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b Electricité de France, 1 avenue du Général de Gaulle, F-92141 Clamart Cedex, France
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a b s t r a c t

Weapply a data assimilation technique, inspired frommeteorological applications, to perform an optimal

reconstruction of the neutronic activity field in a nuclear core. Both measurements and information

coming from a numerical model are used. We first study the robustness of the method when the amount

of measured information decreases. We then study the influence of the nature of the instruments and

their spatial repartition on the efficiency of the field reconstruction.

1. Introduction

In this paper, we focus on the efficiency of a neutronic field

reconstruction procedurewith data assimilationwhen the number

and the repartition of the available instruments is varying. The data

assimilation technique used for this reconstruction allows to

combine, in an optimal and consistent way, information coming

either from measurements or from a numerical model.

Data assimilation methods are not commonly used in nuclear

core physics [1], contrary to meteorology or oceanography [2–4].

The procedure proposed here is the same as the onemeteorologists

use to obtain high accuracy meteorological reconstructed fields in

time and space. This is the case, for example, of the commonly used

meteorological re-analysis data set ERA-40 [5] among others [6,7].

One of the main advantages of data assimilation is that it takes

into account every kind of heterogeneous information within

the same framework. Moreover, this method has a formalism

that allows to adapt itself to instrument configuration change.

We exploit this last property here, to study the quality of the

reconstructed activity field as a function of the number of available

measurements. A major point in this study is to estimate the

instrumented system robustness in the framework of a data

assimilation reconstruction procedure. Moreover, such a study

also informs about the effect of instrumentation design within a

nuclear core and the resilience to instrument removal.

In this paper, we first detail the data assimilation method and

how it addresses field reconstruction. To evaluate the influence of

the number of instruments on the activity field reconstruction, the

repeated application of themethod faces somehuge computational

issues. These difficulties are overcome using a matrix inversion

method based on the Schur complement. A detailed presentation of

thismethod is presented inAppendix A. Firstwe present the results

on a standard case with synthetic measurements and comment on

them. To get a better understanding, we extend the results to other

instrumental repartitions and other error settings. This allows us to

give some conclusions on the error and instrument repartition

effects in activity field reconstruction using data assimilation.

2. Data assimilation

We briefly introduce the useful data assimilation key points to

understand their use as applied in Refs. [8–10]. Data assimilation is

a wider domain and these techniques are, for example, the keys of

the meteorological operational forecasts nowadays [11]. Thus

through advanced data assimilation methods weather forecasting

has been drastically improved during the last 30 years. All the

available data, such as satellite measurements as well as sophis-

ticated numerical models, are used.

The ultimate goal of data assimilation methods is to estimate

the inaccessible true value of the system state, xt where the t index
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stands for ‘‘true state’’ in the so-called ‘‘control space’’. The basic

idea is to combine information from an a priori on the state of the

system (usually called xb, with b for ‘‘background’’), and measure-

ments (referenced as yo). The background is usually the result of

numerical simulations, but can also be derived from any a priori

knowledge. The result of data assimilation is called the analysis,

denoted by xa, and it is an estimation of the true state xt wewant to

approximate.

The control andobservation spaces are not necessarily the same,

and a bridge between themneeds to be built. This is the observation

operator H, that transforms values from the space of the back-

ground into the space of observations. For our data assimilation

purpose wewill use its linearisationH around the background. The

inverse operation going from observation increments to back-

ground increments is given by the transpose HT of H.

Two other ingredients are necessary. The first is the covariance

matrix of observation errors, defined as R¼ E½ðyoÿHðxtÞÞ �

ðyoÿHðxtÞÞT � where E[ � ] is the mathematical expectation. It can

be obtained from the known errors on unbiased measurements

which means E½yoÿHðxtÞ� ¼ 0. The second is the covariance matrix

of background errors, defined as B¼ E½ðxbÿxtÞ � ðxbÿxtÞT �. It repre-

sents the error on the a priori state, assuming it to be unbiaised

following the E½xbÿxt� ¼ 0nobias property. There aremanyways to

get this a priori state and background error matrices. However,

these matrices are commonly the output of a model and an

evaluation of accuracy or the result of expert knowledge.

