ON SOME NEW RESULTS ON ANISOTROPIC SINGULAR PERTURBATIONS OF SECOND ORDER ELLIPTIC OPERATOR.

David Maltese, Chokri Ogabi

- To cite this version:

David Maltese, Chokri Ogabi. ON SOME NEW RESULTS ON ANISOTROPIC SINGULAR PER-
TURBATIONS OF SECOND ORDER ELLIPTIC OPERATOR.. 2022. hal-03546106v1

HAL Id: hal-03546106
 https://hal.science/hal-03546106v1

Preprint submitted on 27 Jan 2022 (v1), last revised 5 Feb 2022 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

ON SOME NEW RESULTS ON ANISOTROPIC SINGULAR PERTURBATIONS OF SECOND ORDER ELLIPTIC OPERATOR

David Maltese ${ }^{1}$ and Chokri Ogabi ${ }^{2}$

Abstract

In this article, we deal with some problems involving a class of singularly perturbed elliptic operator. We prove the asymptotic preserving of a general Galerkin method associated to a semilinear problem. We use a particular Galerkin approximation to estimate the convergence rate on the whole domain, for the linear problem. Finally, we study the asymptotic behavior of the semigroup generated.

2020 Mathematics Subject Classification. 35J15, 35B60, 35B25, 47D03.

1. INTRODUCTION

Anisotropic singular perturbations problems was introduced by Chipot in [1], these problems can model diffusion phenomena when the diffusion parameters become small in certain directions. We refer the reader to $[2],[3],[4],[5],[6],[7],[8],[9],[10],[11]$ for several works on this topic. In this article, we will study some new theoretical aspects which have not been studied before for these problems.

Let us consider the following perturbed elliptic problem

$$
\begin{equation*}
\beta\left(u_{\epsilon}\right)-\operatorname{div}\left(A_{\epsilon} \nabla u_{\epsilon}\right)=f \text { in } \Omega \tag{1}
\end{equation*}
$$

supplemented with the boundary condition

$$
\begin{equation*}
u_{\epsilon}=0 \text { on } \partial \Omega . \tag{2}
\end{equation*}
$$

Here, $\Omega=\omega_{1} \times \omega_{2}$ where ω_{1} and ω_{2} are two bounded open sets of \mathbb{R}^{q} and \mathbb{R}^{N-q}, with $N>q \geq 1$, and $f \in L^{2}(\Omega)$. We denote by $x=\left(x_{1}, \ldots, x_{N}\right)=\left(X_{1}, X_{2}\right) \in \mathbb{R}^{q} \times \mathbb{R}^{N-q}$ i.e. we split the coordinates into two parts. With this notation we set

$$
\nabla=\left(\partial_{x_{1}}, \ldots, \partial_{x_{N}}\right)^{T}=\binom{\nabla_{X_{1}}}{\nabla_{X_{2}}}
$$

where

$$
\nabla_{X_{1}}=\left(\partial_{x_{1}}, \ldots, \partial_{x_{q}}\right)^{T} \text { and } \nabla_{X_{2}}=\left(\partial_{x_{q+1}}, \ldots, \partial_{x_{N}}\right)^{T}
$$

The function $A=\left(a_{i j}\right)_{1 \leq i, j \leq N}: \Omega \rightarrow \mathcal{M}_{N}(\mathbb{R})$ satisfies the ellipticity assumptions

[^0]- There exists $\lambda>0$ such that for a.e. $x \in \Omega$

$$
\begin{equation*}
A \xi \cdot \xi \geq \lambda|\xi|^{2} \text { for any } \xi \in \mathbb{R}^{N} \tag{3}
\end{equation*}
$$

- The coefficients of A are bounded that is

$$
\begin{equation*}
a_{i j} \in L^{\infty}(\Omega) \text { for any }(i, j) \in\{1,2, \ldots ., N\}^{2} \tag{4}
\end{equation*}
$$

We have decomposed A into four blocks

$$
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right)
$$

where A_{11}, A_{22} are $q \times q$ and $(N-q) \times(N-q)$ matrices respectively. For $\epsilon \in(0,1]$ we have set

$$
A_{\epsilon}=\left(\begin{array}{cc}
\epsilon^{2} A_{11} & \epsilon A_{12} \\
\epsilon A_{21} & A_{22}
\end{array}\right)
$$

The function $\beta: \mathbb{R} \rightarrow \mathbb{R}$ satisfies the following conditions:

$$
\begin{align*}
& \beta \text { is continuous and nondecreasing with } \beta(0)=0 \text {. } \tag{5}\\
& \qquad \exists M \geq 0: \forall s \in \mathbb{R},|\beta(s)| \leq M(1+|s|) \tag{6}
\end{align*}
$$

The weak formulation of the problem (1)-(2) is

$$
\left\{\begin{array}{l}
\int_{\Omega} \beta\left(u_{\epsilon}\right) \varphi d x+\int_{\Omega} A_{\epsilon} \nabla u_{\epsilon} \cdot \nabla \varphi d x=\int_{\Omega} f \varphi d x, \forall \varphi \in H_{0}^{1}(\Omega) \tag{7}\\
u_{\epsilon} \in H_{0}^{1}(\Omega)
\end{array}\right.
$$

where the existence and uniqueness is a consequence of the assumptions (3) - (6).
Taking $\epsilon=0$ in (1) gives

$$
\begin{equation*}
\beta(u)-\operatorname{div}_{X_{2}}\left(A_{22} \nabla u\right)=f \text { on } \Omega \tag{8}
\end{equation*}
$$

supplemented with the boundary condition

$$
\begin{equation*}
u\left(X_{1}, \cdot\right)=0 \text { in } \partial \omega_{2}, \text { for } X_{1} \in \omega_{1} \tag{9}
\end{equation*}
$$

We introduce the functional space

$$
H_{0}^{1}\left(\Omega ; \omega_{2}\right)=\left\{v \in L^{2}(\Omega) \text { such that } \nabla_{X_{2}} v \in L^{2}(\Omega)^{N-q} \text { and for a.e. } X_{1} \in \omega_{1}, v\left(X_{1}, \cdot\right) \in H_{0}^{1}\left(\omega_{2}\right)\right\}
$$

equipped with the norm $\left\|\nabla_{X_{2}}(\cdot)\right\|_{L^{2}(\Omega)^{N-q}}$. Notice that this norm is equivalent to

$$
\left(\|(\cdot)\|_{L^{2}(\Omega)}^{2}+\left\|\nabla_{X_{2}}(\cdot)\right\|_{L^{2}(\Omega)^{N-q}}\right)^{1 / 2}
$$

thanks to Poincaré's inequality

$$
\begin{equation*}
\|v\|_{L^{2}(\Omega)} \leq C_{\omega_{2}}\left\|\nabla_{X_{2}} v\right\|_{L^{2}(\Omega)^{N-q}}, \text { for any } v \in H_{0}^{1}\left(\Omega ; \omega_{2}\right) \tag{10}
\end{equation*}
$$

One can prove that $H_{0}^{1}\left(\Omega ; \omega_{2}\right)$ is a Hilbert space. The space $H_{0}^{1}(\Omega)$ will be normed by $\|\nabla(\cdot)\|_{L^{2}(\Omega)^{N}}$. One can check immediately that the imbedding $H_{0}^{1}(\Omega) \hookrightarrow H_{0}^{1}\left(\Omega, \omega_{2}\right)$ is continuous.

The weak formulation of the limit problem (8) - (9) is given by

$$
\left\{\begin{array}{c}
\int_{\omega_{2}} \beta(u)\left(X_{1}, \cdot\right) \psi d X_{2}+\int_{\omega_{2}} A_{22}\left(X_{1}, \cdot\right) \nabla_{X_{2}} u\left(X_{1}, \cdot\right) \cdot \nabla_{X_{2}} \psi d X_{2} \tag{11}\\
=\int_{\omega_{2}} f\left(X_{1}, \cdot\right) \psi d X_{2}, \forall \psi \in H_{0}^{1}\left(\omega_{2}\right) \\
u\left(X_{1}, \cdot\right) \in H_{0}^{1}\left(\omega_{2}\right), \text { for a.e. } X_{1} \in \omega_{1}
\end{array}\right.
$$

This problem has been studied in [9], and the author proved the following (see Proposition 4 in the above reference)

Theorem 1.1. Under assumptions (3), (4), (5) and (6) we have

$$
u_{\epsilon} \rightarrow u \text { in } L^{2}(\Omega), \epsilon \nabla_{X_{1}} u_{\epsilon} \rightarrow 0 \quad \text { in } L^{2}(\Omega)^{q} \text { and } \nabla_{X_{2}} u_{\epsilon} \rightarrow \nabla_{X_{2}} u \text { in } L^{2}(\Omega)^{N-q},
$$

where u_{ϵ} is the unique solution of (7) in $H_{0}^{1}(\Omega)$ and u is the unique solution to (11) in $\in H_{0}^{1}\left(\Omega ; \omega_{2}\right)$.
Notice that for $\varphi \in H_{0}^{1}\left(\Omega ; \omega_{2}\right)$, and for a.e X_{1} in ω_{1} we have $\varphi\left(X_{1}, \cdot\right) \in H_{0}^{1}\left(\omega_{2}\right)$, testing with it in (11) and integrating over ω_{1} yields

$$
\begin{equation*}
\int_{\Omega} \beta(u) \varphi d x+\int_{\Omega} A_{22} \nabla_{X_{2}} u \cdot \nabla_{X_{2}} \varphi d x=\int_{\Omega} f \varphi d x, \forall \varphi \in H_{0}^{1}\left(\Omega ; \omega_{2}\right) \tag{12}
\end{equation*}
$$

This paper is organized as follows:

- As a first main result, we will prove the asymptotic preserving of the general Galerkin method for the elliptic problem (1-2). This concept has been introduced by S. Jin in [12] and it could be illustrated by the following commutative diagram

here, $P_{\epsilon, n}$ is the Galerkin approximation of the infinite dimensional perturbed problem P_{ϵ}, and P_{n} is the Galerkin approximation of the infinite dimentional limit problem P_{0}. We will derive an estimation of the error for a general Galerkin method, and by using a Céa's type lemmas we prove the asymptoticpreserving of the method.
- As a second main result, we will prove, in the linear case, a new result on the estimation of the global convergence rate, such a result is of the form $\left\|\nabla_{X_{2}}\left(u_{\epsilon}-u\right)\right\|_{L^{2}(\Omega)^{N-q}} \leq C \epsilon$. This estimation is an improvement of the local one proved by Chipot and Guesmia in [3]. Our arguments are founded on the use of a particular Galerkin approximation constructed by a tensor product.
- In section 4 we will give our third main result on the asymptotic behavior of the semigroup generated by the perturbed elliptic operator $\operatorname{div}\left(A_{\epsilon} \nabla \cdot\right)$, and we will give a simple application to linear parabolic problems.
Finally, to make the paper readable, we put some intermediate technical lemmas in the appendix.

2. MAIN THEOREMS FOR THE ELLIPTIC PROBLEM

Definition 2.1. Let $\left(V_{n}\right)$ be a sequence of finite dimensional subspaces of a Hilbert space H. We say that $\left(V_{n}\right)$ approximates H, if for every $w \in H$.

$$
\inf _{v \in V_{n}}\|w-v\|_{H} \longrightarrow 0 \text { as } n \rightarrow \infty
$$

For a sequence $\left(V_{n}\right)$ of a finite dimensional spaces of $H_{0}^{1}(\Omega)$, and for every $\epsilon \in(0,1]$ and $n \in \mathbb{N}$, we denote $u_{\epsilon, n}$ the unique solution of

$$
\left\{\begin{array}{l}
\int_{\Omega} \beta\left(u_{\epsilon, n}\right) \varphi d x+\int_{\Omega} A_{\epsilon} \nabla u_{\epsilon, n} \cdot \nabla \varphi d x=\int_{\Omega} f \varphi d x, \forall \varphi \in V_{n} . \tag{13}\\
u_{\epsilon, n} \in V_{n} .
\end{array}\right.
$$

We suppose that

$$
\begin{equation*}
\partial_{x_{i}} a_{i j} \in L^{\infty}(\Omega), \partial_{x_{j}} a_{i j} \in L^{\infty}(\Omega) \text { for } i=1, \ldots, q \text { and } j=q+1, \ldots, N \tag{14}
\end{equation*}
$$

We have the following
Theorem 2.2. Let $\Omega=\omega_{1} \times \omega_{2}$ where ω_{1} and ω_{2} are two bounded open sets of \mathbb{R}^{q} and \mathbb{R}^{N-q}, with $N>q \geq 1$. Suppose that $f \in L^{2}(\Omega)$ and assume (3), (4), (5), (6), and (14). Let $\left(V_{n}\right)$ be a sequence of finite dimensional spaces of $H_{0}^{1}(\Omega)$ which approximates it in the sense of Definition 2.1. Let $\left(u_{\epsilon, n}\right)$ be the sequence of solutions of (13) then we have:

$$
\lim _{\epsilon}\left(\lim _{n} u_{\epsilon, n}\right)=\lim _{n}\left(\lim _{\epsilon} u_{\epsilon, n}\right)=u \text {, in } H_{0}^{1}\left(\Omega ; \omega_{2}\right),
$$

where u is the unique solution of (11) in $H_{0}^{1}\left(\Omega ; \omega_{2}\right)$.
Our second result concerns the estimation of the rate of convergence for the continuous problem (7) in the linear case, this result could be seen as a refinement of a result proved in [3]. In the above reference, the authors proved the following interior estimation for the linear problem

$$
\begin{equation*}
\text { For every } \omega_{1}^{\prime} \subset \subset \omega_{1} \text { open }:\left\|\nabla_{X_{2}}\left(u_{\epsilon}-u\right)\right\|_{L^{2}\left(\omega_{1}^{\prime} \times \omega_{2}\right)}=O(\epsilon), \text { and }\left\|\nabla_{X_{1}}\left(u_{\epsilon}-u\right)\right\|_{L^{2}\left(\omega_{1}^{\prime} \times \omega_{2}\right)}=O(1) \tag{15}
\end{equation*}
$$

where they have supposed that

$$
\begin{equation*}
\nabla_{X_{1}} f \in L^{2}(\Omega)^{q} \tag{16}
\end{equation*}
$$

assumption (14) and

$$
\nabla_{X_{1}} A_{22} \in L^{\infty}(\Omega)
$$

Our contribution consists in extending (15) to the whole domain Ω, to obtain such a result we take an additional hypothesis on A and f, namely:

$$
\begin{equation*}
\text { For a.e. } X_{2} \in \omega_{2}: f\left(\cdot, X_{2}\right) \in H_{0}^{1}\left(\omega_{1}\right), \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { The block } A_{22} \text { depends only on } X_{2} \text {. } \tag{18}
\end{equation*}
$$

Theorem 2.3. Let $\Omega=\omega_{1} \times \omega_{2}$ where ω_{1} and ω_{2} are two bounded open sets of \mathbb{R}^{q} and \mathbb{R}^{N-q}, with $N>q \geq 1$. Suppose that $\beta=0$, and let us assume that A satisfies (3), (4), (14) and (18). Let $f \in L^{2}(\Omega)$ such that (16) and (17), then there exists C depending on $f, \lambda, C_{\omega_{2}}$ and A such that

$$
\forall \epsilon \in(0,1]:\left\|\nabla_{X_{2}}\left(u_{\epsilon}-u\right)\right\|_{L^{2}(\Omega)^{N-q}} \leq C \epsilon
$$

where u_{ϵ} is the unique solution of (7) in $H_{0}^{1}(\Omega)$ and u is the unique solution to (11) in $H_{0}^{1}\left(\Omega ; \omega_{2}\right)$. Moreover we have

$$
u \in H_{0}^{1}(\Omega) \text { and } \nabla_{X_{1}}\left(u_{\epsilon}-u\right) \rightharpoonup 0 \text { weakly in } L^{2}(\Omega)^{q}
$$

The constant C is of the form $C_{1}\left\|\nabla_{X_{1}} f\right\|_{L^{2}(\Omega)^{q}}+C_{2}\|f\|_{L^{2}(\Omega)}$ where C_{1}, C_{2} are dependent on $A, \lambda, C_{\omega_{2}}$.
The proof of this theorem will be done in two steps. First, we give the proof in the case $f \in H_{0}^{1}\left(\omega_{1}\right) \otimes H_{0}^{1}\left(\omega_{2}\right)$, and next that we conclude by a density argument. Let us recall this basic density chain rule, which will be used throughout this article: If (E, τ) and $\left(F, \tau^{\prime}\right)$ are two topological spaces such that $E \subset F$, and E is dense in F and the canonical injection $E \rightarrow F$ is continuous then, every dense subset in (E, τ) is also dense in $\left(F, \tau^{\prime}\right)$.

Remark 2.4. The hypothesis (17) is necessary to obtain the global boundedness of $\nabla_{X_{1}}\left(u_{\epsilon}-u\right)$. We can observe that through this $2 d$ example, we take

$$
A=i d_{2}, f:\left(x_{1}, x_{2}\right) \longmapsto \cos \left(x_{1}\right) \sin \left(x_{2}\right), \text { and } \Omega=(0, \pi) \times(0, \pi)
$$

In this case, we have $u\left(x_{1}, x_{2}\right)=\cos \left(x_{1}\right) \sin \left(x_{2}\right)$. The quantity $\left\|\nabla_{X_{1}}\left(u_{\epsilon}-u\right)\right\|_{L^{2}(\Omega)^{q}}$ could not be bounded. Indeed, if we suppose the converse then according to Theorem 1.1 there exists a subsequence still labeled u_{ϵ} such that $\nabla_{X_{1}}\left(u_{\epsilon}-u\right) \rightharpoonup 0$ weakly in $L^{2}(\Omega)^{q}$, and $\left\|\nabla_{X_{2}}\left(u_{\epsilon}-u\right)\right\|_{L^{2}(\Omega)^{N-q}} \rightarrow 0$. Whence $u \in H_{0}^{1}(\Omega)$ which is a contradiction.

Let us finish by giving this remark which will be used later in section 4 .
Remark 2.5. Suppose that $\beta: s \longmapsto \mu s$, for some $\mu>0$, and suppose that assumptions of Theorem 2.3 hold, then we have the same results of Theorem 2.3 with the same constants. Assume, in addition, that the block A_{12} satisfies the following

$$
\begin{equation*}
\partial_{x_{i} x_{j}}^{2} a_{i j} \in L^{2}(\Omega), \text { for } i=1, \ldots, q, j=q+1, \ldots, N \tag{19}
\end{equation*}
$$

then we have the following

$$
\forall \epsilon \in(0,1]:\left\|\nabla_{X_{2}}\left(u_{\epsilon}-u\right)\right\|_{L^{2}(\Omega)} \leq \frac{\epsilon}{\mu}\left(C_{1}^{\prime}\left\|\nabla_{X_{1}} f\right\|_{L^{2}(\Omega)^{q}}+C_{2}^{\prime}\|f\|_{L^{2}(\Omega)}\right)
$$

where $C_{1}^{\prime}, C_{2}^{\prime}$ are only dependent on $A, \lambda, C_{\omega_{2}}$.

