take ¢ = 1 @ g in (72) we obtain, for a.e. X1 € wy

Vx,Uoo(X1,-) - Vx,p2dXo = Vx,u(X1,-) - Vx,p2dXa, Yo € Hy(ws).

w2 w2

For a.e. X € wi, take @2 = uoo(X1,+) — u(X1,-) (which belongs to H}(w2)) in the above equality, we get:

VX, (oo (X1, ) — u(X1,))[* dX2 = 0.

w2

Integrating over wy; we deduce
/ IV x, (Uoo — u)|> dz = 0.
Q

Finally, since ||V, (-)[| 12(q) is a norm on Hg(Q;w2) we get,
Uso = U. (73)

Combining (69) and (73) we get the desired result. O
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Remark A.2. By symmetry, H(Q) is dense in the space
Hy(Qw1) = {u € L*(Q) | Vx,u € L*(Q), and for a.e. X3 € wa,u(-, X2) € Hy(w1)},
normed by ||V, ()| L2 (q) -

Lemma A.3. The space Hi(w1) ® Hi(ws2) is dense in H ().

Proof. Tt is well known that D(w1) ® D(w2) is dense in D(w; X we). Here, D(wy X way) is equipped with its
natural topology (the inductive limit topology). It is clear that the injection of D(w; X wa) in H} (w1 X wg) is
continuous, thanks to the inequality

Yu € D(Q) : < |Vu|2d:c) < /N x mes(Q) x < max  sup |0y u
Q

1<i<N Support(u) ) '
Hence, by the density rule we obtain the density of D(w;) ® D(w2) in H}(2), and the lemma follows. O

Lemma A.4. Let (Vn(l)) and (V752)) be two sequences of subspaces (not necessarily of finite dimension) of
H}(w1) and H}(ws2) respectively. If UV and UV, P are dense in H}(w1) and H}(ws2) respectively, then

vect | U (Vn(l) ® V,gf)) is dense in H}(wi) ® H(ws) for the induced topology of H(Y). In particular, if

n,m

(Vé”) and ( 71(2)) are nondecreasing then | J( A V7§2)) is dense in H} (w1) ® H(w2).

n

Proof. Let us start by a useful inequality. For u ® v in Hg(w1) ® HE(w2) we have :

lu @l = Q|VX1(U®U)|2dI+/Q|VX2(U®U)|2d:c

(/ v2dX2) x (/ |VX1u|2dX1)
+ (/ u2dX1> x ( |VX2v|2dX2>

2 2
Ol oy X 101203y - (74)

IN

where we have used Fubini’s theorem and Poincaré’s inequality. Here, C' = C? LT 052 > 0. Now, fix n > 0 and
let p ® 9 € H} (w1) @ H} (w2), by density of VY in H}(w1) there exists n € N and ¢, € V'Y such that:

n
19 3 (o) X lon = @l 3 () < W

Similarly by density of UV in H}(w2), there exits m € N ( which depends on n and v) and v, € V,Psuch

that

E

Kol ony X s = ll gty <

3

2
Whence, by using the triangle inequality and (74) we obtain

H90®1/1_(pn®wm”Hé(Q) ST/' (75)

!
Now, since every element of Hg (w1)® H{ (w2) could be written as > ¢;®1;, then by using the triangle inequality
i=1
and using (75) with n replaced by 7, one gets the desired result. O
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Corollary A.5. vect [ (Vél) ® V"(LZ))> is dense in Hg (). in particular, if(Vn(l)) and (Vn(z)) are nondecreas-

n,m

ing, then U(Vn(l) ® Vn(2)) is dense in H}(Q).
APPENDIX B. SEMIGROUPS

Lemma B.1. Assume (3), (4), (18) and let f1 € L*(w1), f2 € L*(w2), then for every p > 0 we have:

Ro u(f1 ® f2) = f1 @ (Ro,uf2)-

Notice that Ry, fa € H}(w2). Moreover, we have

Aou(f1 ® fa) = f1 @ (Ao, f2)-

Notice also that Ao, fo € L*(w2). Here, Ao, is the Yosida approzimation of Ay, recall that Ao, = pAoRo -

