
HAL Id: hal-03546087
https://hal.science/hal-03546087v2

Submitted on 3 Dec 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Information Theoretic Study of Covid 19 Genome
Philippe Jacquet

To cite this version:
Philippe Jacquet. Information Theoretic Study of Covid 19 Genome. Entropy, 2024, 26 (3), pp.223.
�hal-03546087v2�

https://hal.science/hal-03546087v2
https://hal.archives-ouvertes.fr

Citation: Jacquet, P. Information

Theoretic Study of COVID-19 Genome.

Entropy 2024, 1, 0. https://doi.org/

Academic Editor: Firstname Lastname

Received: 19 December 2023

Revised: 16 February 2024

Accepted: 23 February 2024

Published:

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Information Theoretic Study of COVID-19 Genome
Philippe Jacquet

Inria Saclay Ile-de-France, 91120 Palaiseau, France; philippe.jacquet@inria.fr

Abstract: In this paper, we analyse the genome sequence of COVID-19 on a information point of view,
and we compare that with past and present genomes. We use the powerful tool of joint complexity
in order to quantify the similarities measured between the various potential parent genomes. The
tool has a computing complexity of several orders of magnitude below the classic Smith–Waterman
algorithm and would allow it to be used on a larger scale.

Keywords: genome; COVID-19; joint complexity; pattern matching

1. Introduction

The emergence of the pandemic disease, SARS-2 COVID-19, has been the major event
of the last three years. There has been much speculation about the origin of the virus,
and its future and past mutations. This is why the SARS-2 genome has attracted so much
attention. The basis of information theory is to extract patterns and similarities between
structures without necessarily relying on the functional meaning of common fragments,
such as the meaning of words in texts or translated proteins in genomes. Nevertheless,
we will show that the tools of information theory, such as joint complexity, are powerful
enough to draw certain conclusions about recent speculations concerning the origin of the
virus.

The article is organized as follows: first, we briefly introduce the concept of joint
complexity and recall basic results on random sequences concerning “weak” matching,
and establish some new results on “strong” matching. Next, we present our result on weak
matching, which establishes that the COVID-19 virus is a descendant of a bat coronavirus.
We also establish that the HIV virus should not be considered an ancestor, contrary to what
some of the literature claims. Thirdly, we address the area of strong matching by analyzing
similarities with recent bat coronaviruses.

The paper does not bring breathtaking new results in genetics, since most of the phy-
logenetic analysis on the COVID-19 genome have generated a huge amount of literature.
However, most of these results have been obtained via methods that are very costly in
computing power, for example, the classic Smith–Waterman algorithm [1]. The paper is
more of an introduction to a much more powerful algorithm called joint complexity, which
computes the alignments and similarity measure between two strings with a quasi linear
processing cost, while the classic alignment algorithm is of quadratic cost. The new algo-
rithm is expected to give performance as good as the BLAST algorithm’s performance [2].
However, the later algorithm is based on heuristic and experimental data, while the joint
complexity algorithm is backed by information theory. This opens interesting new perspec-
tives for the phylogenetic analysis by making affordable and rigorous segment insertion
and deletion detection via joint complexity.

2. The Joint Complexity Tool and Performance

Let us take a finite alphabet A and a finite sequence X over A. A factor of X is a
sequence v, which can be found in X without gaps or errors. In other words, there exists
two other sequences, u and w, such that X = uvw. We call “string complexity” of X,

Entropy 2024, 1, 0. https://doi.org/10.3390/e1010000 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/article/10.3390/e1010000?type=check_update&version=1
https://doi.org/10.3390/e1010000
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://doi.org/10.3390/e1010000
https://www.mdpi.com/journal/entropy

Entropy 2024, 1, 0 2 of 12

C(X), the number of different factors of X [3,4]. Let Y be another sequence, we call “joint
complexity”, J(X, Y) the number of different factors common to X and Y.

The joint complexity algorithm is a way to measure how similar two strings are,
assuming that the higher the joint complexity is, the closer the sources of the strings are.
Being general and non-alphabet dependent, it can be applied to natural language, genomes,
and signal processing without specific learnings. For example, it has been successfully
applied to Twitter monitoring, earning to the authors of Ref. [5] the third prize of SNOW-DC
with an algorithm whose code did not exceed one page. The joint complexity algorithm has
also been used as a fast and efficient ticket pre-classification engine in network management.