3. The Analysis of a general Galerkin method

3.1. Preliminaries

Let $V \subset H_{0}^{1}(\Omega)$ be a closed subspace of $H_{0}^{1}\left(\Omega, \omega_{2}\right)$. Notice that V is closed in $H_{0}^{1}(\Omega)$, thanks to the continuous imbedding $H_{0}^{1}(\Omega) \hookrightarrow H_{0}^{1}\left(\Omega, \omega_{2}\right)$. Let $f \in L^{2}(\Omega)$, we denote by $u_{\epsilon, V, f}$ the unique solution of

$$
\left\{\begin{array}{l}
\int_{\Omega} \beta\left(u_{\epsilon, V, f}\right) \varphi d x+\int_{\Omega} A_{\epsilon} \nabla u_{\epsilon, V, f} \cdot \nabla \varphi d x=\int_{\Omega} f \varphi d x, \forall \varphi \in V \tag{20}\\
u_{\epsilon, V, f} \in V
\end{array}\right.
$$

We denote by $u_{V, f}$ the unique solution of

$$
\left\{\begin{array}{l}
\int_{\Omega} \beta\left(u_{V, f}\right) \varphi d x+\int_{\Omega} A_{22} \nabla_{X_{2}} u_{V, f} \cdot \nabla_{X_{2}} \varphi d x=\int_{\Omega} f \varphi d x, \forall \varphi \in V \tag{21}\\
u_{V, f} \in V
\end{array}\right.
$$

The existence of $u_{\epsilon, V, f}$ follows form the Schauder fixed point theorem. For the existence of $u_{V, f}$ see Appendix C. The uniqueness, for the two problems, follows immediately from (3) and (5). Now, let us begin by some preliminary lemmas
Lemma 3.1. Under assumptions of Theorem 1.1 and for any $\epsilon \in(0,1]$ we have the following bounds

$$
\begin{align*}
&\left\|\nabla_{X_{2}} u_{\epsilon, V, f}\right\|_{L^{2}(\Omega)^{N-q}} \leq \frac{C_{\omega_{2}}\|f\|_{L^{2}(\Omega)}}{\lambda} \tag{22}\\
&\left\|\nabla_{X_{1}} u_{\epsilon, V, f}\right\|_{L^{2}(\Omega)^{q}} \leq \frac{C_{\omega_{2}}\|f\|_{L^{2}(\Omega)}}{\epsilon \lambda} \tag{23}\\
&\left\|\nabla_{X_{2}} u_{V, f}\right\|_{L^{2}(\Omega)^{N-q}} \leq \frac{C_{\omega_{2}}\|f\|_{L^{2}(\Omega)}}{\lambda} \tag{24}\\
&\left\|\nabla_{X_{2}} u_{f}\right\|_{L^{2}(\Omega)^{N-q}} \leq \frac{C_{\omega_{2}}\|f\|_{L^{2}(\Omega)}}{\lambda} \tag{25}
\end{align*}
$$

$$
\begin{align*}
&\left\|\beta\left(u_{\epsilon, V, f}\right)\right\|_{L^{2}(\Omega)} \leq M\left(|\Omega|^{\frac{1}{2}}+\frac{C_{\omega_{2}}^{2}\|f\|_{L^{2}(\Omega)}}{\lambda}\right) \tag{26}\\
&\left\|\beta\left(u_{V, f}\right)\right\|_{L^{2}(\Omega)} \leq M\left(|\Omega|^{\frac{1}{2}}+\frac{C_{\omega_{2}}^{2}\|f\|_{L^{2}(\Omega)}}{\lambda}\right) \tag{27}\\
&\left\|\beta\left(u_{f}\right)\right\|_{L^{2}(\Omega)} \leq M\left(|\Omega|^{\frac{1}{2}}+\frac{C_{\omega_{2}}^{2}\|f\|_{L^{2}(\Omega)}}{\lambda}\right) \tag{28}
\end{align*}
$$

where u_{f} denotes the unique solution of (11).
Proof. These bounds follow easily from a suitable choice of the test functions, monotonicity and ellipticity assumptions. Let us prove, for example, (25) and (28).

According to Theorem 1.1 one can take $\varphi=u_{f}$ in (12), using ellipticity assumption and the fact that $\int_{\Omega} \beta\left(u_{f}\right) u_{f} d x \geq 0$ (thanks to (5)) we obtain

$$
\lambda \int_{\Omega}\left|\nabla_{X_{2}} u_{f}\right|^{2} d x \leq \int_{\Omega} f u_{f} d x
$$

By the Cauchy-Schwatz inequality and Poincaré's inequality (10) we obtain (25). Now, using assumption 6 we obtain

$$
\left|\beta\left(u_{f}\right)\right|^{2} \leq M^{2}\left(1+\left|u_{f}\right|\right)^{2}
$$

integrating over Ω and applying Minkowski inequality, (10) and (25) we obtain (28).
Using the above lemma, one can prove the following Céa's type lemma
Lemma 3.2. Under assumptions of Theorem 1.1 we have

$$
\begin{equation*}
\left\|\nabla_{X_{2}}\left(u_{V, f}-u_{f}\right)\right\|_{L^{2}(\Omega)^{N-q}} \leq C_{c e ́ a}\left(\inf _{v \in V}\left\|\nabla_{X_{2}}\left(v-u_{f}\right)\right\|_{L^{2}(\Omega)^{N-q}}\right)^{\frac{1}{2}} \tag{29}
\end{equation*}
$$

and for any $\epsilon \in(0,1]$

$$
\begin{equation*}
\left\|\nabla\left(u_{\epsilon, V, f}-u_{\epsilon, f}\right)\right\|_{L^{2}(\Omega)^{N}} \leq \frac{C_{c e ́ a}^{\prime}}{\epsilon^{2}}\left(\inf _{v \in V}\left\|\nabla v-\nabla u_{f}\right\|_{L^{2}(\Omega)^{N}}\right)^{\frac{1}{2}} \tag{30}
\end{equation*}
$$

where

$$
C_{c e ́ a}=\left[2 M C_{\omega_{2}}\left(|\Omega|^{\frac{1}{2}}+\frac{C_{\omega_{2}}^{2}\|f\|_{L^{2}(\Omega)}}{\lambda}\right)+\left\|A_{22}\right\|_{L^{\infty}(\Omega)} \frac{2 C_{\omega_{2}}\|f\|_{L^{2}(\Omega)}}{\lambda}\right]^{\frac{1}{2}}
$$

and

$$
C_{c e ́ a}^{\prime}=\left[2 M C_{\Omega}\left(|\Omega|^{\frac{1}{2}}+\frac{C_{\Omega}^{2}\|f\|_{L^{2}(\Omega)}}{\lambda}\right)+\|A\|_{L^{\infty}(\Omega)} \frac{2 C_{\Omega}\|f\|_{L^{2}(\Omega)}}{\lambda}\right]^{\frac{1}{2}}
$$

here C_{Ω} is the Poincarés constant of Ω, and $u_{\epsilon, f}$ is the unique solution of (7).
Proof. The proofs of these two inequalities are similar, so let us prove the first one. Using the Galerkin orthogonality one has, for every $v \in V$:

$$
\begin{aligned}
& \int_{\Omega}\left(\beta\left(u_{V, f}\right)-\beta\left(u_{f}\right)\right)\left(u_{V, f}-u_{f}\right) d x+\left\|\nabla_{X_{2}}\left(u_{V, f}-u_{f}\right)\right\|_{L^{2}(\Omega)^{N-q}}^{2} \\
&=\int_{\Omega}\left(\beta\left(u_{V, f}\right)-\beta\left(u_{f}\right)\right)\left(v-u_{f}\right) d x+\int_{\Omega} A_{22} \nabla_{X_{2}}\left(u_{V, f}-u_{f}\right) \cdot \nabla_{X_{2}}\left(v-u_{f}\right) d x
\end{aligned}
$$

Using the fact that $\int_{\Omega}\left(\beta\left(u_{V, f}\right)-\beta\left(u_{f}\right)\right)\left(u_{V, f}-u_{f}\right) d x \geq 0$, then by Cauchy-Schwarz and Poincaré's inequalities we derive

$$
\begin{array}{r}
\left\|\nabla_{X_{2}}\left(u_{V, f}-u_{f}\right)\right\|_{L^{2}(\Omega)^{N-q}}^{2} \leq\left[C_{\omega_{2}}\left\|\beta\left(u_{V, f}\right)-\beta\left(u_{f}\right)\right\|_{L^{2}(\Omega)}+\left\|A_{22}\right\|_{L^{\infty}(\Omega)}\left\|\nabla_{X_{2}}\left(u_{V, f}-u_{f}\right)\right\|_{L^{2}(\Omega)^{N-q}}\right] \\
\times\left\|\nabla_{X_{2}}\left(v-u_{f}\right)\right\|_{L^{2}(\Omega)^{N-q}}
\end{array}
$$

Now, by using (27), (28) and the triangle inequality we obtain

$$
\begin{aligned}
& \left\|\nabla_{X_{2}}\left(u_{V, f}-u_{f}\right)\right\|_{L^{2}(\Omega)^{N-q}}^{2} \leq \\
& 2\left[M C_{\omega_{2}}\left(|\Omega|^{\frac{1}{2}}+\frac{C_{\omega_{2}}^{2}\|f\|_{L^{2}(\Omega)}}{\lambda}\right)+\left\|A_{22}\right\|_{L^{\infty}(\Omega)} \frac{C_{\omega_{2}}\|f\|_{L^{2}(\Omega)}}{\lambda}\right] \times\left\|\nabla_{X_{2}}\left(v-u_{f}\right)\right\|_{L^{2}(\Omega)^{N-q}}
\end{aligned}
$$

Remark 3.3. 1) If $\beta=0$ (the linear case) then we have for any $\epsilon \in(0,1]$

$$
\begin{gathered}
\left\|\nabla u_{\epsilon, V, f}-\nabla u_{\epsilon, f}\right\|_{L^{2}(\Omega)^{N}} \leq \frac{\|A\|_{L^{\infty}(\Omega)}}{\lambda \epsilon^{2}} \inf _{v \in V}\left\|\nabla v-\nabla u_{\epsilon, f}\right\|_{L^{2}(\Omega)^{N}} \\
\left\|\nabla_{X_{2}} u_{V, f}-\nabla_{X_{2}} u_{f}\right\|_{L^{2}(\Omega)^{N-q}} \leq \frac{\left\|A_{22}\right\|_{L^{\infty}(\Omega)}}{\lambda} \inf _{v \in V}\left\|\nabla_{X_{2}} v-\nabla_{X_{2}} u_{f}\right\|_{L^{2}(\Omega)^{N-q}} .
\end{gathered}
$$

2) If β is Lipschitz, then we can obtain estimations similar to those of the linear case.

3.2. Error estimates in the Galerkin method

Lemma 3.4. Under assumptions of Theorem 1.1, suppose in addition that (14) holds. Then we have

$$
\left\|\nabla_{X_{2}}\left(u_{\epsilon, V, f}-u_{V, f}\right)\right\|_{L^{2}(\Omega)^{N-q}} \leq \epsilon\left(C_{1}\left\|\nabla_{X_{1}} u_{V, f}\right\|_{L^{2}(\Omega)^{q}}+C_{2}\|f\|_{L^{2}(\Omega)}\right)
$$

and

$$
\left\|\nabla_{X_{1}}\left(u_{\epsilon, V, f}-u_{V, f}\right)\right\|_{L^{2}(\Omega)^{q}} \leq \frac{1}{\sqrt{2}}\left(C_{1}\left\|\nabla_{X_{1}} u_{V, f}\right\|_{L^{2}(\Omega)^{q}}+C_{2}\|f\|_{L^{2}(\Omega)}\right)
$$

where

$$
C_{1}=\left(\frac{4\left(C+C^{\prime}\right)}{\lambda}\right)^{\frac{1}{2}} \text { and } C_{2}=\frac{2 \sqrt{C^{\prime \prime}} C_{\omega_{2}}}{\lambda^{3 / 2}}
$$

and where $C, C^{\prime}, C^{\prime \prime}$ are given by (32), (34) and (35). Notice that these constants are independent of ϵ, V and f. Proof. By subtracting (21) from (20) we get, for every $v \in V$:

$$
\begin{aligned}
& \int_{\Omega}\left(\beta\left(u_{\epsilon, V, f}\right)-\beta\left(u_{V, f}\right)\right) v d x+\epsilon^{2} \int_{\Omega} A_{11} \nabla_{X_{1}} u_{\epsilon, V, f} \cdot \nabla_{X_{1}} v d x \\
& +\epsilon \int_{\Omega} A_{12} \nabla_{X_{2}} u_{\epsilon, V, f} \cdot \nabla_{X_{1}} v d x+\epsilon \int_{\Omega} A_{21} \nabla_{X_{1}} u_{\epsilon, V, f} \cdot \nabla_{X_{2}} v d x \\
&
\end{aligned}
$$

Testing with $v=u_{\epsilon, V, f}-u_{V, f}$ we obtain

$$
\begin{aligned}
& \int_{\Omega}\left(\beta\left(u_{\epsilon, V, f}\right)-\beta\left(u_{V, f}\right)\right)\left(u_{\epsilon, V, f}-u_{V, f}\right) d x+\int_{\Omega} A_{\epsilon} \nabla\left(u_{\epsilon, V, f}-u_{V, f}\right) \cdot \nabla\left(u_{\epsilon, V, f}-u_{V, f}\right) \\
& =-\epsilon^{2} \int_{\Omega} A_{11} \nabla_{X_{1}} u_{V, f} \cdot \nabla_{X_{1}}\left(u_{\epsilon, V, f}-u_{V, f}\right) d x-\epsilon \int_{\Omega} A_{12} \nabla_{X_{2}} u_{V, f} \cdot \nabla_{X_{1}}\left(u_{\epsilon, V, f}-u_{V, f}\right) d x \\
& \\
& \quad-\epsilon \int_{\Omega} A_{21} \nabla_{X_{1}} u_{V, f} \cdot \nabla_{X_{2}}\left(u_{\epsilon, V, f}-u_{V, f}\right) d x
\end{aligned}
$$

whence, by using (5) and the ellipticity assumption we get

$$
\begin{aligned}
& \epsilon^{2} \lambda \int_{\Omega}\left|\nabla_{X_{1}}\left(u_{\epsilon, V, f}-u_{V, f}\right)\right|^{2} d x+\lambda \int_{\Omega}\left|\nabla_{X_{2}}\left(u_{\epsilon, V, f}-u_{V, f}\right)\right|^{2} d x \leq \\
& \quad-\epsilon^{2} \int_{\Omega} A_{11} \nabla_{X_{1}} u_{V, f} \cdot \nabla_{X_{1}}\left(u_{\epsilon, V, f}-u_{V, f}\right) d x-\epsilon \int_{\Omega} A_{12} \nabla_{X_{2}} u_{V, f} \cdot \nabla_{X_{1}}\left(u_{\epsilon, V, f}-u_{V, f}\right) d x \\
& \\
& \quad-\epsilon \int_{\Omega} A_{21} \nabla_{X_{1}} u_{V, f} \cdot \nabla_{X_{2}}\left(u_{\epsilon, V, f}-u_{V, f}\right) d x .
\end{aligned}
$$

Estimating the first and the last term of the second member of the above inequality. By using Young's inequality we obtain,

$$
\begin{aligned}
& -\epsilon^{2} \int_{\Omega} A_{11} \nabla_{X_{1}} u_{V, f} \cdot \nabla_{X_{1}}\left(u_{\epsilon, V, f}-u_{V, f}\right) d x \\
& \quad \leq \frac{\epsilon^{2} \lambda}{2} \int_{\Omega}\left|\nabla_{X_{1}}\left(u_{\epsilon, V, f}-u_{V, f}\right)\right|^{2} d x+\epsilon^{2} \frac{\left\|A_{11}\right\|_{L^{\infty}(\Omega)}^{2}}{2 \lambda} \int_{\Omega}\left|\nabla_{X_{1}} u_{V, f}\right|^{2} d x
\end{aligned}
$$

and

$$
\begin{aligned}
-\epsilon \int_{\Omega} A_{21} \nabla_{X_{1}} u_{V, f} \cdot \nabla_{X_{2}}\left(u_{\epsilon, V, f}-u_{V, f}\right) & d x \\
& \leq \epsilon^{2} \frac{\left\|A_{21}\right\|_{L^{\infty}(\Omega)}^{2}}{2 \lambda} \int_{\Omega}\left|\nabla_{X_{1}} u_{V, f}\right|^{2} d x+\frac{\lambda}{2} \int_{\Omega}\left|\nabla_{X_{2}}\left(u_{\epsilon, V, f}-u_{V, f}\right)\right|^{2} d x
\end{aligned}
$$

thus

$$
\begin{aligned}
& \frac{\epsilon^{2} \lambda}{2}\left\|\nabla_{X_{1}}\left(u_{\epsilon, V, f}-u_{V, f}\right)\right\|_{L^{2}(\Omega)}^{2}+\frac{\lambda}{2}\left\|\nabla_{X_{2}}\left(u_{\epsilon, V, f}-u_{V, f}\right)\right\|_{L^{2}(\Omega)^{N-q}}^{2} \\
& \leq C \epsilon^{2} \int_{\Omega}\left|\nabla_{X_{1}} u_{V, f}\right|^{2} d x-\epsilon \int_{\Omega} A_{12} \nabla_{X_{2}} u_{V, f} \cdot \nabla_{X_{1}}\left(u_{\epsilon, V, f}-u_{V, f}\right) d x
\end{aligned}
$$

where

$$
\begin{equation*}
C=\frac{\left\|A_{21}\right\|_{L^{\infty}(\Omega)}^{2}+\left\|A_{11}\right\|_{L^{\infty}(\Omega)}^{2}}{2 \lambda} \tag{32}
\end{equation*}
$$

Now, we estimate $-\epsilon \int_{\Omega} A_{12} \nabla_{X_{2}} u_{V, f} \cdot \nabla_{X_{1}}\left(u_{\epsilon, V, f}-u_{V, f}\right) d x$. Since $u_{\epsilon, V, f}-u_{V, f} \in H_{0}^{1}(\Omega)$ and $\partial_{x_{i}} a_{i j} \in L^{\infty}(\Omega)$, $\partial_{x_{j}} a_{i j} \in L^{\infty}(\Omega)$ for $i=1, \ldots, q$ and $j=q+1, \ldots, N$, then we can show by a simple density argument that for
$i=1, \ldots, q$ and $j=q+1, \ldots, N \quad \partial_{x_{k}}\left(a_{i j}\left(u_{\epsilon, V, f}-u_{V, f}\right)\right) \in L^{2}(\Omega)$ and

$$
\left.\partial_{x_{k}}\left(a_{i j}\left(u_{\epsilon, V, f}-u_{V, f}\right)\right)=\left(u_{\epsilon, V, f}-u_{V, f}\right) \partial_{x_{i}} a_{i j}+a_{i j} \partial_{x_{i}}\left(u_{\epsilon, V, f}-u_{V, f}\right), \text { for } k=i, j\right)
$$

Whence

$$
\begin{aligned}
-\epsilon \int_{\Omega} A_{12} \nabla_{X_{2}} u_{V, f} \cdot \nabla_{X_{1}}\left(u_{\epsilon, V, f}-u_{V, f}\right) d x= & -\epsilon \sum_{i=1}^{q} \sum_{j=q+1}^{N} \int_{\Omega} a_{i j} \partial_{x_{j}} u_{V, f} \partial_{x_{i}}\left(u_{\epsilon, V, f}-u_{V, f}\right) d x \\
= & -\epsilon \sum_{i=1}^{q} \sum_{j=q+1}^{N} \int_{\Omega} \partial_{x_{i}}\left(a_{i j}\left(u_{\epsilon, V, f}-u_{V, f}\right)\right) \partial_{x_{j}} u_{V, f} d x \\
& +\epsilon \sum_{i=1}^{q} \sum_{j=q+1}^{N} \int_{\Omega}\left(u_{\epsilon, V, f}-u_{V, f}\right) \partial_{x_{i}} a_{i j} \partial_{x_{j}} u_{V, f} d x \\
= & -\epsilon \sum_{i=1}^{q} \sum_{j=q+1}^{N} \int_{\Omega} \partial_{x_{j}}\left(a_{i j}\left(u_{\epsilon, V, f}-u_{V, f}\right)\right) \partial_{x_{i}} u_{V, f} d x \\
& +\epsilon \sum_{i=1}^{q} \sum_{j=q+1}^{N} \int_{\Omega}\left(u_{\epsilon, V, f}-u_{V, f}\right) \partial_{x_{i}} a_{i j} \partial_{x_{j}} u_{V, f} d x
\end{aligned}
$$

where we have used $\int_{\Omega} \partial_{x_{i}}\left(a_{i j}\left(u_{\epsilon, V, f}-u_{V, f}\right)\right) \partial_{x_{j}} u_{V, f} d x=\int_{\Omega} \partial_{x_{j}}\left(a_{i j}\left(u_{\epsilon, V, f}-u_{V, f}\right)\right) \partial_{x_{i}} u_{V, f} d x$ which holds by a simple density argument (recall that $u_{V, f} \in H_{0}^{1}(\Omega)$). therefore

$$
\begin{align*}
-\epsilon \int_{\Omega} A_{12} \nabla_{X_{2}} u_{V, f} \cdot \nabla_{X_{1}}\left(u_{\epsilon, V, f}-u_{V, f}\right) d x= & -\epsilon \sum_{i=1}^{q} \sum_{j=q+1}^{N} \int_{\Omega}\left(u_{\epsilon, V, f}-u_{V, f}\right) \partial_{x_{j}} a_{i j} \partial_{x_{i}} u_{V, f} d x \tag{33}\\
& -\epsilon \sum_{i=1}^{q} \sum_{j=q+1}^{N} \int_{\Omega} a_{i j} \partial_{x_{j}}\left(u_{\epsilon, V, f}-u_{V, f}\right) \partial_{x_{i}} u_{V, f} d x \\
& +\epsilon \sum_{i=1}^{q} \sum_{j=q+1}^{N} \int_{\Omega}\left(u_{\epsilon, V, f}-u_{V, f}\right) \partial_{x_{i}} a_{i j} \partial_{x_{j}} u_{V, f} d x .
\end{align*}
$$

