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Autoregressive Modeling Approach for
Non-stationary Vehicular Channel Simulation

Marwan Yusuf, Emmeric Tanghe, Frederic Challita, Pierre Laly, Luc Martens,
Davy P. Gaillot, Martine Lienard, and Wout Joseph

Abstract—A framework is proposed for long-term vehicular
channel simulation based on the vector time-frequency autore-
gressive (VTFAR) model for a sparse parametric description of
nonstationary multivariate random processes. Based on vehicle-
to-infrastructure tunnel measurements, we estimate the VTFAR
model parameters and validate the model by comparing the
parametric and non-parametric spectra of the measured channel
in terms of the delay spread and stationarity time. In addition, the
VTFAR model stability is investigated and an approximation for
the correlated scattering channel is proposed. The experimental
validation shows a good agreement with RMSE of only 0.01
for the delay spread and 0.4 for the stationarity time. This
approach provides an efficient alternative for non-stationary
channel simulation that is measurement-based and computation-
ally inexpensive.

Index Terms—vehicular communication, channel modeling,
autoregressive, non-stationary

I. INTRODUCTION

ONE of the key features of the envisioned intelligent
transportation system (ITS) is connected vehicles. Such

vehicles are expected to play a vital role in the information
flow and communication in urban regions [1]. The mobile
radio channel poses significant challenges to the design of
communication systems due to time and frequency dispersions.
An accurate and concise channel model to regenerate or
predict the measured channel behavior is useful for chan-
nel simulation, performance evaluation, and further design
of communication systems [2]. For this reason, modeling
of mobile channels has received considerable attention. The
early work of Bello [3] on randomly time-variant channels in
characterizing the wide-sense stationary (WSS) and uncorre-
lated scattering (US) channel paved the way for several types
of models. Statistical models, which have the advantage of
reduced simulation times, have been widely adopted, and many
have been developed for vehicle-to-vehicle (V2V) channels
[4].

The WSSUS assumption simplifies the statistical character-
ization of linear time-varying (LTV) channels. However, this
is not always fulfilled in practice, particularly in vehicular
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scenarios. The author in [5] has shown that, in both single and
multi-carrier systems, the WSS assumption in V2V channels
simulation can lead to optimistic bit-error-rate (BER) results
that are erroneous. In reality, power, delay, and Doppler asso-
ciated with reflected multipath components (MPC) drift with
time (WSS-violation), and channels show correlated scattering
due to several MPCs that are close in the delay-Doppler
domain reflecting off the same physical object (US-violation).
In the literature, various approaches have been proposed to
model the non-stationarity: 1) Tapped delay line (TDL) with
different tap models depending on the delay spread and the
BER statistics [6], 2) ”birth/death” Markov process to account
for the appearance and disappearance of taps [7], 3) stochastic
modeling of the dynamic scatterers evolution and their delay
and angular properties [8], or 4) geometry-based stochastic
modeling (GSCM) that inherently includes the non-stationary
behavior of the channel in the dynamic environment geometry
[9]. Other approaches include deterministic modelling where
site-specific scenarios are modelled e.g., using ray-tracing
simulations [10] or artificial neural network (ANN) based
channel modeling [11], which have more computational costs.

Another approach to describe the random fading process is
parametric modeling [12]. Such models involve a parametric
representation of an innovation system driven by white inno-
vations noise. The statistics of the output process are then
characterized by the parameters of the innovations system.
Sparse (parsimonious, low-dimensional, low-rank) represen-
tations of the LTV radio channel have been widely used [13].
In this paper, we consider an autoregressive (AR) modeling
approach for the accurate generation of non-stationary vector
(multivariate) processes. This technique belongs to the class of
parametric spectral estimation, and employs all-pole infinite-
impulse response (IIR) filtering to shape the spectrum of
uncorrelated Gaussian variates. An AR model is preferred over
moving-average (MA) or hybrid ARMA models, as the vari-
ations of the mobile channel response resemble a correlated
series with low peaks and deep fades [14]. An AR model for
wideband indoor radio propagation was first presented in [15]
and later applied to UWB channel modeling in [16] for indoor
scenarios. Parametric modeling in the frequency domain is also
investigated in [17] for WSSUS wideband and UWB channels.

