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Abstract6

Traffic flow measurement is very important for traffic management systems. However, the existing traditional measurement7

approaches are highly time-consuming and expensive to continuously gather the required data and to maintain the corresponding8

equipment, such as loop detectors and video cameras. On the other hand, many services on the web propose to estimate automobile9

travel time taking into account traffic conditions thanks to crowd sourced data (Floating Car Data). This work proposes to recon-10

struct, from estimated travel time, traffic flows using machine learning method. In particular, we evaluate the capacity of Gaussian11

Process Regressor (GPR) to address this issue. After obtaining estimated travel time on a given route, a clustering process shows12

that travel duration profiles in each day can be associated to different ”types of day”. Then, different regressors are trained in order13

to estimate traffic flows from travel duration. In the ”multi-model” variant, we trained a Regressor for each type of day. Conversely,14

in the ”single model” variant, only one Regressor is trained (the type of day is not taken into account). This is an innovative work15

to estimate and reconstruct the traffic flow in transportation networks with machine learning method from aggregated Floating Car16

Data (FCD). A series of experiments are conducted to compare the estimated traffic flows, obtained by the proposed single model17

and multi-model, and the real ones from actual sensors. The obtained results show that both single model and multi-models can18

capture the tendency of real traffic flows. Furthermore, the performance can be improved by regulating parameters in GPR machine19

learning model, such as half width of sample window and sample size (a whole week or only weekdays), and multi-models can20

highly increase the performance compared with the single model. Therefore, the proposed GPR machine learning and FCD based21

new method can replace those traditional loop detectors for the measurement of traffic flow.22

Keywords:23

Estimation of traffic flows, simulation and modeling of transportation systems, Gaussian Process Regression (GPR), big data,24

machine learning, Floating Car Data (FCD)25

1. Introduction26

With the rapid growth of urban centers during the last decades, the development of efficient urban transportation27

services has become a central issue to reduce the high wasted time during the daily commute. The resulting increasing28

demand in terms of transportation flows has to cope with the difficulty to adapt existing or create new transportation29

networks.30

In this context, simulate daily transportation behaviors allows operators to experiment and to visualize decisions31

about infrastructure and regulation policies. One of the major basics on efficient simulation relies on the ability to32

produce models representing the way that transportation flows evolve with time, depending on the traffic demands and33

events that impact the transportation network. The estimation of traffic flow is one of the core requirements in those34

simulation. One of the costless solution would be to reconstruct the traffic flow from aggregated information (travel35

duration estimations), available on web services.36
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Previous work validates that machine learning based approach is a promising way to reconstruct ”sensor like traffic37

flow data” from aggregated information like the ones proposed by Google services [1, 2]. Applied such an approach38

would permit, for instance, to infer on a realistic traffic demand at each entrance of a city (i.e. the flow of incoming39

vehicles).40

Machine learning over aggregated information approach is based on accessible databases that can provide infor-41

mation regarding the transportation condition (travel duration) at a given location and at a given time. In 2007, the42

Google company has extended Google Maps by adding Google Live Traffic, the visualization of traffic information43

in real time[3][4]. Here, the notion of real time means the current state and is applied to qualify the service of FCD44

provided. In more detail, Google exploits users’ position data of Android smart-phones, in order to get a significantly45

fast and accurate mapping of the traffic. This data is called Floating Car Data (FCD), which can also be collected by46

any localization system embedded in a car and sent to the service provider via a mobile connection. Generally, these47

raw Floating Car Data are aggregated to provide more intelligible and relevant information regarding traffic condition.48

For example, in Google Maps, FCD are used to give a real-time traffic information using colored road section1 which49

is determined by the navigation system or, as in the case of Google Live Traffic, by the smart phone and is sent to the50

service provider via a mobile phone connection. Therefore this allows the generation of real-time traffic information,51

which is visualized by the colors on Google Maps: red road points are related to a traffic jam or stop-and-go traffic,52

orange indicates heavy traffic and green points correspond to clear roads. However, those platforms generally provide53

only aggregated data like average travel duration more than the initial raw data.54

Such an approach would permit operators to provide efficient global information while limiting the effort in contin-55

uously measuring road traffic flows based on physical sensors (radars, induction loops, etc.). The number of sensors,56

even in mid-sized cities, can increase very quickly. For example, to measure the input and output flows of a simple57

4-points roundabout, at least 8 physical sensors are required. Therefore, such an expensive traffic flow measurement58

method makes the mentioned simulation process out of reach.59

Preliminary result was published on the 15th World Conference on Transport Research 2019 [1] and on the 6th60

International Conference on Control Decision and Information Technologies 2019 [2] where traffic flows is estimated61

according to Floating Car Data (FCD) from Google Maps only on the basis of regressors trained using machine learn-62

ing techniques instead of using stationary physical equipment (such as loop detectors [5] or video cameras [6]). In this63

paper, we present an extension of the previous works with an increased experiment setup that permits to automatize64

the model definition. Firstly, we show experimentally that, among 19 types of regression methods (including Linear65

Regression Models, Regression Trees, Support Vector Machines and Ensemble of Trees), the Gaussian Process Re-66

gression (GPR) is the most suitable machine learning method to obtain the best fitting criterion with respect to our67

dataset. Secondly, a selection of the adequate regressor is computed from a set of regressors (multi-model) to estimate68

traffic flows from FCD, based on the different types of travel duration profiles. This multi-model approach can greatly69

reduce the estimation error, by precisely clustering days presenting different types of travel duration profiles. Experi-70

ments are conducted by comparing estimated flows with real ones provided from induction loop sensors. The results71

we obtain seem promising enough to say that correct transportation flows models could be obtained with a very light72

use of real traffic sensors.73

This paper is organized as follows: the next section describes related works and the different usages of aggregated74

FCD in the context of transportation networks modeling. The third section focuses on the problem we choose to75

address that is building sensor like data flow measurements from aggregated data. In this section, we also provide76

details regarding our problem formulation on the standpoint we took for solving it. The fourth section presents the77

single and multi-GPR machine learning method for the estimation of traffic volume. The fifth section deals with the78

experimental site, the results we obtained, the comparison between estimated traffic flow and real observed data prior79

to the discussion. The last section concludes this paper and presents some perspectives and further works based on it.80

2. Related Work81

The successful wide scale deployment of the Advanced Traveler Information Systems (ATIS) and Advanced Traf-82

fic Management Systems (ATMS) highly relies on the capability to perform accurate estimation of the real traffic83

14 colors are available: green for normal speed of traffic, orange for slower conditions, red for congestion and dark red for stopped traffic
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states on road networks. Therefore, the use of real-time Floating Car Data (FCD), based on traces of Global Posi-84

tioning System (GPS) positions of vehicles, is emerging as a reliable and cost-effective way to collect accurate traffic85

data for a wide area road network. Unlike other traffic data collection techniques (e.g. traffic cameras, induction loops86

embedded in the roadway, radar-based sensors), floating cars act as moving sensors traveling in a traffic stream and87

do not require additional instrumentation to be set up on the roadway.88

The main communication architecture for FCD is based on the exchange of information between a fleet of floating89

cars traveling on a road network and a central data operation system. The floating cars periodically send their positions90

(latitude, longitude and altitude) and instantaneous velocity thanks to GPS receiver and Global System for Mobile91

communications (GSM) or General Packet Radio Service (GPRS) transmitter. While the central data operation system92

tracks the received FCD along the traveled path by matching the related trajectory data to the corresponding real road93

network. The frequency of sending/reporting is generally determined by the required resolution of the data and the94

performances of the available communication channels, for example, bandwidth. Therefore, FCD is an effective95

approach to determine the real traffic speed on the road network, based on gathering of data such as localization,96

speed, direction of travel and time information from the mobile phones of drivers and passengers of the vehicle. That97

is to say, every vehicle with an active mobile phone acts as a sensor for the network.98