These quantities are easy to compute; indeed, the string complexity is simply the
number of internal nodes in the extended suffix tree [6] (also called the spaghetti suffix
tree). It can also be computed via the compressed suffix tree when the leaves point to a
suffix in the string when this extension is unique. The compressed suffix tree of a string X
occupies an average space of |X|

h , where h is the entropy rate of the text X and |X| its length.
The natural way is to incrementally build the suffix tree like a regular tree [7] , in this case,
the average computation cost is |X| log |X|

h computation steps, each step being a symbol
comparison and a pointer assignment or creation; however, the suffix tree can be built in a
linear time thanks to the Ukkonen algorithm [8]. However, the Ukkonen algorithm might
be inefficient when the string X is too large, since the tree traversal feature might generate
many cache mismatches. In summary, one can evaluate the average cost of building the
suffix tree, which should be between |X|

h and |X| log |X|
h computing steps.

The genomes are written in the alphabet A = {A, C, G, T}, made of the four nucleo-
bases. Although the genomes sequences are not purely random, we will use randomly
generated sequences over A for bench marking and comparisons. Since the bases mostly
appear uniform in each genome, most of the time we will benchmark on memoryless
uniform sequences on A. However all the results stated below have been obtained under
more general sequence generation models, such as biased memoryless, Markov with finite
memory, mixing models [9], etc.

Theorem 1 ([10]). The average complexity of a string X built on a memoryless or a Markov source
satisfies:

E[C(X)] = (|X|+1)|X|
2 + |X| − |X| log |X|

h −
(

1
2 + γ

h

)
|X|

+O(log |X|),
(1)

where h is the per symbol entropy rate of the source model and γ is the Euler–Mascheroni constant.

When the source model is uniform and memoryless on the four bases, we have
h = log 4. We notice that the string complexity in our models is quadratic, indicating that
almost every factor comprised between any pair of positions in X is unique.

Computing the joint complexity of two strings X and Y consists of merging the
common branches of their respective suffix trees and to enumerate their common internal
nodes. If one of the common nodes is a leaf, then the exploration continues in the other tree
by using the pointer contained in the leaf. The processing cost of the determination of the
joint complexity is basically equal to the joint complexity when the latter is expressed in
computation steps. To this cost, one must add the cost of building the suffix trees but the
latter can be built separately and be re-used. The following theorem is trivial:

Theorem 2. For two strings X and Y we have the inequality

J(X, Y) ≤ min{C(X), C(Y)}.

Entropy 2024, 1, 0 3 of 12

2.1. Weak and Accidental Pattern Matching

By weak and accidental pattern matching, we mean the joint complexity between two
random sequences X and Y when they have been independently generated.

Theorem 3 ([6,7] Chapter 10). When X and Y are of same length but generated on two different
source models (e.g., a Markov transition matrix with different parameters): when |X| → ∞

E[J(X, Y)] ∼ |X|κ√
a log |X|+ b

(2)

with κ < 1, and some parameter a and b > 0. When X and Y are of different length but on the same
source model then, when both |X| |Y| tend to infinity:

E[J(X, Y)] ∼ (|X|+|Y|) log(|X|+|Y|)−|X| log |X|−|Y| log |Y|
h . (3)

Proof. All the proofs are in Ref. [7], chapter 10, the major new result is in the refinement of
the result about E[J(X, Y)], when X and Y are on the same source model but with different
lengths. To simplify, we only hint the proof on a memoryless source. We know from Ref. [7]
that J(X, Y) ∼ C(|X|, |Y|) where C(z1, z2) is a solution to the functional equation:

C(z1, z2) = (1 − e−z1)(1 − e−z2) + ∑
a∈A

C(paz1, paz2) (4)

with pa, the probability of the occurrence of symbol a in a random sequence. If we denote
fλ(z) = C(z, λz), we get the following functional equation:

fλ(z) = (1 − e−z)(1 − e−λz) + ∑
a∈A

fλ(paz) (5)

whose asymptotic is obtained via the Mellin transform, as described in Ref. [11].

Since the logarithms appear in alternation in (3), one should not think that the expres-
sion of E[J(X, Y)] leads to large values. In fact, when |X| = |Y|, the asymptotic expression
of E[J(X, Y)] is exactly equal to |X|, i.e., a quantity strictly linear in |X|. When |Y| ≪ |X|
we get E[J(X, Y)] ∼ |Y|

2 log 2 (log |X|
|Y| + 1).