Most existing non-stationary models were extended from
their stationary counterpart. A vector time-frequency (VTF)
AR model that describes non-WSSUS multivariate processes
has been proposed in [18]. The frequency shifts (Doppler
shifts), in addition to time shifts, provide an intuitive and
physically motivated way of capturing the spectral and tem-



poral correlation of non-stationary vector processes without
a severe loss in parsimony. The model is parsimonious for
the practically relevant class of underspread vector processes
(i.e., processes with rapidly decaying correlation in time and
frequency). Based on a system of linear equations with a two-
level block-Toeplitz (2LBT) structure, a VTFAR parameters
estimator is also presented [18]. The contributions of this paper
are summarized as follows.
• A framework for simulating a non-stationary TDL of a

measured vehicular channel response using the VTFAR
model approach is provided.

• The stability of the VTFAR model is investigated and
an approximation for the correlated scattering channel is
proposed.

• We investigate the parametric and non-parametric spectra
of the channel and validate the model by comparing them
in terms of the delay spread and the stationarity time.

The remainder of the paper is organized as follows. Section II
briefly explains the VTFAR model and the parameters esti-
mation. Section III presents the measurement campaign and
the simulation framework for the measured channel response.
Section IV discusses the correlated scattering channel and VT-
FAR model stability. Section V includes the model validation.
Finally, conclusions are drawn in Section VI.

II. VTFAR MODELING

A. Non-WSSUS channel

The wireless channel is represented with a TDL as a random
LTV system in the discrete form of

r[t] =
∑
τ

h[t, τ ]s[t− τ ]. (1)

The received signal r[t] is related to the transmit signal s[t]
via the 2-D channel impulse response (CIR) h[t, τ ], where
t is the time index and τ is the delay index. The CIR is a
WSSUS random process when h[t, τ ] is stationary with respect
to t and mutually uncorrelated for different τ . The system
can also be expressed in terms of frequency shifts by the
spreading function SH[ν, τ ] = F

t→ν
{h[t, τ ]} where F is the

Fourier transform and ν is the Doppler frequency index.
Generally, the correlation function E{SH[ν′, τ ]S∗H[ν, τ ′]}

that statistically characterizes the channel depends on four
variables. For WSSUS, it simplifies to

E{SH[ν′, τ ]S∗H[ν, τ ′]} = CH[ν, τ ]δ[ν − ν′]δ[τ − τ ′], (2)

where CH[ν, τ ] is known as the scattering function, i.e., the
power spectral density of the WSSUS process. For non-
WSSUS, this simplification is only valid within certain time
and frequency intervals, known as the stationarity time Ts and
stationarity bandwidth Fs, respectively [19]. The local scatter-
ing function (LSF) CH[t, f ; ν, τ ] becomes time and frequency
dependent, which then describes the power of MPCs with
delay τ and Doppler shift ν occurring at time t and frequency
f [19]. This is true for doubly-underspread (DU) channels, a
condition satisfied by most practical wireless radio channels.
It means that the amount of delay-Doppler correlation has to

Fig. 1. Block diagram of the VTFAR model where T is a time shift operator,
D is a Doppler shift operator, and the diamond shape is a matrix multiplication
[18]

be smaller than the amount of delay-Doppler dispersion. In
other words, only the neighboring MPCs are correlated [19].

The channel correlation function (CCF) is defined as the
4-D Fourier transform of the LSF

AH[∆ν,∆τ ; ∆t,∆f ] = F
t→∆ν

F
f→∆τ

F−1

ν→∆t
F−1

τ→∆f
{CH[t, f ; ν, τ ]}.

(3)

The CCF characterizes the correlation of MPCs separated in
time by ∆t, in frequency by ∆f , in delay by ∆τ , and in
Doppler by ∆ν. The span of ∆ν and ∆τ wherein the CCF
has significant correlation is what determines the Ts and Fs,
respectively [19].