By Young and Poincaré's inequalities we obtain

$$
\begin{aligned}
& -\epsilon \int_{\Omega} A_{12} \nabla_{X_{2}} u_{V, f} \cdot \nabla_{X_{1}}\left(u_{\epsilon, V, f}-u_{V, f}\right) d x \leq \frac{\lambda}{4} \int_{\Omega}\left|\nabla_{X_{2}}\left(u_{\epsilon, V, f}-u_{V, f}\right)\right|^{2} d x \\
& \\
& \quad+C^{\prime} \epsilon^{2} \int_{\Omega}\left|\nabla_{X_{1}} u_{V, f}\right|^{2} d x+C^{\prime \prime} \epsilon^{2} \int_{\Omega}\left|\nabla_{X_{2}} u_{V, f}\right|^{2} d x
\end{aligned}
$$

where

$$
\begin{equation*}
C^{\prime}=\frac{3\left[C_{\omega_{2}} \max _{1 \leq i \leq q, q+1 \leq j \leq N}\left\|\partial_{x_{j}} a_{i j}\right\|_{L^{\infty}(\Omega)}(N-q)\right]^{2}+3\left(\max _{1 \leq i \leq q, q+1 \leq j \leq N}\left\|a_{i j}\right\|_{L^{\infty}(\Omega)}(N-q)\right)^{2}}{\lambda} . \tag{34}
\end{equation*}
$$

and

$$
\begin{equation*}
C^{\prime \prime}=\frac{3\left[q C_{\omega_{2}} \max _{1 \leq i \leq q, q+1 \leq j \leq N}\left\|\partial_{x_{i}} a_{i j}\right\|_{L^{\infty}(\Omega)}\right]^{2}}{\lambda} \tag{35}
\end{equation*}
$$

According to (24) yields

$$
\begin{aligned}
& -\epsilon \int_{\Omega} A_{12} \nabla_{X_{2}} u_{V, f} \cdot \nabla_{X_{1}}\left(u_{\epsilon, V, f}-u_{V, f}\right) d x \leq \\
& \qquad \frac{\lambda}{4} \int_{\Omega}\left|\nabla_{X_{2}}\left(u_{\epsilon, V, f}-u_{V, f}\right)\right|^{2} d x+C^{\prime} \epsilon^{2} \int_{\Omega}\left|\nabla_{X_{1}} u_{V, f}\right|^{2} d x+\epsilon^{2} C^{\prime \prime}\left(\frac{C_{\omega_{2}}\|f\|_{L^{2}(\Omega)}}{\lambda}\right)^{2} .
\end{aligned}
$$

Combining (31) and (36) we get

$$
\begin{aligned}
& \frac{\epsilon^{2} \lambda}{2}\left\|\nabla_{X_{1}}\left(u_{\epsilon, V, f}-u_{V, f}\right)\right\|_{L^{2}(\Omega)^{q}}^{2}+\frac{\lambda}{4}\left\|\nabla_{X_{2}}\left(u_{\epsilon, V, f}-u_{V, f}\right)\right\|_{L^{2}(\Omega)^{N-q}}^{2} \\
& \leq \epsilon^{2}\left(\left(C+C^{\prime}\right) \int_{\Omega}\left|\nabla_{X_{1}} u_{V, f}\right|^{2} d x+C^{\prime \prime}\left(\frac{C_{\omega_{2}}\|f\|_{L^{2}(\Omega)}}{\lambda}\right)^{2}\right),
\end{aligned}
$$

and the proof is finished.
Using the triangle inequality, Lemma 3.9 and (29) we obtain the following estimation of the global error between $u_{\epsilon, V, f}$ and u_{f}

Corollary 3.5. Under assumption of Lemma 3.4 we have for any $\epsilon \in(0,1]$:

$$
\left\|\nabla_{X_{2}}\left(u_{\epsilon, V, f}-u_{f}\right)\right\|_{L^{2}(\Omega)^{N-q}} \leq \epsilon\left(C_{1}\left\|\nabla_{X_{1}} u_{V, f}\right\|_{L^{2}(\Omega)^{q}}+C_{2}\|f\|_{L^{2}(\Omega)}\right)+C_{c e ́ a}\left(\inf _{v \in V}\left\|\nabla_{X_{2}}\left(v-u_{f}\right)\right\|_{L^{2}(\Omega)^{N-q}}\right)^{\frac{1}{2}}
$$

We give an important remark which will be used to prove the inequality given in Remark 2.5 .
Remark 3.6. When $\beta(s)=\mu$ for some $\mu>0$ and when the bloc A_{12} satisfies assumption (19) then, by performing some integration by part in the last term of (33) and using the fact that

$$
\left\|u_{V, f}\right\|_{L^{2}(\Omega)} \leq \frac{1}{\mu}\|f\|_{L^{2}(\Omega)}
$$

we can obtain the following bound

$$
\forall \epsilon \in(0,1]:\left\|\nabla_{X_{2}}\left(u_{\epsilon, V, f}-u_{V, f}\right)\right\|_{L^{2}(\Omega)} \leq \epsilon\left(C_{1}^{\prime}\left\|\nabla_{X_{1}} u_{V, f}\right\|_{L^{2}(\Omega)^{q}}+\frac{C_{2}^{\prime}}{\mu}\|f\|_{L^{2}(\Omega)}\right),
$$

where $C_{1}^{\prime}, C_{2}^{\prime}>0$ are independent of f, V, μ and ϵ

3.3. Proof of Theorem 2.2

Let $\left(V_{n}\right)$ be a sequence of finite dimensional spaces which approximates $H_{0}^{1}(\Omega)$ in the sense of Definition 2.1. Using the density of $H_{0}^{1}(\Omega)$ in $H_{0}^{1}\left(\Omega, \omega_{2}\right)$ (Lemma A.1, Appendix A), one can check easily that $\left(V_{n}\right)$ approximates $H_{0}^{1}\left(\Omega, \omega_{2}\right)$ in the same sense. Therefore, one has:

$$
\begin{equation*}
\text { For every } \epsilon \in(0,1]: \inf _{v \in V_{n}}\left\|\nabla\left(v-u_{\epsilon, f}\right)\right\|_{L^{2}(\Omega)^{N}} \rightarrow 0 \text { as } n \rightarrow \infty, \tag{37}
\end{equation*}
$$

and

$$
\begin{equation*}
\inf _{v \in V_{n}}\left\|\nabla_{X_{2}}\left(v-u_{f}\right)\right\|_{L^{2}(\Omega)^{N-q}} \rightarrow 0 \text { as } n \rightarrow \infty \tag{38}
\end{equation*}
$$

According to Lemma 3.4, (29) and (30) we have, for every $n \in \mathbb{N}$ and $\epsilon \in(0,1]$:

$$
\begin{gather*}
\left\|\nabla_{X_{2}}\left(u_{\epsilon, V_{n}, f}-u_{V_{n}, f}\right)\right\|_{L^{2}(\Omega)^{N-q}} \leq \epsilon\left(C_{1}\left\|\nabla_{X_{1}} u_{V_{n}, f}\right\|_{L^{2}(\Omega)^{q}}+C_{2}\|f\|_{L^{2}(\Omega)}\right), \tag{39}\\
\left\|\nabla_{X_{2}}\left(u_{V_{n}, f}-u_{f}\right)\right\|_{L^{2}(\Omega)^{N-q}} \leq C_{c e ́ a}\left(\inf _{v \in V_{n}}\left\|\nabla_{X_{2}}\left(v-u_{f}\right)\right\|_{L^{2}(\Omega)^{N-q}}\right)^{\frac{1}{2}} \tag{40}
\end{gather*}
$$

and

$$
\begin{equation*}
\left\|\nabla\left(u_{\epsilon, V_{n}, f}-u_{\epsilon, f}\right)\right\|_{L^{2}(\Omega)^{N}} \leq \frac{C_{c e ́ a}^{\prime}}{\epsilon^{2}}\left(\inf _{v \in V_{n}}\left\|\nabla\left(v-u_{\epsilon, f}\right)\right\|_{L^{2}(\Omega)^{N}}\right)^{\frac{1}{2}} \tag{41}
\end{equation*}
$$

- Fix ϵ and pass to the limit in (41) using (37), one has

$$
u_{\epsilon, V_{n}, f} \rightarrow u_{\epsilon, f} \text { as } n \rightarrow \infty \text { in } H_{0}^{1}(\Omega),
$$

whence, the continuous imbedding $H_{0}^{1}(\Omega) \hookrightarrow H_{0}^{1}\left(\Omega, \omega_{2}\right)$ gives

$$
u_{\epsilon, V_{n}, f} \rightarrow u_{\epsilon, f} \text { as } n \rightarrow \infty \text { in } H_{0}^{1}\left(\Omega, \omega_{2}\right) .
$$

Now, passing to the limit as $\epsilon \rightarrow 0$, using Theorem 1.1, we get

$$
\begin{equation*}
\lim _{\epsilon}\left(\lim _{n} u_{\epsilon, V_{n}, f}\right)=u_{f} \text { in } H_{0}^{1}\left(\Omega, \omega_{2}\right) . \tag{42}
\end{equation*}
$$

- Fix n and passe to the limit as $\epsilon \rightarrow 0$ using (39), we get

$$
u_{\epsilon, V_{n}, f} \rightarrow u_{V_{n}, f} \text { as } \epsilon \rightarrow 0 \text { in } H_{0}^{1}\left(\Omega, \omega_{2}\right) .
$$

Now, passing to the limit as $n \rightarrow \infty$ in (40) by using (38) we get

$$
\begin{equation*}
\lim _{n}\left(\lim _{\epsilon} u_{\epsilon, V_{n}, f}\right)=u_{f} \text { in } H_{0}^{1}\left(\Omega, \omega_{2}\right) . \tag{43}
\end{equation*}
$$

Finally, Theorem 2.2 follows from (42) and (43).

3.4. Proof of Theorem 2.3

Throughout this subsection we will suppose that $\beta=0$. The key of the proof of Theorem 2.3 is based on the control the quantity $\left\|\nabla_{X_{1}} u_{V, f}\right\|_{L^{2}(\Omega)^{q}}$ independently of V. In fact, we need the following

Lemma 3.7. Let us assume that A satisfies (3), (4), and that A_{22} satisfies (18). Let V_{1} and V_{2} be two finite dimensional subspaces of $H_{0}^{1}\left(\omega_{1}\right)$ and $H_{0}^{1}\left(\omega_{2}\right)$ respectively. Let $f \in V_{1} \otimes V_{2}$, and let $u_{V, f}$ be the unique solution in $V=V_{1} \otimes V_{2}$ to:

$$
\begin{equation*}
\int_{\Omega} A_{22}\left(X_{2}\right) \nabla_{X_{2}} u_{V, f} \cdot \nabla_{X_{2}} v d x=\int_{\Omega} f v d x, \quad \forall v \in V_{1} \otimes V_{2} . \tag{44}
\end{equation*}
$$

Then we have

$$
\left\|\nabla_{X_{1}} u_{V, f}\right\|_{L^{2}(\Omega)^{q}} \leq C_{3}\left\|\nabla_{X_{1}} f\right\|_{L^{2}(\Omega)^{q}}
$$

where C_{3} is given by $C_{3}=\frac{\sqrt{q} C_{\omega_{2}}}{\lambda}$.

Proof. The prove is based on the difference quotient method (see for instance [13] page 168). For every $v=$ $\varphi \otimes \psi \in V_{1} \otimes V_{2}$, the function $X_{1} \longmapsto \int_{\omega_{2}} A_{22}\left(X_{2}\right) \nabla_{X_{2}} u_{V, f}\left(X_{1}, X_{2}\right) \cdot \nabla_{X_{2}} \psi d X_{2}$ belongs to V_{1}. In fact $u_{V, f}=$ $\sum_{\text {finite }} \varphi_{i} \otimes \psi_{i}$ and whence $\int_{\omega_{2}} A_{22}\left(X_{2}\right) \nabla_{X_{2}} u_{V, f} \cdot \nabla_{X_{2}} \psi d X_{2}$ is a linear combination of φ_{i}, thanks to the linearity of the integral. Similarly, the function $X_{1} \longmapsto \int_{\omega_{2}} f\left(X_{1}, X_{2}\right) \psi d X_{2}$ belongs to V_{1}. Now, from (44) we derive:

$$
\int_{\omega_{1}}\left(\int_{\omega_{2}}\left\{A_{22}\left(X_{2}\right) \nabla_{X_{2}} u_{V, f} \cdot \nabla_{X_{2}} \psi-f \cdot \psi\right\} d X_{2}\right) \varphi d X_{1}=0
$$

thus, when φ run through a set of an orthogonal basis of the euclidean space V_{1} equipped with the $L^{2}\left(\omega_{1}\right)$-scalar product, one can deduce that for a.e. $X_{1} \in \omega_{1}$:

$$
\int_{\omega_{2}} A_{22}\left(X_{2}\right) \nabla_{X_{2}} u_{V, f}\left(X_{1}, X_{2}\right) \cdot \nabla_{X_{2}} \psi d X_{2}=\int_{\omega_{2}} f \cdot\left(X_{1}, X_{2}\right) \psi d X_{2}, \forall \psi \in V_{2}
$$

Now, fix $i \in\{1, \ldots, q\}$. Let $\omega_{1}^{\prime} \subset \subset \omega_{1}$ open, for any $0<h<d\left(\omega_{1}^{\prime}, \partial \omega_{1}\right)$ and for any $\left(X_{1}, X_{2}\right) \in \omega_{1}^{\prime} \times \omega_{2}$ we denote $\tau_{h} u_{V, f}(x)=u_{V, f}\left(x_{1}, \ldots x_{i}+h, \ldots, x_{q}, X_{2}\right)$. According to the above equality we get for a.e. $X_{1} \in \omega_{1}^{\prime}$ and for every $\psi \in V_{2}$:

$$
\int_{\omega_{2}} A_{22}\left(X_{2}\right) \nabla_{X_{2}}\left\{\tau_{h} u_{V, f}\left(X_{1}, X_{2}\right)-u_{V, f}\left(X_{1}, X_{2}\right)\right\} \nabla_{X_{2}} \psi d X_{2}=\int_{\omega_{2}}\left\{\tau_{h} f\left(X_{1}, X_{2}\right)-f\left(X_{1}, X_{2}\right)\right\} \psi d X_{2}
$$

For every $w \in V_{1} \otimes V_{2}$, and for every X_{1} fixed the function $w\left(X_{1}, \cdot\right)$ belongs to V_{2}, so one can take $\psi=$ $\tau_{h} u_{V, f}\left(X_{1}, \cdot\right)-u_{V, f}\left(X_{1}, \cdot\right)$ as a test function in the above equality. Therefore, by using the Cauchy-Schwarz inequality, the ellipticity assumption and Poincaré's inequality (10) we obtain:

$$
\int_{\omega_{2}}\left|\tau_{h} u_{V, f}\left(X_{1}, \cdot\right)-u_{V, f}\left(X_{1}, \cdot\right)\right|^{2} d X_{2} \leq \frac{C_{\omega_{2}}^{2}}{\lambda^{2}} \int_{\omega_{2}}\left|\tau_{h} f\left(X_{1}, \cdot\right)-f\left(X_{1}, \cdot\right)\right|^{2} d X_{2}
$$

Now, integrating the above inequality over ω_{1}^{\prime} yields

$$
\int_{\omega_{1}^{\prime} \times \omega_{2}}\left|\tau_{h} u_{V, f}-u_{V, f}\right|^{2} d x \leq \frac{C_{\omega_{2}}^{2}}{\lambda^{2}} \int_{\omega_{1}^{\prime} \times \omega_{2}}\left|\tau_{h} f-f\right|^{2} d x
$$

Since $\nabla_{X_{1}} f \in L^{2}(\Omega)^{q}$ then

$$
\int_{\omega_{1}^{\prime} \times \omega_{2}}\left|\tau_{h} f-f\right|^{2} d x \leq\left\|\nabla_{X_{1}} f\right\|_{L^{2}(\Omega)^{q}}^{2} h^{2}
$$

Finally we obtain

$$
\int_{\omega_{1}^{\prime} \times \omega_{2}}\left|\frac{\tau_{h} u_{V, f}-u_{V, f}}{h}\right|^{2} d x \leq \frac{C_{\omega_{2}}^{2}\left\|\nabla_{X_{1}} f\right\|_{L^{2}(\Omega)^{q}}^{2}}{\lambda^{2}}
$$

Therefore,

$$
\left\|D_{x_{i}} u_{V, f}\right\|_{L^{2}(\Omega)} \leq \frac{C_{\omega_{2}}}{\lambda}\left\|\nabla_{X_{1}} f\right\|_{L^{2}(\Omega)^{q}}
$$

and hence

$$
\left\|\nabla_{X_{1}} u_{V, f}\right\|_{L^{2}(\Omega)^{q}} \leq C_{3}\left\|\nabla_{X_{1}} f\right\|_{L^{2}(\Omega)^{q}}
$$

with $C_{3}=\frac{\sqrt{q} C_{\omega_{2}}}{\lambda}$.

Remark 3.8. We have a similar result when (44) is replaced by

$$
\mu \int_{\Omega} u_{V, f} v d x+\int_{\Omega} A_{22}\left(X_{2}\right) \nabla_{X_{2}} u_{V, f} \cdot \nabla_{X_{2}} v d x=\int_{\Omega} f v d x, \quad \forall v \in V_{1} \otimes V_{2}
$$

where $\mu>0$. In this case we obtain the following

$$
\left\|\nabla_{X_{1}} u_{V, f}\right\|_{L^{2}(\Omega)^{q}} \leq \frac{\sqrt{q}}{\mu}\left\|\nabla_{X_{1}} f\right\|_{L^{2}(\Omega)^{q}}
$$

Now, we can refine the estimations of Lemma 3.4 as follows
Lemma 3.9. Under assumptions of Lemmas 3.4 and 3.7 we have:

$$
\begin{aligned}
\left\|\nabla_{X_{2}} u_{\epsilon, V, f}-\nabla_{X_{2}} u_{f}\right\|_{L^{2}(\Omega)^{N-q}} \leq \epsilon\left(C_{1} C_{3}\left\|\nabla_{X_{1}} f\right\|_{L^{2}(\Omega)^{q}}\right. & \left.+C_{2}\|f\|_{L^{2}(\Omega)}\right) \\
& +\frac{\left\|A_{22}\right\|_{L^{\infty}(\Omega)}}{\lambda} \inf _{v \in V_{1} \otimes V_{2}}\left\|\nabla_{X_{2}} v-\nabla_{X_{2}} u_{f}\right\|_{L^{2}(\Omega)^{N-q}}
\end{aligned}
$$

and

$$
\left\|\nabla_{X_{1}} u_{\epsilon, V, f}\right\|_{L^{2}(\Omega)^{q}} \leq \frac{1}{\sqrt{2}}\left(C_{1} C_{3}\left\|\nabla_{X_{1}} f\right\|_{L^{2}(\Omega)^{q}}+C_{2}\|f\|_{L^{2}(\Omega)}\right)+C_{3}\left\|\nabla_{X_{1}} f\right\|_{L^{2}(\Omega)^{q}}
$$

Proof. We have

$$
\left\|\nabla_{X_{2}} u_{\epsilon, V, f}-\nabla_{X_{2}} u_{f}\right\|_{L^{2}(\Omega)^{N-q}} \leq\left\|\nabla_{X_{2}} u_{\epsilon, V, f}-\nabla_{X_{2}} u_{V, f}\right\|_{L^{2}(\Omega)^{N-q}}+\left\|\nabla_{X_{2}} u_{V, f}-\nabla_{X_{2}} u_{f}\right\|_{L^{2}(\Omega)^{N-q}}
$$

Using Lemma 3.4 and Lemma 3.7 we obtain that

$$
\left\|\nabla_{X_{2}} u_{\epsilon, V, f}-\nabla_{X_{2}} u_{V, f}\right\|_{L^{2}(\Omega)^{N-q}} \leq \epsilon\left(C_{1} C_{3}\left\|\nabla_{X_{1}} f\right\|_{L^{2}(\Omega)^{q}}+C_{2}\|f\|_{L^{2}(\Omega)}\right)
$$

and using Remark 3.3, we deduce

$$
\left\|\nabla_{X_{2}} u_{V, f}-\nabla_{X_{2}} u_{f}\right\|_{L^{2}(\Omega)^{N-q}} \leq \frac{\left\|A_{22}\right\|_{L^{\infty}(\Omega)}}{\lambda} \inf _{v \in V_{1} \otimes V_{2}}\left\|\nabla_{X_{2}} v-\nabla_{X_{2}} u_{f}\right\|_{L^{2}(\Omega)^{N-q}}
$$

Using the previous inequalities gives the expected result. The second inequality follows by using the triangle inequality and applying Lemma 3.4 and Lemma 3.7.