The quantity J(X, Y) to which one must add the cost of building the suffix tree of
X and Y, namely, 1

h (|X| log |X|+ |Y| log |Y|) gives an estimate of the computing cost for
the determination of the joint complexity, and clearly it is mostly linear in |X| and |Y|
while the algorithm of Smith–Waterman is in |X| · |Y|. The processing cost is given in the
computation step unit, which is a symbol comparison and a pointer assignment.

2.2. Strong Pattern Matching

We call strong pattern matching when the sequences X and Y are so close that they
are just a slight alteration of each other. In this case, they are strongly dependent.

Theorem 4. Let k ≥ 1 be a fixed integer, assume X is generated by a memoryless or by a Markov
source of finite memory, and Y differs via k symbol substitution. We have the estimate when
|X| → ∞:

E[J(X, Y)] ∼ (|X|+ 1)(|X|+ 2 − k)
(k + 2)(k + 1)

. (6)

Notice that when k = 0, we find back the estimate E[C(X)] since C(X) = J(X, X) but
only in the leading quadratic term in |X|, namely, |X|2/2. In strong pattern matching mode
the joint complexity remains quadratic.

Entropy 2024, 1, 0 4 of 12

Proof. To compute the leading term we look at the factors, which do not overlap the
positions where the k substitution occurs between X and Y. These factors are common to
both X and Y, and we know almost surely they are unique. Thus, our analysis rigorously
is a lower bound, since we have no room to develop the upper bound proof. Let Jk

n be
the cumulated number of such factors considering all the (n

k) combination of substituted

positions between X and Y; therefore E[J(X, Y)] = Jk
n

(n
k)

. We know that J0
n = (n+1)n

2 . The

generating function J0(z) = ∑n J0
nzn = z

(1−z)3 for |z| < 1. We have the following recurrence:

Jk
n =

n−k

∑
m=0

J0
m + Jk−1

n−m−1 (7)

which when translated in generating function, gives Jk(z) = zk

1−z J0(z) + Jk−1(z) z
1−z , which

resolves in Jk(z) = zk

(1−z)4

(
1+z

(1−z)k−1 − 1 + z
)

. The asymptotic leading term is contained in
1+z

(1−z)k+3 , which is ∑n(n + 2 − k) (n+1)n(n−1)···n−k+1
(k+2)! zn. The coefficient of zn divided by (n

k)

gives the claimed asymptotic term.

3. Accidental Pattern Matching on Genomes

The genome of COVID-19 totalises 29,866 bases (first variant discovered in 2020). In
Figure 1, we show the joint complexity of the SARS-2 COVID-19 genome with the ”Bat
coronavirus HKU2” [12] (discovered in 2007), which has 27,165 bases. The SARS-2 genome
is parsed from right to left, and the plot shows the joint complexity between this portion of
the genome with the genome of the bat α. In dash, we show the average joint complexity
between two random genomes obtained via the same uniform memoryless source over the
four bases alphabet. This last plot is directly obtained via the formula (3). Since the last
plot is below the joint complexity with the bat α, we can conclude that indeed the SARS-2
COVID-19 and bat α are related.

Figure 1. Joint complexity of SARS-2 genome with bat coronavirus alpha (solid), with random
genomes (dashed).

On Figure 2, we display the same plot but normalised with formula (3). We add in red
to the joint complexity with an HIV virus HIV-1 isolate 060SE from Sweden (1997) [13] (8732
bases) and see that the genomes are indeed unrelated. In fact, we obtained the surprising
result that the plot is below the average value, which one would obtain from two random
sequences indicating that some factors in SARS-2 COVID-19 and in HIV exclude each other.

Entropy 2024, 1, 0 5 of 12

Figure 2. Normalised joint complexity of SARS-2 genome with bat-α, and with HIV genome (red).

However, in Ref. [14], the authors claim to have found 19 short portions of HIV
genomes from different sources that appear in the SARS-2 genome. This paper was only a
preprint, but it resulted in a lot of noise when it went public. Some found in its assertions
the proof that the SARS-2 COVID-19 genome should have been forged for malignant
purposes. Indeed, we have the following theorem:

Theorem 5 ([7] Chapter 4). Let {w1, w2, . . . , wk} a set of k different sequences. Let X be sequence
built on a memoryless source. The probability that the sequence contains all the k factors together is
smaller than |X|kP(w1) · · · P(wk), where the P(wi)’s are the respective probability of occurrence of
sequence wi from the memoryless source.