Using FCD for estimating travel duration and traffic states has received high attention over the years from the99

scientific community. The most common and useful information provided by FCD is travel-duration and speeds along100

road links or paths [7, 8, 9]. Works such as [10, 11, 12] calculate or forecast the travel duration on roadside according101

to the speed of the floating car on that road. Event detection, such as congestion and accidents has been discussed by102

using the trajectories or speed of floating cars [13, 14, 15]. The percentage of floating cars required for the estimation103

of travel duration is presented in the works like [16, 17, 18]. Reconstructing the traffic states from FCD has been104

previously addressed in papers such as [17, 19, 20, 21].105

In [19], the authors attempt to estimate and predict the travel speed with the real-time FCD based on traces of GPS106

positions. Another work like [22], both spatial and temporal characteristics to the domain of floating car sampling is107

introduced. And the analysis of this work can provide an insight for floating car based traffic state system designers108

on the transmitting period, sampling interval and penetration of floating car that are desirable in a traffic network109

in order to get certain coverage and accuracy in traffic state estimation. An interesting method is proposed in [20],110

whose purpose is to obtain a high quality on the reconstruction of travel times in the net with a smaller percentage of111

FCD vehicles and number of FCD messages. The most recent research about traffic state reconstruction using FCD112

is presented in work [21]. The speed is estimated based on FCD. Then the authors make use of the R2 Statistic to113

build the function between average speed (V) and density (ρ). Finally, the traffic flow is calculated according to the114

Fundamental diagram (Q = ρ · V).115

In summary, the above works mainly deal with the following subjects: 1) strategy to collect FCD, 2) estimation of116

traffic state by building traditional function model. However, in this work, on the one hand, it is a pragmatic choice117

to apply the aggregated FCD in Google Maps, because it is the most widespread and best-known system from a more118

practical and industrial point of view, and it can provide lots of data in a complete transportation network considering119

scientific aspects. Other FCD providers (such as Uber) could have been employed, but the quality of the collected120

data is very similar while offering a much lower coverage than the Google-based services[23]. Moreover, accessing121

the data sources (programming constraints) from the Google API is almost straight straightforward and free of charge122

(for a given number of requests per month). On the other hand, traffic flows are estimated according to FCD from123

Google Maps only, on the basis of regressors trained using machine learning techniques, instead of using traditional124

stationary devices (such as loop detectors [5] or video cameras [6]). To the best of our knowledge, this is an innovative125

approach that could help minimize the use of stationary sensors while providing a good enough estimation of traffic126

flows.127

3. Problem Description and Proposed Mathematical Model128

This section firstly describes the problem addressed in the work. Next step presents the proposed system structure,129

where two types of regressors based models are introduced, including single model and multi-model. Then the feature130

extraction method is shown. At last, the criteria used to evaluate the proposed system’s performance are presented.131
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3.1. Problem description132

The problem is the estimation of traffic flow on a lane based on travel duration estimated by Google Maps thanks133

to FCD, as illustrated in Fig. 1. We consider a road section of a certain length (1.2 km in the example of Fig. 1), we134

measure the traffic flow on this section thanks to a physical sensor (in the example of Fig. 1 data were collected using135

a Doppler radar (24.165 GHz / 100mw EIRP)) located in the middle of the section and in parallel we estimate the136

travel time on this section thanks to Google Maps. The objective is to find the relationship between this travel time137

and the vehicle flow measured on the ground.138

According to the Fundamental diagram of traffic flow theory, travels duration and traffic flows are linked with139

each other, and their nonlinear relationship can be traditionally formulated with some special statistical model-based140

methods based on many assumptions, with lots of parameters to be tuned[24][25]. Several examples of such method141

are Van-Aerde-Function and exponential model [26]. The parameters to be tuned can be mean travel time at zero and142

real flow, some other parameters to be estimated from empirical data, etc. However, it would be too complicated with143

too many parameters to be tuned to use a general statistical model-based method, with no guarantee of efficiency.144

Therefore, this work tries to directly establish such a relationship on the basis of machine learning methods. Because145

machine-learning based approach can learn a general black model without the knowledge of a ‘Physique Model‘ of146

the dynamic system, making it much more convenient to be propagated on all over ‘similar’ road sections.147

Figure 1: Estimation of traffic flow based on FCD (travel duration) from Google with machine learning method. It is assumed in this article that
traffic flows should be uniform along the chosen road

3.2. Proposed system structure148

The proposed system structure consists of three parts: data collection, machine learning model training and trained149

model testing, as illustrated in Fig.2. For data collection, traffic flows are measured by a sensor over a specified and150

limited period of time , which is 26 weeks in this work. Over this same period of time, We retrieve directly travels151

durations, which are calculated by Google map servers with a complicated algorithm based on the collected floating152

car data. In other words, through the Google maps API, the travel duration can be obtained by giving the GPS for153

origin and destination of the chosen road segment, and the time-stamp, as shown in the Tab. 1. The GPS for origin154

and destination is got manually from the Google Map on the chosen road. The time-stamp is a serial of numbers to155

define a certain instantaneous time elapsed since 1970, January 1st, 0 hours, 0 minutes, 0 seconds. The request can156

be done either on a Web browser or by Python programming. The travel duration data is captured each ten minutes157

from Google-map. In total, 26208 data are retrieved. Then the obtained traffic flows data and their corresponding158

travels durations are split into two sets: a training dataset with 50 percent for the machine learning model training,159

and a validation dataset with another 50 percent for the trained model testing. For the training of machine learning160

model, the estimation of traffic flows from travels durations is treated using regression models. Three types of models161

are proposed: single model, manual multi-model, and K-means multi-model (refers to 3.3). The machine learning162

algorithm applied is the training of a Gaussian Processes Regressors (GPR) (refers to 4.5). This corresponds to the red163

rectangle part in Fig.2, that is presented more detailedly in the next section (refers to 3.3). At the end of the learning164

process, trained GPR models are obtained, which can take travels durations as input to estimate traffic flows as output,165

without requiring any additional ”in site” flow sensors anymore. The estimated traffic flows are compared with the166

one measured by real sensors to evaluate the performance of trained GPR models.167

4
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Figure 2: Proposed system structure

Table 1: Input and output data structure for requesting FCD with Google Maps API. For example, the 310 seconds in the output column means that
it takes average 310 seconds for cars to pass from origin point GPS to the destination point GPS on the road at the given time stamp.

Example
Input Output

GPS of origin GPS of destination Time-stamp Traffic duration (s)

1
(50.372329,3.070058) (50.380205,3.082129) 1520677640

(10/03/2018;10:27:20)
310

Road name: Boulevard de la Republique,Douai,France

2
(50.380163,3.079186) (50.390721,3.081124) 1521306610

(17/03/2018;17:10:10)
370

Road name: Boulevard Lahure,Douai,France

3.3. Single model and multi-models proposed for traffic flows estimation168

The traffic flows evolve over the days of a week, because of the difference of traffic demand and supply be-169

tween working day and weekend. Therefore, using days’ specific GPR models (multi-models approach) instead of170

a ”generic” one (single model approach) may provide better estimations of the traffic flows along the week. In the171

manual multi-models, three GPR models are trained for weekdays, Saturday and Sunday in training data set.172

As a prior step, we also have to verify that days of the week can be clustered on the basis of the travel durations173

profiles collected by Google Map. Here, the profile associated to a day is simply the sequence of travel durations174

measurements along this day. To do so, we apply a Principal Components Analysis (PCA), which is a method to175

reduce the dimension of a feature vector while keeping a significant part of its original information (refers to 4.2).176

The classical k-means algorithm is further applied to this reduced feature space (refers to 4.3) to build clusters that177

are interpreted as different types of days. On the one hand, each of these clusters will, in turn, be used to train its178

own GPR model. On the other hand, the label results from k-means are applied to train a Support Vector Machine179

(SVM) model, which is used to cluster a new day (testing data sets) to choose the suitable trained GPR model from180

its corresponding FCD profile. Three provided strategies to build models are illustrated in Figs.3 and 4:181

1. Single model: only one GPR model is trained using all the training data (variations of FCD profiles between182

the days are not taken into account during the GPR’s training process, namely, all the training days are applied183

to the same regression model)[1].184

2. Manual multi-model: three different GPR models are trained (one for days of the week except Saturday and185

5
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Figure 3: Flowchart for Single model and manual multi-models (an example for three clusters on training and testing data sets for a week,
respectively)