Remark 3.10. When $\beta(s)=\mu s$, for a certain $\mu>0$, we obtain, by combining Remarks 3.6 and 3.8, the bound

$$
\left\|\nabla_{X_{2}}\left(u_{\epsilon, V, f}-u_{V, f}\right)\right\|_{L^{2}(\Omega)} \leq \frac{\epsilon}{\mu}\left(\sqrt{q} C_{1}^{\prime}\left\|\nabla_{X_{1}} f\right\|_{L^{2}(\Omega)^{q}}+C_{2}^{\prime}\|f\|_{L^{2}(\Omega)}\right)
$$

Now, we are able to give the first convergence result
Lemma 3.11. Suppose that assumptions of Lemmas 3.4 and 3.7 hold. Let $f \in H_{0}^{1}\left(\omega_{1}\right) \otimes H_{0}^{1}\left(\omega_{2}\right)$. Then we have, for any $\epsilon \in(0,1]$:

$$
\left\|\nabla_{X_{2}} u_{\epsilon, f}-\nabla_{X_{2}} u_{f}\right\|_{L^{2}(\Omega)^{N-q}} \leq \epsilon\left(C_{1} C_{3}\left\|\nabla_{X_{1}} f\right\|_{L^{2}(\Omega)^{q}}+C_{2}\|f\|_{L^{2}(\Omega)}\right)
$$

and

$$
\left\|\nabla_{X_{1}} u_{\epsilon, f}\right\|_{L^{2}(\Omega)^{q}} \leq \frac{1}{\sqrt{2}}\left(C_{1} C_{3}\left\|\nabla_{X_{1}} f\right\|_{L^{2}(\Omega)^{q}}+C_{2}\|f\|_{L^{2}(\Omega)}\right)+C_{3}\left\|\nabla_{X_{1}} f\right\|_{L^{2}(\Omega)^{q}}
$$

Proof. Let $\left(V_{n}^{(1)}\right)_{n \geq 0}$ and $\left(V_{n}^{(2)}\right)_{n \geq 0}$ be two nondecreasing sequences of finite dimensional subspaces of $H_{0}^{1}\left(\omega_{1}\right)$ and $H_{0}^{1}\left(\omega_{2}\right)$ respectively, whose the union of each one is dense in the corresponding space and such that $f \in V_{0}^{(1)} \otimes V_{0}^{(2)}$, such a sequence always exits. Indeed, let $\left\{e_{i}^{(1)}\right\}_{i \in \mathbb{N}}$ and $\left\{e_{i}^{(2)}\right\}_{i \in \mathbb{N}}$ be a Hilbert basis of $H_{0}^{1}\left(\omega_{1}\right)$ and $H_{0}^{1}\left(\omega_{2}\right)$ respectively, we know that $\cup_{n \geq 0} \operatorname{span}\left(e_{0}^{(1)}, \ldots, e_{n}^{(1)}\right)$ and $\cup_{n \geq 0} \operatorname{span}\left(e_{0}^{(2)}, \ldots, e_{n}^{(2)}\right)$ are dense in $H_{0}^{1}\left(\omega_{1}\right)$ and $H_{0}^{1}\left(\omega_{2}\right)$ respectively, in the other hand we have $f=\sum_{i=0}^{m} f_{i}^{(1)} \times f_{i}^{(2)}$ for some $m \in \mathbb{N}$ and $f_{i}^{(1)} \in H_{0}^{1}\left(\omega_{1}\right)$, $f_{i}^{(2)} \in H_{0}^{1}\left(\omega_{2}\right)$ for $i=0, \ldots, m$. Then we set, for every $n \in \mathbb{N}$:

$$
\begin{aligned}
V_{n}^{(1)} & :=\operatorname{span}\left(e_{0}^{(1)}, \ldots, e_{n}^{(1)}, f_{0}^{(1)}, \ldots, f_{m}^{(1)}\right) \\
V_{n}^{(2)} & :=\operatorname{span}\left(e_{0}^{(2)}, \ldots, e_{n}^{(2)}, f_{0}^{(2)}, \ldots, f_{m}^{(2)}\right)
\end{aligned}
$$

Now, since f belongs to each $V_{n}^{(1)} \otimes V_{n}^{(2)}$ then according to Lemma 3.9 with $V_{n}:=V_{n}^{(1)} \otimes V_{n}^{(2)}$ one has, for every $\epsilon \in(0,1], n \in \mathbb{N}$:

$$
\begin{aligned}
\left\|\nabla_{X_{2}} u_{\epsilon, V_{n}, f}-\nabla_{X_{2}} u_{f}\right\|_{L^{2}(\Omega)^{N-q}} \leq \epsilon\left(C_{1} C_{3}\left\|\nabla_{X_{1}} f\right\|_{L^{2}(\Omega)^{q}}+C_{2}\|f\|_{L^{2}(\Omega)}\right) & \\
& +\inf _{v \in V_{n}}\left\|\nabla_{X_{2}} v-\nabla_{X_{2}} u_{f}\right\|_{L^{2}(\Omega)^{N-q}}
\end{aligned}
$$

According to Corollary A. 5 in Appendix $\mathrm{A} \cup_{n \geq 0}\left(V_{n}^{(1)} \otimes V_{n}^{(2)}\right)$ is dense in $H_{0}^{1}(\Omega)$. Using the fact that the sequence $\left(V_{n}\right)_{n \geq 0}$ is nondecreasing then we obtain that

$$
\forall \epsilon \in(0,1]: \lim _{n \rightarrow \infty} \inf _{v \in V_{n}}\left\|\nabla v-\nabla u_{\epsilon, f}\right\|_{L^{2}(\Omega)^{N}}=0
$$

and therefore, by using (30) we get

$$
\forall \epsilon \in(0,1]: \lim _{n \rightarrow \infty}\left\|\nabla u_{\epsilon, V_{n}, f}-\nabla u_{\epsilon, f}\right\|_{L^{2}(\Omega)^{N}}=0
$$

and thus

$$
\forall \epsilon \in(0,1]: \lim _{n \rightarrow \infty}\left\|\nabla_{X_{2}} u_{\epsilon, V_{n}, f}-\nabla_{X_{2}} u_{\epsilon, f}\right\|_{L^{2}(\Omega)^{N-q}}=0 . \text { and } \lim _{n \rightarrow \infty}\left\|\nabla_{X_{1}} u_{\epsilon, V_{n}, f}-\nabla_{X_{1}} u_{\epsilon, f}\right\|_{L^{2}(\Omega)^{q}}=0
$$

Using the fact that $H_{0}^{1}(\Omega)$ is dense in $H_{0}^{1}\left(\Omega, \omega_{2}\right)$ (Lemma A.1, Appendix A) and that the imbedding $H_{0}^{1}(\Omega) \hookrightarrow$ $H_{0}^{1}\left(\Omega, \omega_{2}\right)$ is continuous then $\cup_{n \geq 0}\left(V_{n}^{(1)} \otimes V_{n}^{(2)}\right)$ is dense in $H_{0}^{1}\left(\Omega, \omega_{2}\right)$. Using the fact that the sequence $\left(V_{n}\right)_{n \geq 0}$ is nondecreasing then we obtain that

$$
\lim _{n \rightarrow \infty} \inf _{v \in V_{n}}\left\|\nabla_{X_{2}} v-\nabla_{X_{2}} u_{f}\right\|_{L^{2}(\Omega)^{N-q}}=0
$$

Then the passage to the limit as $n \rightarrow \infty$ in the above inequality gives

$$
\forall \epsilon \in(0,1]:\left\|\nabla_{X_{2}} u_{\epsilon, f}-\nabla_{X_{2}} u_{f}\right\|_{L^{2}(\Omega)^{N-q}} \leq \epsilon\left(C_{1} C_{3}\left\|\nabla_{X_{1}} f\right\|_{L^{2}(\Omega)^{q}}+C_{2}\|f\|_{L^{2}(\Omega)}\right)
$$

Finally, by using the second inequality of Lemma 3.9 we get

$$
\forall \epsilon \in(0,1]:\left\|\nabla_{X_{1}} u_{\epsilon, V_{n}, f}\right\|_{L^{2}(\Omega)^{q}} \leq \frac{1}{\sqrt{2}}\left(C_{1} C_{3}\left\|\nabla_{X_{1}} f\right\|_{L^{2}(\Omega)^{q}}+C_{2}\|f\|_{L^{2}(\Omega)}\right)+C_{3}\left\|\nabla_{X_{1}} f\right\|_{L^{2}(\Omega)^{q}}
$$

and the passage to limit as $n \rightarrow \infty$ shows the second estimation of the lemma.

Now, we are able to give the proof of Theorem 2.3. Let us introduce the space

$$
H_{0}^{1}\left(\Omega ; \omega_{1}\right)=\left\{v \in L^{2}(\Omega) \text { such that } \nabla_{X_{1}} v \in L^{2}(\Omega)^{q} \text { and for a.e. } X_{2} \in \omega_{2}, v\left(\cdot, X_{2}\right) \in H_{0}^{1}\left(\omega_{1}\right)\right\}
$$

normed by the Hilbert norm $\left\|\nabla_{X_{1}}(\cdot)\right\|_{L^{2}(\Omega)^{q}}$. We have the Poincare's inequality

$$
\begin{equation*}
\|v\|_{L^{2}(\Omega)} \leq C_{\omega_{1}}\left\|\nabla_{X_{1}} v\right\|_{L^{2}(\Omega)^{q}} \text { for any } v \in H_{0}^{1}\left(\Omega ; \omega_{1}\right) \tag{45}
\end{equation*}
$$

Let $f \in L^{2}(\Omega)$ such that (16) and (17), thus $f \in H_{0}^{1}\left(\Omega ; \omega_{1}\right)$. According to Lemma A. 3 of Appendix A $H_{0}^{1}\left(\omega_{1}\right) \otimes H_{0}^{1}\left(\omega_{2}\right)$ is dense in $H_{0}^{1}(\Omega)$, and according to Remark A. 2 of Appendix A $H_{0}^{1}(\Omega)$ is dense in $H_{0}^{1}\left(\Omega ; \omega_{1}\right)$, then it follows that $H_{0}^{1}\left(\omega_{1}\right) \otimes H_{0}^{1}\left(\omega_{2}\right)$ is dense in $H_{0}^{1}\left(\Omega ; \omega_{1}\right)$, thanks to the continuous imbedding $H_{0}^{1}(\Omega) \hookrightarrow$ $H_{0}^{1}\left(\Omega ; \omega_{1}\right)$. Therefore, for $\delta>0$ there exists $g_{\delta} \in H_{0}^{1}\left(\omega_{1}\right) \otimes H_{0}^{1}\left(\omega_{2}\right)$ such that

$$
\begin{equation*}
\left\|\nabla_{X_{1}}\left(f-g_{\delta}\right)\right\|_{L^{2}(\Omega)^{q}} \leq \delta \tag{46}
\end{equation*}
$$

Let $u_{\epsilon, g_{\delta}}$ be the unique solution of (7) with f replaced by g_{δ}. Testing with $u_{\epsilon, f}-u_{\epsilon, g_{\delta}}$ in the difference of weak formulations

$$
\int_{\Omega} A_{\epsilon} \nabla\left(u_{\epsilon, f}-u_{\epsilon, g_{\delta}}\right) \cdot \nabla \varphi d x=\int_{\Omega}\left(f-g_{\delta}\right) \varphi d x, \forall \varphi \in H_{0}^{1}(\Omega)
$$

we obtain

$$
\left\|\nabla_{X_{2}} u_{\epsilon, f}-\nabla_{X_{2}} u_{\epsilon, g_{\delta}}\right\|_{L^{2}(\Omega)^{N-q}} \leq \frac{C_{\omega_{1}} C_{\omega_{2}}}{\lambda} \delta, \text { and }\left\|\nabla_{X_{1}} u_{\epsilon, f}-\nabla_{X_{1}} u_{\epsilon, g_{\delta}}\right\|_{L^{2}(\Omega)^{q}} \leq \frac{C_{\omega_{1}} C_{\omega_{2}}}{\lambda \epsilon} \delta
$$

where we have used the ellipticity assumption, Poincaré's inequalities (10), (45) and (46). By a passage to the limit as $\epsilon \rightarrow 0$ in the first above inequality, using Theorem 1.1, we get

$$
\left\|\nabla_{X_{2}} u_{f}-\nabla_{X_{2}} u_{g_{\delta}}\right\|_{L^{2}(\Omega)^{N-q}} \leq \frac{C_{\omega_{1}} C_{\omega_{2}}}{\lambda} \delta
$$

Applying Lemma 3.11 on $u_{\epsilon, g_{\delta}}$ and $u_{g_{\delta}}$ we obtain

$$
\left\|\nabla_{X_{2}} u_{\epsilon, g_{\delta}}-\nabla_{X_{2}} u_{g_{\delta}}\right\|_{L^{2}(\Omega)^{N-q}} \leq \epsilon\left(C_{1} C_{3}\left\|\nabla_{X_{1}} g_{\delta}\right\|_{L^{2}(\Omega)^{q}}+C_{2}\left\|g_{\delta}\right\|_{L^{2}(\Omega)}\right)
$$

and from (46) we derive

$$
\left\|\nabla_{X_{2}} u_{\epsilon, g_{\delta}}-\nabla_{X_{2}} u_{g_{\delta}}\right\|_{L^{2}(\Omega)^{N-q}} \leq \epsilon\left(C_{1} C_{3}\left(\left\|\nabla_{X_{1}} f\right\|_{L^{2}(\Omega)^{q}}+\delta\right)+C_{2}\left\|g_{\delta}\right\|_{L^{2}(\Omega)}\right)
$$

Notice that $\left\|g_{\delta}\right\|_{L^{2}(\Omega)} \rightarrow\|f\|_{L^{2}(\Omega)}$ as $\delta \rightarrow 0$, thanks to (46) and Poincaré's inéquality (45) Finally the triangle inequality gives

$$
\begin{aligned}
& \left\|\nabla_{X_{2}} u_{\epsilon, f}-\nabla_{X_{2}} u_{f}\right\|_{L^{2}(\Omega)^{N-q}} \leq\left\|\nabla_{X_{2}} u_{\epsilon, f}-\nabla_{X_{2}} u_{\epsilon, g_{\delta}}\right\|_{L^{2}(\Omega)^{N-q}} \\
& +\left\|\nabla_{X_{2}} u_{\epsilon, g_{\delta}}-\nabla_{X_{2}} u_{g_{\delta}}\right\|_{L^{2}(\Omega)^{N-q}}+\left\|\nabla_{X_{2}} u_{g_{\delta}}-\nabla_{X_{2}} u_{f}\right\|_{L^{2}(\Omega)^{N-q}} \\
& \quad \leq \epsilon\left(C_{1} C_{3}\left(\left\|\nabla_{X_{1}} f\right\|_{L^{2}(\Omega)^{q}}+\delta\right)+C_{2}\left\|g_{\delta}\right\|_{L^{2}(\Omega)}\right)+2 \frac{C_{\omega_{1}} C_{\omega_{2}}}{\lambda} \delta
\end{aligned}
$$

Passing to the limit as $\delta \rightarrow 0$ we obtain

$$
\left\|\nabla_{X_{2}} u_{\epsilon, f}-\nabla_{X_{2}} u_{f}\right\|_{L^{2}(\Omega)^{N-q}} \leq \epsilon\left(C_{1} C_{3}\left\|\nabla_{X_{1}} f\right\|_{L^{2}(\Omega)^{q}}+C_{2}\|f\|_{L^{2}(\Omega)}\right)
$$

which is the estimation given in Theorem 2.3.
For the estimation in the first direction, we have

$$
\begin{aligned}
\left\|\nabla_{X_{1}} u_{\epsilon, f}\right\|_{L^{2}(\Omega)^{q}} & \leq\left\|\nabla_{X_{1}} u_{\epsilon, f}-\nabla_{X_{1}} u_{\epsilon, g_{\delta}}\right\|_{L^{2}(\Omega)^{q}}+\left\|\nabla_{X_{1}} u_{\epsilon, g_{\delta}}\right\|_{L^{2}(\Omega)^{q}} \\
& \leq \frac{C_{\omega_{1}} C_{\omega_{2}}}{\lambda \epsilon} \delta+\frac{1}{\sqrt{2}}\left(C_{1} C_{3}\left\|\nabla_{X_{1}} g_{\delta}\right\|_{L^{2}(\Omega)^{q}}+C_{2}\left\|g_{\delta}\right\|_{L^{2}(\Omega)}\right)+C_{3}\left\|\nabla_{X_{1}} g_{\delta}\right\|_{L^{2}(\Omega)^{q}},
\end{aligned}
$$

where we have applied, the triangle inequality and Lemma 3.11. Passing to the limit as $\delta \rightarrow 0$, by using (46) we obtain

$$
\left\|\nabla_{X_{1}} u_{\epsilon, f}\right\|_{L^{2}(\Omega)^{q}} \leq \frac{1}{\sqrt{2}}\left(C_{1} C_{3}\left\|\nabla_{X_{1}} f\right\|_{L^{2}(\Omega)^{q}}+C_{2}\|f\|_{L^{2}(\Omega)}\right)+C_{3}\left\|\nabla_{X_{1}} f\right\|_{L^{2}(\Omega)^{q}}
$$

Hence, by a passage to the limit in $L^{2}(\Omega)-w e a k$ as $\epsilon \rightarrow 0$, up to a subsequence, we show that u_{f} belongs to $H_{0}^{1}(\Omega)$, and by a contradiction argument, using the metrisability (for the weak topology) of weakly closed bounded subsets in separable Hilbert spaces, one can show that the global sequence $\left(\nabla_{X_{1}} u_{\epsilon, f}\right)_{\epsilon}$ converges weakly to $\nabla_{X_{1}} u_{f}$ in $L^{2}(\Omega)^{q}$, and this completes the proof of Theorem 2.3.

Remark 3.12. In the case $\beta(s)=\mu s$ with $\mu>0$ We repeat the same arguments of this subsection by using Remark 3.10 and we obtain the inequality of Remark 2.5.