The putative HIV fragments in SARS-2 genomes depicted in Ref. [14] each have an
average length of 20 bases or more. Under the archetypal hypothesis that SARS-2 is typical
of an uniform memoryless source for a statistical point of view, the probability to have all
these 19 copied fragments in the SARS-2 genome would be 2.10−144. Thus, these accidental
insertions would be virtually impossible.

Table 1 below lists the 19 matching genomes. Some must be reversed in order to obtain
the claimed match.

Table 1. The 19 matching genomes origins.

Index Length Genome Origin Index Length Genome Origin

1 236 HIV2-56-Isolate 11 10,401 HIV2-UC1
2 8840 HIV1-060SE-Sweden * 12 993 HIV2-Senegal *
3 2053 HIV2-Bissau * 13 2604 HIV1-Malawi *
4 9167 Simian-VSAA2001 * 14 2612 HIV1-Russia *
5 607 HIV1-clone-ML1592 * 15 3149 Simian-CM545 *
6 344 HIV2-Verde 16 9744 Simian-KM378564
7 920 HIV2-106 17 704 HIV1-EU184986 *
8 10,018 Simian-TAN5 18 125 HIV1-AY516986
9 1100 Simian-P18 19 2630 HIV1-HQ217329 *
10 1157 HIV1-19828 20 27,510 Bat-coronavirus-HKU2

* Genome is inversed for the matching.

Figure 3 shows the dispatching of the matching between SARS-2 genome [12] and
the 19 HIV genomes (plus the bat coronavirus alpha, which is number 20). The figure
has been created the following way: The SARS-2 genome has been cut in slices of length
24 bases starting every 2 bases. For each HIV candidate genome X, we compute its joint
complexity with every slice Y1, . . . , Y14,933 of the SARS-2 genome, the processing cost for
each slice is approximately 24

log 4 (log |X|
24 + 1) computation steps according to Theorem 3.

Entropy 2024, 1, 0 6 of 12

The total processing cost for the whole operation is approximately 29 × 106 computation
steps since h = log 4, including the computation of the suffix trees. With the algorithm of
Smith–Waterman, it would have taken 2.8 × 109 computation steps.

Figure 3. Joint complexity deviations of SARS-2 genome with the 19 HIV genomes.

All the collected results give a mean and a variance, then we display the deviation
from the mean in multiples of the standard deviation for each slice, knowing that we can
obtain negative values. This way the accidental matching will be made more apparent. The
blue vertical lines are the positions where the maximum deviation appears for each HIV
genome. For example, for the genome 18, the position of the maximum is 20,400 and has
an intensity 15 times the standard deviation, which is very large. The brown plot gives
the maximum of the deviations obtained with the joint complexity algorithm over the
20 genomes for each slice of the SARS-2 genome. Notice that second largest deviation is
obtained with ”Bat coronavirus HKU2” indicated by index 20. Fifteen times the standard
deviation would mean a probability around 7.2 × 10−100 in a pure Gaussian context. It
should be noted that the high peaks correspond to the slices with almost an exact copy
in the other genome, while the weaker peaks are when there are more mismatches as an
illustration of the strong matching theory. The paper [14] lists sequence matching up to
three or four mismatches.

As a matter of comparison, we display in Figure 4 the same plot but with the reversed
SARS-2 genome. The maxima are way less dramatic. However, we notice that all these
genomes are coming from very diverse sequences, on HIV-1, other on HIV-2, and some on
ape origin (the simian IV). Many have been even tested with a reversed sequence. We can
imagine the authors may have tested much more sequences than the 19 selected sequences;
there may be an explanation of this paradox here. Let M be the cumulated number of bases
of the tested database. Due to the large sampling of HIV and HIV-related sequences in
the databases, we can estimate M to the order of half a million bases. Processing the joint
complexity of the concatenation of these genomes with the slices of the SARS-2 genome
would take only 8.4 × 106 the computation steps according to Theorem 3. This is an
estimation because we did not actually perform the global search. However, there is a
surprising estimated reduction in the complexity of the global search compared to the
previous individual searches. It comes from the fact that we would have built a single
suffix tree for the concatenated genome and make a single pass into this unique suffix
tree for each slice instead of doing 19 searches in 19 suffix trees to detect the strongest
matcher. The number of positions that can be tested for each match is M|X|, with X being
the SARS-2 genome sequence. If 20 is the size of expected matches, the average number
of matches of length 20, is M|X|4−20 in the uniform memoryless model. If we include the
possibility of up to three errors in the matching, we have to multiply this number by (20

3).