Sunday, one for Saturdays and one for Sundays, respectively), to model the fact that, generally speaking, the186

traffic flows seem to be similar during ”regular” days of the week, and are different during Saturday and during187

Sunday. The term ”manual selection” stands for the fact this partition is only based on the name of the day,188

without statistical analysis[2].189

3. K-means multi-models: several different GPR models are trained based on the clustering results from k-means,190

in order to model the fact that, generally speaking, the FCD profiles clustered by k-means should have similar191

traffic flows. This K-means multi-models are new content compared with the above two types of models pub-192

lished on two International Conferences. Therefore, performing the clustering process using FCD or using flow193

data leads to two compatible partitions of the type of days.194

3.4. Features extraction method195

The feature extraction method is illustrated in Fig.5. This paper address a regression problem but not a prediction196

problem. Then, for estimating traffic flow at time step k, ”past” and ”future” travel duration samples can be taken into197

account. Consequently, the feature extraction process is based on the assumption that the traffic flow fk at the given198

time step k can be approximated from a samples window with (2 · n + 1) width centered on travel durations dk at time199

step k, where, the notations are defined as follows:200
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Figure 4: Flowchart for K-means multi-models (an example for three clusters on training and testing data sets for a week)

1. fk and dk: The variable f (t) is defined as the actual traffic flow (in veh/h) measured by a traditional sensor201

(such as an inductive loop detector) on a given lane at time t, while d(t) is the corresponding travel durations202

(in s) estimated by Google for passing the same given lane at the same instant t. In practice, traffic flow data203

f (t) is sampled at a period T f low corresponding to one hour with traditional sensors by the urban terrestrial204

transportation network management service of the city of Douai in France. However the travel duration data205

d(t) is sampled from Google Maps at a period Te, which is equal to ten minutes, in order to get more information206

about the travel duration. To cope with these different sampling periods, traffic flow data are linearly interpolated207

between two conservative values of the traffic flows, as shown in the Fig.5. As a result, both d(t) and f (t) are208

considered to be sampled with sample period Te. Therefore, for the sake of simplicity, in the following, we209

denote d(k ·Te). ≡ dk and f (k ·Te). ≡ fk, which means that the travel duration and travel flow can be represented210

as dk and fk, respectively, for kth sample at time k · Te.211

2. n: The variable n (n ∈ N∗) refers to the half width of the samples window acquired from d(t), centered at time212

step k, as illustrated by the purple rectangle drawn in Fig.5.213

Therefore, the input vector (or extracted features) Xk of the GPR is Xk = {dk−n ... dk−1 dk dk+1 ... dk+n}. The output214

value is the traffic flow fk. Alternatively stated, the traffic flow fk should be estimated by the GPR model from the215

extracted features Xk.216
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4. Theory of Machine Learning Methods Applied217

This section firstly presents the total flowchart of proposed traffic flow estimation system. Then the theory is218

researched for the Machine Learning related methods applied in this work, as shown in the Figs.3 and 4.219

4.1. Innovation and main steps of the proposed traffic flow estimation model220

The innovation of the proposed model is that we apply a Machine Learning based model to rebuild the relationship221

between easily accessible travel duration and costly measured traffic flow, instead of applying the traditional formu-222

lation with lots of parameters to be tuned. Moreover, the proposed model can automatically classify the training data223

set into different types to train several Regression models to improve the performance, compared to single Regression224

model, and the testing day can also be classified into the most suitable Regression model because of a trained classifier,225

in order to reduce the estimation error percentage. This is the first proposal compared to all the existed literatures for226

the problem of traffic flow estimation from FCD. Therefore, the following three subsections present the main steps of227

the proposed traffic flow estimation model by combining the proposed system structure in the Fig.2 and the different228

models flowchart in the Figs.3 and 4.229

4.1.1. Main steps for traffic flow estimation with single model230

• Request of FCD from Google Maps API and corresponding traffic flow from transportation management;231

• Construction of input vector Xk based on the selected half width of sample window n, as presented in the232

subsection 3.4;233

• Division of all FCD and traffic flow data into training data set and testing data set according to a certain propor-234

tion;235

• Application of training data set to train 19 types of Machine Learning methods, as shown in the Fig.6;236

• Application of testing data set on the trained Machine Learning models to get estimated traffic flows;237

• Comparison of the estimated traffic flow and the real one.238

4.1.2. Main steps for traffic flow estimation with manual multi-models239

• Request of FCD from Google Maps API and corresponding traffic flow from transportation management;240

8
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• Division of all FCD and traffic flow data into three groups of training data set and testing data set according to241

weekdays, Saturday and Sunday;242

• Construction of input vector Xk based on the selected half width of sample window n, as presented in the243

subsection 3.4, for training and testing data set respectively;244

• Application of three groups of training data set to three different GPR models respectively, as shown in Fig.6;245

• Application of three groups of testing data set on the corresponding trained Machine Learning models according246

to weekdays, Saturday and Sunday, in order to get estimated traffic flows;247

• Comparison of the estimated traffic flow and real one.248

4.1.3. Main steps for traffic flow estimation with K-means multi-models249

• Request of FCD from Google Maps API and corresponding traffic flow from transportation management;250

• Division of all FCD and traffic flow data into training data set and testing data set with day as unit;251

• Combination of all the FCD data within the same day in the training data set as input vector for PCA;252

• Application of K-means methods to groups all days in the training data set into three different groups;253

• Construction of input vector Xk based on the selected half width of sample window n, as presented in the254

subsection 3.4, in the three different groups separately;255

• Application of three groups of training data set to three different GPR models respectively, as shown in Fig.6;256

• Combination of all the FCD data within the same day in the testing data set as input vector for PCA;257

• A classifier SVM trained based on the K-means results in the above step 6, in order to classify the testing data258

into suitable group;259

• Application of corresponding trained Machine Learning models in each group on testing data set to get esti-260

mated traffic flow;261

• Comparison of the estimated traffic flow and real one.262

4.2. Principal Components Analysis (PCA) for reduction of the selected features space dimension263

Principal Component Analysis (PCA) is the general name for a technique in multivariate data analysis aimed to264

reduce the number of dimensions, while keeping as much as possible of the data’s variation [27, 28]. Instead of265

researching thousands of original variables, the first few components built from a linear combination of the original266

features and containing the majority of the data’s variation are explored. The statistical analysis and visualization of267

these new variables, named the principal components, can assist to find similarities and differences between samples.268

Important original variables that are the major contributors to the first few components can also be discovered. More269

precisely, PCA applies a vector space transformation to reduce the dimensionality of large data sets. By using mathe-270

matical projections, the original data set, which may have involved a great deal of variables, can often be interpreted271

in just a few variables ( named the principal components). Therefore, it is often the case that an examination of the272

reduced dimensional data set will allow the user to spot trends, patterns and outliers in the data, much more easily than273

without performing this principal component analysis. Therefore, in this paper, PCA is applied to reduce the features274

dimensions of the FCD profiles in order to facilitate the k-means clustering.275

4.3. Clustering method K-means to dispatch all tested days into different clusters276

The k-means is an unsupervised clustering algorithm applied to find groups within the data [29, 30]. Given a set277

of observations (x1, x2, ..., xn), where each observation is a d-dimensional vector, k-means clustering algorithm aims278

to divide the n observations into a set of k groups (k ≤ n), such as G = G1, G2, ..., Gk, in order to minimize the279

within-group sum of distance squares, which is defined as the sum of distance functions of each point in the group to280

the corresponding center. The objective function of k-means is the following, where, ci means the centroid of points281

in group Gi. Therefore, the k-means clustering algorithm can be used to cluster the days based on the FCD profiles.282

In this work, we choose the value of k based on the daily life’s observation of our city in France. Typically, we have283

three types of day: working days, Saturdays and Sundays. During classical working days, people need to go to work,284

etc. Saturdays are characterized by less work and open shops. Sundays, generally, few people go to work and the285

possible activities are more restricted (most of the shops are closed for instance).286
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argmin
G

k∑
i=1

∑
x∈Gi

||xi − ci||
2 (1)