B. VTFAR model

The non-WSSUS channel can be described by an innovation
system where the 2-D CIR is obtained by passing white
innovations noise e[n] into a nonrandom LTV system V[n,m]
as follows

h[n] =
∑
m

V[n,m]e[n−m]. (4)

Here, the CIR is expressed in a vector form as h[n] =
[h[n, 0]...h[n, τm − 1]]T , where n = 0, 1, .., N − 1 is the
innovations index, which can then be up-sampled to a desired
sampling rate, i.e. n = Kt. This can be done as the channel
variation is limited to slower Doppler rates. According to
the VTFAR model [18], the innovations IIR filter V[n,m] is
represented by Doppler shifts (l) in addition to the time shifts
(m). Rewriting (4) in the VTFAR form gives

h[n] = −
M∑
m=1

L∑
l=−L

Am,l ej
2π
N nl h[n−m] + e[n], (5)

where M and L denote the (temporal and spectral) model
order, the τm × τm matrices Am,l contain the AR model
parameters, and e[n] is the complex Gaussian, temporally
uncorrelated, circularly symmetric innovations noise vector
with correlation matrix E{e[n]e∗[n′]} = C[n]δ(n−n′). Fig. 1
represents the generation of the channel vector h[n] by passing
the innovations noise vector e[n] through the recursive filter
where time- and Doppler-shifted channel vectors are shaped



by the AR model parameters matrices Am,l. According to (5),
elements of the V[n,m] matrices are constrained to lie in the
subspace spanned by the complex exponentials with Doppler
frequencies l = −L, .., L. A similar restriction is imposed on
the innovations correlation matrix

C[n] =

2L∑
l=−2L

Cl ej
2π
N nl, (6)

such that a matrix square root C1/2[n] with Doppler order L
can be found [18].

Another restriction in the VTFAR(M ,L,B) is band-limiting
the matrices Am,l and Cl, i.e. elements of these matrices with
indices (τ, τ ′) are zero for |τ − τ ′| > B, where B denotes the
(one-sided) matrix bandwidth (B ∈ {0, 1, .., τm − 1}). This is
motivated by the fact that correlation decays with delay taps in
DU channels (for US channels B = 0). Consequently, the num-
ber of parameters characterizing the banded VTFAR model is
shown to be N = (M + 1)(2L+ 1)(τm(2B+ 1)−B(B+ 1))
[18]. Thus, the parsimony of the VTFAR model is better for
smaller M,L, τm, and B, making it particularly suited for the
DU channels where ML � N . This plays an important role
in developing computationally efficient parameter estimators
for Am,l and Cl [18].

C. VTFAR parameters estimation

We consider the estimation of VTFAR model parameters
from a single channel realization h[n] obtained from a mea-
surement campaign. Estimation of the Am,l involves solving a
system of multichannel time-frequency Yule–Walker (TFYW)
linear equations, similar to the classical YW equations. An
approximation for the DU channels derived from (5) reads as
follows [18]

M∑
m=1

L∑
l=−L

Am,lFh[m′ −m, l′ − l] = −Fh[m′, l′], (7)

where Fh[m, l] is the average expected ambiguity function
(EAF). Hence, the TFYW equations express the EAF at a
certain delay m′ and Doppler l′ as the linear combination of
the EAF at different delay and Doppler values. In practice, the
EAF is usually unknown and has to be estimated from a given
observation of h[n]. When multiple observations are available,
the EAF can be estimated as [18]

Fh[m, l] = E
{N−1∑
n=0

h[n]h∗[n−m] e−j
2π
N nl

}
. (8)

In order to efficiently solve (7) for Am,l, the matrix equa-
tions are rewritten element-wise and re-stacked with a suitable
order to reach a single matrix equation involving a 2LBT
matrix as [18]

Z a = −z. (9)

Here, the matrices Z and z contain the Fh[m, l] elements , and
a contains the Am,l elements. The 2LBT structure of Z is the
basis for a fast solution algorithm developed in [18], called the
multichannel Wax-Kailath algorithm, from which the VTFAR
parameters can be extracted. Once Am,l are estimated, the

Fig. 2. Measurement campaign with the Tx in the tunnel and the Rx in the
van

evaluation of the innovations matrices Cl can be derived as
[18]

Cl =
1

N

M∑
m=0

L∑
l′=−L

Am,l′F∗h [m, l′ − l]. (10)

The correlation matrices C[n] can then be obtained from
(6) via an iterative scheme that alternately enforces positive
definiteness and Doppler and matrix band-limitations [18].

III. SIMULATION FRAMEWORK FOR VEHICULAR
CHANNELS

In this section, we propose a framework for simulating
vehicular radio channels using the VTFAR model. The param-
eters estimator requires at least one realization of the channel
in order to calculate the EAF. The framework is thus applied
to a CIR from a vehicle-to-infrastructure (V2I) measurement
campaign that is briefly presented. As a long-term simulation,
we use an 8 s duration of the measured channel, corresponding
to approximately eight thousand snapshots over 900λ. This is
much longer than the coherence time (40 ms from measure-
ments [20]), thus ensuring a long-term scenario [19].