Entropy 2024, 1, 0 7 of 12

Using Tchebychev inequality, the probability to have k matches is smaller than the average
number of matches M|X|4−20(20

3) divided by k, with which we would obtain the following:

P(19 matches) ≤ M|X|4−20

19

(
20
3

)
∼ 0.8. (8)

Figure 4. Joint complexity deviations of the Reverse SARS-2 genome with the 19 HIV genomes.

Considering the reversed genome would simply multiply this figure by two. Clearly
the matches are no longer exceptional; however, one could argue that the Tchebychev
upper bound is very rough and the real probability could be smaller. However, it should
be noted that the probability becomes much larger when the data are strongly positively
correlated. This is confirmed by Figure 5, which displays the numerous accidental matching
between HIV-2UC1 and the other matcher genomes. It should be stressed again that with
the samples dating from around 1993, the DNA editing technology did not exist.

Figure 5. Joint complexity deviations of HIV-2UC1 genome with other matchers.

4. Strong Pattern Matching on COVID-19 Genomes

In this section, we try to analyse the hypotheses of the relation of COVID-19 with its
potential ancestors and descendants. The currently accepted family tree is summarized in
the following Figure 6:

Figure 6. Putative genealogical tree of SARS-2 COVID-19.

Entropy 2024, 1, 0 8 of 12

In short, the first putative ancestor is the bat coronavirus “Bat coronavirus HKU2” [15]
(we have already called it bat-α), which was discovered in 2007 and has 27,165 bases. The
next ancestor is the bat coronavirus RaTG13 [16,17], which was discovered in 2013 and
has 29,855 bases (let us call it bat-β). Then the first SARS-2 COVID-19 coronavirus for
humans, discovered in late 2019, and another bat coronavirus RaCCS203 [18], discovered
in early 2020 and has 29,775 bases; thus, the pivot genome is the bat-β RaTG13. In the
following figure, we sliced the bat-β genome in slices of 50 bases each and computed the
joint complexity with other genomes. Figure 7 shows the bat-β’s slice joint complexity
with the whole genome bat-α. Apparently, the ancestor seems too distant to look nothing
more than random, we are on a weak pattern matching level indicated by the lower dashed
horizontal line determined by the estimate produced in (3). Figure 8 shows the bat-β slice
joint complexity with its whole genome. In this case, the joint complexity naturally finds
the position of the slice in the whole genome as its best match and the figure basically
shows the complexity of the slice and illustrates the formula of Theorem 1 (indicated by
the dashed upper line). Between the two lines lies the transition between weak pattern
matching and strong pattern matching.

Figure 7. Joint complexity of bat-β genome with bat-α.

Figure 8. Joint complexity of bat-β with itself

Figure 9 shows the bat-β’s slice joint complexity with its whole SARS-2 COVID-19
genome. Surprisingly, the slice joint complexity seems to be in a strong matching regime
(very close to the upper horizontal dashed line), indicating a high degree of similarity. This
is unexpected because there is the same time span between the discovery of bat-α and the
discovery of bat-β than there is between the discovery of bat-β and the SARS-2 COVID-19
(6 years in both cases). Even more surprising, is there is even more similarities with SARS-2
than with the genome of the last bat coronavirus RaCCS203, although the latter is for the
same specie (bat), and the former is for two different species (human versus bats). Indeed,
the plot of pattern matching between bat-β and RaCCS203 shows many places where the

Entropy 2024, 1, 0 9 of 12

pattern matching is weak, in particular between the position 21,500 and 24,000 probably
indicating the possibility of a large insertion of exogen genetic material.

Since we are in the context of strong pattern matching, the processing cost is larger
than with the accidental pattern matching. If we use the Theorem 2, we use the fact
that when |Y| ≪ |X| J(X, Y) ≤ C(Y) ≤ |Y|(|Y|+1)

2 we obtain an upper bound of 91 × 106

computation steps.