4.4. Classification method SVM287

SVM is a typical machine learning algorithm for classification problem, which was originally introduced by288

Vapnik and co-workers [31][32] and successively extended by plenty of other researchers. It can have a remarkably289

robust performance with respect to sparse and noisy data, which makes it useful in a good deal of applications from290

text categorization to protein function prediction. In particular, for the classification problem, it separates a given291

set of binary labeled training data with a hyperplane, which is maximally distant from training data sets (also known292

as ‘the maximal margin hyperplane’). If no linear separation is possible, it also can work by combining with the293

technique of ‘kernels’ function, which can automatically realize a non-linear mapping to a feature space. In the end,294

the hyperplane found by the SVM in feature space corresponds to a non-linear decision boundary in the input space.295

For a more detailed presentation about SVM, interested readers can refer to [32] for more information.296

4.5. Regression machine learning methods for traffic volume estimation based on the FCD297

This section presents the description of regression machine learning methods for the estimation of traffic flow298

based on travel duration from Google Maps, as shown in Fig.6.299

19 types regression methods

A. Linear Regression Models

B. Regression Trees

C. Support Vector Machines

1 Linear; 2 Interactions Linear

5 Fine Tree
6 Medium Tree; 7 Coarse Tree
8 Linear SVM; 9 Quadratic SVM; 10 Cubic SVM

3 Robust Linear; 4 Stepwise Linear

E. Gaussian Process 
Regression Models

D. Ensemble of Trees

11 Fine Gaussian; 12 Medium Gaussian; 13 Coarse Gaussian

14 Boosted Trees; 15 Bagged Trees

16 Squared Exp.; 17 Matern 5/2
18 Exp.; 19 Rational Quadratic

Kernel Function

Figure 6: Machine learning models for regression with different kernel functions tested in this article (in total 19 types)

4.5.1. Linear regression models300

These models describe a linear relationship between an output and one or more input. Such model has the follow-301

ing characteristics: 1)the response (output) has a normal distribution with mean Y, for a set of predictors or inputs,302

which is named as X; 2)a coefficient vector b is defined and linearly combined with the predictors X; 3)the linear re-303

gression model is Y = Xb. The classical hyperparameters to tune when using linear regression models are the learning304

rate and the number of interactions. We can also choose to perform robust fitting using a set of weighting functions to305

cope with outliers or to consider non-Gaussian noise affecting the data.306

4.5.2. Regression trees models307

These models can give numeric responses based on input data. In order to predict a response, the decisions in308

the tree from the root node down to a leaf node should be followed, because each leaf node contains a response.309

The trees applied are binary, which means that only one predictor (variable) is checked in each step of prediction.310

The hyperparameters for regression trees allow to obtain different trees forms restricting the maximum depth of trees,311

defining the minimum data points to split a node, fixing the number of samples required to consider node as a leaf,312

etc.313
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4.5.3. Support Vector Machine (SVM) for regression314

This model is identified by Vladimir Vapnik and his colleagues [33], is a very popular machine learning tool for315

regression. The SVM regression is a nonparametric technology, since it relies on kernel functions. In the Matlab316

Regression learner APP, the linear epsilon-insensitive SVM (ε-SVM) regression is applied. In ε-SVM regression,317

predictor variables (X) and observed response values (Y) are included in the training data set, and the goal is to find318

a function f(X) that deviates from Y (observed response values) by a value no greater than ε (error or deviation) for319

each training point X, as shown in Eq.(2). And the function f(X) should be as flat as possible.320

| f (X) − Y | ≤ ε (2)

In addition to the choice of the kernel function (linear, quadratic, cubic, gaussian, etc.) two hyperparameters are321

mainly used to improve performance of SVM: ε parameter defining the width (margin) of the zone used to fit the322

training data and a factor, corresponding to a ”box constraint” that tunes the cost of deviations larger than ε.323

4.5.4. An ensemble of trees model324

This model is a predictive model composed of a weighted combination of multiple regression trees. In general,325

combining multiple regression trees increases predictive performance. This means that results from many weak learn-326

ers can be melded into one high-quality ensemble predictor. Here we find the same parameters as for the decision327

trees (maximum depth of each tree, the minimum data to split a node, etc) and some extra hyperparameters like the328

number of trees or the weighted combination of trees.329

4.5.5. Gaussian Process Regression (GPR)330

As we can see in the experimental results in the section 5 that Gaussian Process Regression (GPR) can help331

us to have good performance for the estimation of traffic flow. Therefore the GPR is introduced more detailedly332

as following. Firstly, the background of GPR machine learning method is introduced[34]. Then the algorithm of333

applying the GPR for the estimation of traffic flow is explained.334

The GPR [34][35] is a supervised machine learning method that offers mapping function between input and335

(continuous) output data. The Gaussian Process framework is used in different areas extended from classification to336

regression problems, including speed estimation [36], travel duration estimation [37], time-varying systems [38] etc.337

In this work, a GPR model was adopted to model and to estimate traffic volume from the Google aggregated FCD.338

Because the traffic volume is expected to have some complex relationship with the travel duration on the same road,339

simple parametric models such as linear or polynomial functions is inappropriate for this task[24][25]. Therefore, in340

this subsection, firstly, Gaussian Processes (GPs) formulation is presented. Then, based on the GPs formulation, the341

Gaussian Process Regression machine learning method is introduced.342

Generally, GPs offer a Bayesian paradigm to learn an implicit functional relationship ŷ = f̂ (x), according to a given343

training data set, D = {(Xd
i , yi)|i ∈ N}. The variable N is the size of the data set. The symbol Xd

i represents a vector for344

the ith observed input variable (also named predictor, regressor, control, or independent) in a d-dimensional feature345

space. And yi is a one-dimensional observed target value (also named predicted, regresse, response, or dependent),346

which is either continuous or discrete. However, unlike most classical Bayesian models [39], GPs directly infer a347

prior distribution on the whole function f̂ (X). Thus, function f̂ (X) is treated as a random field and is assumed to be a348

GP a prior, as the Eq.(3) shows.349

p( f̂ (X)|θ) ∝ GP(m(X), k(X, X′)) (3)

where, the prior GP is fully defined by a mean function m(X) and a covariance function k(X, X′). The notation θ means350

the prior’s hyperparameters applied to parameterize the covariance function, as follows:351

K(X, X′) = K(X, X′; θ) (4)

Strictly speaking, a GP model can also be treated as a probability distribution, which is defined over the following352

functions:353
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E[ f̂ (X)] = m(X) (5)

Cov[ f̂ (X), f̂ (X′)] = k(X, X′) (6)

where f̂ (X), f̂ (X′) are random variables that are indexed by any pair of X and X′. Then, a GP prior can be roughly354

considered as a probability distribution for an infinite number of random variables. Furthermore, a collection of355

function values, which are indexed by any finite number of X = [x1, x2, ..., xn]T , e.g., F(X) = [ f (x1), f (x2), ..., f (xn)],356

supposes a multivariate normal distribution in Eq.(7)357

p( f̂ (X)|) = N(m(X),K(X, X′)) (7)

where the average vector m(X) and covariance matrix K(X, X′) are determined directly based on m(•) and k(•, •), as358

following:359

m(X) = [m(x1),m(x2), ...,m(xn)]T (8)
Ki, j = k(xi, x j) i, j = 1, ..., n (9)

For the sake of simplicity and without loss of generality, m = (x) = 0 is assumed, since the data can always be centered360

by the sample mean.361

With the machine learning term, k(x, x′) is often named as a kernel function or simply a kernel instead of a362

covariance function. As detailed later, kernel functions generally take certain forms which are parameterized by one363

or several parameters θ. Therefore, a GP prior can be specified by determining a specific type of kernel function (also364

named covariance function) and the associated θ values.365

Once a GP prior p( f |θ) and a ”noise” model p(y| f ) are determined, p( f |D, θ) the posterior distribution of f can366

be easily obtained by updating the prior p( f |θ) based on the Bayes theorem with the training data set D, as shown in367