4. Perturbations of semigroups of Linear operators

4.1. Preliminaries

For the standard basic theory of semigroups of bounded linear operators, we refer the reader to [14]. Let us begin by some reminders. Let E be a real Banach space. An undounded linear operator $\mathcal{A}: D(\mathcal{A}) \subset E \rightarrow E$ is said to be closed if for every sequence $\left(x_{n}\right)$ of $D(\mathcal{A})$ such that $\left(x_{n}\right)$ and $\left(\mathcal{A}\left(x_{n}\right)\right)$ converge in E, we have $\lim x_{n} \in D(\mathcal{A})$ and $\lim \mathcal{A}\left(x_{n}\right)=\mathcal{A}\left(\lim x_{n}\right)$. An operator is said to be densely defined on E if its domain $D(\mathcal{A})$ is dense in E. Let $\mu \in \mathbb{R}$ we said that μ belongs to the resolvent set of \mathcal{A} if $(\mu I-\mathcal{A}): D(\mathcal{A}) \rightarrow E$ is one-to-one and onto and such that $R_{\mu}=(\mu I-\mathcal{A})^{-1}: E \rightarrow D(\mathcal{A}) \subset E$ is a bounded operator on E. Notice that R_{μ} and \mathcal{A} commute on $D(\mathcal{A})$, that is $\forall x \in D(\mathcal{A}): R_{\mu} \mathcal{A} x=\mathcal{A} R_{\mu} x$. Let \mathcal{A} be a densely defined closed operator. The bounded operator

$$
\mathcal{A}_{\mu}=\mu \mathcal{A}(\mu I-\mathcal{A})^{-1}=\mu \mathcal{A} R_{\mu}=\mu^{2} R_{\mu}-\mu I
$$

is called the Yosida approximation of \mathcal{A}. We check immediately that \mathcal{A}_{μ} and \mathcal{A} commute on $D(\mathcal{A})$ that is for every $x \in D(\mathcal{A})$ we have $\mathcal{A}_{\mu} x \in D(\mathcal{A})$ and $\mathcal{A} \mathcal{A}_{\mu} x=\mathcal{A}_{\mu} \mathcal{A} x$. Furthermore, since \mathcal{A} is closed then $e^{t \mathcal{A}_{\mu}}$ and \mathcal{A} commute on $D(\mathcal{A})$ that is

$$
\begin{equation*}
\forall t \in \mathbb{R}, \forall x \in D(\mathcal{A}), e^{t \mathcal{A}_{\mu}} x \in D(\mathcal{A}) \tag{47}
\end{equation*}
$$

and

$$
\mathcal{A} e^{t \mathcal{A}_{\mu}} x=e^{t \mathcal{A}_{\mu}} \mathcal{A} x=\sum_{k=0}^{\infty} \frac{t^{k}}{k!}\left(\mathcal{A}_{\mu}\right)^{k} \mathcal{A} x
$$

indeed, we can check by induction that if $x \in D(\mathcal{A})$ then $\left(\mathcal{A}_{\mu}\right)^{k} x \in D(\mathcal{A})$, and that $\left(\mathcal{A}_{\mu}\right)^{k}$ and \mathcal{A} commute on $D(\mathcal{A})$. Recall also that if $(\mu I-\mathcal{A})^{-1}$ exists for $\mu>0$ and such that $\left\|(\mu I-\mathcal{A})^{-1}\right\| \leq \frac{1}{\mu}$ then

$$
\forall t \geq 0:\left\|e^{t \mathcal{A}_{\mu}}\right\|=\left\|e^{t \mu^{2} R_{\mu}}\right\| \times\left\|e^{-\mu t I}\right\| \leq e^{t \mu^{2}\left\|R_{\mu}\right\|} \times e^{-\mu t} \leq 1
$$

where $\|\cdot\|$ is the operator norm of $\mathcal{L}(E)$. A C_{0} semigroup of bounded linear operators on E is a family of bounded operators $(S(t))_{t \geq 0}$ of $\mathcal{L}(E)$ such that: $S(0)=I$, for every $t, s \geq 0: S(t+s)=S(t) S(s)$, and for every $x \in E:\|S(t) x-x\|_{E} \rightarrow 0$ as $t \rightarrow 0$. $(S(t))_{t \geq 0}$ is called a semigroup of contractions if for every $t \geq 0:\|S(t)\|_{E} \leq 1$. Now, let us recall the well-known Hill-Yosida theorem in its Hilbertian (real) version: An unbounded operator \mathcal{A} is the infinitesimal generator of a C_{0} semigroup of contraction $(S(t))_{t \geq 0}$ if and only
if \mathcal{A} is maximal dissipative, that is when $\mu I-\mathcal{A}$ is surjective for every $\mu>0$ and for every $x \in D(\mathcal{A})$: $\langle\mathcal{A} x, x\rangle \leq 0$. Recall that, in this case $D(\mathcal{A})$ is dense and \mathcal{A} is closed whose the resolvent set contains $] 0,+\infty[$. Furthermore, for every $t \geq 0, e^{t \mathcal{A}_{\mu}}$ converges, in the strong operator topology, to $S(t)$, as $\mu \rightarrow+\infty$ that is $\forall x \in E: e^{t \mathcal{A}_{\mu}} x \rightarrow S(t) x$ in E as $\mu \rightarrow+\infty$.

Let Ω as in the introduction. The basic Hilbert space in the sequel is $E=L^{2}(\Omega)$. For any $\epsilon \in(0,1]$, we introduce the operator \mathcal{A}_{ϵ} acting on $L^{2}(\Omega)$ and given by the formula

$$
\mathcal{A}_{\epsilon} u=\operatorname{div}\left(A_{\epsilon} \nabla u\right)
$$

where A_{ϵ} is given as in the introduction of this paper. The domain of \mathcal{A}_{ϵ} is given by

$$
D\left(\mathcal{A}_{\epsilon}\right)=\left\{u \in H_{0}^{1}(\Omega) \mid \operatorname{div}\left(A_{\epsilon} \nabla u\right) \in L^{2}(\Omega)\right\}
$$

where $\operatorname{div}\left(A_{\epsilon} \nabla u\right) \in L^{2}(\Omega)$ is taken in the distributional sense. Now, we introduce the operator \mathcal{A}_{0} defined on

$$
D\left(\mathcal{A}_{0}\right)=\left\{u \in H_{0}^{1}\left(\Omega ; \omega_{2}\right) \mid \operatorname{div}_{X_{2}}\left(A_{22} \nabla_{X_{2}} u\right) \in L^{2}(\Omega)\right\}
$$

by the formula

$$
\mathcal{A}_{0} u=\operatorname{div}_{X_{2}}\left(A_{22} \nabla_{X_{2}} u\right)
$$

We check immediatly, by using assumptions $(3-4)$, that \mathcal{A}_{ϵ} and \mathcal{A}_{0} are maximal dissipative and therefore, they are the infinitesimal generators of a C_{0} semigroups of contractions on $L^{2}(\Omega)$, denoted $\left(S_{\epsilon}(t)\right)_{t \geq 0}$ and $\left(S_{0}(t)\right)_{t \geq 0}$ respectively. For $\mu>0$ we denote by $R_{\epsilon, \mu}$ the resolvent of \mathcal{A}_{ϵ}. Similarly, we denote by $R_{0, \mu}$ the resolvent of $\mathcal{\mathcal { A } _ { 0 }}$. For $f \in L^{2}(\Omega)$, we denote $u_{\epsilon, \mu}$ the unique solution in $H_{0}^{1}(\Omega)$ to

$$
\mu \int_{\Omega} u_{\epsilon, \mu} \varphi d x+\int_{\Omega} A_{\epsilon} \nabla u_{\epsilon, \mu} \cdot \nabla \varphi d x=\int_{\Omega} f \varphi d x, \forall \varphi \in H_{0}^{1}(\Omega)
$$

we have $R_{\epsilon, \mu} f=u_{\epsilon, \mu}$ and $\left\|R_{\epsilon, \mu}\right\| \leq \frac{1}{\mu}$, where $\|\cdot\|$ is the operator norm of $\mathcal{L}\left(L^{2}(\Omega)\right)$. Similarly, let $u_{0, \mu}$ be the unique solution in $H_{0}^{1}\left(\Omega ; \omega_{2}\right)$ to

$$
\begin{equation*}
\mu \int_{\Omega} u_{0, \mu} \varphi d x+\int_{\Omega} A_{22} \nabla_{X_{2}} u_{0, \mu} \cdot \nabla_{X_{2}} \varphi d x=\int_{\Omega} f \varphi d x, \forall \varphi \in H_{0}^{1}\left(\Omega ; \omega_{2}\right) \tag{48}
\end{equation*}
$$

we have $R_{0, \mu} f=u_{0, \mu}$ and $\left\|R_{0, \mu}\right\| \leq \frac{1}{\mu}$. According to Remark 2.5, we have the following
Lemma 4.1. Assume (3), (4), (14), (18) and (19). Let $f \in H_{0}^{1}\left(\Omega ; \omega_{1}\right)$, there exists $C_{A, \Omega}>0$ only depending on A and Ω. such that:

$$
\begin{equation*}
\forall \epsilon \in(0,1], \forall \mu>0: \quad\left\|R_{\epsilon, \mu} f-R_{0, \mu} f\right\|_{L^{2}(\Omega)} \leq C_{A, \Omega} \times \frac{\epsilon}{\mu} \times\left(\left\|\nabla_{X_{1}} f\right\|_{L^{2}(\Omega)}+\|f\|_{L^{2}(\Omega)}\right) \tag{49}
\end{equation*}
$$

4.2. The asymptotic behavior of the perturbed semigroup

In this subsection, we study the relationship between the semigroups $\left(S_{\epsilon}(t)\right)_{t \geq 0}$ and $\left(S_{0}(t)\right)_{t \geq 0}$. We will assume that

$$
\begin{equation*}
A \text { is lipschitz on } \Omega \text {. } \tag{50}
\end{equation*}
$$

Notice that (50) shows that, for any $\epsilon \in(0,1]$:

$$
H_{0}^{1}(\Omega) \cap H^{2}(\Omega) \subset D\left(\mathcal{A}_{0}\right) \cap D\left(\mathcal{A}_{\epsilon}\right)
$$

Remark also that (50) implies (14). Now, we can give the main theorem of this section.

Theorem 4.2. Assume that $\Omega=\omega_{1} \times \omega_{2}$ is a bounded domain of $\mathbb{R}^{q} \times \mathbb{R}^{N-q}$. Assume (3-4), (18), (19) and (50) then for every $g \in L^{2}(\Omega)$ and $T \geq 0$ we have:

$$
\sup _{t \in[0, T]}\left\|S_{\epsilon}(t) g-S_{0}(t) g\right\|_{L^{2}(\Omega)} \rightarrow 0 \text { as } \epsilon \rightarrow 0
$$

In particular, for $g \in\left(H_{0}^{1} \cap H^{2}\left(\omega_{1}\right)\right) \otimes\left(H_{0}^{1} \cap H^{2}\left(\omega_{2}\right)\right)$ we have:

$$
\sup _{t \in[0, T]}\left\|S_{\epsilon}(t) g-S_{0}(t) g\right\|_{L^{2}(\Omega)} \leq C_{g, A, \Omega} \times T \times \epsilon
$$

Let us begin by this important lemma
Lemma 4.3. Suppose that assumptions of Theorem 4.2 hold. Let $f \in H_{0}^{1}(\Omega) \cap D\left(\mathcal{A}_{0}\right)$ such that

$$
\operatorname{div}_{X_{1}}\left(A_{11} \nabla_{X_{1}} f\right), \operatorname{div}_{X_{1}}\left(A_{12} \nabla_{X_{2}} f\right), \operatorname{div}_{X_{2}}\left(A_{21} \nabla_{X_{1}} f\right) \in L^{2}(\Omega)
$$

and $\mathcal{A}_{0} f \in H_{0}^{1}\left(\Omega ; \omega_{1}\right)$. Then, there exists a constant $C_{f, A, \Omega}>0$ such that for every $\mu>0, \epsilon \in(0,1]$ we have:

$$
\left\|\mathcal{A}_{\epsilon, \mu} f-\mathcal{A}_{0, \mu} f\right\|_{L^{2}(\Omega)} \leq C_{f, A, \Omega} \times \epsilon,
$$

where $\mathcal{A}_{\epsilon, \mu}$ and $\mathcal{A}_{0, \mu}$ are the Yosida approximations of \mathcal{A}_{ϵ} and \mathcal{A}_{0} respectively and

$$
\begin{aligned}
C_{f, A, \Omega}=\left\|d i v_{X_{1}}\left(A_{11} \nabla_{X_{1}} f\right)\right\|_{L^{2}(\Omega)}+ & \left\|\operatorname{div}_{X_{1}}\left(A_{12} \nabla_{X_{2}} f\right)\right\|_{L^{2}(\Omega)} \\
& +\left\|d i v_{X_{2}}\left(A_{21} \nabla_{X_{1}} f\right)\right\|_{L^{2}(\Omega)}+C_{A, \Omega}\left(\left\|\nabla_{X_{1}} \mathcal{A}_{0} f\right\|_{L^{2}(\Omega)}+\left\|\mathcal{A}_{0} f\right\|_{L^{2}(\Omega)}\right) .
\end{aligned}
$$

Proof. Let $\epsilon \in(0,1]$ and $\mu>0$. The bounded operators $\mathcal{A}_{\epsilon, \mu}, \mathcal{A}_{0, \mu}$ of $\mathcal{L}\left(L^{2}(\Omega)\right)$ are given by:

$$
\mathcal{A}_{\epsilon, \mu}=\mu \mathcal{A}_{\epsilon} R_{\epsilon, \mu} \text { and } \mathcal{A}_{0, \mu}=\mu \mathcal{A}_{0} R_{0, \mu}
$$

Now, under the above hypothesis we obtain that $f \in D\left(\mathcal{A}_{\epsilon}\right) \cap D\left(\mathcal{A}_{0}\right)$, and

$$
\begin{aligned}
\left\|\mathcal{A}_{\epsilon, \mu} f-\mathcal{A}_{0, \mu} f\right\|_{L^{2}(\Omega)} & =\mu\left\|\mathcal{A}_{\epsilon} R_{\epsilon, \mu} f-\mathcal{A}_{0} R_{0, \mu} f\right\|_{L^{2}(\Omega)}=\mu\left\|R_{\epsilon, \mu} \mathcal{A}_{\epsilon} f-R_{0, \mu} \mathcal{A}_{0} f\right\|_{L^{2}(\Omega)} \\
& \leq \mu\left\|R_{\epsilon, \mu} \mathcal{A}_{\epsilon} f-R_{\epsilon, \mu} \mathcal{A}_{0} f\right\|_{L^{2}(\Omega)}+\mu\left\|R_{\epsilon, \mu} \mathcal{A}_{0} f-R_{0, \mu} \mathcal{A}_{0} f\right\|_{L^{2}(\Omega)} \\
& \leq \mu\left\|R_{\epsilon, \mu}\right\| \times\left\|\mathcal{A}_{\epsilon} f-\mathcal{A}_{0} f\right\|_{L^{2}(\Omega)}+\mu\left\|R_{\epsilon, \mu} \mathcal{A}_{0} f-R_{0, \mu} \mathcal{A}_{0} f\right\|_{L^{2}(\Omega)}
\end{aligned}
$$

Since $\mathcal{A}_{0} f \in H_{0}^{1}\left(\Omega ; \omega_{1}\right)$ by hypothesis, then by using (49) (where we replace f by $\mathcal{A}_{0} f$) and the fact that $\left\|R_{\epsilon, \mu}\right\| \leq \frac{1}{\mu}$ we obtain

$$
\begin{aligned}
\left\|\mathcal{A}_{\epsilon, \mu} f-\mathcal{A}_{0, \mu} f\right\|_{L^{2}(\Omega)} & \leq\left\|\mathcal{A}_{\epsilon} f-\mathcal{A}_{0} f\right\|_{L^{2}(\Omega)}+\epsilon C_{A, \Omega}\left(\left\|\nabla_{X_{1}} \mathcal{A}_{0} f\right\|_{L^{2}(\Omega)}+\left\|\mathcal{A}_{0} f\right\|_{L^{2}(\Omega)}\right) \\
& =\epsilon\binom{\epsilon\left\|\operatorname{div}_{X_{1}}\left(A_{11} \nabla_{X_{1}} f\right)\right\|_{L^{2}(\Omega)}+\left\|\operatorname{div}_{X_{1}}\left(A_{12} \nabla_{X_{2}} f\right)\right\|_{L^{2}(\Omega)}}{+\left\|\operatorname{div}_{X_{2}}\left(A_{21} \nabla_{X_{1}} f\right)\right\|_{L^{2}(\Omega)}+C_{A, \Omega}\left(\left\|\nabla_{X_{1}} \mathcal{A}_{0} f\right\|_{L^{2}(\Omega)}+\left\|\mathcal{A}_{0} f\right\|_{L^{2}(\Omega)}\right)} \\
& \leq C_{f, A, \Omega} \times \epsilon .
\end{aligned}
$$

where we have used

$$
\mathcal{A}_{\epsilon} f-\mathcal{A}_{0} f=\epsilon^{2} \operatorname{div}_{X_{1}}\left(A_{11} \nabla_{X_{1}} f\right)+\epsilon \operatorname{div}_{X_{1}}\left(A_{12} \nabla_{X_{2}} f\right)+\epsilon \operatorname{div}_{X_{2}}\left(A_{21} \nabla_{X_{1}} f\right)
$$

and the proof of the lemma is finished.

Lemma 4.4. Under assumptions of Theorem 4.2, we have for any $g \in\left(H_{0}^{1} \cap H^{2}\left(\omega_{1}\right)\right) \otimes\left(H_{0}^{1} \cap H^{2}\left(\omega_{2}\right)\right)$:

$$
\forall \mu>0, \forall t \geq 0, \forall \epsilon \in(0,1]:\left\|e^{t \mathcal{A}_{\epsilon, \mu}} g-e^{t \mathcal{A}_{0, \mu}} g\right\|_{L^{2}(\Omega)} \leq C_{g, A, \Omega} \times t \times \epsilon
$$

where $C_{g, A, \Omega}$ is independent of μ and ϵ.
Proof. Let $\mu>0$ and $t \geq 0$ and $\epsilon \in(0,1]$, we have

$$
\begin{aligned}
e^{t \mathcal{A}_{0, \mu}}-e^{t \mathcal{A}_{\epsilon, \mu}} & =\int_{0}^{t} \frac{d}{d s}\left(e^{(t-s) \mathcal{A}_{\epsilon, \mu}} e^{s \mathcal{A}_{0, \mu}}\right) d s \\
& =\int_{0}^{t} e^{(t-s) \mathcal{A}_{\epsilon, \mu}}\left(\mathcal{A}_{0, \mu}-\mathcal{A}_{\epsilon, \mu}\right) e^{s \mathcal{A}_{0, \mu}} d s
\end{aligned}
$$

Hence for $g \in L^{2}(\Omega)$ we have

$$
\begin{equation*}
\left\|e^{t \mathcal{A}_{\epsilon, \mu}} g-e^{t \mathcal{A}_{0, \mu}} g\right\|_{L^{2}(\Omega)} \leq \int_{0}^{t}\left\|\mathcal{A}_{0, \mu} e^{s \mathcal{A}_{0, \mu}} g-\mathcal{A}_{\epsilon, \mu} e^{s \mathcal{A}_{0, \mu}} g\right\|_{L^{2}(\Omega)} d s \tag{51}
\end{equation*}
$$

where have used the fact that $\left\|e^{(t-s) \mathcal{A}_{\epsilon, \mu}}\right\| \leq 1$, since $t-s \geq 0$.
Now, we suppose that $g \in\left(H_{0}^{1} \cap H^{2}\left(\omega_{1}\right)\right) \otimes\left(H_{0}^{1} \cap H^{2}\left(\omega_{2}\right)\right)$ (remark that $\left.g \in D\left(\mathcal{A}_{0}\right)\right)$ and for $s \geq 0$ we set

$$
f_{g}:=e^{s \mathcal{A}_{0, \mu}} g
$$

We can prove that f_{g} satisfies the same hypothesis satisfied by the function f of Lemma 4.3 and moreover, for every $i, j=1, \ldots, q$ we have:

$$
\left\|D_{x_{i} x_{j}}^{2} f_{g}\right\|_{L^{2}(\Omega)} \leq\left\|D_{x_{i} x_{j}}^{2} g\right\|_{L^{2}(\Omega)},\left\|D_{x_{i}} f_{g}\right\|_{L^{2}(\Omega)} \leq\left\|D_{x_{i}} g\right\|_{L^{2}(\Omega)}
$$

and

$$
\left\|\left(\mathcal{A}_{0} f_{g}\right)\right\|_{L^{2}(\Omega)} \leq\left\|\mathcal{A}_{0} g\right\|_{L^{2}(\Omega)},\left\|D_{x_{i}}\left(\mathcal{A}_{0} f_{g}\right)\right\|_{L^{2}(\Omega)} \leq\left\|D_{x_{i}}\left(\mathcal{A}_{0} g\right)\right\|_{L^{2}(\Omega)}
$$

and for every $i=1, \ldots, q ; j=q+1, \ldots, N$ we have:

$$
\left\|D_{x_{j}} f_{g}\right\|_{L^{2}(\Omega)}^{2} \leq \frac{1}{\lambda}\left\|\mathcal{A}_{0} g\right\|_{L^{2}(\Omega)}\|g\|_{L^{2}(\Omega)} \text { and }\left\|D_{x_{j} x_{j}}^{2} f_{g}\right\|_{L^{2}(\Omega)}^{2} \leq \frac{1}{\lambda}\left\|D_{x_{i}} \mathcal{A}_{0} g\right\|_{L^{2}(\Omega)}\left\|D_{x_{i}} g\right\|_{L^{2}(\Omega)}
$$

The proof of these assertions follows from the identity $e^{s \mathcal{A}_{0, \mu}}\left(g_{1} \otimes g_{2}\right)=g_{1} \otimes e^{s \mathcal{A}_{0, \mu}} g_{2}$ (see Appendix B).
Applying Lemma 4.3, and using the above inequalities with (50) we get

$$
\begin{aligned}
\left\|\mathcal{A}_{0, \mu} e^{s \mathcal{A}_{0, \mu}} g-\mathcal{A}_{\epsilon, \mu} e^{s \mathcal{A}_{0, \mu}} g\right\|_{L^{2}(\Omega)} & \leq \epsilon\binom{\epsilon\left\|\operatorname{div}_{X_{1}}\left(A_{11} \nabla_{X_{1}} f_{g}\right)\right\|_{L^{2}(\Omega)}+\left\|\operatorname{div}_{X_{1}}\left(A_{12} \nabla_{X_{2}} f_{g}\right)\right\|_{L^{2}(\Omega)}}{+\left\|\operatorname{div}_{X_{2}}\left(A_{21} \nabla_{X_{1}} f_{g}\right)\right\|_{L^{2}(\Omega)}+C_{A, \Omega}\left(\left\|\nabla_{X_{1}} \mathcal{A}_{0} f_{g}\right\|_{L^{2}(\Omega)}+\left\|\mathcal{A}_{0} f_{g}\right\|_{L^{2}(\Omega)}\right)} \\
& \leq C_{g, A, \Omega} \times \epsilon .
\end{aligned}
$$

Notice that $C_{g, A, \Omega}$ does not depend in s, ϵ and μ. Finally, integrating the above inequality in s over $[0, t]$ and by using (51) we get the desired result.

