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The paper describes the mechanical behavior of composites made of piezoelectric spheres in perfect or imperfect contact. The imperfect contact is 
achieved by interposing piezoelectric thin adhesive layers between the spheres. First, using asymptotic analysis, transmission conditions of imperfect interface 
equivalent to the behavior of piezoelectric adhesive layers are obtained at order 0 and 1. These transmission conditions are calculated for "hard" 
adhesives, i.e. adhesive materials whose electromechanical constants do not rescale with their thickness. Next, under the assumption of spherical 
symmetry, the transmission conditions are condensed to a general law of imperfect contact, able to simultaneously describe different contact regimes: 
piezoelectric hard (order 0 and 1) and soft (or spring-type, order 0 and 1) interface conditions, the perfect continuity conditions, and the piezoelectric 
rigid (Gurtin–Murdoch or membrane-type) conditions. Lastly, following Bufler’s approach, the homogenization problem of a spherical hollow 
piezoelectric assembly is solved, extending the classical transfer matrix method to take into account the presence of thin adhesive layers described using 
the proposed transmission conditions of imperfect contact. A simple numerical example is provided, illustrating the correctness and effectiveness of the 
homogenization approach in describing the electromechanical behavior of spherical piezoelectric assemblies.

1. Introduction

Piezoelectric materials have been extensively employed in the de-
sign of smart structures, active control, sensors and actuators, thanks to
their ability to exchange electrical inputs to mechanical deformation,
and, conversely, to transform a mechanical action into an electric
potential. They can be used in small members for electromechanical de-
vices as well as structural components in disks, cylindrical and spherical
shells in several engineering applications such as energy harvesting [1],
hydroacoustics [2], health monitoring [3], and transducers [4]. More-
over, in order to control the distribution of the main physical quantities,
piezoelectric structures can be made of several layers, which can be
suitably stacked or glued together forming a laminated composite with
desired effective electromechanical properties [5]. For this particular
structures, it is important to develop an exact solution relating the
applied loads to displacement, stresses and electric potential. A vast
literature on radial spherical piezoelectric transducers has been re-
ported. Many researches analyzed the electromechanical behavior of
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piezoelectric hollow spheres, developing analytical solutions for stress
and electric potential fields, e.g. [6–8], taking into account pyroelectric
effects and thermal gradients [9–11]. The electromechanical analysis
have also been extended to functionally graded materials [12], coated
sensors [13] and sandwich assemblies [14].

Concerning the theoretical analysis of bonded joints, the thin in-
terphase layer between to adjacent media can be treated as a two-
dimensional surface, called the imperfect interface, on which appro-
priate transmission conditions are defined. Various interface models
have been developed throughout the years by means of classical vari-
ational tools and more refined mathematical techniques (asymptotic
analysis), spanning from uncoupled phenomena, such as thermal con-
duction [15–17] and elasticity [18–23], to multifield and multiphysics
theories [24,25], such as continua with microstructure [26,27], coupled
thermoelasticity [28] and piezoelectricity [29,30].

The present paper aims at providing a general form of the inter-
face law for piezoelectric spherical hollow composites by means of
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an asymptotic analysis. The piezoelectric assembly is constituted by
the inner and outer adherents, connected together by an intermediate
radial bonded joint, whose thickness depends on a small parameter 𝜖.
The material coefficients of the piezoelectric constituents are assumed
independent of 𝜖. This allows to characterize the so-called hard inter-
face model. Following the asymptotic approaches developed in [24,31],
it is possible to compute the interface law at order 0, corresponding to
classical continuity conditions, and the order 1 transmission conditions,
defining a non trivial interface model. The above conditions have been
specialized in the case of spherical radial symmetry. Combining the
results at order 0 and order 1, a general interface model has been
obtained, which comprises in itself the soft (spring-type), hard and rigid
(Gurtin–Murdoch or membrane-type) interface laws, as shown in [24].

Various homogenization procedures for layered media have been
developed throughout the years, based on the determination of the
composite effective constitutive coefficients. In the present paper, the
transfer matrix method by Bufler [32,33] is taken into consideration. A
similar homogenization technique for the derivation of an effective av-
erage model of periodic media has been developed by Molotkov in [34],
with applications to the propagation of seismic and acoustic waves.
The aforementioned homogenization methods are basically equivalent,
since they rely on a particular formulation of the governing equations
as a first-order linear system in terms of the state vector Fourier’s
transform (containing displacements and stresses). Even though the
system solution is expressed with two different representations, namely,
with an exponential matrix in [32], and through the successive approx-
imation method in [34], the final results can be considered analogous.
Besides, Molotkov provided a multiphysic and multifield generalization
of the homogenization method, applied to Biot’s poroelastic layered
continua (see [35]).

In this work, a generalization of the transfer matrix method [32,33]
is proposed for piezoelectric hollow spherical composites. Moreover,
the aforementioned general interface laws have been implemented
within the homogenization procedure, allowing to define equivalent
elastic material parameters. Lastly, a numerical example has been
developed considering a simple three-layer piezoelectric composite,
subjected to an assigned electric potential on the inner boundary. The
exact solution of the three-layer configuration is compared with the
closed-form solution of a two-layer composite, in which the interme-
diate adhesive has been replaced by the general interface conditions.
Besides, a third comparison has been made taking into account the
single-layer homogenized solution obtained through the transfer matrix
method.

2. Asymptotic analysis in terms of spherical coordinates

2.1. The governing equations of the problem

Let us consider an orthonormal spherical basis (e𝑟, e𝜃 , e𝜑), denoting
the three curvilinear coordinates of a point of the body. The equilibrium
equations for a deformable body and the electrostatics charge equation
(in the absence of volume forces and free charge density) in spherical
coordinates are respectively defined as follows (see [7,9]) :

𝜎𝑟𝑟,𝑟 +
1

𝑟 sin𝜑
𝜎𝑟𝜃,𝜃 +

1

𝑟
𝜎𝑟𝜑,𝜑 +

1

𝑟

(
2𝜎𝑟𝑟 − 𝜎𝜃𝜃 − 𝜎𝜑𝜑 + 𝜎𝑟𝜑 cot 𝜑

)
= 0,

𝜎𝑟𝜑,𝑟 +
1

𝑟 sin𝜑
𝜎𝜃𝜑,𝜃 +

1

𝑟
𝜎𝜑𝜑,𝜑 +

1

𝑟

(
3𝜎𝑟𝜑 + (𝜎𝜑𝜑 − 𝜎𝜃𝜃) cot 𝜑

)
= 0,

𝜎𝑟𝜃,𝑟 +
1

𝑟 sin𝜑
𝜎𝜃𝜃,𝜃 +

1

𝑟
𝜎𝜃𝜑,𝜑 +

1

𝑟

(
3𝜎𝑟𝜃 + 2𝜎𝜃𝜑 cot 𝜑

)
= 0,

𝐷𝑟,𝑟 +
1

𝑟
𝐷𝜑,𝜑 +

1

𝑟 sin𝜑
𝐷𝜃,𝜃 +

2

𝑟
𝐷𝑟 +

2 cot 𝜑

𝑟
𝐷𝜑 = 0,

(1)

where 𝝈 = (𝜎𝑖𝑗 ) and D = (𝐷𝑖), 𝑖, 𝑗 = 𝑟, 𝜃, 𝜑, represent, respectively,
the spherical components of the Cauchy stress tensor and electric

displacement field. The constitutive law for a spherically transversely
isotropic piezoelectric material takes the following form:

𝜎𝑟𝑟 = 𝑐11𝜀𝑟𝑟 + 𝑐12𝜀𝜃𝜃 + 𝑐12𝜀𝜑𝜑 − 𝑒11𝐸𝑟,

𝜎𝜃𝜃 = 𝑐12𝜀𝑟𝑟 + 𝑐22𝜀𝜃𝜃 + 𝑐23𝜀𝜑𝜑 − 𝑒12𝐸𝑟,

𝜎𝜑𝜑 = 𝑐12𝜀𝑟𝑟 + 𝑐23𝜀𝜃𝜃 + 𝑐22𝜀𝜑𝜑 − 𝑒12𝐸𝑟,

𝜎𝑟𝜑 = 2𝑐44𝜀𝑟𝜑 − 𝑒15𝐸𝜑,

𝜎𝑟𝜃 = 2𝑐44𝜀𝑟𝜃 − 𝑒15𝐸𝜃 ,

𝜎𝜃𝜑 = (𝑐22 − 𝑐23)𝜀𝜃𝜑,

𝐷𝑟 = 𝑒11𝜀𝑟𝑟 + 𝑒12𝜀𝜃𝜃 + 𝑒12𝜀𝜑𝜑 + 𝛽11𝐸𝑟,

𝐷𝜑 = 2𝑒15𝜀𝑟𝜑 + 𝛽22𝐸𝜑,

𝐷𝜃 = 2𝑒15𝜀𝑟𝜃 + 𝛽22𝐸𝜃 ,

(2)

where 𝑐𝑖𝑗 𝑒𝑖𝑗 and 𝛽𝑖𝑗 denote the elastic, piezoelectric and electric con-
ductivity coefficients and 𝜺 = (𝜀𝑖𝑗 ) and E = (𝐸𝑖) represent, respectively,
the spherical components of the linearized strain tensor and electric
field, which can be expressed in the terms of the spherical coordinates
through the following relations:

𝜀𝑟𝑟 = 𝑢𝑟,𝑟,

𝜀𝜑𝜑 =
1

𝑟
𝑢𝜑,𝜑 +

1

𝑟
𝑢𝑟,

𝜀𝜃𝜃 =
1

𝑟 sin𝜑
𝑢𝜃,𝜃 +

cot 𝜑

𝑟
𝑢𝜑 +

1

𝑟
𝑢𝑟,

𝜀𝑟𝜑 =
1

𝑟
𝑢𝑟,𝜑 + 𝑢𝜑,𝑟 −

1

𝑟
𝑢𝜑,

𝜀𝜑𝜃 =
1

𝑟 sin𝜑
𝑢𝜑,𝜃 +

1

𝑟
𝑢𝜃,𝜑 −

cot 𝜑

𝑟
𝑢𝜃 ,

𝜀𝑟𝜃 =
1

𝑟 sin𝜑
𝑢𝑟,𝜃 + 𝑢𝜃,𝑟 −

1

𝑟
𝑢𝜃 ,

𝐸𝑟 = −𝜙,𝑟,

𝐸𝜑 = −
1

𝑟
𝜙,𝜑,

𝐸𝜃 = −
1

𝑟 sin𝜑
𝜙,𝜃 ,

(3)

with 𝑢𝑟, 𝑢𝜑, 𝑢𝜃 , the radial, azimuthal and circumferential components
of the displacement field along the basis (e𝑟, e𝜃 , e𝜑), and 𝜙, the electric
potential.

2.2. The interface conditions for a radial bonded joint

The spherical piezoelectric hollow assembly is constituted by the
inner and outer adherents 𝛺𝜖

+
and 𝛺𝜖

−
, connected by a intermediate

adhesive layer 𝐵𝜖 . The gluing between the two adherents is assumed
along the radial direction. The thickness of the adhesive is supposed
to be constant and equal to 𝜖. The bonded joint lies in the interval
(𝑟0−𝜖∕2, 𝑟0+𝜖∕2). To apply the asymptotic expansions method, a change
of variables is needed, in order to rewrite the governing equations of a
fixed domain (independent of 𝜖), see Fig. 1. The change of variable is
introduced along the radial direction:

(𝑟̂, 𝜃̂, 𝜑̂) ∶= 𝜋̂(𝑟, 𝜃, 𝜑) = (𝑟0 +
𝑟 − 𝑟0

𝜖
, 𝜃, 𝜑) in 𝐵𝜖 ,

(𝑟̄, 𝜃̄, 𝜑̄) ∶= 𝜋̄(𝑟, 𝜃, 𝜑) = (𝑟, 𝜃, 𝜑) ±
(
𝜖

2
∓

1

2

)
e𝑟 in 𝛺𝜖

±
.

In the sequel, 𝑅 ∶= 𝑟0 +
𝑟−𝑟0
𝜖
. The rescaled domains will be noted

with 𝐵 and 𝛺±. Moreover, only if necessary, 𝑔̂ and 𝑔̄ will denote,
respectively, the restrictions of function 𝑔 to 𝐵 and 𝛺±.

The change of variables implies that

𝜕𝑅 =
1

𝜖
𝜕𝑟, and

1

𝑟
=

1

𝑟0 + 𝜖(𝑅 − 𝑟0)
=

1

𝑟0
−

𝑅 − 𝑟0

𝑟2
0

𝜖 + 𝑜(𝜖).

The constitutive coefficients of the adherents and adhesive are assumed
to be independent of 𝜖. Since the rescaled problem on a fixed domain
present a polynomial structure with respect to the small parameter 𝜖,
we can look for the solution of the problem as a series of powers of 𝜖,
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Fig. 1. Initial (a), rescaled (b) and limit (c) configurations of the spherical composite.

as follows:

𝝈
𝜖 = 𝝈

0 + 𝜖𝝈1 + 𝜖2𝝈2 +⋯ ,

u𝜖 = u0 + 𝜖u1 + 𝜖2u2 +⋯ ,

D𝜖 = D0 + 𝜖D1 + 𝜖2D2 +⋯ ,

𝜙𝜖 = 𝜙0 + 𝜖𝜙1 + 𝜖2𝜙2 +⋯ .

(4)

By applying the change of variables to the governing Eqs. (1) and by

substituting the asymptotic expansions (4), one has:

1

𝜖
𝜎0
𝑟𝑟,𝑅

+ 𝜎1
𝑟𝑟,𝑅

+
1

𝑟0 sin𝜑
𝜎0
𝑟𝜃,𝜃

+
1

𝑟0
𝜎0
𝑟𝜑,𝜑

+
1

𝑟0

(
2𝜎0

𝑟𝑟
− 𝜎0

𝜃𝜃
− 𝜎0

𝜑𝜑
+ 𝜎0

𝑟𝜑
cot 𝜑

)
+⋯ = 0,

1

𝜖
𝜎0
𝑟𝜑,𝑅

+ 𝜎1
𝑟𝜑,𝑅

+
1

𝑟0 sin𝜑
𝜎0
𝜃𝜑,𝜃

+
1

𝑟0
𝜎0
𝜑𝜑,𝜑

+
1

𝑟0

(
3𝜎0

𝑟𝜑
+ (𝜎0

𝜑𝜑
− 𝜎0

𝜃𝜃
) cot 𝜑

)
+⋯ = 0,

1

𝜖
𝜎0
𝑟𝜃,𝑅

+ 𝜎1
𝑟𝜃,𝑅

+
1

𝑟0 sin𝜑
𝜎0
𝜃𝜃,𝜃

+
1

𝑟0
𝜎0
𝜃𝜑,𝜑

+
1

𝑟0

(
3𝜎0

𝑟𝜃
+ 2𝜎0

𝜃𝜑
cot 𝜑

)
+⋯ = 0,

1

𝜖
𝐷0

𝑟,𝑅
+𝐷1

𝑟,𝑅
+

1

𝑟0
𝐷0

𝜑,𝜑
+

1

𝑟0 sin𝜑
𝐷0

𝜃,𝜃

+
2

𝑟0
𝐷0

𝑟
+

2 cot 𝜑

𝑟0
𝐷0

𝜑
+⋯ = 0.

(5)

The same procedure is considered for the strain tensor and electric field

components (3). Thus,

𝜀𝜖
𝑟𝑟
=

1

𝜖
𝑢0
𝑟,𝑅

+ 𝑢1
𝑟,𝑅

+⋯ ,

𝜀𝜖
𝜑𝜑

=
1

𝑟0
𝑢0
𝜑,𝜑

+
1

𝑟0
𝑢0
𝑟
+⋯ ,

𝜀𝜖
𝜃𝜃

=
1

𝑟0 sin𝜑
𝑢0
𝜃,𝜃

+
cot 𝜑

𝑟0
𝑢0
𝜑
+

1

𝑟
𝑢0
𝑟
+⋯ ,

𝜀𝜖
𝑟𝜑

=
1

𝜖
𝑢0
𝜑,𝑅

+ 𝑢1
𝜑,𝑅

+
1

𝑟0
𝑢0
𝑟,𝜑

−
1

𝑟0
𝑢0
𝜑
+⋯ ,

𝜀𝜖
𝜑𝜃

=
1

𝑟0 sin𝜑
𝑢0
𝜑,𝜃

+
1

𝑟0
𝑢0
𝜃,𝜑

−
cot 𝜑

𝑟0
𝑢0
𝜃
+⋯ ,

𝜀𝜖
𝑟𝜃

=
1

𝜖
𝑢0
𝜃,𝑅

+ 𝑢1
𝜃,𝑅

+
1

𝑟0 sin𝜑
𝑢0
𝑟,𝜃

−
1

𝑟0
𝑢0
𝜃
+⋯ ,

𝐸𝜖
𝑟
= −

1

𝜖
𝜙0
,𝑅

− 𝜙1
,𝑅

+⋯ ,

𝐸𝜖
𝜑
= −

1

𝑟0
𝜙0
,𝜑
+⋯ ,

𝐸𝜖
𝜃
= −

1

𝑟0 sin𝜑
𝜙0
,𝜃
+⋯ .