Eq.(10)368

p( f |D, θ) =
p(y| f )p( f |X, θ)

p(D|θ)
(10)

where the input variables X should be made explicit in the prior and term p(D|θ) is called Marginal Likelihood, since369

it is a function of variable θ and given data set D. The noise model p(y| f ) is also a likelihood, for the reason that it370

is a function of f for a fixed set of observations y. Here, the p(y| f ) is introduced, since yi is a corrupted version of371

f (xi). Therefore, the estimation distribution for a new input xnew is achieved by using the Eq.(11) with the posterior372

p( f |D, θ)373

p( fnew|xnew,D, θ) =

∫
p( fnew, f |D, θ)d f (11)

By the combination with Eq.(11) and the noise model, the predictive distribution for ynew is achieved in the Eq.(12)374

p(ynew|xnew,D, θ) =

∫
p(ynew, fnew|D, θ)d fnew (12)

From the Eq.(12), not only the estimated average values but also the associated uncertainty (error-bar) could be375

calculated. In the GP modeling, it is as collection of function values f (x) needed to be Gaussian instead of variables x376

itself, which are assumed to be distribution-free. Therefore, the GP model theoretically can handle data with any kinds377

of distributions. For a more detailed presentation, interested readers can refer to [34][40] [41] for more information.378

12



/ Transportation Research Part C 00 (2021) 1–24 13

Gaussian Process Regression machine learning method is introduced based on the GPs formulation. The GP379

model presented in the above subsection can solve non-linear regression problems, if the observed target value yi is380

continuous, and the noise model p(y| f ) is assumed as a normal distribution. Then the GPR model can be expressed in381

the Eq.(13).382

yi = f (xi) + θi θi ∼ N(0, σ2) (13)

In this case, the inference of GPR model becomes analytically tractable, as a result of the Gaussianity of p(y| f ).383

Accordingly, for a new input xnew, the predictive mean and variance associated with f̂new = f (xnew) = fnew are defined384

in Eq.(14)-(15), respectively[34].385

µ( fnew) = k(xnew, X)[K(X, X′) + σ2I]−1y (14)

and386

Var( fnew) = k(xnew, xnew) − K(xnew, X)[K(X, X) + σ2I]−1k(X, xnew) (15)

where X and y mean the observed predictors and observe target value. I is defined as the identity matrix.387

The main hyperparameter of GPR is σ the initial value for the noise standard deviation of the Gaussian process388

model.389

5. Experiment and validation from the real data for single model390

In this section, we conduct a series of experiments over two road segments to evaluate the proposed algorithm and391

compare the results with real data. Firstly, the performance is compared between estimated traffic flow and real data392

in the single model regarding data of a first road segment. Then the results between single model and multi-models393

are compared on another road segment.394

5.1. Single model simulation case395

The experiments are executed on a 1.2 km long road segment named ”Boulevard de la République, Douai, 59500,396

France” with GPS of origin (50.372329,3.070058) and destination (50.380205,3.082129) for a duration of 26 weeks.397

Firstly, the protocol of our experiments are presented. Then, the comparison of RMSE among different machine398

learning regression methods is shown for n (half width of the sample window) from 2 to 24. Next, experimental399

performance during a whole week is presented in detail for the kernel function, named rational quadratic in GPR,400

because it can help us to achieve the lowest RMSE value, compared with others. Finally, an experiment with only401

weekdays, which performs better than the above case, is executed, for the reason that the profile of traffic flow exists402

big difference between weekdays and weekends.403

5.1.1. Protocol and experiments description404

The data of travel duration and real traffic flow on this road for a whole week from Monday to Sunday is respec-405

tively acquired from Google Maps, as shown in Fig.7 and town council of Douai in France, as Fig.8 shows. In total,406

19 types of regression models are applied to find the best machine learning regression methods for such problem of407

estimating traffic flow from travel duration. The set of all the sample data is divided into two groups: 50 percent of408

sample data is used to train and validate the regression model; the remainder is extracted as new data to test the perfor-409

mance of the trained regression model. The 5-fold Cross Validation method is applied for the 19 types of regression410

machine learning algorithms to avoid overfitting problem. The n (half width of the sample window as shown in the411

Fig.5) locates in the zone [2,24]. Specifically, the sample time interval is from 20 to 240 minutes, since the sample412

step is 10 minutes. The unit for traffic flow is veh/h, travel duration s. Note that all the hyperparameters described in413

the presentation of each regression machine learning models have been automatically tuned by Matlab.414
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Figure 7: Travels durations from Google FCD along a week
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Figure 8: Traffic flows from actual sensors measurements along a week

5.1.2. Evaluation criteria415

The evaluation criteria, containing Root Mean Square Error (RMSE) and Root-Mean-Square Deviation (RMSD),416

are applied to evaluate and to compare the performances of the two proposed strategies (single model and multi-417

model), because they are the classical criteria and the most used evaluation criteria for the sequences data regression418

problem while some authors suggest the joint use of the MAE (‘Mean absolute Error’)[42]. In addition, the estimation419

error distribution looks near from being Gaussian (refer to histogram in pages 16-17), which is a ‘classical’ use case420

for comparing models with MSE. Here, they are defined as follows:421

RMS E =

√√√
1
N

N∑
k=1

( f (k) − f̂ (k))2 (16)

AM =
1
N

N∑
k=1

( f (k) − f̂ (k)) (17)

RMS D =

√√√
1

N − 1

N∑
k=1

(( f (k) − f̂ (k)) − AM)2 (18)

where f (k) is the observed traffic flow at time step k and f̂ (k) is the corresponding estimated traffic flow. AM is the422

arithmetic mean. N is the total number of samples.423

5.1.3. Discussion about Machine Learning methods424

This subsection presents the comparison of RMSE for all the 19 machine learning regression models, as shown in425

Fig.10 and Tab. 2-3, in order to find the best solution, which can estimate the traffic flow from travel duration with426

lowest RMSE. The 19 regression modules are grouped in the Tab. 2-3 into five families:427

A. Linear regression models. These models always get a very high RMSE, because the relationship between travel428

duration and traffic flow is nonlinear [24][25].429

B. Regression trees. These models can achieve better performance than linear regression models with lower430

RMSE, for the regression trees can deal with nonliear system. The best result with lowest RMSE 70.206 happens431

when the n equals 24 under the Fine Tree (number 5 in the Tab. 2).432

C. Support vector machines. The lowest RMSE for SVM is 59.811, which is obtained by the Fine Gaussian at433

n=24, and is 14.81 percent lower than that in the Fine Tree.434

D. Ensemble of trees. Such models are better than the above regression trees by combining several trees together.435

The lowest RMSE (57.69) is acquired by the bagged trees when n is 24, and is 17.83 percent lower than that in the436

Fine Tree.437

E. Gaussian process regression models. The global best result is the lowest RMSE with value of 18.938, which is438

achieved by Rational quadratic kernel function with n=23, is 67.17 percent lower than that in the bagged trees.439
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Figure 9: RMSE profile for regression models under n from 2 to 24

Table 2: RMSE value for types 1-10 of machine learning regression models under n from 2 to 24 (PE is an abbreviation of Percentage Error)

n A. Linear Regression Models B. Regression Trees C. Support Vector Machines
1 PE(%) 2 PE(%) 3 PE(%) 4 PE(%) 5 PE(%) 6 PE(%) 7 PE(%) 8 PE(%) 9 PE(%) 10 PE(%)