Now, we are able to prove Theorem 4.2. First we prove the case when $g \in\left(H_{0}^{1} \cap H^{2}\left(\omega_{1}\right)\right) \otimes\left(H_{0}^{1} \cap H^{2}\left(\omega_{2}\right)\right)$ and we conclude by a density argument. So let g as mentioned above, by Lemma 4.4 we have

$$
\begin{equation*}
\forall \mu>0, \forall t \geq 0, \forall \epsilon \in(0,1]:\left\|e^{t \mathcal{A}_{\epsilon, \mu}} g-e^{t \mathcal{A}_{0, \mu}} g\right\|_{L^{2}(\Omega)} \leq C_{g, A, \Omega} \times t \times \epsilon \tag{52}
\end{equation*}
$$

Therefore, by passing to the limit in (52) as $\mu \rightarrow+\infty$ we get (see the preliminaries, the abstract part)

$$
\forall t \geq 0, \forall \epsilon \in(0,1]:\left\|S_{\epsilon}(t) g-S_{0}(t) g\right\|_{L^{2}(\Omega)} \leq C_{g, A, \Omega} \times t \times \epsilon
$$

whence for $T \geq 0$ fixed we obtain

$$
\begin{equation*}
\forall \epsilon \in(0,1]: \sup _{t \in[0, T]}\left\|S_{\epsilon}(t) g-S_{0}(t) g\right\|_{L^{2}(\Omega)} \leq C_{g, A, \Omega} \times T \times \epsilon \tag{53}
\end{equation*}
$$

Whence

$$
\begin{equation*}
\sup _{t \in[0, T]}\left\|S_{\epsilon}(t) g-S_{0}(t) g\right\|_{L^{2}(\Omega)} \rightarrow 0 \text { as } \epsilon \rightarrow 0 \tag{54}
\end{equation*}
$$

Now, let $g \in L^{2}(\Omega)$ and let $\delta>0$, by density there exists $g_{\delta} \in\left(H_{0}^{1} \cap H^{2}\left(\omega_{1}\right)\right) \otimes\left(H_{0}^{1} \cap H^{2}\left(\omega_{2}\right)\right.$ such that

$$
\left\|g-g_{\delta}\right\|_{L^{2}(\Omega)} \leq \frac{\delta}{4}
$$

According to (54) there exists $\epsilon_{\delta}>0$ such that

$$
\forall \epsilon \in\left(0, \epsilon_{\delta}\right]: \sup _{t \in[0, T]}\left\|S_{\epsilon}(t) g_{\delta}-S_{0}(t) g_{\delta}\right\|_{L^{2}(\Omega)} \leq \frac{\delta}{2}
$$

Whence, by the triangle inequality we get

$$
\forall \epsilon \in\left(0, \epsilon_{\delta}\right]: \sup _{t \in[0, T]}\left\|S_{\epsilon}(t) g-S_{0}(t) g\right\|_{L^{2}(\Omega)} \leq \frac{\delta}{2}+\sup _{t \in[0, T]}\left(\left\|S_{\epsilon}(t)\right\|+\left\|S_{0}(t)\right\|\right) \times\left\|g_{\delta}-g\right\|_{L^{2}(\Omega)}
$$

Using the fact that the semigroups $\left(S_{\epsilon}(t)\right)_{t \geq 0}$ and $\left(S_{0}(t)\right)_{t \geq 0}$ are of contraction, we get

$$
\forall \epsilon \in\left(0, \epsilon_{\delta}\right]: \sup _{t \in[0, T]}\left\|S_{\epsilon}(t) g-S_{0}(t) g\right\|_{L^{2}(\Omega)} \leq \delta
$$

So, $\sup _{t \in[0, T]}\left\|S_{\epsilon}(t) f-S_{0}(t) f\right\|_{L^{2}(\Omega)} \rightarrow 0$ as $\epsilon \rightarrow 0$. The second assertion of the theorem is given by (53) and the proof of the theorem is completed.

4.3. An application to a linear parabolic equation

Theorem 4.2 gives an opening for the study of anisotropic singular perturbations of evolution partial differential equations from the semigroup's point of view. In this subsection we just give a simple and short application to the linear parabolic equation

$$
\begin{equation*}
\frac{\partial u_{\epsilon}}{\partial t}-\operatorname{div}\left(A_{\epsilon} \nabla u_{\epsilon}\right)=0 \tag{55}
\end{equation*}
$$

supplemented with the boundary and the initial conditions

$$
\begin{align*}
u_{\epsilon}(t, \cdot) & =0 \text { in } \partial \Omega \text { for } t \in(0,+\infty) \tag{56}\\
u_{\epsilon}(0, \cdot) & =u_{\epsilon, 0} \tag{57}
\end{align*}
$$

The limit problem is

$$
\begin{equation*}
\frac{\partial u}{\partial t}-\operatorname{div}_{X_{2}}\left(A_{22} \nabla_{X_{2}} u\right)=0 \tag{58}
\end{equation*}
$$

supplemented with the boundary and the initial conditions

$$
\begin{align*}
u(t, \cdot) & =0 \text { in } \omega_{1} \times \partial \omega_{2} \text { for } t \in(0,+\infty) \tag{59}\\
u(0, \cdot) & =u_{0} \tag{60}
\end{align*}
$$

The operator form of (55) - (57) and (58) - (60) reads

$$
\begin{equation*}
\frac{d u_{\epsilon}}{d t}-\mathcal{A}_{\epsilon} u_{\epsilon}=0, \text { with } u_{\epsilon}(0)=u_{\epsilon, 0} \tag{61}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{d u}{d t}-\mathcal{A}_{0} u=0, \text { with } u(0)=u_{0} \tag{62}
\end{equation*}
$$

Suppose that $u_{0} \in D\left(\mathcal{A}_{0}\right)$ and $u_{\epsilon, 0} \in D\left(\mathcal{A}_{\epsilon}\right)$. Assume that (3), (4) and then it follows that (61), (62) have a unique classical solutions

$$
u_{\epsilon} \in C^{1}\left([0,+\infty) ; L^{2}(\Omega)\right) \cap C\left([0,+\infty) ; D\left(\mathcal{A}_{\epsilon}\right)\right),
$$

and

$$
u \in C^{1}\left([0,+\infty) ; L^{2}(\Omega)\right) \cap C\left([0,+\infty) ; D\left(\mathcal{A}_{0}\right)\right)
$$

We have the following convergence result.
Proposition 4.5. Suppose that $u_{0} \in D\left(\mathcal{A}_{0}\right)$ and $u_{\epsilon, 0} \in D\left(\mathcal{A}_{\epsilon}\right)$ such that $u_{\epsilon, 0} \rightarrow u_{0}$ in $L^{2}(\Omega)$, then under asumptions of Theorem 4.2, we have for any $T \geq 0$:

$$
\begin{equation*}
\sup _{t \in[0, T]}\left\|u_{\epsilon}(t)-u(t)\right\|_{L^{2}(\Omega)} \rightarrow 0 \text { as } \epsilon \rightarrow 0 \tag{63}
\end{equation*}
$$

Moreover, if $u_{\epsilon, 0}$ and u_{0} are in $H^{2}(\Omega)$ and such that $\left(u_{\epsilon, 0}\right)$ is bounded in $H^{2}(\Omega)$ and $\left\|\nabla_{X_{2}}\left(u_{\epsilon, 0}-u_{0}\right)\right\|_{L^{2}(\Omega)} \rightarrow 0$, $\left\|\nabla_{X_{2}}^{2}\left(u_{\epsilon, 0}-u_{0}\right)\right\|_{L^{2}(\Omega)} \rightarrow 0$ as $\epsilon \rightarrow 0$, then we have

$$
\sup _{t \in[0, T]}\left\|\frac{d}{d t}\left(u_{\epsilon}(t)-u(t)\right)\right\|_{L^{2}(\Omega)} \rightarrow 0
$$

Proof. It is well known that the solutions u_{ϵ}, u are given by

$$
u_{\epsilon}(t)=S_{\epsilon}(t) u_{\epsilon, 0} \text { and } u_{0}(t)=S_{0}(t) u_{0}, \text { for every } t \geq 0
$$

Let $T \geq 0$, we have

$$
\begin{aligned}
\sup _{t \in[0, T]}\left\|u_{\epsilon}(t)-u(t)\right\|_{L^{2}(\Omega)} & \leq \sup _{t \in[0, T]}\left\|S_{\epsilon}(t) u_{\epsilon, 0}-S_{\epsilon}(t) u_{0}\right\|_{L^{2}(\Omega)}+\sup _{t \in[0, T]}\left\|S_{\epsilon}(t) u_{0}-S_{0}(t) u_{0}\right\|_{L^{2}(\Omega)} \\
& \leq\left\|u_{\epsilon, 0}-u_{0}\right\|_{L^{2}(\Omega)}+\sup _{t \in[0, T]}\left\|S_{\epsilon}(t) u_{0}-S_{0}(t) u_{0}\right\|_{L^{2}(\Omega)}
\end{aligned}
$$

Passing to the limit as $\epsilon \rightarrow 0$ by using Theorem 4.2, we get $\sup _{t \in[0, T]}\left\|u_{\epsilon}(t)-u(t)\right\|_{L^{2}(\Omega)} \rightarrow 0$.
For the second affirmation, we have

$$
\begin{aligned}
\left\|\frac{d}{d t}\left(u_{\epsilon}(t)-u(t)\right)\right\|_{L^{2}(\Omega)} & =\left\|S_{\epsilon}(t) \mathcal{A}_{\epsilon} u_{\epsilon, 0}-S_{0}(t) \mathcal{A}_{0} u_{0}\right\|_{L^{2}(\Omega)} \\
& \leq\left\|\mathcal{A}_{\epsilon} u_{\epsilon, 0}-\mathcal{A}_{0} u_{0}\right\|_{L^{2}(\Omega)}+\sup _{t \in[0, T]}\left\|S_{\epsilon}(t) \mathcal{A}_{0} u_{0}-S_{0}(t) \mathcal{A}_{0} u_{0}\right\|_{L^{2}(\Omega)}
\end{aligned}
$$

As $\left(u_{\epsilon, 0}\right)$ is bounded in $H^{2}(\Omega), u_{0} \in H^{2}(\Omega)$ and $\left\|\nabla_{X_{2}}\left(u_{\epsilon, 0}-u_{0}\right)\right\|_{L^{2}(\Omega)} \rightarrow 0,\left\|\nabla_{X_{2}}^{2}\left(u_{\epsilon, 0}-u_{0}\right)\right\|_{L^{2}(\Omega)} \rightarrow 0$ as $\epsilon \rightarrow 0$, then by using (50) we get immediately $\left\|\mathcal{A}_{\epsilon} u_{\epsilon, 0}-\mathcal{A}_{0} u_{0}\right\|_{L^{2}(\Omega)} \rightarrow 0$ as $\epsilon \rightarrow 0$, and we conclude by applying Theorem 4.2.

Remark 4.6. Consider the nonhomogeneous parabolic equations associated to (55) and (58) with second member $f(t, x)$. Suppose that f is regular enough, for example $f \in \operatorname{Lip}\left([0, T] ; L^{2}(\Omega)\right)$, then the associated classical solutions u_{ϵ} and u existe and they are unique. In this case, we have the same convergence result (63). The proof follows immediately from the use of the following integral representation formulas of the solutions

$$
\begin{aligned}
& u_{\epsilon}(t)=S_{\epsilon}(t) u_{\epsilon, 0}+\int_{0}^{t} S_{\epsilon}(t-r) f(r) d r \\
& u(t)=S_{0}(t) u_{0}+\int_{0}^{t} S_{0}(t-r) f(r) d r
\end{aligned}
$$

Theorem 4.2, and Lebesgue's theorem.

ACKNOWLEDGEMENT

The authors would like to thank Professor Robert Eymard for some useful discussions.

Appendix A. Density lemmas

Let ω_{1} and ω_{2} be two open bounded subsets of \mathbb{R}^{q} and \mathbb{R}^{N-q} respectively. Recall that

$$
H_{0}^{1}\left(\Omega ; \omega_{2}\right)=\left\{u \in L^{2}(\Omega) \mid \nabla_{X_{2}} u \in L^{2}(\Omega), \text { a.e. } X_{1} \in \omega_{1}, u\left(X_{1}, \cdot\right) \in H_{0}^{1}\left(\omega_{2}\right)\right\}
$$

normed by $\left\|\nabla_{X_{2}}(\cdot)\right\|_{L^{2}(\Omega)}$. We have the following
Lemma A.1. The space $H_{0}^{1}(\Omega)$ is dense in $H_{0}^{1}\left(\Omega ; \omega_{2}\right)$.
Proof. Let $u \in H_{0}^{1}\left(\Omega ; \omega_{2}\right)$ fixed. Let l be the linear form defined on $H_{0}^{1}(\Omega)$ by

$$
\forall \varphi \in H_{0}^{1}(\Omega): l(\varphi)=\int_{\Omega} \nabla_{X_{2}} u \cdot \nabla_{X_{2}} \varphi d x
$$

l is continuous on $H_{0}^{1}(\Omega)$, indeed we have

$$
\forall \varphi \in H_{0}^{1}(\Omega):|l(\varphi)| \leq\left\|\nabla_{X_{2}} u\right\|_{L^{2}(\Omega)}\left\|\nabla_{X_{2}} \varphi\right\|_{L^{2}(\Omega)}
$$

and then,

$$
\forall \varphi \in H_{0}^{1}(\Omega):|l(\varphi)| \leq\left\|\nabla_{X_{2}} u\right\|_{L^{2}(\Omega)}\|\nabla \varphi\|_{L^{2}(\Omega)}
$$

For every $n \in \mathbb{N}^{*}$, we denote u_{n} the unique solution of

$$
\left\{\begin{array}{l}
\quad \frac{1}{n^{2}} \int_{\Omega} \nabla_{X_{1}} u_{n} \cdot \nabla_{X_{1}} \varphi d x+\int_{\Omega} \nabla_{X_{2}} u_{n} \cdot \nabla_{X_{2}} \varphi d x=l(\varphi), \forall \varphi \in H_{0}^{1}(\Omega) \tag{64}\\
u_{n} \in H_{0}^{1}(\Omega)
\end{array}\right.
$$

where the existence and uniqueness follows from the Lax-Milgram theorem. Testing with u_{n} in (64) we get, for every $n \in \mathbb{N}^{*}$

$$
\frac{1}{n^{2}} \int_{\Omega}\left|\nabla_{X_{1}} u_{n}\right|^{2} d x+\int_{\Omega}\left|\nabla_{X_{2}} u_{n}\right|^{2} d x \leq\left\|\nabla_{X_{2}} u\right\|_{L^{2}(\Omega)}\left\|\nabla_{X_{2}} u_{n}\right\|_{L^{2}(\Omega)}
$$

then, we deduce that

$$
\begin{equation*}
\forall n \in \mathbb{N}^{*}:\left\|\nabla_{X_{2}} u_{n}\right\|_{L^{2}(\Omega)} \leq\left\|\nabla_{X_{2}} u\right\|_{L^{2}(\Omega)} \tag{65}
\end{equation*}
$$

and

$$
\begin{equation*}
\forall n \in \mathbb{N}^{*}: \frac{1}{n}\left\|\nabla_{X_{1}} u_{n}\right\|_{L^{2}(\Omega)} \leq\left\|\nabla_{X_{2}} u\right\|_{L^{2}(\Omega)} \tag{66}
\end{equation*}
$$

Using (65) and Poincaré's inequality we obtain:

$$
\begin{equation*}
\forall n \in \mathbb{N}^{*}:\left\|u_{n}\right\|_{L^{2}(\Omega)} \leq C_{\omega_{2}}\left\|\nabla_{X_{2}} u\right\|_{L^{2}(\Omega)} \tag{67}
\end{equation*}
$$

Reflexivity of $L^{2}(\Omega)$ shows that there exists, $u_{\infty}, u_{\infty}^{\prime}, u_{\infty}^{\prime \prime} \in L^{2}(\Omega)$ and a subsequence still labeled (u_{n}) such that

$$
u_{n} \rightharpoonup u_{\infty}, \nabla_{X_{2}} u_{n} \rightharpoonup u_{\infty}^{\prime} \text { and } \frac{1}{n} \nabla_{X_{1}} u_{n} \rightharpoonup u_{\infty}^{\prime \prime} \text { in } L^{2}(\Omega) \text { weakly }
$$

Since the derivation on $\mathcal{D}^{\prime}(\Omega)$ is continuous we get

$$
\begin{equation*}
u_{n} \rightharpoonup u_{\infty}, \nabla_{X_{2}} u_{n} \rightharpoonup \nabla_{X_{2}} u_{\infty} \text { and } \frac{1}{n} \nabla_{X_{1}} u_{n} \rightharpoonup 0 \text { in } L^{2}(\Omega) \text { weakly. } \tag{68}
\end{equation*}
$$

1) we have $u_{\infty} \in H_{0}^{1}\left(\Omega ; \omega_{2}\right)$:

By the Mazur Lemma, there exists a sequence $\left(U_{n}\right)$ of convex combinations of $\left\{u_{n}\right\}$ such that

$$
\begin{equation*}
\nabla_{X_{2}} U_{n} \rightarrow \nabla_{X_{2}} u_{\infty} \text { in } L^{2}(\Omega) \text { strongly } \tag{69}
\end{equation*}
$$

then by the Lebesgue theorem there exists a subsequence $\left(U_{n_{k}}\right)$ such that:

$$
\begin{equation*}
\text { For a.e. } X_{1} \in \omega_{1}: \nabla_{X_{2}} U_{n_{k}}\left(X_{1}, \cdot\right) \rightarrow \nabla_{X_{2}} u_{\infty}\left(X_{1}, \cdot\right) \text { in } L^{2}\left(\omega_{2}\right) \text { strongly. } \tag{70}
\end{equation*}
$$

Now, since $\left(U_{n_{k}}\right) \in H_{0}^{1}(\Omega)^{\mathbb{N}}$ then

$$
\begin{equation*}
\text { For a.e. } X_{1} \in \omega_{1}:\left(U_{n_{k}}\left(X_{1}, \cdot\right)\right) \in H_{0}^{1}\left(\omega_{2}\right)^{\mathbb{N}} \tag{71}
\end{equation*}
$$

Combining (70) and (71) we deduce:

$$
\text { For a.e. } X_{1} \in \omega_{1}, u_{\infty}\left(X_{1}, \cdot\right) \in H_{0}^{1}\left(\omega_{2}\right)
$$

and the proof of $u_{\infty} \in H_{0}^{1}\left(\Omega ; \omega_{2}\right)$ is finished.
2) we have $u_{\infty}=u$:

Passing to the limit in (64) by using (68) we obtain

$$
\begin{equation*}
\int_{\Omega} \nabla_{X_{2}} u_{\infty} \cdot \nabla_{X_{2}} \varphi d x=\int_{\Omega} \nabla_{X_{2}} u \cdot \nabla_{X_{2}} \varphi d x, \forall \varphi \in H_{0}^{1}(\Omega) \tag{72}
\end{equation*}
$$

For every $\varphi_{1} \in H_{0}^{1}\left(\omega_{1}\right)$ and $\varphi_{2} \in H_{0}^{1}\left(\omega_{2}\right)$ taking, $\varphi=\varphi_{1} \otimes \varphi_{2}$ in (72) we obtain, for a.e. $X_{1} \in \omega_{1}$

$$
\int_{\omega_{2}} \nabla_{X_{2}} u_{\infty}\left(X_{1}, \cdot\right) \cdot \nabla_{X_{2}} \varphi_{2} d X_{2}=\int_{\omega_{2}} \nabla_{X_{2}} u\left(X_{1}, \cdot\right) \cdot \nabla_{X_{2}} \varphi_{2} d X_{2}, \forall \varphi_{2} \in H_{0}^{1}\left(\omega_{2}\right)
$$

For a.e. $X_{1} \in \omega_{1}$, taking $\varphi_{2}=u_{\infty}\left(X_{1}, \cdot\right)-u\left(X_{1}, \cdot\right)$, which belong to $H_{0}^{1}\left(\omega_{2}\right)$, in the above equality yields:

$$
\int_{\omega_{2}}\left|\nabla_{X_{2}}\left(u_{\infty}\left(X_{1}, \cdot\right)-u\left(X_{1}, \cdot\right)\right)\right|^{2} d X_{2}=0
$$

Integrating over ω_{1} we deduce

$$
\int_{\Omega}\left|\nabla_{X_{2}}\left(u_{\infty}-u\right)\right|^{2} d x=0
$$

and finally since $\left\|\nabla_{X_{2}}(\cdot)\right\|_{L^{2}(\Omega)}$ is a norm on $H_{0}^{1}\left(\Omega ; \omega_{2}\right)$ we get,

$$
\begin{equation*}
u_{\infty}=u \tag{73}
\end{equation*}
$$

combining (69) and (73) we get the desired result.
Remark A.2. By symmetry, $H_{0}^{1}(\Omega)$ is dense in the space

$$
H_{0}^{1}\left(\Omega ; \omega_{1}\right)=\left\{u \in L^{2}(\Omega) \mid \nabla_{X_{1}} u \in L^{2}(\Omega), \text { and for a.e. } X_{2} \in \omega_{2}, u\left(\cdot, X_{2}\right) \in H_{0}^{1}\left(\omega_{1}\right)\right\},
$$

normed by $\left\|\nabla_{X_{1}}(\cdot)\right\|_{L^{2}(\Omega)}$.
Lemma A.3. The space $H_{0}^{1}\left(\omega_{1}\right) \otimes H_{0}^{1}\left(\omega_{2}\right)$ is dense in $H_{0}^{1}(\Omega)$.
Proof. For a functions $\varphi: \omega_{1} \rightarrow \mathbb{R}, \psi: \omega_{2} \rightarrow \mathbb{R}$ we denote by $\varphi \otimes \psi$ the function defined on Ω by $(\varphi \otimes \psi)\left(X_{1}, X_{2}\right)=$ $\varphi\left(X_{1}\right) \times \psi\left(X_{2}\right)$, the tensor product $H_{0}^{1}\left(\omega_{1}\right) \otimes H_{0}^{1}\left(\omega_{2}\right)$ is the vector space generated by the elements of the form $\varphi \otimes \psi$ with φ and ψ in $H_{0}^{1}\left(\omega_{1}\right)$ and $H_{0}^{1}\left(\omega_{2}\right)$ respectively.