A. Measurement campaign

Measurements of a V2I scenario have been carried out in the
Beveren tunnel in Belgium using the MIMOSA radio channel
sounder [20]. The sounder uses 80 MHz of transmission
bandwidth centered around a carrier frequency of 1.35 GHz.
The transmitter (Tx) antenna is placed around the middle of
the tunnel through an emergency exit door at a 2 m height.
The receiver (Rx) antenna is mounted on the rooftop of a van
carrying the Rx inside. The van moves through the tunnel at
a 90 km/h speed, crossing the Tx position halfway. There was
a medium traffic condition of 10-15 vehicles in the tunnel,
many were trucks from the port of Antwerp. During the trip,
the radio channel is sampled with a snapshot repetition time
of 975.3 us, each with 819 frequency samples. The setup is
shown in Fig. 2, and further details can be found in [20].

B. Proposed framework

1) Pre-processing: The channel sounder captures the chan-
nel transfer function (CTF) in the time and frequency domains.
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Fig. 3. CDF of the RMS delay spread for different number of taps

It includes both large-scale (path loss, shadowing,..) and small-
scale fading effects. We first apply an inverse Fourier transform
to the CTF using a Hann window to obtain the time-varying
CIR. Then, we align the CIRs so that the maximum LOS
components have the same absolute delay. Finally, we remove
the large-scale fading using a moving-average filter with a
window size of 10λ. This results in normalised CIRs that
preserve the small-scale fading like what is commonly used
for link-level simulations.

2) Bandwidth: The ITS spectrum for V2X communications
supports direct low-latency connections over short distances,
without the involvement of the cellular network. Standards
like C-V2X and 802.11p can co-exist in the ITS spectrum by
employing different channels within the band, where just 10
MHz of spectrum is required to support essential safety ser-
vices [5], [21]. This makes V2X channels particularly suitable
for the VTFAR model, since a small bandwidth means fewer
delay taps and thus fewer model parameters. Consequently,
we divide the measured CTF into 8 channels of 10 MHz
bandwidth. The CIR is then calculated as mentioned above
for each channel, from which the average EAF is estimated as
in (8) by averaging over the 8 channels.

3) Sampling rate: The sampling rate used for link sim-
ulation and performance evaluation is typically orders of
magnitude larger than physical Doppler frequencies, i.e. the
delay tap processes are very narrowband. In that sense, a
subsampled VTFAR model at an intermediate sampling rate
that is close to the maximum Doppler frequency is followed by
an optimum multistage interpolator in order to match the actual
system sampling rate. In our scenario, the MPCs Doppler
frequencies span up to 128 Hz. Thus, we sample the CIR
at 256 Hz, which gives h[n].

4) Number of taps: The number of delay taps τm directly
impacts the parsimony of the VTFAR model. It is desirable
to include the minimum number of taps that is sufficient to
model the channel. To that aim, we propose to set τm based
on the second-order statistics of the channel, namely, the RMS
delay and Doppler spreads. These parameters play a vital role
in system performance and design, making them a relevant

TABLE I
KS-TEST P-VALUES OF THE DELAY AND DOPPLER SPREADS CDFS FOR

DIFFERENT NUMBER OF TAPS

Taps 2 3 4 5 6 7 8
Delay 0 0 0 0 0.225 0.271 0.59

Doppler 0 0.005 0.06 0.225 0.225 0.81 0.98

criterion. Fig. 3 shows the CDF of the RMS delay spread
for different number of delay taps. Only MPCs within 30 dB
from the peak value are considered for calculating the delay
spread. The 100-tap CDF represents the full channel since
no MPCs exist beyond that. The CDF curves coincide for
larger number of taps, since most of these large delay taps
do not contain significant power. In order to decide on the
number of taps, we use the two-sample Kolmogorov-Smirnov
(KS) test and compare the p-values at 5% significance level.
The test checks whether the spread of a certain τm comes
from the same distribution as that of the full channel. The
same procedure is done for the RMS Doppler spread, and the
minimum number of taps whose spreads’ distributions pass
the tests is chosen to represent the channel. Table I shows the
p-values for the delay and Doppler spreads at different number
of taps, where it is clear that the distributions with 6 taps pass
both tests.