It can be proved, within this formalism that the Best Linear

Unbiased Estimator (BLUE) xa, under the linear and static assump-

tions, is given by the following equation:

xa ¼ xbþKðyoÿHxbÞ ð1Þ

where K is the gain matrix:

K¼ BHT ðHBHTþRÞÿ1: ð2Þ

Moreover, we can get the analysis error covariance matrix A,

characterising the analysis errors xaÿxt . This matrix can be

expressed from K as

A¼ ðIÿKHÞB ð3Þ

where I is the identity matrix.

It is worth noting that solving Eq. (1) is, if the probability

distribution is Gaussian, equivalent to minimising the following

function JðxÞ, xa being the optimal solution:

JðxÞ ¼ ðxÿxbÞTBÿ1ðxÿxbÞþðyoÿHxÞTRÿ1ðyoÿHxÞ: ð4Þ

This minimisation procedure is known in data assimilation as

3D-Var methodology [8].

3. Data assimilation implementation

The framework of this study is the standard configuration of a

900 MWe nuclear Pressurized Water Reactor (PWR900). To per-

form data assimilation, both simulation code and data are needed.

For the simulation code, the EDF experimental calculation code for

nuclear core COCAGNE in a standard configuration is used. The

descriptionof thebasic features of thismodel is given in Section3.1.

To have a good understanding of the instrumentation effect, we

want to study the various kinds of configurations, even some that

do not exist operationally and so cannot be tested experimentally.

For that purpose, synthetic data are used that allow to have a

homogeneous approach all along the document. Synthetic data are

generated from amodel simulation, filtered through an instrument

model, and noised according to a predefined measurement error

density function (usually of Gaussian type).

In the present case, we study the activity field reconstruction. A

horizontal slice of a PWR900 core is represented in Fig. 1. There is a

total of 157 vertical assemblies within this core. Among these

assemblies, 50 are instrumented with Mobiles Fissions Chambers

(MFC). These assemblies are divided vertically in 29 vertical levels.

Thus, the size of the control x is 4553 ð157� 29Þ. The size of the

observation vector yo is 1450 ð50� 29Þ.

3.1. Brief description of the nuclear core model

The aim of a neutronic code like COCAGNE is to evaluate the

neutronic activity field and all associated values within the nuclear

core. This field depends on the position in the core and on the

neutron energy. To do such an evaluation, the population of

neutrons are divided into several groups of energy. In the present

case only two groups are taken into account, leading to the

neutronic flux described by F¼ ðF1,F2Þ (even if the present code

has no limit for the group number). Thematerial properties depend

on the position in the core, and the neutronic fluxF is identified by

solving two-group neutronic diffusion equations described by

ÿdivðD1gradF1ÞþðSa1þSrÞF1 ¼
1
k ðn1Sf1F1þn2Sf2F2Þ

ÿdivðD2gradF2ÞþSa2F2ÿSrF1 ¼ 0

(

ð5Þ

where all the quantities and the derivatives (except k) depend on

the position in the core, k is the effective neutron multiplication

factor, Sr is the scattering cross-section from group 1 to group 2, 1

and 2 are the group indexes, and for each group, F is the neutron

flux, Sa is the absorption cross-section, D is the diffusion coeffi-

cient, nSf is the corrected fission cross-section.

The cross-sections also depend implicitly on the concentration

of boron, which is a substance added in the water used for the

primary circuit to control the neutronic fission reaction, through a

feedback supplementary model. This model takes into account the

temperature of the materials and of the neutron moderator, given

by external thermal and thermo-hydraulic models. A detailed

description of the core physic and numerical solving can be found

in Ref. [12].
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Fig. 1. The positions of MFC instruments in the nuclear core are localised in

assemblies in black within the horizontal slice of the core. The assemblies without

instrument are marked inwhite and the reflector, out of the reactive core, is in gray.



The overall numerical resolution consists in searching for boron

concentration such that the eigenvalue k is equal to 1,whichmeans

that the nuclear power production is stable and self-sustaining. It is

named critical boron concentration computation.