2 139.34 57.89 139.82 58.09 139.4 57.92 139.2 57.83 121.49 50.48 112.54 46.76 108.56 45.10 140.04 58.18 143.47 59.61 138.91 57.71
3 137.39 57.04 137.86 57.24 137.47 57.07 135.43 56.23 119.27 49.52 108.24 44.94 105.85 43.95 138.75 57.60 141.35 58.68 140.63 58.39
4 134.86 55.97 138.73 57.57 134.96 56.01 132.95 55.18 111.58 46.31 104.88 43.53 100.8 41.83 136.23 56.54 139.48 57.89 136.94 56.83
5 133.35 55.34 137.39 57.01 133.43 55.37 130.33 54.09 103.18 42.82 99.005 41.09 100.81 41.83 134.44 55.79 137.8 57.19 145.42 60.35
6 131.79 54.71 135.9 56.41 131.95 54.77 128.05 53.15 107.71 44.71 104.24 43.27 103.61 43.01 132.83 55.14 134.44 55.81 150.72 62.57
7 129.77 53.90 137.11 56.95 129.87 53.95 126.64 52.60 94.734 39.35 97.147 40.35 101.63 42.21 130.89 54.37 131.83 54.76 152.14 63.20
8 129.05 53.64 135.48 56.31 129.21 53.71 123.79 51.46 98.612 40.99 97.456 40.51 102.91 42.78 130.74 54.34 128.86 53.56 146.37 60.84
9 127.19 52.91 140.3 58.36 127.33 52.97 121.86 50.69 94.104 39.14 100.76 41.91 101.65 42.28 128.64 53.51 126.83 52.76 163.07 67.83
10 126.54 52.68 148.69 61.90 126.85 52.81 121.4 50.54 97.403 40.55 98.407 40.97 97.951 40.78 128.21 53.37 127.45 53.06 162.7 67.73
11 125.7 52.37 178.28 74.28 126.01 52.50 120.84 50.35 86.043 35.85 93.192 38.83 99.77 41.57 127.47 53.11 124.91 52.04 160.55 66.89
12 124.97 52.11 179.63 74.90 125.23 52.22 116.96 48.77 89.94 37.50 91.758 38.26 99.918 41.66 126.58 52.78 124.56 51.94 158.66 66.16
13 124.74 52.06 210.81 87.98 125.12 52.22 116.72 48.71 93.361 38.96 93.12 38.86 97.285 40.60 126.6 52.84 124.37 51.91 160.71 67.07
14 123.77 51.71 241.99 101.1 124.32 51.94 115.76 48.36 91.025 38.03 89.777 37.51 96.699 40.40 126.29 52.76 124.19 51.89 155.8 65.09
15 123.22 51.54 282.11 118.1 123.5 51.66 117.24 49.04 90.555 37.88 92.967 38.89 99.135 41.47 124.93 52.26 123.77 51.77 138.82 58.07
16 124.15 52.00 332.36 139.2 124.35 52.09 114.32 47.89 88.712 37.16 92.762 38.86 99.672 41.75 124.81 52.28 127.62 53.46 139.21 58.31
17 123.24 51.70 582.82 244.5 124.01 52.02 116.72 48.97 87.416 36.67 94.123 39.49 101.81 42.71 129.96 54.52 124.71 52.32 126.29 52.98
18 120.62 50.69 3320.7 1395 121.66 51.12 111.1 46.69 81.363 34.19 85.653 35.99 98.107 41.23 122.39 51.43 122.95 51.67 122.49 51.47
19 122.29 51.48 2766 1164 123.36 51.94 116.61 49.09 83.37 35.10 89.206 37.56 100.93 42.49 123.03 51.80 126.85 53.40 106.17 44.70
20 121.52 51.26 1984.5 837.1 122.8 51.80 114.85 48.44 83.675 35.29 90.415 38.14 99.475 41.96 122.84 51.81 125.48 52.93 99.649 42.03
21 120 50.72 1854.7 783.9 121.99 51.56 116.97 49.44 82.25 34.76 90.11 38.08 102.39 43.27 121.84 51.49 124.07 52.44 84.521 35.72
22 120.22 50.91 1559.9 660.6 122.41 51.84 116.47 49.32 85.913 36.38 92.222 39.05 101.59 43.02 121.54 51.47 122.44 51.85 81.469 34.50
23 118.77 50.40 1748.6 742.1 121.11 51.39 113.25 48.06 89.603 38.02 85.03 36.08 99.911 42.40 120.17 51.00 120.58 51.17 89.94 38.17
24 119.44 50.79 1647.2 700.5 121.98 51.87 113.83 48.41 70.206 29.86 85.831 36.50 98.789 42.01 120.16 51.10 120.2 51.12 72.312 30.75

In summary, the estimation performance can be improved either by changing machine learner regression model440

or by increasing the value of n. Indeed, for most models, the RMSE decreases when n increases. The performance441

rank for different types of regression models for the problem of estimating traffic flow from travel duration is as442

following: Gaussian Process Regression models > Ensemble of Trees > Support Vector Machines > Regression Trees443

> Linear Regression Models. Therefore, this work chooses Gaussian Process Regression with Rational quadratic444

kernel function as regression model.445

5.1.4. Discussion about half width of sample window n446

Globally, for the GPR with kernel functions of rational quadratic, when n increases from 4 to 23, the RMSE447

value decreases accordingly, and the lowest one achieved at the point (n=23) is 18.9 veh/h. Then RMSE value lightly448

increases when n is 24, for the reason that when the n is too big, some data far away from the center point is not so449

related and give some extra noise influence to the estimation. However, the rate for reducing the RMSE is extremely450

different when n is augmented. For n from 4 to 16, the RMSE is reduced rapidly with an improvement of 65.3 veh/h.451

Then the RMSE is reduced slowly with an improvement of 10.3 veh/h for n from 16 to 24. Therefore, the best choice452

for n equals to 23 when the RMSE performance is the only criterion. Nevertheless n with 16 is the best choice if the453
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Table 3: RMSE value for types 11-19 of machine learning regression models under n from 2 to 24 (PE is an abbreviation of Percentage Error)

n C. Support Vector Machines D. Ensemble of Trees E. Gaussian Process Regression Models
11 PE(%) 12 PE(%) 13 PE(%) 14 PE(%) 15 PE(%) 16 PE(%) 17 PE(%) 18 PE(%) 19 PE(%)

2 121.47 50.47 121.93 50.66 131.73 54.73 105.24 43.72 103.11 42.84 112.51 46.75 110.33 45.84 117.19 48.69 108.1 44.91
3 117.17 48.65 117.32 48.71 129.65 53.83 100.68 41.80 97.405 40.44 108.85 45.19 106.05 44.03 108.45 45.03 102.96 42.75
4 107.14 44.46 114.3 47.44 126.36 52.44 95.515 39.64 92.91 38.56 103.17 42.82 100.92 41.88 95.616 39.68 94.589 39.26
5 98.045 40.69 110.38 45.81 124.06 51.48 90.612 37.60 87.285 36.22 101.27 42.03 93.715 38.89 85.182 35.35 85.625 35.53
6 87.702 36.41 106.82 44.34 121.99 50.64 86.639 35.96 81.334 33.76 87.001 36.11 75.897 31.51 74.147 30.78 72.321 30.02
7 82.244 34.16 104.93 43.59 120.37 50.00 83.458 34.67 77.281 32.10 74.919 31.12 63.406 26.34 66.032 27.43 61.221 25.43
8 81.351 33.81 102.47 42.59 119.3 49.59 82.659 34.36 75.11 31.22 68.456 28.45 58.613 24.36 62.284 25.89 56.414 23.45
9 74.383 30.94 100.6 41.85 118.62 49.34 81.15 33.76 73.467 30.56 57.456 23.90 50.483 21.00 56.786 23.62 49.325 20.52
10 76.824 31.98 99.243 41.31 117.75 49.02 78.016 32.48 72.134 30.03 50.495 21.02 45.461 18.92 54.807 22.82 44.856 18.67
11 72.479 30.20 97.02 40.42 116.81 48.67 75.379 31.40 69.785 29.07 45.249 18.85 41.7 17.37 51.979 21.66 41.032 17.10
12 66.382 27.68 95.666 39.89 116.29 48.49 75.877 31.64 69.455 28.96 40.445 16.86 38.691 16.13 50.049 20.87 38.394 16.01
13 69.009 28.80 94.385 39.39 115.77 48.32 75.278 31.42 68.36 28.53 37.241 15.54 37.108 15.49 49.13 20.50 36.458 15.22
14 71.017 29.67 93.295 38.98 115.76 48.36 73.077 30.53 66.832 27.92 32.498 13.58 32.696 13.66 44.989 18.80 32.179 13.44
15 66.37 27.76 93.601 39.15 114.85 48.04 74.462 31.15 67.647 28.30 29.112 12.18 30.136 12.61 44.952 18.80 29.272 12.24
16 71.199 29.82 92.992 38.95 115.5 48.38 70.419 29.50 67.434 28.25 30.068 12.59 30.875 12.93 45.374 19.01 29.831 12.50
17 64.483 27.05 93.214 39.10 115.63 48.51 73.546 30.85 67.996 28.53 27.302 11.45 28.789 12.08 43.885 18.41 27.449 11.52
18 68.883 28.95 92.875 39.03 114.56 48.14 69.63 29.26 64.482 27.10 26.534 11.15 27.136 11.40 41.809 17.57 26.212 11.01
19 63.142 26.58 90.304 38.02 114.56 48.23 69.87 29.42 63.823 26.87 24.464 10.30 25.677 10.81 40.669 17.12 24.498 10.31
20 66.065 27.87 90.291 38.09 114.02 48.09 71.631 30.21 63.074 26.61 22.907 9.66 24.535 10.35 40.417 17.05 22.934 9.67
21 66.552 28.13 88.121 37.24 114.11 48.23 69.455 29.35 61.529 26.00 21.019 8.88 22.85 9.66 38.7 16.36 21.198 8.96
22 64.148 27.17 86.628 36.69 114.48 48.48 70.341 29.79 60.342 25.55 20.455 8.66 21.922 9.28 38.134 16.15 20.43 8.65
23 66.24 28.11 84.859 36.01 113.22 48.05 67.567 28.67 60.842 25.82 19.105 8.11 20.202 8.57 35.857 15.22 18.938 8.04
24 59.811 25.44 81.297 34.57 113.2 48.14 68.533 29.14 57.69 24.53 20.198 8.59 21.519 9.15 35.418 15.06 20.18 8.58
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Figure 10: RMSE profile for GPR under different n