By injecting the above rescaled strains and electric field into the
constitutive relations (2), we obtain:

𝜎0
𝑟𝑟
+⋯ =

1

𝜖

(
𝑐11𝑢

0
𝑟,𝑅

+ 𝑒11𝜙
0
,𝑅

)
+

{
𝑐12

(
1

𝑟0 sin𝜑
𝑢0
𝜃,𝜃

+
cot 𝜑

𝑟0
𝑢0
𝜑
+

1

𝑟
𝑢0
𝑟

)
+

+ 𝑐12

(
1

𝑟0
𝑢0
𝜑,𝜑

+
1

𝑟0
𝑢0
𝑟

)
+ 𝑐11𝑢

1
𝑟,𝑅

+ +𝑒11𝜙
1
,𝑅

}
+⋯ ,

𝜎0
𝜃𝜃

+⋯ =
1

𝜖

(
𝑐12𝑢

0
𝑟,𝑅

+ 𝑒12𝜙
0
,𝑅

)
+

{
𝑐22

(
1

𝑟0 sin𝜑
𝑢0
𝜃,𝜃

+
cot 𝜑

𝑟0
𝑢0
𝜑
+

1

𝑟
𝑢0
𝑟

)
+

+ 𝑐23

(
1

𝑟0
𝑢0
𝜑,𝜑

+
1

𝑟0
𝑢0
𝑟

)
+ 𝑐12𝑢

1
𝑟,𝑅

+ 𝑒12𝜙
1
,𝑅

}
+⋯ ,

𝜎0
𝜑𝜑

+⋯ =
1

𝜖

(
𝑐12𝑢

0
𝑟,𝑅

+ 𝑒12𝜙
0
,𝑅

)
+

{
𝑐23

(
1

𝑟0 sin𝜑
𝑢0
𝜃,𝜃

+
cot 𝜑

𝑟0
𝑢0
𝜑
+

1

𝑟
𝑢0
𝑟

)
+

+ 𝑐22

(
1

𝑟0
𝑢0
𝜑,𝜑

+
1

𝑟0
𝑢0
𝑟

)
+ 𝑐12𝑢

1
𝑟,𝑅

+ 𝑒12𝜙
1
,𝑅

}
+⋯ ,

𝜎0
𝑟𝜑

+⋯ =
1

𝜖
2𝑐44𝑢

0
𝜑,𝑅

+ 2𝑐44

(
𝑢1
𝜑,𝑅

+
1

𝑟0
𝑢0
𝑟,𝜑

−
1

𝑟0
𝑢0
𝜑

)
+

𝑒15

𝑟0
𝜙0
,𝜑
+⋯ ,

𝜎0
𝑟𝜃
+⋯ =

1

𝜖
2𝑐44𝑢

0
𝜃,𝑅

+ 2𝑐44

(
𝑢1
𝜃,𝑅

+
1

𝑟0 sin𝜑
𝑢0
𝑟,𝜃

−
1

𝑟0
𝑢0
𝜃

)
+

𝑒15

𝑟0 sin𝜑
𝜙0
,𝜃
+⋯ ,

𝜎0
𝜃𝜑

+⋯ = (𝑐22 − 𝑐23)

(
1

𝑟0 sin𝜑
𝑢0
𝜑,𝜃

+
1

𝑟0
𝑢0
𝜃,𝜑

−
cot 𝜑

𝑟0
𝑢0
𝜃

)
+⋯ ,

𝐷0
𝑟
+⋯ =

1

𝜖

(
𝑒11𝑢

0
𝑟,𝑅

− 𝛽11𝜙
0
,𝑅

)
+

{
𝑒12

(
1

𝑟0 sin𝜑
𝑢0
𝜃,𝜃

+
cot 𝜑

𝑟0
𝑢0
𝜑
+

1

𝑟
𝑢0
𝑟

)
+

+ 𝑒12

(
1

𝑟0
𝑢0
𝜑,𝜑

+
1

𝑟0
𝑢0
𝑟

)
+ 𝑒11𝑢

1
𝑟,𝑅

− 𝛽11𝜙
1
,𝑅

}
+⋯ ,

𝐷0
𝜑
+⋯ =

1

𝜖
2𝑒15𝑢

0
𝜑,𝑅

+ 2𝑒15

(
𝑢1
𝜑,𝑅

+
1

𝑟0
𝑢0
𝑟,𝜑

−
1

𝑟0
𝑢0
𝜑

)
−

𝛽22

𝑟0
𝜙0
,𝜑
+⋯ ,

𝐷0
𝜃
+⋯ =

1

𝜖
2𝑒15𝑢

0
𝜃,𝑅

+ 2𝑒15

(
𝑢1
𝜃,𝑅

+
1

𝑟0 sin𝜑
𝑢0
𝑟,𝜃

−
1

𝑟0
𝑢0
𝜃

)
−

𝛽22

𝑟0 sin𝜑
𝜙0
,𝜃
+⋯ .

(6)

The interface conditions at order 0 and order 1 can be characterized
by identifying the terms with identical power of 𝜖. Focusing on the
terms occurring in 𝜖−1 in Eq. (5), we get:

𝜎0
𝑟𝑟,𝑅

= 0, 𝜎0
𝑟𝜑,𝑅

= 0, 𝜎0
𝑟𝜃,𝑅

= 0, 𝐷0
𝑟,𝑅

= 0,

which imply that 𝜎0
𝑟𝑟
, 𝜎0

𝑟𝜑
, 𝜎0

𝑟𝜃
and 𝐷0

𝑟
are constant with respect to

the radial coordinate 𝑅. Due to the continuity of the radial traction
vector and electric displacement at the interface between adherents
and adhesive, their jumps, evaluated at 𝑅 = ±

1

2
, vanish, i.e. [𝜎0

𝑟𝑟
] = 0,

[𝜎0
𝑟𝜑
] = 0, [𝜎0

𝑟𝜃
] = 0 and [𝐷0

𝑟
] = 0, where [.] denotes the jump functions.

Moreover, ⟨𝜎0
𝑟𝑟
⟩ = 𝜎0

𝑟𝑟
, ⟨𝜎0

𝑟𝜑
⟩ = 𝜎0

𝑟𝜑
, ⟨𝜎0

𝑟𝜃
⟩ = 𝜎0

𝑟𝜃
and ⟨𝐷0

𝑟
⟩ = 𝐷0

𝑟
, with ⟨.⟩

denotes the mean value.

Considering relations (6)1,7,4,5 at order −1, one has:

𝑐11𝑢
0
𝑟,𝑅

+ 𝑒11𝜙
0
,𝑅

= 0, 𝑒11𝑢
0
𝑟,𝑅

− 𝛽11𝜙
0
,𝑅

= 0, 𝑢0
𝜑,𝑅

= 0, 𝑢0
𝜃,𝑅

= 0.

The solution of the above linear system implies that the displacement
field, 𝑢0

𝑟
, 𝑢0

𝜑
, 𝑢0

𝜃
, and the electric potential 𝜙0, at order 0, are constant

along the radial direction. By virtue of the continuity conditions at the
interface level between the inner and outer spheres and the adhesive
layer, the following jumps [𝑢0

𝑟
] = 0, [𝑢0

𝜑
] = 0, [𝑢0

𝜃
] = 0 and [𝜙0] = 0

3



are equal to zero. As customary, ⟨𝑢0
𝑟
⟩ = 𝑢0

𝑟
, ⟨𝑢0

𝜑
⟩ = 𝑢0

𝜑
, ⟨𝑢0

𝜃
⟩ = 𝑢0

𝜃
and

⟨𝜙0⟩ = 𝜙0.

In view of the above, the interface transmission conditions at order
0 shows a perfect interface model, equivalent to the classical continuity
conditions:

[𝜎0
𝑟𝑟
] = 0, [𝜎0

𝑟𝜑
] = 0, [𝜎0

𝑟𝜃
] = 0, [𝐷0

𝑟
] = 0,

[
𝑢0
𝑟

]
= 0, [𝑢0

𝜑
] = 0, [𝑢0

𝜃
] = 0, [𝜙0] = 0.

Let us consider Eqs. (6)1,7,4,5 at order 0 and isolate the terms related
to the displacements and electric potential at order 1:

𝑐11𝑢
1
𝑟,𝑅

+ 𝑒11𝜙
1
,𝑅

= 𝜎0
𝑟𝑟
− 𝑐12(𝜀

0
𝜑𝜑

+ 𝜀0
𝜃𝜃
),

𝑒11𝑢
1
𝑟,𝑅

− 𝛽11𝜙
1
,𝑅

= 𝐷0
𝑟
− 𝑒12(𝜀

0
𝜑𝜑

+ 𝜀0
𝜃𝜃
),

𝑢1
𝜑,𝑅

= 𝜎0
𝑟𝜑

− 𝜀0
𝑟𝜑

−
𝑒15

2𝑐44

1

𝑟0
𝜙0
,𝜑
,

𝑢1
𝜃,𝑅

= 𝜎0
𝑟𝜃
− 𝜀0

𝑟𝜃
−

𝑒15

2𝑐44

1

𝑟0 sin𝜑
𝜙0
,𝜃
,

(7)

with 𝜀0
𝜑𝜑

∶=
1

𝑟0
𝑢0
𝜑,𝜑

+
1

𝑟0
𝑢0
𝑟
, 𝜀0

𝜃𝜃
∶=

1

𝑟0 sin𝜑
𝑢0
𝜃,𝜃

+
cot 𝜑

𝑟0
𝑢0
𝜑
+

1

𝑟
𝑢0
𝑟
, 𝜀0

𝑟𝜑
∶=

1

𝑟0
𝑢0
𝑟,𝜑

−
1

𝑟0
𝑢0
𝜑
and 𝜀0

𝑟𝜃
∶=

1

𝑟0 sin𝜑
𝑢0
𝑟,𝜃

−
1

𝑟0
𝑢0
𝜃
, depending only on the terms at

order 0. After an integration along the radial coordinate 𝑅 = 𝑟0±
1

2
, the

solution of the previous linear system allows to characterize the jump
of the displacement field and electric potential at order 1, as follows:

[𝑢1
𝑟
] =

1

𝑐11𝛽11 + 𝑒2
11

{
𝛽11𝜎

0
𝑟𝑟
+ 𝑒11𝐷

0
𝑟
+ (𝛽11𝑐12 + 𝑒11𝑒12)(𝜀

0
𝜑𝜑

+ 𝜀0
𝜃𝜃
)
}
,

[𝜙1] =
1

𝑐11𝛽11 + 𝑒2
11

{
𝑒11𝜎

0
𝑟𝑟
− 𝑐11𝐷

0
𝑟
− (𝑐12𝑒11 − 𝑐11𝑒12)(𝜀

0
𝜑𝜑

+ 𝜀0
𝜃𝜃
)
}
,

[𝑢1
𝜑
] = 𝜎0

𝑟𝜑
− 𝜀0

𝑟𝜑
−

𝑒15

2𝑐44

1

𝑟0
𝜙0
,𝜑
,

[
𝑢1
𝜃

]
= 𝜎0

𝑟𝜃
− 𝜀0

𝑟𝜃
−

𝑒15

2𝑐44

1

𝑟0 sin𝜑
𝜙0
,𝜃
.

(8)

Moreover, the obtained values of 𝑢1
𝑟,𝑅
, 𝑢1

𝜑,𝑅
, 𝑢1

𝜃,𝑅
and 𝜙1

,𝑅
can be helpful

to derive explicit expressions of 𝜎0
𝜑𝜑
, 𝜎0

𝜃𝜃
, 𝜎0

𝜃𝜑
, 𝐷0

𝜑
and 𝐷0

𝜃
as functions

of the zeroth order terms.

The equilibrium and electrostatic charge equations at order 0 give:

𝜎1
𝑟𝑟,𝑅

= −
1

𝑟0 sin𝜑
𝜎0
𝑟𝜃,𝜃

−
1

𝑟0
𝜎0
𝑟𝜑,𝜑

−
1

𝑟0

(
2𝜎0

𝑟𝑟
− 𝜎0

𝜃𝜃
− 𝜎0

𝜑𝜑
+ 𝜎0

𝑟𝜑
cot 𝜑

)
,

𝜎1
𝑟𝜑,𝑅

= −
1

𝑟0 sin𝜑
𝜎0
𝜃𝜑,𝜃

−
1

𝑟0
𝜎0
𝜑𝜑,𝜑

−
1

𝑟0

(
3𝜎0

𝑟𝜑
+ (𝜎0

𝜑𝜑
− 𝜎0

𝜃𝜃
) cot 𝜑

)
,

𝜎1
𝑟𝜃,𝑅

= −
1

𝑟0 sin𝜑
𝜎0
𝜃𝜃,𝜃

−
1

𝑟0
𝜎0
𝜃𝜑,𝜑

−
1

𝑟0

(
3𝜎0

𝑟𝜃
+ 2𝜎0

𝜃𝜑
cot 𝜑

)
,

𝐷1
𝑟,𝑅

= −
1

𝑟0
𝐷0

𝜑,𝜑
−

1

𝑟0 sin𝜑
𝐷0

𝜃,𝜃
−

2

𝑟0
𝐷0

𝑟
−

2 cot 𝜑

𝑟0
𝐷0

𝜑
.

By integrating the previous equations along the radial direction and
by applying the continuity conditions of the radial traction vector
and radial electric displacement, one can formulate the final interface
conditions at order 1:

[𝜎1
𝑟𝑟
] = −

1

𝑟0 sin𝜑
𝜎0
𝑟𝜃,𝜃

−
1

𝑟0
𝜎0
𝑟𝜑,𝜑

−

−
1

𝑟0

{
2

(
1 −

2(𝛽11𝑐12 + 𝑒11𝑒12)

𝑐11𝛽11 + 𝑒2
11

)
𝜎0
𝑟𝑟
−

2(𝑐12𝑒11 − 𝑐11𝑒12)

𝑐11𝛽11 + 𝑒2
11

𝐷0
𝑟
−

−

(
𝑐22 + 𝑐23 +

2𝑐12(𝛽11𝑐12 + 𝑒11𝑒12) − 2𝑒12(𝑐12𝑒11 − 𝑐11𝑒12)

𝑐11𝛽11 + 𝑒2
11

)
(𝜀0

𝜑𝜑
+ 𝜀0

𝜃𝜃
)

}
,

[𝜎1
𝑟𝜑
] = −

1

𝑟0 sin𝜑
(𝑐22 − 𝑐23)𝜀

0
𝜃𝜑,𝜃

−
1

𝑟0

{
3𝜎0

𝑟𝜑
+ (𝑐23 − 𝑐22)(𝜀

0
𝜑𝜑

+ 𝜀0
𝜃𝜃
) cot 𝜑

}
−

−
1

𝑟0

{
𝛽11𝑐12 + 𝑒11𝑒12

𝑐11𝛽11 + 𝑒2
11

𝜎0
𝑟𝑟,𝜑

+
𝑐12𝑒11 − 𝑐11𝑒12

𝑐11𝛽11 + 𝑒2
11

𝐷0
𝑟,𝜑
+

+

(
𝑐22 +

𝑐12(𝛽11𝑐12 + 𝑒11𝑒12) − 𝑒12(𝑐12𝑒11 − 𝑐11𝑒12)

𝑐11𝛽11 + 𝑒2
11

)
𝜀0
𝜃𝜃,𝜑

+

+

(
𝑐23 +

𝑐12(𝛽11𝑐12 + 𝑒11𝑒12) − 𝑒12(𝑐12𝑒11 − 𝑐11𝑒12)

𝑐11𝛽11 + 𝑒2
11

)
𝜀0
𝜑𝜑,𝜑

}
,

[𝜎1
𝑟𝜃
] = −

1

𝑟0
(𝑐22 − 𝑐23)𝜀

0
𝜃𝜑,𝜑

−
1

𝑟0

{
3𝜎0

𝑟𝜑
+ 2(𝑐22 − 𝑐23)𝜀

0
𝜃𝜑

cot 𝜑
}
−

−
1

𝑟0 sin𝜑

{
𝛽11𝑐12 + 𝑒11𝑒12

𝑐11𝛽11 + 𝑒2
11

𝜎0
𝑟𝑟,𝜃

+
𝑐12𝑒11 − 𝑐11𝑒12

𝑐11𝛽11 + 𝑒2
11

𝐷0
𝑟,𝜃
+

+

(
𝑐23 +

𝑐12(𝛽11𝑐12 + 𝑒11𝑒12) − 𝑒12(𝑐12𝑒11 − 𝑐11𝑒12)

𝑐11𝛽11 + 𝑒2
11

)
𝜀0
𝜃𝜃,𝜃

+

+

(
𝑐22 +

𝑐12(𝛽11𝑐12 + 𝑒11𝑒12) − 𝑒12(𝑐12𝑒11 − 𝑐11𝑒12)

𝑐11𝛽11 + 𝑒2
11

)
𝜀0
𝜑𝜑,𝜃

}
,

[𝐷1
𝑟
] = −

2𝐷0
𝑟

𝑟0
−

1

𝑟0

{
2𝑒15𝜎

0
𝑟𝜑,𝜑

−
1

𝑟0

𝑒2
15
+ 𝛽22𝑐44

𝑐44
𝜙0
,𝜑𝜑

}
−

−
1

𝑟0

{
2𝑒15𝜎

0
𝑟𝜃,𝜃

−
1

𝑟0 sin𝜑

𝑒2
15
+ 𝛽22𝑐44

𝑐44
𝜙0
,𝜃𝜃

}
−

−
cot 𝜑

𝑟0

{
2𝑒15𝜎

0
𝑟𝜑

−
1

𝑟0

𝑒2
15
+ 𝛽22𝑐44

𝑐44
𝜙0
,𝜑

}
.

(9)

Eqs. (8) and (9) represent the higher order interface laws for a piezo-
electric spherical composite. These conditions provide the simultaneous
jumps of the displacement field, electric potential, stress field and
electric displacement at order 1 depending on the values of the same
physical quantities at order 0. These order 0 terms are known since they
have been determined in the previous problem and they appear in the
formulation as source terms. The interface conditions at order 1 can be
interpreted as the two-dimensional piezoelectric equilibrium problem
defined on the plane of the interface.