The activity in the core is obtained through a combination of the

fluxes F¼ ðF1,F2Þ, given on the chosen mesh of the core. Using

homogeneous materials for each assembly (for example 157 in a

PWR900 reactor), and choosing a vertical mesh compatible with

the core (usually 29 vertical levels), this result in a field of activity of

size 157� 29¼ 4553 that cover all the core.

3.2. The observation operator H

TheH observation operator is the composition of a selection and

of a normalisation procedure. The selection procedure extracts the

values corresponding to effective measurement among the values

of the model space. The normalisation procedure is a scaling of

the value with respect to the geometry and power of the core. The

overall operation is non-linear. However, with a range of value

compatible with assimilation procedure, we can calculate the

linear associated operator H. This observation matrix is a ð4553�

1450Þ matrix.

3.3. The background error covariance matrix B

The B matrix represents the covariance between the spatial

errors for the background. In order to get them, we estimate them

as the product of a correlation matrix C by a normalisation factor.

The correlation C matrix is built using a positive function that

defines the correlations between instruments with respect to a

pseudo-distance in model space. Positive functions have the

property (via Bochner theorem) to build a symmetric defined

positivematrixwhen they are used as amatrix generator [13,14]. In

the present case, Second Order Auto-Regressive (SOAR) function is

used to prescribe the C matrix. In such a function, the amount of

correlation depends upon the Euclidean distance between spatial

points. The radial and vertical correlation lengths (Lr and Lz
respectively, associated to the radial r coordinate and the vertical

z coordinate) have different values, which means that we are

dealing with a global pseudo euclidean distance. The used function

can be expressed as follows:

Cðr,zÞ ¼ 1þ
r

Lr

� �

1þ
jzj

Lz

� �

exp ÿ
r

Lr
ÿ
jzj

Lz

� �

: ð6Þ

The matrix obtained by Eq. (6) is a correlation matrix. It is then

multiplied by a suitable variance coefficient to get a covariance

matrix. This coefficient is obtained by statistical study of the

difference between model and measurements in the real case. In

our case, the size of theBmatrix is related to the size ofmodel space

so it is ð4553� 4553Þ.

3.4. The observation error covariance matrix R

The observation error covariancematrix R is approximated by a

diagonal matrix. This means that it is assumed that no significant

correlation exists between themeasurement errors of theMFC. The

usual modelling is to take those values as a percentage of the

observation. This can be expressed as

Rjj ¼ ðayoj Þ
2
, 8j: ð7Þ

The parameter a is fixed according to the accuracy of the measure-

ment and the representative error associated to the instrument.

The size of theRmatrix is related to the size of observation space, so

it is ð1450� 1450Þ.

4. General results on instrument removal

To test the robustness, many BLUE calculations need to be done

to evaluate the results’ quality with instruments configuration

modifications. We want to have an evaluation of the quality of

reconstruction as a function of the number of instruments, with

a significant statistical result. To efficiently perform these numer-

ous computations, a specific method using Schur complement

was developed. The details of this new method are reported in

Appendix A.

Here, we are interested in the evaluation of the quality of the

analysis xa as a function of the amount of provided information. To

quantify this effect we make a statistic of 200 scenarios of

instruments removal. We make these statistics on several hypoth-

eses, starting from a complete instrument configuration, and then

removing instruments two by two until none remains. The

calculations are done on the basis of the algorithm and hypothesis

on the data assimilation described previously.

To quantify the impact of removed instruments on the analysis,

we look at the percentage quantity v defined as follows:

v¼ 100
jjyorefÿHxbjjÿjjyorefÿHxajj

jjyo
ref
ÿHxbjjÿjjyo

ref
ÿHxa

ref
jj

ð8Þ

where xaref corresponds to the analysis when no instrument is

removed (this is the best estimation possible with respect to the

information available on the system), and where yoref and H are the

reference observations and observation operator used to build xaref .

H stands for the observation operator when no instrument is

removed. This criterium, which is based on the norm of the

innovation vector yorefÿHxb, focuses on measurements. Since

jjyorefÿHxajj is greater than jjyorefÿHxaref jj (best estimate) and smaller

than jjyorefÿHxbjj (innovation), v is a measure of the quality of the

analysis.