RMSE performance and length of n should be considered together, because the bigger n is, the more data is needed to454

estimate the traffic flow, as shown in the Fig. 5.455

5.1.5. Experimental performance for a whole week456

The comparison between real and estimated traffic flow and the distribution of errors is shown in detail with n as:457

4, 8, 16, 24, as shown in Fig. 11—18. Firstly, with n=4, the trained GPR model can only capture the traffic flow458

tendency, because the n is too small and more information should be needed, as shown in the Fig. 11. As a result,459

for the corresponding distribution of error in the Fig. 12, only 45 percent of errors locates between the zone [-50,460

50] (veh/h). The biggest error happens in 300 veh/h and the RMSE is 92 veh/h. However, when n is increased to461

24, estimated traffic flow is more similar to the real one than that with n=4, as the Fig. 17 shows, which means that462

the increase of n can help to model the profile more exactly. Therefore, 86 percent of errors locates in the zone [-50,463

50] (veh/h), which is almost twice bigger than that with n=4. The RMSE is 20.18 veh/h. Third times lower than the464

one with n=4. The biggest error is 170 veh/h. However, in Fig. 17, most of the obvious error happens in weekends,465

because the profile’s shape of traffic flow is very different between workdays and the weekend, which motivates us to466

build a GPR model only for weekdays to improve the performance. This subject is discussed in detail in the following467

subsection.468
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Figure 11: Actual VS estimated traffic flow with n=4 for a week
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Figure 12: Normalized estimation error with n=4 for a week
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Figure 13: Actual VS estimated traffic flow with n=8 for a week
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Figure 14: Normalized estimation error with n=8 for a week
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Figure 15: Actual VS estimated traffic flow with n=16 for a week
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Figure 16: Normalized estimation error with n=16 for a week
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Figure 17: Actual VS estimated traffic flow with n=24 for a week
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Figure 18: Normalized estimation error with n=24 for a week
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Figure 19: Actual VS estimated traffic flow with n=4 for weekdays only
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Figure 20: Normalized estimation error with n=4 for weekdays only
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Figure 21: Actual VS estimated traffic flow with n=8 for weekdays only
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Figure 22: Normalized estimation error with n=8 for weekdays only
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Figure 23: Actual VS estimated traffic flow with n=16 for weekdays only
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Figure 24: Normalized estimation error with n=16 for weekdays only
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Figure 25: Actual VS estimated traffic flow with n=24 for weekdays only
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Figure 26: Normalized estimation error with n=24 for weekdays only
18



/ Transportation Research Part C 00 (2021) 1–24 19

5.1.6. Experimental performance for only weekdays469

The performance is compared between GPR models for whole weeks and only weekdays. For n=4, compared470

with the GPR model for the whole week (refers to Fig. 11), the GPR model for only weekdays (refers to Fig. 19)471

can capture the real data more precisely, and can get a higher percentage of errors (62.8%) locating between the zone472

[-50,50]. Furthermore, when the n is increased to 24, as shown in the Fig.26, 97 percent of errors in the zone [-50,50]473

, which is 11% higher than that in the GPR model for the whole week, as Fig. 18 shows. Therefore the performance474

can be improved by building a GPR model with smaller time zone, for example, only the weekdays instead of a whole475

week.476

5.2. Multi-models simulation case477

Firstly, the experiments’ parameters are presented. Secondly, FCD profiles on training data sets are clustered into478

k (here k = 4) clusters by k-means method. At last, the obtained results (estimated traffic flows) are compared with479

the real observed data (real traffic flows measured by sensors).480

Prior to the above clustering process, the dimension of FCD profiles is reduced by PCA (Principal Component481

Analysis) algorithm. Having a look at the eigen vectors’ coefficients after the PCA has been applied to the initial rep-482

resentation shows us that the initial basis is not preserved. Indeed, most of the eigenvectors result from a combination483

of a large number of the initial base’s vectors. As an illustration, figure 27) represents the eigenvector basis as a 33x33484

gray level image. The darker is the pixel, the closer to 0 is the magnitude of the corresponding eigenvector’s coeffi-485

cient. Rather than observing columns mainly made of dark pixels with a few bright pixels, we see a wide distribution486

of gray shaded pixels affecting a large part of the image.487

Figure 27: Representation of the eigenvector basis after PCA

5.2.1. Experiments’ parameter488

The experiments are executed on the road segment named ”Boulevard Lahure, Douai, 59500, France” with GPS489

of origin (50.380163,3.079186) and destination (50.390721,3.081124) for the duration of 26 weeks. The FCD are490

extracted directly from the Google Map API[43]. The total number of sample data is 20208 (6*24*7*16), owing to491

the 10 minutes sampling period. The actual traffic flows data are provided by Douai’s town council. All the sample492

days are divided into two sets: one containing 80 percent of the source data for training the model, and another with493

20 percents of the source data for testing the model. The overfitting problem is avoided by applying the 5-folds cross494

validation method. The kernel function of the GPR is Rational Quadratic, since this one performed the best along the495

experiments. The quadratic kernel function is applied for SVM. The dimension of the feature vector is 33, because496

the half width of the samples window (n) is defined as 16. All training days are classified into 4 clusters with k-means497

algorithm. The units of parameters are as follows: traffic flow, RMSE and RMSD are expressed in veh/h, while travel498

durations are in s.499
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Figure 28: Training data sets are clustered into four clusters by k-means algorithm, after their dimensions are reduced by PCA method. Each day
is expressed as a point, beside which the numbering schemes are defined as follows: 1) the first number represents the day within each week; 2) the
last two numbers express the order of week. For example, the number ”203” means the Tuesday in the third week.