2.3. The interface conditions for a radial bonded joint: spherical symmetry

In the case of a spherically symmetric problem, radially polarized,
radially transversely isotropic hollow spherical composite, the radial
displacement field and electric potential depend only on the radial
coordinate, i.e., 𝑢𝜖

𝑟
= 𝑢𝜖

𝑟
(𝑟), 𝜙𝜖 = 𝜙𝜖(𝑟), while both the circumferential

and azimuthal displacements vanish, i.e. 𝑢𝜖
𝜑

= 𝑢𝜖
𝜃

= 0. By virtue of
the symmetry assumptions, the equilibrium and electrostatic problems
simplify since the only non null stresses and electric displacements are
𝜎𝜖
𝑟𝑟

= 𝜎𝜖
𝑟𝑟
(𝑟) and 𝐷𝜖

𝑟
= 𝐷𝜖

𝑟
(𝑟). Interface conditions at order 0 maintain

the same form:

[𝑢0
𝑟
] = 0, [𝜙0] = 0, [𝜎0

𝑟𝑟
] = 0, [𝐷0

𝑟
] = 0, (10)

while the interface conditions at order 1 reduces to:

[𝑢1
𝑟
] =

1

𝑐11𝛽11 + 𝑒2
11

{
𝛽11𝜎

0
𝑟𝑟
+ 𝑒11𝐷

0
𝑟
− 2(𝛽11𝑐12 + 𝑒11𝑒12)

𝑢0
𝑟

𝑟0

}
,

[𝜙1] =
1

𝑐11𝛽11+𝑒
2
11

{
𝑒11𝜎

0
𝑟𝑟
− 𝑐11𝐷

0
𝑟
+ 2(𝑐12𝑒11 − 𝑐11𝑒12)

𝑢0𝑟

𝑟0

}
,

[𝜎1
𝑟𝑟
] =

2

𝑟0

{(
𝛽11𝑐12 + 𝑒11𝑒12

𝑐11𝛽11 + 𝑒2
11

− 1

)
𝜎0
𝑟𝑟
+

𝑐12𝑒11 − 𝑐11𝑒12

𝑐11𝛽11 + 𝑒2
11

𝐷0
𝑟
+

4



+

(
𝑐22 + 𝑐23 −

2𝑐12(𝛽11𝑐12 + 𝑒11𝑒12) + 2𝑒12(𝑐12𝑒11 − 𝑐11𝑒12)

𝑐11𝛽11 + 𝑒2
11

)
𝑢0
𝑟

𝑟0

}
,

[𝐷1
𝑟
] = −

2

𝑟0
𝐷0

𝑟
.

(11)

The above transmission conditions represent a piezoelectric generaliza-
tion of the interface law, obtained in [31], in the case of an elastic
spherical laminated composite.

In [24], it has been shown that it is possible to obtain a condensed
form of transmission conditions (10)–(11), summarizing both the orders
0 and 1, and defining an implicit general piezoelectric interface law.
To this end, by denoting by 𝑢̃𝜖

𝑟
∶= 𝑢0

𝑟
+ 𝜖𝑢1

𝑟
, 𝜎̃𝜖

𝑟𝑟
∶= 𝜎0

𝑟𝑟
+ 𝜖𝜎1

𝑟𝑟
, 𝐷̃𝜖

𝑟
∶=

𝐷0
𝑟
+ 𝜖𝐷1

𝑟
and 𝜙̃𝜖 ∶= 𝜙0 + 𝜖𝜙1, suitable approximations of 𝑢𝜖

𝑟
, 𝜎𝜖

𝑟𝑟
, 𝐷𝜖

𝑟
,

and 𝜙𝜖 respectively, one can obtain an equivalent implicit form of the
transmission conditions:

⟨𝜎̃𝜖
𝑟𝑟
⟩ = 𝑐𝜖

11

[𝑢̃𝜖
𝑟
]

𝜖
+ 𝑒𝜖

11

[𝜙̃𝜖]

𝜖
+ 2𝑐𝜖

12

[𝑢̃𝜖
𝑟
]

𝑟0

⟨𝐷̃𝜖
𝑟
⟩ = 𝑒𝜖

11

[𝑢̃𝜖
𝑟
]

𝜖
− 𝛽𝜖

11

[𝜙̃𝜖]

𝜖
+ 2𝑒𝜖

12

[𝑢̃𝜖
𝑟
]

𝑟0

[𝜎̃𝜖
𝑟𝑟
] = 2(𝑐𝜖

12
− 𝑐𝜖

11
)
[𝑢̃𝜖

𝑟
]

𝑟0
+ 2(𝑒𝜖

12
− 𝑒𝜖

11
)
[𝜙̃𝜖]

𝑟0
+ 2(𝑐𝜖

22
− 𝑐𝜖

23
− 2𝑐𝜖

12
)
𝜖⟨𝑢̃𝜖

𝑟
⟩

𝑟2
0

,

[𝐷̃𝜖
𝑟
] = −2𝑒𝜖

11

[𝑢̃𝜖
𝑟
]

𝑟0
+ 2𝛽𝜖

11

[𝜙̃𝜖]

𝑟0
− 4𝑒𝜖

12

𝜖⟨𝑢̃𝜖
𝑟
⟩

𝑟2
0

.

(12)

With arguments similar to those used in [24], where a flat adhesive was
considered, it can be shown that the above relations comprise three
different contact regimes at various orders (order 0 and 1), namely
the piezoelectric soft (or spring-type) interface conditions, the per-
fect continuity conditions, and the piezoelectric rigid (Gurtin–Murdoch
or membrane-type) conditions, and are expected to provide a better
approximation of the behavior of the thin curved interphase.

3. Transfer matrix method

In this section, a spherical hollow assembly model, consisting of
N different, radially polarized, transversely isotropic thin layers, is
studied using the transfer matrix method. The transfer matrix method
is a classical approach [32,33]. Here, we first review its application
to a piezoelectric hollow sphere, then we generalize the technique to
an arbitrarily laminated piezoelectric hollow sphere and, finally, we
extend the obtained results to the case of imperfect contact between the
layers, with a general interface law comprising the order 0 and order
1 transmission conditions obtained in Section 2.2.

3.1. The piezoelectric hollow sphere

The basic equilibrium and electrostatic charge equations in the case
of spherical symmetric loading read (see [7]):

𝜎𝑟𝑟,𝑟 +
2

𝑟
(𝜎𝑟𝑟 + 𝜎𝜃𝜃) = 0,

𝐷𝑟,𝑟 +
2

𝑟
𝐷𝑟 = 0,

(13)

while the constitutive equations for radially polarized and transversely
isotropic piezoelectric material are:

𝜎𝑟𝑟 = 𝑐11𝑢𝑟,𝑟 + 2𝑐12
𝑢𝑟

𝑟
+ 𝑒11𝜙,𝑟,

𝜎𝜃𝜃 = 𝑐12𝑢𝑟,𝑟 + (𝑐22 + 𝑐23)
𝑢𝑟

𝑟
+ 𝑒12𝜙,𝑟,

𝐷𝑟 = 𝑒11𝑢𝑟,𝑟 + 2𝑒12
𝑢𝑟

𝑟
− 𝛽11𝜙,𝑟.

(14)

Following the approach by [33], it is possible to express the governing
equations, combined with the constitutive laws, as follows:

a,𝑟(𝑟) = A(𝑟)a(𝑟) (15)

with

A(𝑟) ∶=

⎡⎢⎢⎢⎢⎢⎢⎣

𝐴11

𝑟

𝐴12

𝑟2

𝐴13

𝑟
0

𝐴21
𝐴22

𝑟
𝐴23 0

0 0
𝐴33

𝑟
0

𝐴41
𝐴42

𝑟
𝐴43 0

⎤⎥⎥⎥⎥⎥⎥⎦

, a(𝑟) ∶=

⎡⎢⎢⎢⎢⎣

𝜎𝑟𝑟(𝑟)

𝑢𝑟(𝑟)

𝐷𝑟(𝑟)

𝜙(𝑟)

⎤⎥⎥⎥⎥⎦
, (16)

and

𝐴11 ∶= 2

(
𝛽11𝑐12 + 𝑒11𝑒12

𝑐11𝛽11 + 𝑒2
11

− 1

)
, 𝐴13 ∶=

2(𝑐12𝑒11 − 𝑐11𝑒12)

𝑐11𝛽11 + 𝑒2
11

,

𝐴12 ∶= 2

(
𝑐22 + 𝑐23 −

2𝑐12(𝛽11𝑐12 + 𝑒11𝑒12) + 2𝑒12(𝑐12𝑒11 − 𝑐11𝑒12)

𝑐11𝛽11 + 𝑒2
11

)
,

𝐴21 ∶=
𝛽11

𝑐11𝛽11 + 𝑒2
11

, 𝐴22 ∶= −
2(𝛽11𝑐12 + 𝑒11𝑒12)

𝑐11𝛽11 + 𝑒2
11

, 𝐴23 ∶=
𝑒11

𝑐11𝛽11 + 𝑒2
11

,

𝐴33 ∶= −2, 𝐴41 ∶=
𝑒11

𝑐11𝛽11 + 𝑒2
11

, 𝐴42 ∶=
2(𝑐11𝑒12 − 𝑒11𝑐12)