Such a definition has several advantages. First of all, the limits of

this function are interesting. On the one hand, the limit when no

instrument is removed is 100%. On the other hand, the limit when

all instruments are removed is 0%. With such a formula we can

compare the variation of the information on a unique scale. If we

obtain some value above the limit of 100%, this means that the

parameterisation of data assimilation was not done correctly.

The interest in using this formula is that it can be applied

directly as well as to experimental and synthetic data without any

change.

In Fig. 2 are presented the results of the quantity v as a function

of the number of removed instruments.

As expected, the relative quality of reconstruction decreases as a

function of the number of instruments removed. However within

this decrease, three phases can be seen:

1. A first phase of slow decreasing until we removed roughly 20

instruments. This phase is rather clear and can be fitted by a

linear regression with a slope of ÿ1.64 (arbitrary unit (a.u.) per

instrument). The fit is shown in (green) dash line in Fig. 2.

2. After 20 instruments are removed the decreasing speed of the

slope increases. The second linear fit has a slope of ÿ2.28 (a.u.

per instrument). This fit is shown in (blue) dotted line in Fig. 2.

3. Beyond 40 instruments’ removal, we reach a third phase of

stagnation, then a brutal decrease to 0, the limit value imposed

by Eq. (8).

This characteristic behaviour can be seen in several cases that

we studied. We have also noticed it on real measurements [15,16].

The transition between the two first decreasing phases is specially

strong when we do the analysis using real measurements.



First, we explain why the third phase is marked by a stagnation

of the mean value of jjyoÿHxajj over the set of removal scenarios

taken into account. To understand that effect, we work on both the

cases where two instruments are removed (i.e.48 are remaining),

and on where two instruments are remaining. On those two cases,

at most 1225 scenarios are possible, corresponding to the C502
combinations. Using the hybrid Schur method, we can calculate

all those cases with rather cheap computing time to obtain good

statistics.Weplotted the distributionof the value of jjyoÿHxajj over

all the scenarios in Fig. 3.

In Fig. 3wenotice a bigdifferencebetween the twodistributions

plotted, that correspond to the cases where two instruments are

removed (i.e.48 remain) or two are remaining.

The shifting of themean value between those twoextreme cases

is logical, as available information is dramatically changing. How-

ever, the shape of the distribution is also vastly changing.Wemove

fromavery sharpdistribution,when48 instruments are remaining,

to a rather broad one when only two instruments are remaining.

The first interesting point of this shape change is that all the

instruments do not have the same influence on the activity field

reconstruction. To understand better this effect let us assume that

all the instruments are equivalent. In this case, as the number of

scenarios present in the two distributions of Fig. 3 are the same,

only a shifting of themean value should be seen. However we have

not only a translation of the distribution but also a broadening.

Thus, there is a non-equivalence of instruments within the data

assimilation procedure, in terms of marginal information assigned

to each instrument, depending on its location in the core.

The second point of interest is that the broadening of the

distribution is asymmetric. The distribution extends towards the

higher values of norm. This effect explains the stagnation of the v

quantitywhen few instruments remain. The source of stagnation is

the discrepancy between the most probable value of the distribu-

tion and the mean value of the distribution which is higher. The

most probable value leads to a decrease without stagnation.

However, looking at the mean value (that has more physical

meaning), we see that this one stagnates due to the asymmetric

broadening that compensates the overall decrease in mean value.

Now the origin of the two slopes in decreasing the information

represented by Fig. 2 will be investigated. The repartition of the

instruments in a standard PWR900 is very complex as shown in

Fig. 1. This complexity of the repartition does not make the

situation easy to understand. Thus, we want to study the case on

a simpler repartition of the instrumentation to see if the effect of

the two phases decreasing persists.

5. Repartition effects in instrument removal

Anartificial set of instrument positions is presented in Fig. 4. The

core geometry and assemblies configuration is the same as a

PWR900, however the instruments are located regularly on a

Cartesian map.

Within this configuration, only 40 MFC are used, which is

slightly less than 50 of the standard PWR configuration presented

in Fig. 1. With this repartition, we do the same analysis as on the

previous one. The evolution on v as a function of the number of

removed instruments is plotted in Fig. 5.
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In Fig. 5, the quality of the activity reconstruction decreases

quasi-linearly as a function of the number of removed instruments.