Figure 9. Joint complexity of bat-β genome with SARS-2 COVID-19 genome.

Figure 10. Joint complexity of bat-β with the RaCCS203 genome.

The three genomes are so close that we can make correspondence with the segments of
each genome with the segment in the other genome. Via a straightforward adaptation of the
joint complexity program, we can compute the offset between the segments in one genome
with the segments in the other genome. It consists of spotting the largest common factor
instead of enumerating the common factors. In terms of programming, it is just replacing
the operator of the summation evaluation with the operator of the maximum evaluation.
Thus, for each slice of bat-β, we detect the position of its largest match in the other genome.
The difference in positions between the two matches in their respective genome is the offset.
If the offset is positive, then the match is in advance in the first genome compared with the
second genome; otherwise, when it is negative it is in advance in the second genome.

Figure 11 shows the offset per bat-β slice with the SARS-2. There are the following
two surprises: firstly, the surprise that except for an extreme minority of slices marked
by the three dotted vertical blue lines, the offset is constant and flat and increases from
−26 to −16. The offset stability indicates that the mutation sequence between the two
genomes are mostly substitution. The three slices, which do not fit well, are slices where
the substituted bases are too numerous and corrupt the largest match to make it jump by a
large value, since the correspondence can be anywhere in the genome sequence, such as in
the interval [−29, 855,+29, 855]. For the readability of the figure, we have truncated the
abscissas. The second surprise is that the offset monotonically increases, indicating that
the mutation happened via insertions and never by deletion. That is against the common

Entropy 2024, 1, 0 10 of 12

belief that virus mutations mostly proceed by deletion. Maybe it is the consequence of the
inter-species transfer from bat-β to SARS-2.

Figure 11. Local offset value of the bat-β genome with SARS-2 COVID-19 genome.

Figure 12 shows the result of the same exercise of offset determination from the bat-β
genome to the last bat coronavirus RaCCS203. Contrary to the transition between the bat-β
genome to the SARS-2 genome, the offset value is decreasing, sometimes sharply, indicating
that the mutation is proceeded more by deletion than by insertion, confirming the natural
trends in virus evolution. However, we notice some small insertions at some positions
where the offset value slightly bumps up. We again notice the large corrupted area between
position 21,500 and position 24,000. However, the offset value drops after too; thus, this
exogen insertion plus the following deletion finally does not push the material to the right.

Figure 12. Local offset value of bat-β with with the RaCCS203 genome.

Figure 13 displays the mismatch rate between each slice of the bat-β genome and its
corresponding slice in the SARS-2 genome in blue. We see very few strongly corrupted
slices with poor correspondence, while elsewhere the substitution rate oscillates between 0
and 10% per 50 base slices. In green, we do the same exercise with the RaCCS203 genome.
Although in the same lineage, the corruption are much more important. We again notice the
area between 21,500 and 24,000 where the ratio Hamming distance to the length is around
65%, 10 points below the expected 75% if both portions were uniformly and independently
generated, but which can be explained by the fact that the largest match should at least be
around 5–6 bases.

Entropy 2024, 1, 0 11 of 12

Figure 13. Mismatch rates . between the bat-β genome slices, corresponding SARS-2 genome slices
(blue), and corresponding RaCCS203 genome slices (green).

5. Conclusions

We have presented an analysis of the COVID-19 genome and about its possible origins
via the pure information theoretic tool. Our investigations do not address any medical and
biogenetic considerations, and are mainly based on the pure randomness in the genome
mutation process; therefore, they cannot lead to definite answers. Anyhow, we can establish
that the accidental insertion of HIV segment in the SARS-2 COVID-19 is not so exceptional
and can be easily explained by the abundance of existing materials in the genetic database
of HIV. On the other side, the strong pattern matching with the putative ancestor bat
coronavirus RATG13 is a surprise since the two sequences are more than 6 years apart
and attached to two different species. The matches are much weaker with the putative
descendants of RATG13 and RACS203, despite the fact that they are both related to bats.

However, beyond any phylogenetic conclusions, which lay beyond the scope of
this work, this paper is an opportunity to advertise the formidable efficiency of the joint
complexity tool to capture similarities in sequences. It provides both accuracy and cost-
saving methods by being quasi linear in complexity.