𝑐11𝛽11 + 𝑒2
11

,

𝐴43 ∶= −
𝑐11

𝑐11𝛽11 + 𝑒2
11

,

(17)

with the compatibility condition 𝐴11+𝐴22 = −2. Matrix A(𝑟) is called the
fundamental matrix and a(𝑟) the state vector. In the sequel, we recall
the general solution of the equilibrium and electrostatic problems for a
piezoelectric hollow sphere, free of volume forces and charge density,
developed in [7] and adapted for the purposes of the present work:

𝜎𝑟𝑟(𝑟) = 𝑎11𝐹1𝑟
𝛼1−1 + 𝑎12𝐹2𝑟

𝛼2−1 + 𝑎13𝐹3
1

𝑟2
,

𝑢𝑟(𝑟) = 𝐹1𝑟
𝛼1 + 𝐹2𝑟

𝛼2 + 𝐹3𝑎23
1

𝑟
,

𝐷𝑟(𝑟) = 𝐹3
1

𝑟2
,

𝜙(𝑟) = 𝑎41𝐹1𝑟
𝛼1 + 𝑎42𝐹2𝑟

𝛼2 + 𝑎43𝐹3
1

𝑟
+ 𝐹4,

(18)

where 𝛼1∕2 ∶=
1

2
(−1 ±

√
1 + 8𝛽), 2𝛽 = 𝐴12𝐴21 + (1 + 𝐴22)𝐴22, and

𝑎11 ∶=
𝛼1 − 𝐴22

𝐴21

, 𝑎12 ∶=
𝛼2 − 𝐴22

𝐴21

,

𝑎13 ∶= −
𝑎23(1 + 𝐴22) + 𝐴23

𝐴21

𝑎23 ∶=
1

2𝛽

(
𝐴23(2 + 𝐴11) − 𝐴21𝐴13

)
,

𝑎41 ∶=
1

𝛼1
(𝐴41𝑎11 + 𝐴42), 𝑎42 ∶=

1

𝛼2
(𝐴41𝑎12 + 𝐴42),

𝑎43 ∶= −(𝐴43 + 𝐴41𝑎13 + 𝐴42𝑎23).

The previous coefficients are analogous to those obtained in [7], see
Appendix. 𝐹1, 𝐹2, 𝐹3 and 𝐹4 represent the integration constants,
that can be found applying a proper set of mechanical and electrical
boundary conditions. The solution can be rewritten in matrix form:

⎡⎢⎢⎢⎢⎣

𝜎𝑟𝑟(𝑟)

𝑢𝑟(𝑟)

𝐷𝑟(𝑟)

𝜙(𝑟)

⎤⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎣

𝑎11𝑟
𝛼1−1 𝑎12𝑟

𝛼2−1
𝑎13

𝑟2
0

𝑟𝛼1 𝑟𝛼2
𝑎23

𝑟
0

0 0
1

𝑟2
0

𝑎41𝑟
𝛼1 𝑎42𝑟

𝛼2
𝑎43

𝑟
1

⎤
⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

𝐹1

𝐹2

𝐹3

𝐹4

⎤⎥⎥⎥⎥⎦

In compact form, a(𝑟) = B(𝑟)F. Having in mind the transfer-matrix
method, we replace the integration constants 𝐹1, 𝐹2, 𝐹3 and 𝐹4 by
the initial state variables 𝜎𝑟𝑟(𝑟0), 𝑢𝑟(𝑟0), 𝐷𝑟(𝑟0) and 𝜙(𝑟0), i.e. a(𝑟0). As
customary, the integration constants vector can be obtained through
F = B−1(𝑟0)a(𝑟0) and, thus,

a(𝑟) = T(𝑟)a(𝑟0), (19)
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where T(𝑟) ∶= B(𝑟)B−1(𝑟0) is the field-transfer matrix from radius 𝑟0 to
radius 𝑟, which has the following expression

T(𝑟) ∶=
1

𝑎11 − 𝑎12

⎡
⎢⎢⎢⎢⎣

𝑇11(𝑟) 𝑇12(𝑟) 𝑇13(𝑟) 0

𝑇21(𝑟) 𝑇22(𝑟) 𝑇23(𝑟) 0

0 0 𝑇33(𝑟) 0

𝑇41(𝑟) 𝑇42(𝑟) 𝑇43(𝑟) 1

⎤
⎥⎥⎥⎥⎦
,

with

𝑇11(𝑟) ∶= 𝑎11

(
𝑟

𝑟0

)𝛼1−1

− 𝑎12

(
𝑟

𝑟0

)𝛼2−1

,

𝑇12(𝑟) ∶= −
𝑎11𝑎12

𝑟0

{(
𝑟

𝑟0

)𝛼1−1

−

(
𝑟

𝑟0

)𝛼2−1
}

,

𝑇13(𝑟) ∶=
(𝑎11 − 𝑎12)𝑎13(

𝑟

𝑟0

)2
+ 𝑎11(𝑎12𝑎23 − 𝑎13)

(
𝑟

𝑟0

)𝛼1−1

+ 𝑎12(𝑎13 − 𝑎11𝑎23)

(
𝑟

𝑟0

)𝛼2−1

,

𝑇21(𝑟) ∶= 𝑟0

{(
𝑟

𝑟0

)𝛼1

−

(
𝑟

𝑟0

)𝛼2
}

,

𝑇22(𝑟) ∶= 𝑎11

(
𝑟

𝑟0

)𝛼2

− 𝑎12

(
𝑟

𝑟0

)𝛼1

,

𝑇23(𝑟) ∶=
(𝑎11 − 𝑎12)𝑎23𝑟0(

𝑟

𝑟0

)2
+ 𝑟0(𝑎12𝑎23 − 𝑎13)

(
𝑟

𝑟0

)𝛼1

+ 𝑟0(𝑎13 − 𝑎11𝑎23)

(
𝑟

𝑟0

)𝛼2

,

𝑇41(𝑟) ∶= 𝑎42

(
1 −

(
𝑟

𝑟0

)𝛼2
)
− 𝑎41

(
1 −

(
𝑟

𝑟0

)𝛼1
)
,

𝑇42(𝑟) ∶= 𝑎12𝑎41

(
1 −

(
𝑟

𝑟0

)𝛼1
)
− 𝑎11𝑎42

(
1 −

(
𝑟

𝑟0

)𝛼2
)
,

𝑇43(𝑟) ∶=
(𝑎11 − 𝑎12)𝑎43𝑟0

𝑟

𝑟0

+ 𝑟0𝑎41(𝑎12𝑎23 − 𝑎13)

(
𝑟

𝑟0

)𝛼1

+ 𝑟0𝑎42(𝑎13 − 𝑎11𝑎23)

(
𝑟

𝑟0

)𝛼2

+

+ 𝑟0
(
𝑎13(𝑎41𝑎42) + 𝑎43(𝑎12 − 𝑎11) + 𝑎23(𝑎11𝑎42 − 𝑎12𝑎41)

)
.

Note that the field-transfer matrix T(𝑟) and the fundamental matrix A(𝑟)
are related to each other according to the relation: A(𝑟0) = T,𝑟(𝑟)|𝑟=𝑟0 .

3.2. The laminated piezoelectric hollow sphere

Let us consider a laminated piezoelectric hollow sphere, constituted
by 𝑁 layers. Each layer (𝑘) is characterized by the corresponding
material parameters, marked by the index 𝑘, and the radii 𝑟𝑘−1 and
𝑟𝑘, and thickness ℎ𝑘 ∶= 𝑟𝑘 − 𝑟𝑘−1. A dimensionless coordinate 𝜌 for the
layer (𝑘) is defined according to

𝜌 =
𝑟 − 𝑟𝑘−1

𝑟𝑘−1
, 𝑟𝑘−1 ≤ 𝑟 ≤ 𝑟𝑘, 𝜌𝑘 =

ℎ𝑘

𝑟𝑘−1
,

𝑟

𝑟𝑘−1
= 1 + 𝜌.

The transfer equation (19), with 𝑟0 = 𝑟𝑘−1, can be rewritten as follows:

a(𝑘)(𝜌) = T(𝑘)(𝜌)a(𝑘)(0),

where T(𝑘)(𝜌) is the transfer matrix of layer (𝑘). The states at both
boundaries of layer (𝑘) are connected by

a(𝑘)(𝜌𝑘) = T
(𝑘)(𝜌𝑘)a

(𝑘)(0),

and, by means of the continuity conditions, a(𝑘)(0) = a(𝑘−1)(𝜌𝑘−1) ∶=

a𝑘−1, 𝑘 = 1,… , 𝑁 − 1, one has:

a𝑘 = T𝑘a𝑘−1, (20)

where T𝑘 ∶= T(𝑘)(𝜌𝑘) represents the layer-transfer matrix of layer (𝑘)

from radius 𝑟𝑘−1 to 𝑟𝑘. Applying (20)𝑁- times for the layered hollow
sphere made of layers in perfect contact, we get

a𝑁 = Sa0, S ∶= T𝑁T𝑁−1...T1.

Here S denote the system-transfer matrix from radius 𝑟0 to radius 𝑟𝑁 ,
because it connects the state vectors at the boundaries of the laminated
hollow sphere. Knowing the initial state vector a0 on the internal
boundary, it is possible to find the state vector in each layer.