IV. CORRELATED SCATTERING AND VTFAR STABILITY

In the previous section, we explained how to extract the
CIR, calculate from it the average EAF Fh[m, l], and use it
to estimate the matrices Am,l and Cl. We can then generate
the channel coefficients h[n] by passing the innovations vector
e[n] with the correlation matrix C[n] into the VTFAR model
depicted in Fig. 1. However, the AR model is an IIR filter that
is not guaranteed to be stable.

A. Stability analysis

A stable process is one that will not diverge to infinity
(blow up). This means that the characteristic polynomial in
the denominator of the transfer function vanishes only within
the unit circle in the complex frequency plane (z-plane). From
(5), the stability condition can be formulated as [22]

det(Iτm + A1,nz
−1 + ...+ AM,nz

−M ) 6= 0 for |z| ≥ 1,
(11)

where Am,n =
∑L
l=−L Am,l ej2

2π
N nl are the time-varying filter

matrices at time n and Iτm is a unitary matrix, all of size τm.
For the case of US channels (B = 0), all system ma-

trices become diagonal. This means that the vector process
V[n,m] can be modeled as τm scalar processes in parallel.
This simplifies the stability condition, as the characteristic
polynomial per process is now a scalar function rather than a
matrix function. It is shown in [23] that such a system can be
stabilized using an iterative algorithm based on the concept of
root reflection/shrinkage known from the time-invariant case
by applying it to the time-varying instantaneous roots of (11).
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B. Correlation analysis

According to [24], the observed fading process in vehicular
channels shows a much stronger violation of the WSS assump-
tion than the US one. Channels show correlated scattering due
to several MPCs that are close in the delay-Doppler domain
reflecting off the same physical object, or leakage due to
bandwidth/time limitations at Tx or Rx. This happens when the
signal’s bandwidth is larger than the stationarity bandwidth.
It is observed in [24] that the stationarity bandwidths from
a large set of measurements in different vehicular scenarios
are above 150 MHz on average. This is very much larger
than the required 10 MHz communication bandwidth for V2X
systems. It is thus expected that the taps correlation will not
be significant in our scenario.

We investigate the correlation as a function of the delay
taps separation. Fig. 4 shows the CDF of the correlation
coefficient between delay taps up to 5 taps apart. It is clear
that a correlation of 0.7 on average can be found only with the
adjacent tap, while taps separated by two taps or more have
insignificant correlation (below 0.3 on average). Moreover, it
shows that there is no much variation around the mean value,
only a standard deviation of 0.07 for the adjacent tap.

C. Correlation approximation for stable modeling

In order to simulate the correlated scattering channel with
a stable AR model, we propose to set B = 0, resulting in a
diagonal (uncorrelated) matrices Am,n and C[n]. The model
can now be stabilized as aforementioned in the US case. Then,
we approximate the taps correlation to the mean value, since its
time-variation is limited as depicted in Fig. 4. The correlation
is introduced to the innovations matrix as follows

Ĉ[n] = C1/2[n] R C1/2[n], (12)

where R is the τm×τm correlation matrix calculated from the
measurements by averaging over the total duration. In other
words, instead of passing uncorrelated multivariate innova-
tions, e[n] are now correlated based on R, thus Ĉ[n] is no
longer diagonal.
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Fig. 5. CIR power in dB from measurements (a) and simulation (b)

We simulate the 6-tap channel with the proposed approxi-
mation, where the model orders (M ,L) per tap are estimated
using the minimum description length information criterion
presented in [23]. The simulated channel is upsampled to have
the same sampling rate as the measurement, i.e. K = 4. Fig. 5
compares segments of the CIR power from both measurements
and simulation. It clearly shows that the model generates a
stable process that resembles the measured channel. To check
the validity of the correlation approximation, we compare the
measured and simulated 1-tap separation correlation coeffi-
cient, which is the most significant one. Fig. 6 shows that the
correlation of the generated channel approximates that of the
measurement quite well over a long duration with RMSE of
0.08.