Proof. Let va € Hi(w2) be the unique solution in H{(wz) to

A (X2)Vx,v2 - Vx,p2dXs = / f2 ©2d X2, Yipo € Hj(wo), (76)

w2

M/ vop2dXs +
w2

w2

Let ¢ € Hi(Q;w2), then o(X1,-) € Hi(ws) for a.e. X1 € wy. Let f1 € L?(wy), multiplying (76) by fi, testing
in (76) with ¢(X71,-) and integrating over w, yields

M/ f1v2<Pd£E+/ A22(X2)sz(flvz)'VXQ@dZE:/f1f2 pdz.
Q Q Q

It is clear that five € H}(;ws) whence, Ry . (f1®f2) = f1®us, in particular when f; = 1 we have Ry ,(f2) = vo,
and therefore Ry ,,(f1 ® f2) = f1 ® Ro,.(f2). The second assertion follows immediately from the first one, in fact

Ao (f1 ® f2) = pAoRo,u(f1 ® f2) = pAo(f1 @ Ro,puf2).
We have Ry, fo € D(Ag) N Hg(w2) then by using (18) we get
Ao(f1 ® Ro,uf2) = f1 @ Ao(Ro,uf2),
Notice that the operator Ay is independent of the X; direction and that Ag(Rp . f2) € L?*(w2). Finally we get
Ao (f1 ® f2) = pfi @ Ao(Rouf2) = f1 @ Ao u(f2)-

d

Now, let s >0, >0 and g € L?(Q). To simplify the notations, we denote f, := e>40.g instead of f; s .

Lemma B.2. Assume (3), (4), (18). Let g = g1 ® g2 € L*(w1) ® L*(w2), then for s > 0, u > 0 we have:

Jo=0® ESAO’“QZ

Notice that e540u gy € L?(wo).
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Proof. we have
oo Sk
fg = eSAO’“g = Z HAIOC,Hga
k=0
where the series converges in L?(£2). By an immediate induction we get by using Lemma B.1
Vk € N: Ag#g =n® Alg#gz,

with Af .92 € L?(wg) for every k € N, and the Lemma follows. O

Lemma B.3. Assume (3), (4), (18). Let g € HQ(wl) & L2(w2), then for s >0, u >0, 14,5 = 1,...,q we have
Dgim‘fgu lefq S L2(Q), with:

J

Dile fg = eSAO’u (Dazcﬂjg)a Dmfg = eSAO’u (leg) (77)
2 2
192l gy < (P29 gy NPTl 2y < D8l (78)

Proof. 1) Suppose the simple case when g = g1 ® g2. So, let g = g1 ® g2 € H?(w1) ® L?(wz) and let us prove
assertions (77). By Lemma B.2 we get

fg = g1 @ e (ga),
with esAow gy € L2(wq).Hence, for i,j = 1,...,q we get D2 f, € L*(Q) and D2 , f, = (Diﬂjm) ® esAon gy,

Tz Tz
and applying Lemma B.2 we get
D3, fg = 0 (D3,,9)-
Similarly we get Dy, f, = e*A0x(D,,g), and assertion (77) follows when g = g; ® ga.
2) Now, let g € H?(w1) ® L?(ws2), since g is a finite sum of elements of the form g; ® go, then by linearity we

get chimj fgy Duify € L2(Q) and

Dgimjfg = eSAO’“(DQ 9)7 Dzzfg = eSAO’“ (Dﬂhg)v for ivj = 17 - 4,

TiTj
therefore
2 S.Ao’ 2 2 .
HDmlmjf‘] L2(Q) S He “H HDmlm]g L2(Q) S HDmlm]g L2(Q)7 for 1) = 17"'7q7
and similarly we obtain the second inequality of (78). ([

Lemma B.4. Assume (3), (4), (18) and (47). Let g € (Hg N H?*(w1)) ® (H§ N H*(w2)), then for s >0, p >0
we have:

f!] € D(AO)7 AO(fg) S Hol(val)) and DI1 (AOfg) = eSAO,“ (DL.AOg)v 1= 17 e, (79)
||(~’40fg)||L2(Q) < HAOQ||L2(Q) and || Dy, (Aqu)||L2(Q) < ”DMAOQHU(Q) s i=1,..,q. (80)