Let us suppose that ℎ𝑘 = 𝜆𝑘ℎ, where ℎ ∶=
∑𝑁

𝑘=1
ℎ𝑘 is the total

thickness of the laminated hollow sphere and 0 < 𝜆𝑘 < 1 is a thickness
ratio, satisfying

∑𝑁

𝑘=1
𝜆𝑘 = 1. The assumption of small thickness of each

layer ℎ𝑘 with respect to 𝑟0, so that ℎ𝑘 ≪ 𝑟0, implies that

𝜌𝑘 =
ℎ𝑘

𝑟𝑘−1
=

𝜆𝑘ℎ

𝑟0 + ℎ
∑𝑘−1

𝑖=1
𝜆𝑖

=
𝜆𝑘ℎ

𝑟0
+ 𝑜(ℎ2),

and, hence, the layer-transfer matrix T𝑘 admits the following represen-
tation:

T𝑘 = I − ℎ𝜆𝑘M𝑘 + 𝑜(ℎ2),

where the elements of matrix M𝑘 coincides with the elements of matrix
−A(𝑟0) (cf. (16)), corresponding to 𝑘th layer. As a consequence, the
system-transfer matrix S presents an analogous asymptotic develop-
ment:

S = I − ℎM + 𝑜(ℎ2), (21)

where M ∶=
∑𝑁

𝑘=1
𝜆𝑘M𝑘.

3.3. The laminated piezoelectric hollow sphere with imperfect interface
conditions

In the previous section, the problem of a laminated piezoelectric
hollow sphere with perfect contact has been analyzed. In order to
extend these results to a laminated sphere with imperfect contact
between the layers, ad hoc transmission conditions must be considered
at the spherical surface between adjacent layers (see [31]).

Assume that the thickness of each interface layer 𝜖𝑘 = 𝜉𝑘ℎ, with
𝜉𝑘 ≪ 1, 𝑘 = 1,… , 𝑁 − 1. In order to apply the Bufler’s approach, it is
necessary to define an interface transfer matrix between radii 𝑟𝑘 ∶= 𝑟−

𝑘

and 𝑟𝑘 + 𝜖𝑘 ∶= 𝑟+
𝑘
. Substituting the explicit forms of the jump [.] and

mean value ⟨.⟩ into (12), the interface conditions can be rewritten as
follows, with self-explanatory notation:

a+
𝑘
= K̂𝑘a

−
𝑘
, a−

𝑘
∶= a(𝑘)(𝜌𝑘), a

−
𝑘
∶= a(𝑘)

(
𝜌𝑘 + 𝜖𝑘∕𝑟𝑘−1

)
,

where a+
𝑘
and a−

𝑘
represent the state vectors at the top and bottom

interfaces, respectively, and

K̂𝑘 ∶= I − ℎ𝜉𝑘N̂𝑘 + 𝑜(ℎ2).

It can be shown that the coefficients of matrix N𝑘 surprisingly coincides
with the elements of −A(𝑟0) (cf. (16)), in which the interface material
parameters are considered. Now, thanks to the presence of the imper-
fect interface, the system-transfer matrix system S̃ (cf. (21)) modifies in
order to incorporate the matrices K̂𝑘:

S̃ = T𝑁 K̂𝑁−1T𝑁−1...K̂1T1 = I − ℎL + 𝑜(ℎ2),

where L ∶=
∑𝑁

𝑘=1
𝜆𝑘M𝑘+

∑𝑁−1
𝓁=1

𝜉𝓁N̂𝓁 . Following Bufler [33], the system
matrix for the hollow sphere with homogenized properties is calculated
as

a,𝑟 = lim
ℎ→0

S̃ − I
ℎ
a0 = −La0,

and, thus, choosing 𝑟 = 𝑟0,

a,𝑟(𝑟) = ⟨A(𝑟)⟩a(𝑟), ⟨A(𝑟)⟩ ∶=

⎡⎢⎢⎢⎢⎢⎢⎣

⟨𝐴11⟩
𝑟

⟨𝐴12⟩
𝑟2

⟨𝐴13⟩
𝑟

0

⟨𝐴21⟩ ⟨𝐴22⟩
𝑟

⟨𝐴23⟩ 0

0 0
⟨𝐴33⟩

𝑟
0

⟨𝐴41⟩ ⟨𝐴42⟩
𝑟

⟨𝐴43⟩ 0

⎤⎥⎥⎥⎥⎥⎥⎦

, (22)

where ⟨A(𝑟)⟩ denotes the fundamental matrix of the homogenized
laminated piezoelectric hollow sphere, such that ⟨A(𝑟0)⟩ = −L. Indeed,
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by comparing (22) with (15) for a piezoelectric homogeneous hollow
sphere, we notice that the governing equations are analogous but
with different coefficients. The coefficients of the fundamental matrix
⟨A(𝑟)⟩ for a laminated hollow sphere, comprising also the presence
of the general imperfect interface law, reduce to the sum of ⟨A(𝑟)⟩
coefficients for each adherent and interface layer, taking into account
their thickness ratios, namely 𝜆𝑘 and 𝜉𝓁 , respectively. Indeed, one has

⟨𝐴𝑖𝑗⟩ ∶=
𝑁∑
𝑘=1

𝜆𝑘𝐴
(𝑘)
𝑖𝑗

+

𝑁−1∑
𝓁=1

𝜉𝓁𝐴̂
(𝓁)
𝑖𝑗

,

where 𝐴
(𝑘)
𝑖𝑗

and 𝐴̂
(𝓁)
𝑖𝑗

represent, respectively, coefficients (16) relative
to the 𝑘th layer and the 𝓁-th interface layer. It is worth-mentioning
that the use of the general imperfect contact laws, described in (12),
corresponds to the actual insertion of a thin spherical interphase layer
between adjacent adherents. Hence, the problem of an arbitrarily lam-
inated piezoelectric hollow sphere is equivalent to the problem of an
homogenized one.

Remark. The case of a periodic laminated piezoelectric hollow sphere,
made of a layer group of 𝑛 generally different basic layers, can be
easily obtained by choosing ℎ𝑘 =

𝜆𝑘ℎ

𝑛
and 𝜖𝑘 =

𝜉𝑘ℎ

𝑛
. In this case, the

fundamental matrix satisfies ⟨A(𝑟0)⟩ = −𝑛L.

As an example let us consider the simple case of a spherical compos-
ite, made of two adherents and an intermediate interface layer. Thus,
the system matrix S̃ = T+K̂T−, with T±, the transfer matrices of the top
and bottom spheres, and K̂, the interface transfer matrix. The adherents
thickness ratios are chosen as 𝜆+

𝑘
= 𝜆−

𝑘
=

1

2
, while the adhesive

thickness ratio is 𝜉. Note that comparing the present results with the
fundamental matrices of a transversely isotropic homogeneous elastic
sphere (cf. [33], eqns. (17)–(19)), one obtains the equivalent elastic
material parameters 𝐸

1−𝜈
, 1

𝜈′
and 𝜈′

𝐸′ of the homogenized piezoelectric

spherical composite, where 𝐸, 𝐸′, 𝜈 and 𝜈′ = 𝜈
𝐸′

𝐸
denote, respectively,

the radial and tangential stiffness moduli, and the major and minor
Poisson’s coefficients. These material parameters depend on the piezo-
electric moduli, defined in the constitutive equation (14), and can be
thought as equivalent elastic engineering constants for the composite.
The result is

𝐸

1 − 𝜈
=

1

2
⟨𝐴12⟩ = 1

2

𝛥+

𝑐+
11
𝛽+
11
+ (𝑒+

11
)2

+
1

2

𝛥−

𝑐−
11
𝛽−
11
+ (𝑒−

11
)2

+ 𝜉
𝛥

𝑐11𝛽11 + 𝑒2
11

,

𝜈′

𝐸′
= −

⟨𝐴22⟩
⟨𝐴12⟩ =

1

2

𝛽+
11
𝑐+
12
+ 𝑒+

11
𝑒+
12

𝛥+
+

1

2

𝛽−
11
𝑐−
12
+ 𝑒−

11
𝑒−
12

𝛥−
+ 𝜉

𝛽11𝑐12 + 𝑒11𝑒12

𝛥
,

1

𝐸′
=

⟨𝐴22⟩2
⟨𝐴12⟩ + ⟨𝐴21⟩ = 1

2(𝑐+
11
𝛽+
11
+ (𝑒+

11
)2)

(
(𝛽+

11
𝑐+
12
+ 𝑒+

11
𝑒+
12
)2

𝛥+
+ 𝛽+

11

)
+

+
1

2(𝑐−
11
𝛽−
11
+ (𝑒−

11
)2)

(
𝛽−
11
𝑐−
12
+ 𝑒−

11
𝑒−
12

𝛥−
+ 𝛽−

11

)

+
𝜉

𝑐11𝛽11 + 𝑒2
11

(
𝛽11𝑐12 + 𝑒11𝑒12

𝛥
+ 𝛽11

)
.