It is well know that $D\left(\omega_{1}\right) \otimes D\left(\omega_{2}\right)$ is dense in $D\left(\omega_{1} \times \omega_{2}\right)$, here $D\left(\omega_{1} \times \omega_{2}\right)$ is equipped with its natural topology (the inductive limit topology). It is clear that the injection of $D\left(\omega_{1} \times \omega_{2}\right)$ in $H_{0}^{1}\left(\omega_{1} \times \omega_{2}\right)$ is continuous, thanks to the inequality

$$
\forall u \in D(\Omega):\left(\int_{\Omega}|\nabla u|^{2} d x\right)^{\frac{1}{2}} \leq \sqrt{N \times \operatorname{mes}(\Omega)} \times\left(\max _{1 \leq i \leq N} \sup _{\operatorname{Support}(u)}\left|\partial_{x_{i}} u\right|\right) .
$$

Hence, by the density chain rule we obtain the density of $D\left(\omega_{1}\right) \otimes D\left(\omega_{2}\right)$ in $H_{0}^{1}(\Omega)$, and finally since $D\left(\omega_{1}\right) \otimes$ $D\left(\omega_{2}\right) \subset H_{0}^{1}\left(\omega_{1}\right) \otimes H_{0}^{1}\left(\omega_{2}\right)$ we get the desired result.
Lemma A.4. Let $\left(V_{n}^{(1)}\right)$ and $\left(V_{n}^{(2)}\right)$ be two sequences of subspaces (not necessarily of finite dimension) of $H_{0}^{1}\left(\omega_{1}\right)$ and $H_{0}^{1}\left(\omega_{2}\right)$ respectively. If $\cup V_{n}^{(1)}$ and $\cup V_{n}^{(2)}$ are dense in $H_{0}^{1}\left(\omega_{1}\right)$ and $H_{0}^{1}\left(\omega_{2}\right)$ respectively, then vect $\left(\bigcup_{n, m}\left(V_{n}^{(1)} \otimes V_{m}^{(2)}\right)\right)$ is dense in $H_{0}^{1}\left(\omega_{1}\right) \otimes H_{0}^{1}\left(\omega_{2}\right)$ for the induced topology of $H_{0}^{1}(\Omega)$. In particular, if $\left(V_{n}^{(1)}\right)$ and $\left(V_{n}^{(2)}\right)$ are nondecreasing then $\bigcup_{n}\left(V_{n}^{(1)} \otimes V_{n}^{(2)}\right)$ is dense in $H_{0}^{1}\left(\omega_{1}\right) \otimes H_{0}^{1}\left(\omega_{2}\right)$.
Proof. Let's start by a useful inequality. For $u \otimes v$ in $H_{0}^{1}\left(\omega_{1}\right) \otimes H_{0}^{1}\left(\omega_{2}\right)$ we have :

$$
\begin{align*}
\|u \otimes v\|_{H_{0}^{1}(\Omega)}^{2}= & \int_{\Omega}\left|\nabla_{X_{1}}(u \otimes v)\right|^{2} d x+\int_{\Omega}\left|\nabla_{X_{2}}(u \otimes v)\right|^{2} d x \\
= & \left(\int_{\omega_{2}} v^{2} d X_{2}\right) \times\left(\int_{\omega_{1}}\left|\nabla_{X_{1}} u\right|^{2} d X_{1}\right) \\
& +\left(\int_{\omega_{1}} u^{2} d X_{1}\right) \times\left(\int_{\omega_{2}}\left|\nabla_{X_{2}} v\right|^{2} d X_{2}\right) \\
\leq & C\|u\|_{H_{0}^{1}\left(\omega_{1}\right)}^{2} \times\|v\|_{H_{0}^{1}\left(\omega_{2}\right)}^{2}, \tag{74}
\end{align*}
$$

where we have used Fubini's theorem and Poincaré's inequality, here $C=C_{\omega_{1}}^{2}+C_{\omega_{2}}^{2}>0$. Now, fix $\eta>0$ and let $\varphi \otimes \psi \in H_{0}^{1}\left(\omega_{1}\right) \otimes H_{0}^{1}\left(\omega_{2}\right)$, by density of $\cup V_{n}^{(1)}$ in $H_{0}^{1}\left(\omega_{1}\right)$ there exists $n \in \mathbb{N}$ and $\varphi_{n} \in V_{n}^{(1)}$ such that:

$$
\|\psi\|_{H_{0}^{1}\left(\omega_{2}\right)} \times\left\|\varphi_{n}-\varphi\right\|_{H_{0}^{1}\left(\omega_{1}\right)} \leq \frac{\eta}{2 \sqrt{C}} .
$$

Similarly by density of $\cup V_{n}^{(2)}$ in $H_{0}^{1}\left(\omega_{2}\right)$, there exits $m \in \mathbb{N}$ (which depends on n and ψ) and $\psi_{m} \in V_{m}^{(2)}$ such that

$$
\left\|\varphi_{n}\right\|_{H_{0}^{1}\left(\omega_{1}\right)} \times\left\|\psi_{m}-\psi\right\|_{H_{0}^{1}\left(\omega_{2}\right)} \leq \frac{\eta}{2 \sqrt{C}} .
$$

Whence, by using the triangle inequality and (74) we obtain

$$
\begin{equation*}
\left\|\varphi \otimes \psi-\varphi_{n} \otimes \psi_{m}\right\|_{H_{0}^{1}(\Omega)} \leq \eta \tag{75}
\end{equation*}
$$

Now, since every element of $H_{0}^{1}\left(\omega_{1}\right) \otimes H_{0}^{1}\left(\omega_{2}\right)$ could be written as $\sum_{i=1}^{l} \varphi_{i} \otimes \psi_{i}$, then by using the triangle inequality and using (75) with η replaced by $\frac{\eta}{l}$, one gets the desired result.
Corollary A.5. vect $\left(\bigcup_{n, m}\left(V_{n}^{(1)} \otimes V_{m}^{(2)}\right)\right)$ is dense in $H_{0}^{1}(\Omega)$. in particular, if $\left(V_{n}^{(1)}\right)$ and $\left(V_{n}^{(2)}\right)$ are nondecreasing then $\bigcup_{n}\left(V_{n}^{(1)} \otimes V_{n}^{(2)}\right)$ is dense in $H_{0}^{1}(\Omega)$.

Appendix B. Semigroup

Lemma B.1. Assume $(3-4)$, (18) and let $f_{1} \in L^{2}\left(\omega_{1}\right), f_{2} \in L^{2}\left(\omega_{2}\right)$ then for every $\mu>0$ we have

$$
R_{0, \mu}\left(f_{1} \otimes f_{2}\right)=f_{1} \otimes\left(R_{0, \mu} f_{2}\right)
$$

Notice that $R_{0, \mu} f_{2} \in H_{0}^{1}\left(\omega_{2}\right)$. Moreover, we have

$$
\mathcal{A}_{0, \mu}\left(f_{1} \otimes f_{2}\right)=f_{1} \otimes\left(\mathcal{A}_{0, \mu} f_{2}\right)
$$

Notice also that $\mathcal{A}_{0, \mu} f_{2} \in L^{2}\left(\omega_{2}\right)$. Here, $\mathcal{A}_{0, \mu}$ is the Yosida approximation of \mathcal{A}_{0} that is $\mathcal{A}_{0, \mu}=\mu \mathcal{A}_{0} R_{0, \mu}$.
Proof. Let $v_{2} \in H_{0}^{1}\left(\omega_{2}\right)$ be the unique solution in $H_{0}^{1}\left(\omega_{2}\right)$ to

$$
\begin{equation*}
\mu \int_{\omega_{2}} v_{2} \varphi_{2} d X_{2}+\int_{\omega_{2}} A_{22}\left(X_{2}\right) \nabla_{X_{2}} v_{2} \cdot \nabla_{X_{2}} \varphi_{2} d X_{2}=\int_{\omega_{2}} f_{2} \varphi_{2} d X_{2}, \forall \varphi_{2} \in H_{0}^{1}\left(\omega_{2}\right) \tag{76}
\end{equation*}
$$

Let $\varphi \in H_{0}^{1}\left(\Omega ; \omega_{2}\right)$, then $\varphi\left(X_{1}, \cdot\right) \in H_{0}^{1}\left(\omega_{2}\right)$ for a.e. $X_{1} \in \omega_{1}$. Let $f_{1} \in L^{2}\left(\omega_{1}\right)$, multiplying (76) by f_{1}, testing in (76) with $\varphi\left(X_{1}, \cdot\right)$ and integrating over ω_{1} yields

$$
\mu \int_{\Omega} f_{1} v_{2} \varphi d x+\int_{\Omega} A_{22}\left(X_{2}\right) \nabla_{X_{2}}\left(f_{1} v_{2}\right) \cdot \nabla_{X_{2}} \varphi d x=\int_{\Omega} f_{1} f_{2} \varphi d x
$$

It is clear that $f_{1} v_{2} \in H_{0}^{1}\left(\Omega ; \omega_{2}\right)$ whence, $R_{0, \mu}\left(f_{1} \otimes f_{2}\right)=f_{1} \otimes v_{2}$, in particular when $f_{1}=1$ we have $R_{0, \mu}\left(f_{2}\right)=v_{2}$, and therefore $R_{0, \mu}\left(f_{1} \otimes f_{2}\right)=f_{1} \otimes R_{0, \mu}\left(f_{2}\right)$. The second assertion follows immediately from the first one, in fact

$$
\mathcal{A}_{0, \mu}\left(f_{1} \otimes f_{2}\right)=\mu \mathcal{A}_{0} R_{0, \mu}\left(f_{1} \otimes f_{2}\right)=\mu \mathcal{A}_{0}\left(f_{1} \otimes R_{0, \mu} f_{2}\right)
$$

We have $R_{0, \mu} f_{2} \in D\left(\mathcal{A}_{0}\right) \cap H_{0}^{1}\left(\omega_{2}\right)$ then by (18) (the operator \mathcal{A}_{0} does not depend on the X_{1} direction), we get

$$
\mathcal{A}_{0}\left(f_{1} \otimes R_{0, \mu} f_{2}\right)=f_{1} \otimes \mathcal{A}_{0}\left(R_{0, \mu} f_{2}\right)
$$

notice that $\mathcal{A}_{0}\left(R_{0, \mu} f_{2}\right) \in L^{2}\left(\omega_{2}\right)$. Finally we get

$$
\mathcal{A}_{0, \mu}\left(f_{1} \otimes f_{2}\right)=\mu f_{1} \otimes \mathcal{A}_{0}\left(R_{0, \mu} f_{2}\right)=f_{1} \otimes \mathcal{A}_{0, \mu}\left(f_{2}\right)
$$

Now, for $s \geq 0, \mu>0$ and any $g \in L^{2}(\Omega)$, we denote $f_{g}:=e^{s \mathcal{A}_{0, \mu}} g$

Lemma B.2. Assume $(3-4)$, (18).Let $g=g_{1} \otimes g_{2} \in L^{2}\left(\omega_{1}\right) \otimes L^{2}\left(\omega_{2}\right)$ then for $s \geq 0, \mu>0$ we have:

$$
f_{g}=g_{1} \otimes e^{s \mathcal{A}_{0, \mu}} g_{2}
$$

Notice that $e^{s, \mathcal{A}_{0, \mu}} g_{2} \in L^{2}\left(\omega_{2}\right)$.
Proof. we have

$$
f_{g}=e^{s \mathcal{A}_{0, \mu}} g=\sum_{k=0}^{\infty} \frac{s^{k}}{k!} \mathcal{A}_{0, \mu}^{k} g
$$

where the series converges in $L^{2}(\Omega)$. By an immediate induction we get by using B. 1

$$
\forall k \in \mathbb{N}: \mathcal{A}_{0, \mu}^{k} g=g_{1} \otimes \mathcal{A}_{0, \mu}^{k} g_{2}
$$

with $\mathcal{A}_{0, \mu}^{k} g_{2} \in L^{2}\left(\omega_{2}\right)$ for every $k \in \mathbb{N}$, and the Lemma follows.
Lemma B.3. Assume (3-4), (18). Let $g \in H^{2}\left(\omega_{1}\right) \otimes L^{2}\left(\omega_{2}\right)$ then for $s, \mu>0, i, j=1, \ldots, q$ we have: $D_{x_{i} x_{j}}^{2} f_{g}$, $D_{x_{i}} f_{g} \in L^{2}(\Omega)$, such that

$$
\begin{equation*}
D_{x_{i} x_{j}}^{2} f_{g}=e^{s \mathcal{A}_{0, \mu}}\left(D_{x_{i} x_{j}}^{2} g\right), D_{x_{i}} f_{g}=e^{s \mathcal{A}_{0, \mu}}\left(D_{x_{i}} g\right) \tag{77}
\end{equation*}
$$

and :

$$
\begin{equation*}
\left\|D_{x_{i} x_{j}}^{2} f_{g}\right\|_{L^{2}(\Omega)} \leq\left\|D_{x_{i} x_{j}}^{2} g\right\|_{L^{2}(\Omega)},\left\|D_{x_{i}} f_{g}\right\|_{L^{2}(\Omega)} \leq\left\|D_{x_{i}} g\right\|_{L^{2}(\Omega)} \tag{78}
\end{equation*}
$$

Proof. 1) Suppose the simple case when $g=g_{1} \otimes g_{2}$. So let $g=g_{1} \otimes g_{2} \in H^{2}\left(\omega_{1}\right) \otimes L^{2}\left(\omega_{2}\right)$ and let us prove assertions (77). By Lemma B. 2 we get

$$
f_{g}=g_{1} \otimes e^{s \mathcal{A}_{0, \mu}}\left(g_{2}\right)
$$

with $e^{s \mathcal{A}_{0, \mu}} g_{2} \in L^{2}\left(\omega_{2}\right)$.Hence, for $i, j=1, \ldots, q$ we have $D_{x_{i} x_{j}}^{2} f_{g} \in L^{2}(\Omega)$ and $D_{x_{i} x_{j}}^{2} f_{g}=\left(D_{x_{i} x_{j}}^{2} g_{1}\right) \otimes e^{s \mathcal{A}_{0, \mu}} g_{2}$, and applying B. 2 we get

$$
D_{x_{i} x_{j}}^{2} f_{g}=e^{s \mathcal{A}_{0, \mu}}\left(D_{x_{i} x_{j}}^{2} g\right)
$$

Similarly we get $D_{x_{i}} f_{g}=e^{s \mathcal{A}_{0, \mu}}\left(D_{x_{i}} g\right)$, and assertion (77) follows.
2) Now, let $g \in H^{2}\left(\omega_{1}\right) \otimes L^{2}\left(\omega_{2}\right)$, since g is a finite sum of elements of the form $g_{1} \otimes g_{2}$, then by linearity we get

$$
D_{x_{i} x_{j}}^{2} f_{g}=e^{s \mathcal{A}_{0, \mu}}\left(D_{x_{i} x_{j}}^{2} g\right), D_{x_{i}} f_{g}=e^{s \mathcal{A}_{0, \mu}}\left(D_{x_{i}} g\right)
$$

therefore

$$
\left\|D_{x_{i} x_{j}}^{2} f_{g}\right\|_{L^{2}(\Omega)} \leq\left\|e^{s \mathcal{A}_{0, \mu}}\right\|\left\|D_{x_{i} x_{j}}^{2} g\right\|_{L^{2}(\Omega)} \leq\left\|D_{x_{i} x_{j}}^{2} g\right\|_{L^{2}(\Omega)}
$$

and similarly we obtain the second inequality of (78).
Lemma B.4. Assume $(3-4)$, (18) and (50). Let $g \in\left(H_{0}^{1} \cap H^{2}\left(\omega_{1}\right)\right) \otimes\left(H_{0}^{1} \cap H^{2}\left(\omega_{2}\right)\right)$ then, for $s \geq 0, \mu>0$:

$$
\begin{gather*}
f_{g} \in D\left(\mathcal{A}_{0}\right), \mathcal{A}_{0}\left(f_{g}\right) \in H_{0}^{1}\left(\Omega ; \omega_{1}\right), \text { and } D_{x_{i}}\left(\mathcal{A}_{0} f_{g}\right)=e^{s \mathcal{A}_{0, \mu}}\left(D_{x_{i}} \mathcal{A}_{0} g\right) \tag{79}\\
\left\|\left(\mathcal{A}_{0} f_{g}\right)\right\|_{L^{2}(\Omega)} \leq\left\|\mathcal{A}_{0} g\right\|_{L^{2}(\Omega)} \text { and }\left\|D_{x_{i}}\left(\mathcal{A}_{0} f_{g}\right)\right\|_{L^{2}(\Omega)} \leq\left\|D_{x_{i}} \mathcal{A}_{0} g\right\|_{L^{2}(\Omega)}, i=1, \ldots, q, \tag{80}
\end{gather*}
$$

Proof. 1) Suppose $g=g_{1} \otimes g_{2} \in\left(H_{0}^{1} \cap H^{2}\left(\omega_{1}\right)\right) \otimes\left(H_{0}^{1} \cap H^{2}\left(\omega_{2}\right)\right)$ and let us prove (79). Since $g \in D\left(\mathcal{A}_{0}\right)$, thanks

$$
\mathcal{A}_{0} f_{g}=\mathcal{A}_{0}\left(e^{s \mathcal{A}_{0, \mu}} g\right)=\mathcal{A}_{0}\left(g_{1} \otimes e^{s \mathcal{A}_{0, \mu}} g_{2}\right)
$$

Notice that, $g_{2} \in D\left(\mathcal{A}_{0}\right)$, thanks to (50) then $e^{s \mathcal{A}_{0, \mu}} g_{2} \in D\left(\mathcal{A}_{0}\right)$ (thanks to (47)), hence

$$
\mathcal{A}_{0} f_{g}=g_{1} \mathcal{A}_{0} e^{s \mathcal{A}_{0, \mu}} g_{2}
$$

where we have used the fact that \mathcal{A}_{0} is independent of the $X_{1}-$ direction. Using the fact that $e^{s, \mathcal{A}_{0, \mu}}$ and \mathcal{A}_{0} commute on $D\left(\mathcal{A}_{0}\right)$, we get

$$
\mathcal{A}_{0} f_{g}=g_{1} e^{s \mathcal{A}_{0, \mu}} \mathcal{A}_{0} g_{2}
$$