Proof. 1) Suppose g = g1 ®g2 € (Hj NH?(w1)) ® (H} N H?*(w2)) and let us prove (79). Since g € D(Ag), thanks
to (47), then f, = e*Aoug € D(Ap) and Ao f, = e*Aox Agg ( thanks to (44)). Now, we have

Aofy = Ao g) = Ag (91 @ e™40r gy) .
Notice that, go € D(A), thanks to (47), then 401 gy € D(Ap) ( thanks to (44)), hence
Aofy = grAoe™ o go,

where we have used the fact that Ag is independent of the X; — direction. Since e*4o# and Ay commute on
D(Ap), then
Aofg = gre®or Aggs.
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Now, we have Aggs € L?(w2) then e*A0n Aggs € L?(w2) (thanks to Lemma B.2), however g; € H}(w1), then
Aofy € Hi(Q;w1). Whence, for i = 1,...,q we have

Dwi (Aofq) = D;Elgl & GSAO’MAOQQ,

and hence by, Lemma B.2 we get

Dmi (AOfg) = eSAO’M (Dzigl ® AOQQ)
= e (D,, Aog) .

(Remark that D, Agg € L*(Q2) since g1 € H}(w1) and Agge € L?(w2)).
2) Now, for a general g € (Hj N H?(w1)) ® (H} N H?(ws)), assertion (79) follows by linearity. Finally, we show
(80). We have

(A0Sl ey = lle (Aog)ll 12y < e[| [ Aogl L2y

||A09||L2(Q) :

IN

For:=1,...,q we get

”Dﬂﬂz (Aofq)HL?(Q) HeSAOYH (DMAOQ)HL2(Q) < HeSAOYH H ||DIiAog||L2(Sl)

< 1Dz, Aogll 20y -

A

O

Lemma B.5. Assume (3), (4), (18) and (47) Let g € (Hi N H?(w1)) ® (Hf N H?(w2)), then for s >0, n> 0,
i=1,...,q, j=q+1,...,N we have Dy, fy, D5, fq € L?(Q) with:

mlw

1
X ”D%AOQHL? Q) ||Dmlg||L2(Q (81)

2 1 2
192, a2y < 5 Moglizqa Illzey + | D2,
Proof. 1) Let us show the first inequality of(81). Suppose g € (Hg N H?(w1)) ® (H} N H?*(w2)). Notice that

g € D(Ap), thanks to (47), then according to (44) we have f, € D(Ag) C H{(;w2), hence for j € {g+1,...,N}
the ellipticity assumption gives

1
Hijf.QHiz(n) < X<_A0fq’fg>L2(Q)

1
X ||~A0fg||L2(Q) ||fg||L2(Q)

IN

We have, ||'A0f9||L2(Q) = ||A0€S’A0’“9HL2(Q) = HGSAD"‘AOQ||L2(Q) < HAOQHL2(Q)a and ||fg||L2(Q) < ”g”L?(Q)a
therefore

2 1
Hijqum(Q) = by ||"409||L2(Q) ||g||L2(Q) :

2) Now, let 1 < i < g fixed, then according to Lemma B.3 we have D, f, = e**0x(D,,g), notice that D,,g €
D(Ap) and hence, D, f, € D(Ap), in particular Dy, f, € H}(Q;ws2), and for ¢+ 1 < j < N we get

1
X <_A0Dmfg7 Dwifg>L2(Q)

IN

2
2
HDw]mzf‘]

L3(Q)

IN

1
X ||AODmifg||L2(Q) ||D$ifg||L2(Q) :
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We have,

||~A0Dmfg||L2(Q) = HAOGSAO’M (Dacig)HLz(Q)
1Dz, Aog) I 120

— HesAO,M (AoDmlg)HI?(Q)