This goes on until we reach the stagnation phase. It appears,

comparing Fig. 5 to Fig. 2 that the variation of the decrease slope is

related to the geometrical repartition of the instruments. Such a

uniform linear decrease can be observed also in several other rather

geometrically regular repartitions, as one with repartition on a

diagonal line. Some of the repartitions have densities of instru-

ments close to the one of the standard PWR900, which do not

change the overall behaviour.

Looking at the slope factor of the linear fit,wenotice that the one

with regular MFC repartition (Fig. 5) is in the range of the slopes

obtained with standard MFC repartition (Fig. 2).

Thus the removal or fault resilience of the instrument set seems to

dependonthe transitionpointbetweenthe twodecreasingsteps. In the

lower range of instrumental density, it is better to have a regular

repartition, and in the higher one, it is better to have a complex ad hoc

repartition. In realPWR900nuclearcore,because thesetof instruments

is fixed at a high density level, these results indicate that it is more

robust to have an ad hoc repartition of the instruments as for now.

6. Conclusion

Weproposed and studied here an originalmethod to test how the

neutronic activityfield reconstructionbydataassimilation is tolerant

to information removal. The core of the reconstruction method is

based on data assimilation, which is widely used in earth sciences,

and allows a very good reconstruction of the activity all over the

nuclear core. A hybrid method for fast matrix inversion partially

based on Schur complement allows the execution on numerous

analysis from which statistical results are derived. For all these

analyses, synthetic data areused to try non-experimental instrument

repartitions, but similar resultswere established using real data. This

application on real data prove both the reliability and the quality of

the calculation code and the data assimilation methodology.

Using such advanced calculationmethods, itwas shown that the

slopes of the reconstruction quality is mainly governed by reparti-

tion for the instruments. Depending on the chosen repartition, the

decrease consists in two or three distinct phases. The ultimate

stagnation phase in this decrease is governed by both statistical

effect and heterogeneity of instruments influence.

The behaviour with two phases within the decreasing quality of

the reconstruction as a function of the number of instruments

removed is understood in terms of repartition effect, but not

quantified. However, it can be seen as a phase transition between

two states of instrumental configuration. The quantification of this

transition is worth studying.

Appendix A. Schur complement method to optimise

calculation

Within the BLUE assimilation method, the limiting factor in

calculation time is thematrix inversions. In Eq. (2), the costly part is

the inversion of the term:

M¼HBHTþR: ð9Þ

The inversion cost on hugematrix asM (around 4000� 4000 in the

present case) was such that the time calculation of the above

evaluation was extremely time-consuming. Then we had to

optimise the computing cost.

We noticed that the calculations are more time-consuming

when only few instruments are removed. In this case theMmatrix

is still huge.

Thus, the idea is to use the information obtained in the inversion

of the full size matrix to shorten calculation, to calculate a smaller

size matrix in a reasonable time. In this case, we want to calculate

the newmatrix as a perturbation of the original one. Such amethod

exists and exploits the Schur complement of the matrix.

We assume that we want to suppress some instruments to a

given configuration. With respect to Eq. (2), we need to calculate a

newmatrixKn. The n index is standing for referring the newmatrix

we want to calculate. For that, according to Eq. (9), we have to

determine a new matrix Mn.

This determination ofMn is obtained from the knowledge of the

invert of the matrix Mg calculated over all the instruments. The

indices g is used to denote the reference global matrix we start

from, Mg , according to Eq. (9).

All the components of the new matrix Kn can be obtained by

suppressing the lines and columns corresponding to the removed

instruments inMg , inverting it and thenmultiplying this matrix by

the corresponding Hn and Bn. We notice that, in our case, we get

Bn ¼ Bg as we do not affect the model space.

To make the demonstration easier, but without losing any

generality, we can assume that the suppressed instruments

correspond to the lower square of Mg . If it is not the case, it is

always possible to reorganise the matrix in such a way.

Now we put the Mg in a convenient form, separating the

remainingmeasures from the removed ones. Assuming the starting

matrixMg ism�m and that we plan to suppress smeasurements,

we can write Mg in the following way:

Mg ¼
Pg Q g

Rg Sg

 !