5.2.2. Labeling results from PCA and k-means for training data500

The clustering results are presented in Fig.28 for days with different travel durations profiles. We can observe501

that PCA leads to a drastic reduction of the dimension of the features space from its original value to 2, significantly502

decreasing the complexity of the k-means based labeling process. At the end of the clustering, training days are503

divided into 4 clusters: cluster 1 and 2 include most of weekdays and a small part of weekends; cluster 3 consists504

of most of Saturday and some weekdays, which proves that the traffic flows during some weekdays are similar to505

Saturday. This is the main reason explaining the different performances between multi-model from k-means selection506

and multi-model from manual selection: in multi-model with manual selection, all weekdays belong to the same group507

(refers to Figs.3 and 4); cluster 4 is mainly made of Sunday. Therefore, PCA associated to k-means can cluster the508

travel durations profiles into different clusters more reasonably and precisely than the manual way.509

5.2.3. Comparison of statistical results510

Table 4: Comparison of statistical results (RMSE and RMSD are expressed in veh/h)

Criteria Single model Manual multi-models K-means multi-models
RMSE 37.3434 37.1286 23.827
RMSD 37.0281 36.9523 23.8084

The RMSE and RMSD for single model, manual multi-models and K-means multi-model are compared in the511

Tab.4. All types of models can estimate traffic flows with low RMSE and RMSD. Furthermore the K-means multi-512

models can reduce RMSE and RMSD by up to 36.2% and 35.9%, respectively, compared with single model. Because513

each day in testing data set is firstly input to the trained SVM model to choose the suitable trained GPR model.514

However, the multi-model with manual selection does not significantly improve the performance compared with single515

model, because such model cannot group the FCD flows profiles precisely. As we noticed before, all weekdays labeled516

using manual selection naturally belong to the same group. However, many FCD flows profiles during weekdays are517

similar to that in Saturday, as shown in Fig. 28.518

The differences between the three models tend to narrow if we focus on peak hours. In the figures 29 to 40 we519

have considered the morning peak hours (6:00 - 9:30 am) and the evening peak hours (4:00 - 7:30 pm). Figures 29, 31,520

33, 35, 35, 39 and 39 represent actual and estimated flows over a succession of peak hours. There is no time scale in521

these graphs, the peak hour periods succeed one another in chronological order. The corresponding error histograms522
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are shown in Figures 30, 32, 36, 36, 36, 40 and 40. In a general way, we can see that by considering only the peak523

hours, the interest of the multi-models (manual or learned) is much more reduced. We can also see that the afternoon524

peak hours are better estimated than the morning peak hours (16% maximum error versus 24%). This is probably due525

to the fact that these peaks are much more variable over the week compared to the rest of the day. This leads to some526

noise in the estimation.527

Figure 29: Actual (RED) VS estimated traffic flow (BLUE) with single
model for morning peak hours

Figure 30: Normalized estimation error with single model for morning
peak hours

Figure 31: Actual (RED) VS estimated traffic flow (BLUE) with single
model for evening peak hours

Figure 32: Normalized estimation error with single model for evening
peak hours

6. Conclusion and future works528

This work illustrates that Machine learning techniques based on Agregated Data permit to estimate the Traffic529

flows according to Floating Car Data (FCD) only on the basis of trained regressors. Principal Component Analysis530

(PCA) coupled with k-means technique allows to differentiate clusters of daily FCD profiles. Models are built for531

each cluster tuned by selecting the appropriate multi-model Gaussian Processes Regressors (GPR) using the Support532

Vector Machine (SVM) classifier generates coherent traffic flow.533

The experimental results show that the multi-model with k-means selection can significantly reduce the Root534

Mean Square Error (RMSE) and Root-Mean-Square Deviation (RMSD), compared with single model or multi-model535

with manual selection. The produced estimation by single or multi-models is promising enough to be used instead536

of static sensors based measurements. Practically speaking, this could have very interesting consequences: once the537

GPR model has been learned for a given road (on the basis of a relatively brief in site data acquisition process), the538

FCD are sufficient for continuously providing a good enough estimation of the vehicles flow along that road, using539

our GPR regressor. Thus, as an alternative approach to investing in a costly static sensor systems for each of the540

roads requiring a flow estimation, we could rather use movable measurement units to acquire the data for training the541

GPR, and then move this system to another place and repeat the process until each model of these ”strategic” roads is542
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Figure 33: Actual (RED) VS estimated traffic flow (GREEN) with man-
ual multi-models for morning peak hours

Figure 34: Normalized estimation error with manual multi-models for
morning peak hours

Figure 35: Actual (RED) VS estimated traffic flow (GREEN) with man-
ual multi-models for evening peak hours

Figure 36: Normalized estimation error with manual multi-models for
evening peak hours

Figure 37: Actual (RED) VS estimated traffic flow (MAGENTA) with
K-means multi-models for morning peak hours

Figure 38: Normalized estimation error with K-means multi-models for
morning peak hours

Figure 39: Actual (RED) VS estimated traffic flow (MAGENTA) with
K-means multi-models for evening peak hours

Figure 40: Normalized estimation error with K-means multi-models for
evening peak hours
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learned. Finaly, a GPR regressor combined with its corresponding FCD stream would act as a kind of virtual sensor,543

cost effective vehicles flow sensor.544

These measurements, in turn, are used to build and update urban transportation networks’ models, which are545

necessary components required for future mobility to better manage circulation flows within our cities and increase546

the safety of the users. In a near future, these users could be ”human drivers” as well as autonomous cars. The547

latter may directly use the provided models while directly feeding them with their FCD for an even better quality of548

traffic estimation. This is exactly what we are currently developping in the scope of the ORIO project (refers to the549

Acknowledgment section). In fact, the proposed algorithm can be used for all traffic situation and not only urban550

traffic. The urban context is chosen in the work because the implementation of physical sensors (radar, induction551

loops) are more difficult than highway.552

As a critical reflection, two main drawbacks can be highlighted. A first one concerns the use of non-sparse methods553

on input data which could be an issue with longer sequences to analyze, leading to obtaining a more complex learned554

model. A second one, classical in every machine learning solutions, relates to our dependence on the quality of input555

data. Let’s remember that we need two types of input data: the actual flow measured on studied road section and556

travel time supplied by the FCD provider (e.g. Google in this article).557

In a simulation perspective, our results are encouraging regarding the capacity of generating traffic flows from558

punctual real measurements and more global aggregated data. The virtual sensors reproduce flows according to the559

curve of the day. The aim is for these sensors to be distributed all over the network. The multi-model permits to gain in560

accuracy and to provide a collection of ’typical days’ to use in simulations. Our perspective is first to generate virtual561

sensors in key road segments that capture the main entrance and way out of a studied area. Beyond the simulation562

perspective, questions remain on the possibility to take advantage of a model learned in a specific road segment for563

other ’similar’ road segments in the network. The test of the proposed algorithms on other areas of the city and other564

transportation context will be the subject of our future work. To do so, the model can integrate topological information565

(dimension of the segment, relative position to the city center...) as well as temporal information in a multi-model566

learned from several road segments in order to help in producing generalizable models.567

The input vector of the GPR regressor is a sequence of consecutive FCD values centered at the sample step for568

which the flow estimation has to be produced. To make it clear, the proposed GPR does not directly take into account569

the ”time” (says hours, minutes and seconds), neither does it use the name of the day itself while it produces a rather570

good estimation of the flows. It is no secret saying that traffic flows evolve with the time of the day and the day of the571

week (the traffic during the weekend sometimes has nothing to do with what it is on business days!). Then, instead of572

feeding our GPR learning process with data including a complete week, we plan to build sets of ”period of the day”573

related GPR regressors (for instance: night, morning, midday, afternoon and evening) in replacement of ”weekly”574

GPR regressors computed from several road segment data.575
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[37] T. Idé, S. Kato, Travel-time prediction using gaussian process regression: A trajectory-based approach, in: Proceedings of the SIAM Interna-647

tional Conference on Data Mining, 2009.648

[38] J. Hu, X. Li, Y. Ou, Online gaussian process regression for time-varying manufacturing systems, in: 13th IEEE International Conference on649

Control Automation Robotics & Vision (ICARCV), 2014, pp. 1118–1123.650

[39] F. V. Jensen, An introduction to Bayesian networks, Vol. 210, UCL press London, 1996.651

[40] D. J. MacKay, Gaussian processes-a replacement for supervised neural networks?, Citeseer (1997) 1–31.652

[41] C. K. Williams, C. E. Rasmussen, Gaussian processes for machine learning, the MIT Press 2 (3) (2006) 4.653

[42] T. Chai, R. R. Draxler, Root mean square error (rmse) or mean absolute error (mae)?–arguments against avoiding rmse in the literature,654

Geoscientific model development 7 (3) (2014) 1247–1250.655

[43] Google, Google map api, https://cloud.google.com/maps-platform, accessed: 2018-11-20.656

24