IN

Finally, by using (78) and the above inequality we obtain

1
|92 8] < 5 1D Aoy D2, -
O
Lemma B.6. Under assumptions of Lemma B.5, we have for g € (Hj N H*(w1)) @ (Hg N H?(w2)) :
fy € Hy () N D(Ao), (82)
and
dZ"UX1 (AHVle), dZ"UX1 (A12VX2 f), diUX2 (A21VX1 f) S LQ(Q) (83)

Proof. Let us prove (82). In Lemma B.4 we proved that f, € D(Ap). Let us show that f, € H}(Q). Suppose
the simple case g = g1 ® g2, we have f, = g1 ® e®401gy. Since ga € D(Ap), then e*Aon gy € D(Ap), in particular
we have e*A0n gy € H}(Q;ws) however, according to Lemma B.2 e5A0ngy € L?(ws), hence e*A0n gy € H (ws).
Finally as g1 € Hg(w1) we get f, € H}(2). For a general g in the tensor product space, the proof follows by
linearity.

Now, let us show (83). According to Lemmas B.3, B.5 all these derivatives Dy, fg, Diﬂj fgfor1 <i,5<gq,
and Dy, fy, Dgﬂj fofor1<i<gq,g+1<j<N belong to L?(£2). Whence, combining this with (47) we get
(83). O

ApPPENDIX C. EXISTENCE THEOREM

Let V C H}(Q) be a subspace. We consider the problem

{ Jo Blu)pdr + [, AoV x,u - Vx,pde = [, f pdx, Vo € V (84)
uevV,
with Ass and B as in the introduction.
Proposition C.1. IfV is closed in H}(Q;wa), then there exists a solution to (84).
Proof. We consider the perturbed problem
Jo Blue cpd:zc—l—fQA Vue - Veodr = [ f edz, Vo e V
u. €V, (85)

with )
- (e, 0
A= (%0 )

The space V is closed in H}(9), thanks to the continuous embedding Ha () < HJ(Q;ws). The function A, is
bounded and coercive, then by using the Schauder fixed point theorem, one can show the existence of a solution
u to (85). This solution is unique in V' thanks to (5) and coercivity of A.. Testing with u. in (85) we obtain

€ ”VXluéHL? Q) ”szuéHL?(Q ||u€||L2(Q < C



where C'is independent of €, we have used that [, f(uc)ucdz > 0 (thanks to (5)). By using (6), we get

1
1Bl L2y < M(I9Q]* +C).
So, there exist v € L?(Q), u € L*(Q) with Vx,u € L?(2), and a subsequence (ue, )ren such that
Blue,) = v, exVx e, — 0, Vx,ue, = Vx,u, e, — u in L*(Q)-weak.

Passing to the limit in (85) we get
/ vgad:c—F/ A2 Vx,u - Vx,pdr = / fodz Yo e V.
Q Q Q
Take ¢ = u,, in (87) and passing to the limit we get

/’UUdCC—F/ AQQVX2U'VX2U'd:C = / Judz
Q Q Q

Let us consider the quantity

0 S Ik = / 62 |VX1u6k|2d$ +/ AQQVXZ(Uek — u) . ng(uek — u)
Q Q
+ / (Blutey) — B(w)) (tey — )i
Q

:/fuekdff—/AQQVquek'VXQUCZ(E_/AQQVXQU'VXQUEkd.T
Q Q Q

+/qudx—/ﬂvudx—/ﬂﬁ(u)uekd$

29

(88)

—/Qﬁ(ue,c)udfc—i-/ﬂﬁ(u)udx

Remark that this quantity is nonnegative, thanks to the ellipticity and monotonicity assumptions. Passing to

the limit as k — oo using (86), (88) we get
lim Ik =0.

Therefore, the ellipticity assumption shows that
||€kvX1u€kHL2(Q) e, — U”m(gz) IV x, (ue, — u)”m(g) — 0,
and hence, by a contradiction argument one has
Blue,) — B(u) strongly in L*(Q).

Whence (87) becomes

Bu)pdx +/ AxaVx,u- Vx,pdr = / fedr Np € V.
Q Q Q

(89)

Finally, [|Vx, (te, —u)|z2(q) — 0 shows that u € H}(Q;ws), and therefore as V is closed in H}(Q;w2) we

obtain that u € V.

O
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