ð10Þ

where:

� Pg contains the remaining measurements, and is a p� pmatrix,

� Sg contains the suppressed measurement, and is a s� s matrix,

� Q g and Rg represent the dependence between remaining

measured and suppressed ones. In the particular case we are

dealing with, we have Q T
g ¼Rg . However, no further use of this

property is done.

With such a decomposition, we got the equality m¼ pþs.

The Pg matrix corresponds to the remaining instruments, thus

we have the following equality:

Pg ¼Mn: ð11Þ
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The decomposition given in Eq. (10) is the one required to build the

Schur complement of this matrix [17]. Under the condition that Pg

can be inverted, the Schur complement is the following quantity:

SgÿRgP
ÿ1
g Q g ð12Þ

and is noted ðMg=PgÞ. This notation reads as Schur complement of

Mg by Pg .

Thus we look for a cheapway to calculate Pÿ1
g knowingMÿ1

g . For

that, we use the Banachiewiz formula [17] that gives the invert of

Mg as a function of Pg , Q g , Rg , Sg and ðMg=PgÞ matrices:

Mÿ1
g ¼

Pg Q g

Rg Sg

 !ÿ1

ð13Þ

¼
Pÿ1
g þPÿ1

g Q gðMg=PgÞ
ÿ1RgP

ÿ1
g ÿPÿ1

g Q gðMg=PgÞ
ÿ1

ÿðMg=PgÞ
ÿ1RgP

ÿ1
g ðMg=PgÞ

ÿ1

0

@

1

A:

We define the four sub-matrices ~Pg , ~Q g ,
~Rg and ~Sg by

~Pg ¼ Pÿ1
g þPÿ1

g Q gðMg=PgÞ
ÿ1RgP

ÿ1
g ð14Þ

~Q g ¼ÿPÿ1
g Q gðMg=PgÞ

ÿ1 ð15Þ

~Rg ¼ÿðMg=PgÞ
ÿ1RgP

ÿ1
g ð16Þ

~Sg ¼ ðMg=PgÞ
ÿ1: ð17Þ

Rearranging those terms we get

Pÿ1
g ¼ ~Pgÿ ~Q g

~S
ÿ1

g
~Rg : ð18Þ

As, byhypothesis,weknowthe inverseMÿ1
g of the globalmatrix,we

are able to extract ~Pg , ~Q g ,
~Rg and ~Sg fromthewhole invertedmatrix.

Thus, themain cost to obtain the inverse ofPg of size p� p becomes

the one of inverting ~Sg whose size is q� q. In the first approxima-

tion, if the number ofmeasurements to suppress is smaller than the

number of remaining ones, this methods gives a notable gain. As

soon as the matrix Pÿ1
g ¼Mÿ1

n , the final calculation of Kn is

straightforward.

To highlight the advantages of this method with respect to the

standard inversion of sub-matrix, some tests are shown on a

4000� 4000 full semi-definite positive regular matrix. The curves

showing the effective computing time in the percentage of the

computing time of the full matrix are presented in Fig. 6.

Fig. 6 shows that, when the sub-matrix has roughly the size of

the initial matrix, the inversion by Schur complement is far more

efficient than the direct inversion. Above around 60% of the size of

the initial matrix, the direct inversion becomes more efficient. The

crossing point is at 60% instead of 50%, as expected in the first

approximation. This difference comes from the few additional

multiplications that need to be done in the Schur complement

calculation, as we can see in Eq. (12). Globally, we see that themost

efficientmethod is to use a hybrid calculation that chooses the best

way to make the calculation as a function of the number of

measurements removed. To quantify the improvement of such a

hybrid choice, we integrate the curves of direct inversion and

compare it to the integral of hybrid option (minimumof both cases)

within the instrument loss range. The ratio in percentage of both

integrals shows that benefit of this hybrid method represents an

overall gain of 64% with respect to the standard method.
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Fig. 6. Calculation time as a function of the size of the sub-matrix. Calculation time

is given as a percentage of the calculation time of the full size matrix. The size of the

sub-matrix is given as a percentage of the size of the full matrix. The curves in full

line (red) and in dashed line (green) represent the inversion by Schur complement

anddirect inversion respectively. (For interpretation of the references to color in this

figure legend, the reader is referred to the web version of this article.)