(23)

with 𝛥 ∶= (𝑐22+𝑐23)(𝑐11𝛽11+𝑒
2
11
)−2𝑐12(𝛽11𝑐12+𝑒11𝑒12)+2𝑒12(𝑐12𝑒11−𝑐11𝑒12).

4. A simple numerical example

Let us consider a three-layer hollow piezoelectric sphere with inner
radius 𝑟0 = 10 cm, see Fig. 2. The internal and external layers are
0.5 cm thick, while the thickness of the intermediate adhesive layer
depends on a small parameter 𝜖, such that 𝜖 ≪ 0.5 cm. Let us denote
with 𝑟−

1
= 10.5 cm, 𝑟+

1
= 10.5 + 𝜖 cm and 𝑟2 = 11 + 𝜖 cm, the values of

the radii referred to inner and outer interfaces between the adherents
and adhesive, and the outer radius, respectively. The total thickness ℎ
of the layered sphere is equal to 𝑟2 − 𝑟0 = 1 + 𝜖 cm. The adherents are
constituted by (Pb)(CoW)TiO3, while the adhesive is made of PZT-5,
whose mechanical properties are shown in Table 1.

Fig. 2. Geometry of the three-layers hollow piezoelectric composite sphere.

Table 1
Piezoelectric material properties for (Pb)(CoW)TiO3 and PZT-5.

Moduli (Pb)(CoW)TiO3 PZT-5

𝑐11 , GPa 128 111
𝑐12 , GPa 32.3 32.2
𝑐22 , GPa 150 120
𝑐23 , GPa 37.1 75.2
𝑒11 , C/m

2 8.5 15.78
𝑒12 , C/m

2 1.61 −5.35
𝛽11∕𝜖0 , 209 1700

The piezoelectric hollow composite sphere is subjected to an electric
potential 𝑉0 = 10 V, applied on the inner surface, while the electric
potential is set equal to zero on the outer boundary, so that 𝜙(𝑟0) = 𝑉0
and 𝜙(𝑟2) = 0. Free mechanical boundary conditions on both internal
and external surfaces are imposed, meaning that 𝜎𝑟(𝑟0) = 0 and 𝜎𝑟(𝑟2) =

0. In this case the sphere behaves as an actuator. Following the ideas
proposed in [25], the numerical results for the variables are provided
using the dimensionless units. For an applied electric potential 𝑉0, we
set:

(𝑈𝑟, 𝛷) =
𝐸0

𝑉0

(
𝑢𝑟, 𝜙∕𝐸0

)
, (𝛴𝑟,𝑟) =

ℎ𝐸0

𝐶00𝑉0

(
𝜎𝑟, 𝐸0𝐷𝑟

)
,

where, for numerical convenience, 𝐸0 = 109 Vm−1 and 𝐶00 = 1 GPa.

Let us consider the closed-form solution (18) for each of the three
layers. By applying the aforementioned set of boundary conditions and
continuity conditions at the interface between adherents and adhesive,
the twelve unknown integration constants can be easily found. Hence,
the analytical solution for a three-phases hollow piezoelectric sphere is
completely determined in terms of 𝑈𝑟, 𝛴𝑟, 𝛷 and 𝑟.

The exact solution is compared with the closed-form solution, analo-
gously obtained for a two-phases hollow composite sphere, in which the
intermediate layer is replaced by the generalized interface conditions
(12) (see Section 2.3).

First, the influence of the relative thickness of the intermediate
layer 𝜖∕ℎ is investigated in order to evaluate the accuracy of the
asymptotic modeling. In particular, the quality of the solution is eval-
uated considering the L2-relative error ‖𝑠𝜖−𝑠𝑚𝑜𝑑𝑒𝑙‖

‖𝑠𝜖‖ , where 𝑠𝜖 denotes
the reference solution computed using the three-phases problem, while
𝑠𝑚𝑜𝑑𝑒𝑙 indicates the solution of the interface model. The convergence of
the general interface model towards the three-phases one with respect
to the thickness ratio 𝜖∕ℎ is presented in Fig. 3.

From the plot, it can be observed that, by reducing the thickness of
the adhesive, the relative error has a drastic reduction and so, the pro-
posed general interface model provides an acceptable solution and it is
able to correctly approximate the exact solution 𝑠𝜖 . For instance, when
the relative thickness is 0.01, the relative error is closed to 1.147% and
2.146%, concerning the displacement and radial stress, respectively.
The error significantly reduces to 0.0039% and 0.0064%, concerning
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Fig. 3. Convergence diagram with respect to the relative thickness 𝜖∕ℎ.

Table 2
L2-relative errors values.

𝜖∕ℎ 𝑈𝑟 error (%) 𝛴𝑟 error (%) 𝛷 error (%) 𝑟 error (%)

0.1 11.9278 22.7947 0.0442 0.0729
0.01 1.1471 2.1461 0.0039 0.0064
0.001 0.1142 1.0673 0.0004 0.0006

Fig. 4. Electric potential and electric displacement vs radius, 𝜖∕ℎ = 0.01 𝜖∕ℎ.

the electric potential and radial electric displacement, respectively.
Table 2 reports the relative error values for vanishing relative thickness.

Figs. 4 and 5 show the trends of the electric potential, electric
displacement, radial stress and radial displacement along the radial
coordinate, for a fixed 𝜖∕ℎ = 0.01. The diagrams report the com-
parison among three closed-form solutions relative to the following
configurations: (i) the three-layers composite sphere; (ii) the two-
layers composite sphere with the general interface law; (iii) the single-
layer sphere with homogenized coefficients, obtained by means of the
transfer matrix method (see Section 3.3).

The diagrams confirm a very good agreement between the ex-
act three-layers solution (red continuous curves) and the two-layers
solution with interface conditions (blue dashed curves) in terms of
electric potential, electric displacement and radial displacement. Con-
cerning the radial stress, the overall trend is well-approximated, even
though the jump at the interface is slightly overestimated by the

Fig. 5. Radial stress and displacement vs radius, 𝜖∕ℎ = 0.01.

two-layers + interface model. As expected, the homogenized solution,
obtained through Bufler’s approach, manages to capture the global
electromechanical behavior on the average. However, it appears to
give moderately inaccurate estimates, concerning the electric and radial
displacements values.

The transfer matrix method allows the evaluation of the equivalent
radial and tangential Young’s moduli and Poisson’s coefficients for the
spherical composite from Eqs. (23). Indeed, for this particular case, one
has: 𝐸 = 1.4052 × 1011 N/m2, 𝐸′ = 1.4871 × 1011 N/m2, 𝜈 = 0.1933 and
𝜈′ = 0.2047.

5. Concluding remarks

A general imperfect interface model for piezoelectric hollow spher-
ical composites has been proposed. The approach is based on the
asymptotic expansions method, characterizing the order 0 and order 1
interface laws. Following [24], a general transmission law, comprising
soft, hard and rigid interface conditions at the various order, has been
derived. A generalization of the transfer matrix method [33] has been
proposed for piezoelectric hollow spherical composites. In order to
assess the validity of the previous asymptotic and homogenization
procedures, the analytical solution of a piezoelectric hollow sphere
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subjected to an applied electric potential has been developed, taking
also into account the aforementioned general interface laws. The con-
vergence results showed that, by reducing the thickness of the adhesive,
the relative error has a drastic reduction. Moreover, the numerical
result reported a very good agreement between the exact three-layers
solution and the two-layers solution with interface conditions in terms
of electric potential, electric displacement and radial displacement.
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Appendix

The coefficients of the equilibrium and electrostatic problem solu-
tion for a piezoelectric hollow sphere are equivalent to those obtained
in [7] and take the following expressions:

𝛾 ∶= 𝑐11 +
𝑒2
11

𝛽11

𝛽 ∶=
1

𝛾

(
𝑐22 + 𝑐23 − 𝑐12 +

𝑒12

𝛽11
(2𝑒12 − 𝑒11)

)

𝑎11 ∶= 𝑐11𝛼1 + 2𝑐12 + 𝛼1𝑒11

(
𝑒11

𝛽11
+

2

𝛼1

𝑒12

𝛽11

)
,

𝑎12 ∶= 𝑐11𝛼2 + 2𝑐12 + 𝛼2𝑒11

(
𝑒11

𝛽11
+

2

𝛼2

𝑒12

𝛽11

)
,

𝑎13 ∶= (2𝑐12 − 𝑐11)
𝑒12

𝛽𝛾𝛽11
− 𝑒11

(
𝑒12(𝑒11 − 2𝑒12)

𝛽𝛾𝛽2
11

+
1

𝛽11

)
,

𝑎23 ∶=
𝑒12

𝛽11𝛽𝛾
,

𝑎41 ∶=
𝑒11

𝛽11
+

2

𝛼1

𝑒12

𝛽11
,

𝑎42 ∶=
𝑒11

𝛽11
+

2

𝛼2

𝑒12

𝛽11
,

𝑎43 ∶=
𝑒12(𝑒11 − 2𝑒12)

𝛽𝛾𝛽2
11

+
1

𝛽11
.
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