Now, we have $\mathcal{A}_{0} g_{2} \in L^{2}\left(\omega_{2}\right)$ then $e^{s \mathcal{A}_{0, \mu}} \mathcal{A}_{0} g_{2} \in L^{2}\left(\omega_{2}\right)$ (thanks to Lemma B.2), however $g_{1} \in H_{0}^{1}\left(\omega_{1}\right)$, then

$$
\mathcal{A}_{0} f_{g} \in H_{0}^{1}\left(\Omega ; \omega_{1}\right)
$$

Whence, for $i=1, \ldots, q$ we have

$$
D_{x_{i}}\left(\mathcal{A}_{0} f_{g}\right)=D_{x_{i}} g_{1} \otimes e^{s \mathcal{A}_{0, \mu}} \mathcal{A}_{0} g_{2}
$$

and hence by, B. 2 we get

$$
\begin{aligned}
D_{x_{i}}\left(\mathcal{A}_{0} f_{g}\right) & =e^{s \mathcal{A}_{0, \mu}}\left(D_{x_{i}} g_{1} \otimes \mathcal{A}_{0} g_{2}\right) \\
& =e^{s \mathcal{A}_{0, \mu}}\left(D_{x_{i}} \mathcal{A}_{0} g\right)
\end{aligned}
$$

(Remark that $D_{x_{i}} \mathcal{A}_{0} g \in L^{2}(\Omega)$ since $g_{1} \in H_{0}^{1}\left(\omega_{1}\right)$ and $\left.\mathcal{A}_{0} g_{2} \in L^{2}\left(\omega_{2}\right)\right)$. 2) Now, for a general $g \in\left(H_{0}^{1} \cap\right.$ $\left.H^{2}\left(\omega_{1}\right)\right) \otimes\left(H_{0}^{1} \cap H^{2}\left(\omega_{2}\right)\right)$, assertion (79) follows by linearity. Finally, we show (80). We have

$$
\begin{aligned}
\left\|\left(\mathcal{A}_{0} f_{g}\right)\right\|_{L^{2}(\Omega)} & =\left\|e^{s \mathcal{A}_{0, \mu}}\left(\mathcal{A}_{0} g\right)\right\|_{L^{2}(\Omega)} \leq\left\|e^{s \mathcal{A}_{0, \mu}}\right\|\left\|\mathcal{A}_{0} g\right\|_{L^{2}(\Omega)} \\
& \leq\left\|\mathcal{A}_{0} g\right\|_{L^{2}(\Omega)}
\end{aligned}
$$

For $i=1, \ldots, q$ we get

$$
\begin{aligned}
\left\|D_{x_{i}}\left(\mathcal{A}_{0} f_{g}\right)\right\|_{L^{2}(\Omega)} & =\left\|e^{s \mathcal{A}_{0, \mu}}\left(D_{x_{i}} \mathcal{A}_{0} g\right)\right\|_{L^{2}(\Omega)} \leq\left\|e^{s \mathcal{A}_{0, \mu}}\right\|\left\|D_{x_{i}} \mathcal{A}_{0} g\right\|_{L^{2}(\Omega)} \\
& \leq\left\|D_{x_{i}} \mathcal{A}_{0} g\right\|_{L^{2}(\Omega)}
\end{aligned}
$$

Lemma B.5. Assume $(3-4)$, (18) and (50). Let $g \in\left(H_{0}^{1} \cap H^{2}\left(\omega_{1}\right)\right) \otimes\left(H_{0}^{1} \cap H^{2}\left(\omega_{2}\right)\right)$ then, for $s \geq 0, \mu>0$, $i=1, \ldots, q, j=q+1, \ldots, N$ we have $D_{x_{j}} f_{g}, D_{x_{i} x_{j}}^{2} f_{g} \in L^{2}(\Omega)$ and

$$
\begin{equation*}
\left\|D_{x_{j}} f_{g}\right\|_{L^{2}(\Omega)}^{2} \leq \frac{1}{\lambda}\left\|\mathcal{A}_{0} g\right\|_{L^{2}(\Omega)}\|g\|_{L^{2}(\Omega)},\left\|D_{x_{j} x_{j}}^{2} f_{g}\right\|_{L^{2}(\Omega)}^{2} \leq \frac{1}{\lambda}\left\|D_{x_{i}} \mathcal{A}_{0} g\right\|_{L^{2}(\Omega)}\left\|D_{x_{i}} g\right\|_{L^{2}(\Omega)} \tag{81}
\end{equation*}
$$

Proof. 1) Let us show the first inequality of(81). Suppose $g \in\left(H_{0}^{1} \cap H^{2}\left(\omega_{1}\right)\right) \otimes\left(H_{0}^{1} \cap H^{2}\left(\omega_{2}\right)\right)$. Notice that $g \in D\left(\mathcal{A}_{0}\right)$, thanks to (50) then according to (47) we have $f_{g} \in D\left(\mathcal{A}_{0}\right) \subset H_{0}^{1}\left(\Omega ; \omega_{2}\right)$, i.e. for $j \in\{q+1, \ldots, N\}$ fixed, we have $D_{x_{j}} f_{g} \in L^{2}(\Omega)$, and

$$
\begin{aligned}
\left\|D_{x_{j}} f_{g}\right\|_{L^{2}(\Omega)}^{2} & \leq \frac{1}{\lambda}\left\langle-\mathcal{A}_{0} f_{g}, f_{g}\right\rangle_{L^{2}(\Omega)} \\
& \leq \frac{1}{\lambda}\left\|\mathcal{A}_{0} f_{g}\right\|_{L^{2}(\Omega)}\left\|f_{g}\right\|_{L^{2}(\Omega)}
\end{aligned}
$$

We have, $\left\|\mathcal{A}_{0} f_{g}\right\|_{L^{2}(\Omega)}=\left\|\mathcal{A}_{0} e^{s \mathcal{A}_{0, \mu}} g\right\|_{L^{2}(\Omega)}=\left\|e^{s \mathcal{A}_{0, \mu}} \mathcal{A}_{0} g\right\|_{L^{2}(\Omega)} \leq\left\|\mathcal{A}_{0} g\right\|_{L^{2}(\Omega)}$, and $\left\|f_{g}\right\|_{L^{2}(\Omega)} \leq\|g\|_{L^{2}(\Omega)}$, therefore

$$
\left\|D_{x_{j}} f_{g}\right\|_{L^{2}(\Omega)}^{2} \leq \frac{1}{\lambda}\left\|\mathcal{A}_{0} g\right\|_{L^{2}(\Omega)}\|g\|_{L^{2}(\Omega)}
$$

2) Now, let $1 \leq i \leq q$ fixed, then according to Lemma B. 3 we have $D_{x_{i}} f_{g}=e^{s \mathcal{A}_{0, \mu}}\left(D_{x_{i}} g\right)$, notice that $D_{x_{i}} g=D_{x_{i}} g_{1} \otimes g_{2} \in D\left(\mathcal{A}_{0}\right)$ and hence, $D_{x_{i}} f_{g} \in D\left(\mathcal{A}_{0}\right)$, in particular $D_{x_{i}} f_{g} \in H_{0}^{1}\left(\Omega ; \omega_{2}\right)$, and for $q+1 \leq j \leq N$
we have

$$
\begin{aligned}
\left\|D_{x_{j} x_{i}}^{2} f_{g}\right\|_{L^{2}(\Omega)}^{2} & \leq \frac{1}{\lambda}\left\langle-\mathcal{A}_{0} D_{x_{i}} f_{g}, D_{x_{i}} f_{g}\right\rangle_{L^{2}(\Omega)} \\
& \leq \frac{1}{\lambda}\left\|\mathcal{A}_{0} D_{x_{i}} f_{g}\right\|_{L^{2}(\Omega)}\left\|D_{x_{i}} f_{g}\right\|_{L^{2}(\Omega)}
\end{aligned}
$$

We have,

$$
\begin{aligned}
\left\|\mathcal{A}_{0} D_{x_{i}} f_{g}\right\|_{L^{2}(\Omega)} & =\left\|\mathcal{A}_{0} e^{s \cdot \mathcal{A}_{0, \mu}}\left(D_{x_{i}} g\right)\right\|_{L^{2}(\Omega)}=\left\|e^{s \mathcal{A}_{0, \mu}}\left(\mathcal{A}_{0} D_{x_{i}} g\right)\right\|_{L^{2}(\Omega)} \\
& \leq\left\|\left(D_{x_{i}} \mathcal{A}_{0} g\right)\right\|_{L^{2}(\Omega)}
\end{aligned}
$$

according to (78) we have $\left\|D_{x_{i}} f_{g}\right\|_{L^{2}(\Omega)} \leq\left\|D_{x_{i}} g\right\|_{L^{2}(\Omega)}$, finally we obtain

$$
\left\|D_{x_{j} x_{i}}^{2} f_{g}\right\|_{L^{2}(\Omega)}^{2} \leq \frac{1}{\lambda}\left\|\left(D_{x_{i}} \mathcal{A}_{0} g\right)\right\|_{L^{2}(\Omega)}\left\|D_{x_{i}} g\right\|_{L^{2}(\Omega)} .
$$

Lemma B.6. Under assumptions of Lemma B.5, we have for $g \in\left(H_{0}^{1} \cap H^{2}\left(\omega_{1}\right)\right) \otimes\left(H_{0}^{1} \cap H^{2}\left(\omega_{2}\right)\right)$:

$$
\begin{equation*}
f_{g} \in H_{0}^{1}(\Omega) \cap D\left(\mathcal{A}_{0}\right), \tag{82}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{div}_{X_{1}}\left(A_{11} \nabla_{X_{1}} f\right), \operatorname{div}_{X_{1}}\left(A_{12} \nabla_{X_{2}} f\right), \operatorname{div}_{X_{2}}\left(A_{21} \nabla_{X_{1}} f\right) \in L^{2}(\Omega) . \tag{83}
\end{equation*}
$$

Proof. Let us prove (82). In Lemma B. 4 we proved that $f_{g} \in D\left(\mathcal{A}_{0}\right)$. Let us show that $f_{g} \in H_{0}^{1}(\Omega)$. Suppose the simple case $g=g_{1} \otimes g_{2}$,we have $f_{g}=g_{1} \otimes e^{s \mathcal{A}_{0, \mu}} g_{2}$. Since $g_{2} \in D\left(\mathcal{A}_{0}\right)$, then $e^{s \mathcal{A}_{0, \mu}} g_{2} \in D\left(\mathcal{A}_{0}\right)$, in particular we have $e^{s \mathcal{A}_{0}, \mu} g_{2} \in H_{0}^{1}\left(\Omega ; \omega_{2}\right)$ however, according to Lemma B. $2 e^{s \mathcal{A}_{0, \mu}} g_{2} \in L^{2}\left(\omega_{2}\right)$, hence $e^{s \mathcal{A}_{0, \mu}} g_{2} \in H_{0}^{1}\left(\omega_{2}\right)$, finally as $g_{1} \in H_{0}^{1}\left(\omega_{1}\right)$ we get $f_{g} \in H_{0}^{1}(\Omega)$. For a general g in the tensor product space, the proof follows by linearity.

Now, let us show (83). According to Lemmas B.3, B. 5 all these derivatives $D_{x_{i}} f_{g}, D_{x_{i} x_{j}}^{2} f_{g}$ for $1 \leq i, j \leq q$, and $D_{x_{j}} f_{g}, D_{x_{i} x_{j}}^{2} f_{g}$ for $1 \leq i \leq q, q+1 \leq j \leq N$ belong to $L^{2}(\Omega)$. Whence, combining that with (50) we get (83).

Appendix C. Existence theorems

Let $V \subset H_{0}^{1}(\Omega)$ a subspace. We consider also the problem

$$
\left\{\begin{array}{l}
\int_{\Omega} \beta(u) \varphi d x+\int_{\Omega} A_{22} \nabla_{X_{2}} u \cdot \nabla_{X_{2}} \varphi d x=\int_{\Omega} f \varphi d x, \forall \varphi \in V \tag{84}\\
u \in V .
\end{array}\right.
$$

with A_{22} and β as in the introduction.
Proposition C.1. If V is closed in $H_{0}^{1}\left(\Omega ; \omega_{2}\right)$ then there exists a solution to (84).
Proof. We consider the perturbed problem

$$
\left\{\begin{array}{l}
\int_{\Omega} \beta\left(u_{\epsilon}\right) \varphi d x+\int_{\Omega} \tilde{A}_{\epsilon} \nabla u_{\epsilon} \cdot \nabla \varphi d x=\int_{\Omega} f \varphi d x, \forall \varphi \in V \tag{85}\\
u_{\epsilon} \in V .
\end{array}\right.
$$

with

$$
\tilde{A}_{\epsilon}=\left(\begin{array}{cc}
\epsilon^{2} I_{q} & 0 \\
0 & A_{22}
\end{array}\right)
$$

The space V is closed in $H_{0}^{1}(\Omega)$ and \tilde{A}_{ϵ} is bounded and coercive, then by the Schauder fixed point theorem there exists a solution u_{ϵ} to (85). This solution is unique in V thanks to monotonicity and coercivity of \tilde{A}_{ϵ}. Testing with u_{ϵ} we obtain

$$
\epsilon\left\|\nabla_{X_{1}} u_{\epsilon}\right\|_{L^{2}(\Omega)},\left\|\nabla_{X_{2}} u_{\epsilon}\right\|_{L^{2}(\Omega)},\left\|u_{\epsilon}\right\|_{L^{2}(\Omega)} \leq C
$$

where C is independent of ϵ, we have used that $\int_{\Omega} \beta\left(u_{\epsilon}\right) u_{\epsilon} d x \geq 0$ (thanks to monotonicity of β and $\beta(0)=0$). And we also have

$$
\left\|\beta\left(u_{\epsilon}\right)\right\|_{L^{2}(\Omega)} \leq M\left(|\Omega|^{\frac{1}{2}}+C\right)
$$

so there exists $v \in L^{2}(\Omega), u \in L^{2}(\Omega), \nabla_{X_{2}} u \in L^{2}(\Omega)$ and a subsequence $\left(u_{\epsilon_{k}}\right)_{k \in \mathbb{N}}$ such that

$$
\begin{equation*}
\beta\left(u_{\epsilon_{k}}\right) \rightharpoonup v, \epsilon_{k} \nabla_{X_{1}} u_{\epsilon_{k}} \rightharpoonup 0, \nabla_{X_{2}} u_{\epsilon_{k}} \rightharpoonup \nabla_{X_{2}} u, u_{\epsilon_{k}} \rightharpoonup u \text { in } L^{2}(\Omega) \text {-weak } \tag{86}
\end{equation*}
$$

Passing to the limit in the weak formulation of (85) we get

$$
\begin{equation*}
\int_{\Omega} v \varphi d x+\int_{\Omega} A_{22} \nabla_{X_{2}} u \cdot \nabla_{X_{2}} \varphi d x=\int_{\Omega} f \varphi d x, \forall \varphi \in V \tag{87}
\end{equation*}
$$

Take $\varphi=u_{\epsilon_{k}}$ in the previous equality and passing to the limit we get

$$
\begin{equation*}
\int_{\Omega} v u d x+\int_{\Omega} A_{22} \nabla_{X_{2}} u \cdot \nabla_{X_{2}} u d x=\int_{\Omega} f u d x \tag{88}
\end{equation*}
$$

Let us consider the quantity

$$
\begin{aligned}
& 0 \leq I_{k}=\int_{\Omega} \epsilon^{2}\left|\nabla_{X_{1}} u_{\epsilon_{k}}\right|^{2} d x+\int_{\Omega} A_{22} \nabla_{X_{2}}\left(u_{\epsilon_{k}}-u\right) \cdot \nabla_{X_{2}}\left(u_{\epsilon_{k}}-u\right) \\
&+\int_{\Omega}\left(\beta\left(u_{\epsilon_{k}}\right)-\beta(u)\right)\left(u_{\epsilon_{k}}-u\right) d x \\
&=\int_{\Omega} f u_{\epsilon_{k}} d x-\int_{\Omega} A_{22} \nabla_{X_{2}} u_{\epsilon_{k}} \cdot \nabla_{X_{2}} u d x-\int_{\Omega} A_{22} \nabla_{X_{2}} u \cdot \nabla_{X_{2}} u_{\epsilon_{k}} d x \\
&+\int_{\Omega} f u d x-\int_{\Omega} v u d x-\int_{\Omega} \beta(u) u_{\epsilon_{k}} d x \\
&-\int_{\Omega} \beta\left(u_{\epsilon_{k}}\right) u d x+\int_{\Omega} \beta(u) u d x
\end{aligned}
$$

Remark that this quantity is positive thanks to the ellipticity and monotonicity assumptions. Passing to the limit as $k \rightarrow \infty$ using (86), (88) we get

$$
\lim I_{k}=0
$$

And finally the ellipticity assumption shows that

$$
\begin{equation*}
\left\|\epsilon_{k} \nabla_{X_{1}} u_{\epsilon_{k}}\right\|_{L^{2}(\Omega)},\left\|u_{\epsilon_{k}}-u\right\|_{L^{2}(\Omega)},\left\|\nabla_{X_{2}}\left(u_{\epsilon_{k}}-u\right)\right\|_{L^{2}(\Omega)} \rightarrow 0 \tag{89}
\end{equation*}
$$

and therefore,

$$
\beta\left(u_{\epsilon_{k}}\right) \rightarrow \beta(u) \text { strongly in } L^{2}
$$

Whence (87) becomes

$$
\int_{\Omega} \beta(u) \varphi d x+\int_{\Omega} A_{22} \nabla_{X_{2}} u \cdot \nabla_{X_{2}} \varphi d x=\int_{\Omega} f \varphi d x, \forall \varphi \in V
$$

$\left\|\nabla_{X_{2}}\left(u_{\epsilon_{k}}-u\right)\right\|_{L^{2}(\Omega)} \rightarrow 0$ shows that $u \in H_{0}^{1}\left(\Omega ; \omega_{2}\right)$, and therefore since V is closed in $H_{0}^{1}\left(\Omega ; \omega_{2}\right)$ then $u \in V$.

References

[1] M. Chipot. On some anisotropic singular perturbation problems. Asymptotic Analysis, 55.3-4:125-144, 2007.
[2] M. Chipot and S. Guesmia. On some anisotropic, nonlocal, parabolic singular perturbations problems. Applicable analysis, 90.12: 1775-1789, 2011.
[3] M. Chipot, S. Guesmia. On the asymptotic behavior of elliptic, anisotropic singular perturbations problems. Communications on Pure and Applied Analysis, 8.1 : 179, 2009.
[4] M. Chipot, S. Guesmia. On a class of integro differential problems. Communications on Pure and Applied Analysis 9.5:12491262, 2010.
[5] M. Chipot, S. Guesmia, and A. Sengouga. Singular perturbations of some nonlinear problems. Journal of Mathematical Sciences, 176.6 : 828-843, 2011.
[6] S. Guesmia, and A. Sengouga. Some Results on the Asymptotic Behaviour of Hyperbolic Singular Perturbations Problems. Abdus Salam International Centre for Theoretical Physics, No. IC-2010/050. 2010.
[7] S. Guesmia, A. Sengouga. Some singular perturbations results for semilinear hyperbolic problems. Discrete and Continuous Dynamical Systems -S 5.3: 567-580, 2012.
[8] S. Azouz, and S. Guesmia. Asymptotic development of anisotropic singular perturbation problems. Asymptotic Analysis, 100.3-4 : 131-152, 2016.
[9] C. Ogabi. On the L^{p} - theory of anisotropic singular perturbations of elliptic problems, Communications on Pure and Applied Analysis,15.4:1157-1178, 2016.
[10] C. Ogabi. $W^{2,2}$ interior convergence for some class of elliptic anisotropic singular perturbations problems. Complex Variables and Elliptic Equations, 64.4: 574-585, 2019.
[11] C. Ogabi. On a Class of Nonlinear Elliptic Singular Perturbations Problems. Differential Equations and Dynamical Systems 29.2: 383-389, 2019.
[12] J. Sin. Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations. SIAM Journal on Scientific Computing, 21.2, 441-454, 1999.
[13] D. Gilbarg, N.S. Trudinger. Elliptic Partial Differential Equations of Second Order. 2nd edition, Springer Verlag, 1984.
[14] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, 1983.

[^0]: Keywords and phrases: Anisotropic singular perturbations, elliptic problems ,rate of convergence, second-order elliptic operator, perturbed semigroups
 ${ }^{1}$ LAMA, Univ. Gustave Eiffel, Univ. Paris Est Créteil, CNRS, F-77454 Marne-la-Vallée, France. david.maltese@univ-eiffel.fr
 ${ }^{2}$ LAMA, Univ. Gustave Eiffel, Univ. Paris Est Créteil, CNRS, F-77454 Marne-la-Vallée, France.
 chokri.ogabi@univ-eiffel.fr