Funding: Please provide

Data Availability Statement: Please provide

Conflicts of Interest: Please provide

References
1. Smith, T.F.; Waterman, M.S. Identification of Common Molecular Subsequences. J. Mol. Biol. 1981, 147, 195–19
2. Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410.
3. Jacquet, P.; Milioris, D.; Szpankowski, W. Classification of Markov sources through joint string complexity: Theory and

experiments. In Proceedings of the 2013 IEEE International Symposium on Information Theory, Istanbul, Turkey, 7–12 July 2013;
pp. 2289–2293.

4. Milioris, D. Joint Sequence Complexity: Introduction and Theory. In Topic Detection and Classification in Social Networks; Springer:
Berlin/Heidelberg, Germany, 2018; pp. 21–56.

5. Burnside, G.; Milioris, D.; Jacquet, P. One Day in Twitter: Topic Detection Via Joint Complexity. In Proceedings of the SNOW 2014
Data Challenge, Seoul, Republic of Korea, 8 April 2014.

6. Jacquet, P. Common words between two random strings. In Proceedings of the 2007 IEEE International Symposium on Information
Theory, Nice, France, 24–29 June 2007;

7. Jacquet, P.; Szpankowski, W. Analytic Pattern Matching: From DNA to Twitter; Cambridge University Press: Cambridge, UK, 2015;
pp. 1481–1485.

8. Ukkonen, E. On-line construction of suffix trees. Algorithmica 1995, 14, 249–260.
9. Jacquet, P.; Szpankowski, W.; Apostol, I. A universal predictor based on pattern matching. IEEE Trans. Inf. Theory 2002, 48,

1462–1472.
10. Janson, S.; Lonardi, S.; Szpankowski, W. On the average sequence complexity. In Proceedings of the Annual Symposium on

Combinatorial Pattern Matching, Istanbul, Turkey, 5–7 July 2004; Springer: Berlin/Heidelberg, Germany, 2004.
11. Flajolet, P.; Gourdon, X.; Dumas, P. Mellin transforms and asymptotics: Harmonic sums. Theor. Comput. Sci. 1995, 144, 3–58.

Entropy 2024, 1, 0 12 of 12

12. Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G.; Hu, Y.; Tao, Z.W.; Tian, J.H.; Pei, Y.Y.; et al. A new coronavirus
associated with human respiratory disease in China. Nature 2020, 579, 265–269.

13. Neogi, U.; Siddik, A.B.; Kalaghatgi, P.; Gisslén, M.; Bratt, G.; Marrone, G.; Sönnerborg, A. Recent increased identification and
transmission of HIV-1 unique recombinant forms in Sweden. Sci. Rep. 2017, 7, 6371.

14. Perez, J.C.; Montagnier, L. COVID-19, SARS and Bats Coronaviruses Genomes Unexpected Exogenous RNA Sequences.
OSF Prepr. 2020. Available online: https://osf.io/preprints/osf/d9e5g (accessed on).

15. Lau, S.K.; Woo, P.C.; Li, K.S.; Huang, Y.; Wang, M.; Lam, C.S.; Xu, H.; Guo, R.; Chan, K.H.; Zheng, B.J.; et al. Complete genome
sequence of bat coronavirus HKU2 from Chinese horseshoe bats revealed a much smaller spike gene with a different evolutionary
lineage from the rest of the genome. Virology 2007, 367, 428–439.

16. Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. A pneumonia outbreak
associated with a new coronavirus of probable bat origin. Nature 2020, 579, 270–273.

17. Zhou, P.; Yang, X.L.; Wang, X.G.; Hu, B.; Zhang, L.; Zhang, W.; Si, H.R.; Zhu, Y.; Li, B.; Huang, C.L.; et al. Addendum: A pneumonia
outbreak associated with a new coronavirus of probable bat origin. Nature 2020, 588, E6.

18. Wacharapluesadee, S.; Tan, C.W.; Maneeorn, P.; Duengkae, P.; Zhu, F.; Joyjinda, Y.; Kaewpom, T.; Chia, W.N.;Ampoot, W.;
Lim, B.L.; et al. Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia. Nat. Commun.
2021, 12, 972.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://osf.io/preprints/osf/d9e5g

	Introduction
	The Joint Complexity Tool and Performance
	Weak and Accidental Pattern Matching
	Strong Pattern Matching

	Accidental Pattern Matching on Genomes
	Strong Pattern Matching on COVID-19 Genomes
	Conclusions
	References