V. MODEL VALIDATION

Non-stationary channels can be characterized by the LSF,
which is the time-varying second order statistics of the chan-
nel. We validate the VTFAR model by comparing the para-
metric LSF of the model to a non-parametric LSF calculated
from the measurement.
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A. Parametric vs. non-parametric spectra

Since we are more interested in the non-WSS nature of the
channel, we discard the LSF’s dependency on frequency and
only consider the time dependency. This makes the LSF a 3D
function in time, delay and Doppler. The time evolution can be
investigated by projecting the LSF on the delay and Doppler
domains, resulting in the delay and Doppler power profiles
or spectra. The model validation is based on comparing the
spectra estimated from a non-parametric multitapers approach
as in [25], to the parametric spectra of the VTFAR model.
According to [18], the parametric LSF is expressed as

ĈH[n; ν, τ ] =
Ĉ[n]

|F−1

l→n
F

m→ν
{Am,l}|2

. (13)

Fig. 7 shows the parametric spectra versus the non-
parametric spectra for an 8 s duration of the 6-tap channel.
The parametric spectra are evaluated by summing the LSF
from (13) in the delay and Doppler dimensions. The details of
estimating the non-parametric spectra from the measurement
can be found in [20]. The finite-dimensional spaces of the
parametric model can be clearly noticed in the smooth nature
of its spectra, compared to the sample-based non-parametric
spectra. Nonetheless, we notice the similarity between the two
spectra in both delay and Doppler domains. The power-delay
profiles are aligned to have the LOS component at zero delay
as discussed in the pre-processing step, while the Doppler
spectra show the LOS component’s shift from positive to
negative Doppler frequencies as the Rx crosses the Tx position
in the tunnel (Section III-A).

B. Comparing spectra for model validation

We validate the model by investigating how well it matches
the time-varying behaviour of the non-stationary channel.
Hence, we compare the parametric and non-parametric spectra
on two levels: the channel’s coherence level, represented by the
delay spread, and the channel’s stationarity level, represented
by the stationarity time. While the delay spread measures the
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the parametric profiles in delay (b) and Doppler (d) in dB
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Fig. 8. Model validation in terms of the RMS delay spread (a) and stationarity
time (b)

time dispersion of the channel, which may cause inter-symbol
interference, the stationarity time measures how often this
dispersion varies in time. The stationarity time is estimated
as Ts = 1/ŝ∆ν [25] where

ŝ∆ν =
1

‖AH‖1

∑
∆ν

∑
∆f

∑
∆t

|∆ν| |AH[∆ν; ∆t,∆f ] | (14)

is the the CCF Doppler moment and ‖.‖1 is the L1,1 norm.
For validation, we compare the time evolution of both

parameters to measure how well the model matches the time-



varying behaviour of the channel. Fig. 8 shows the RMS
delay spread and stationarity time for the parametric vs. non-
parametric spectra. We discard the first second to provide
enough initialization time for the IIR filter’s transient response
to settle [26]. We see that both parameters show great simi-
larity between the two spectra. We quantify the RMSE to be
0.01 for the delay spread and 0.4 for the stationarity time. The
discrepancy between the curves of the stationarity time and
delay spread can be attributed to the difference between the
two types of spectra. The non-parametric spectrum estimation
methods usually have higher variance and fluctuation rate than
the parametric spectrum estimation ones [27]. This can be
clearly seen in the spectra plotted in Fig. 7.

VI. CONCLUSION

Parametric modeling of non-stationary processes is applied
to simulate a measured V2I channel in a tunnel in Belgium.
We propose a framework for long-term simulation based on
the vector time-frequency autoregressive (VTFAR) model. We
analyse the stability of the model and propose an approxi-
mation for the correlated scattering channel that guarantees
stability. A 6-tap channel is simulated based on the measure-
ment, where the VTFAR model parameters are estimated using
the proposed approach. Moreover, the parametric spectra of the
model are compared to non-parametric spectra of the measured
channel. We validate the model in terms of the delay spread
and stationarity time. The model is found to simulate the
measured channel very well with RMSE of 0.01 for the delay
spread and 0.4 for the stationarity time. This measurement-
based and computationally inexpensive approach provides an
efficient alternative for non-stationary channel simulations.
A future research direction is to include more scenarios
(different environments, multiple antennas, etc.) and study
the parameterization dependency of the model as well as the
filter’s initiation transient behaviour. In addition, comparing
the model’s complexity and performance to similar recent
approaches can be very beneficial (e.g. [11]).
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