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Abstract. Today, mobile robot systems are designed for open public
environments and can benefit from modeling uncertainties in their de-
cision processes. For this reason, approaches based on Markov Decision
Processes (MDP) are proposed to control autonomous robots since few
decades. Optimally solving an MDP based model to coordinate a fleet
of robots can rapidly become intractable. This paper focuses on the dis-
tributive property of Multi-agent Markov Decision Processes (MMDP)
and identify an MMDP model as “Completly Distributable”, “Partially
Distributable” or “Distributable with Coordination”. Based on those def-
initions, the classical multi-mobile-robot problems addressed in the lit-
erature are classified and discussed accordingly regarding the potential
to compute an optimal solution in a distributive way.

Keywords: Distributed computation, MDP, Mobile Robotics

1 Introduction

Today, mobile robot systems are designed for usage in open public spaces (homes,
commercial centers, hospitals, offices, museums, streets, etc.). Robot decision-
making needs to handle the uncertainty that such environments implies (poten-
tially on: action outcome, time windows, dynamic environments, interactions,
etc.). Markov Decision Process (MDP) frameworks represent powerful tools to
model control possibilities over systems evolving under uncertainty. Such models
permit theoretically to compute an optimal policy of actions to perform while
considering all the trajectories the system could take.

MDP frameworks (and more specifically Decentralized Partially Observable
MDP - Dec-POMDP) allow to model decentralized systems; systems where per-
ceptions and action capabilities are distributed on agents in the environment
Dec-POMDP models the stochastic system evolution and the stochastic agent
perception capabilities. The complexity to solve Dec-POMDPs prevents from
computing optimal decentralized policies in real applications [14]. A Multi-agent
Markov Decision Process MMDP [4] takes advantage of fully observable system
states to drastically reduce the complexity. The model matches decentralized
systems with efficient communication, where each agent could have, at each
time-step, an efficient knowledge of the overall situation.
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However, more and more applications experiment MDP based approaches to
control decentralized systems evolving under uncertainty and mobile robots is
an emblematic one. Considering a fleet of robots deployed in the environment,
the goal is to plan and coordinate their movements to achieve a common mis-
sion [6, 18, 17, 15]. In top-down approaches, the idea is to identify structures in
the problem definition to constrain and speedup the solving [7, 3]. Potentially,
the structure can be decomposed into independent sub-processes (allowing dis-
tributable optimizations). However, the use of MMDP to optimize decentralized
controls remains limited to scale real applications as it is recently highlighted
in [9] to control water-way network or in [12] for collision free path planning.

Bottom-up approaches start with the assumption that the robots of a fleet
are equipped with computing resources. Those approaches rely on Agent-Based
Models (ABM ) to distribute the policy computations over all the robots. THe
main idea is to allocate an MDP to each agent/robot allowing it to compute its
own policy with interesting empirical results [6, 17]. However, The union of all
MDPs are incomplete to model the global problem and could not guarantee an
optimal solution. “Heuristic” MDP based approaches are more about handling
dynamic and uncertain environments than computing an optimal joint-policy.

In this paper, we are interested in the capability to distribute MMDPs by
proposing a classification as “Completly Distributable”, “Partially Distributable”
and “Distributable with Coordination” problems. This position paper is orga-
nized as follows: Section 2 presents the frameworks based on MDPs to address
multi-robot decision-making under uncertainty. Section 3 develops the properties
that permit a classification over distributability. In Section 4, a discussion about
the state-of-the-art approaches based on MDPs approaches for multi-robot sys-
tems, and finally a conclusion is presented in Section 5.

2 Multi-Robot Decision Making Under Uncertainty

Planning in mobile robot applications mainly relies on path or trajectory plan-
ning that ends up in Traveling Salesman Problems (TSP). In multi-robot con-
text, path planning requires to take congestion problems or tasks and resource
allocation into account. Solving those problems in a deterministic case is already
challenging [23] and even more in a stochastic case.

Because of the difficulty to solve and learn Dec-POMDPs, its usage for real
multi-robot scenarios is limited. This paper focus on fully observable Markov
Decision Process by investigating factorized properties.

2.1 Planning and Uncertainty in Mobile Robotics

Uncertainty is omnipresent in robotics applications due to the perception and
action loop in the real world, the lack in knowledge and/or the uncontrolled
stochastic events. Markov Decision Process MDP is a stochastic automaton
modeling the dynamics of a system under uncertainty regarding action possi-
bilities. Multi-agent MDPs (MMDPs) increase the model by considering that
agents performed actions simultaneously.
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Multi-agent MDP is a tuple 〈S, J, t, r〉 where S is the set of system states,
J the set of joint-actions and t and r are respectively the transition and reward
functions. The transition function models the probable dynamics of the system.
t(s, j, s′) return the probability to end in state s′ by doing the joint-action j in
state s. The reward function evaluates the interest to perform the joint-action j
in the state s (r(s, j) ∈ R).

In applications, states and joint-actions are defined by variables with finite
domains. The state space results from the Cartesian product of state variables
Xi ∈ X. It has an exponential size over the number of variables (e.g. |S| = 2|X|

in the case of binary variables with |X| state variables).

s = (x1, x2 . . . , x|X|) ∈ S, S =
∏
Xi∈X

Xi, |S| ≥ 2|X| (1)

Similarly to state definition, the joint-actions result from the Cartesian prod-
uct of the action variables. Each action variable Ai ∈ A matches a control lever or
actuator in the overall systems. To notice that agents can be responsible for sev-
eral action variables (for instance, rotation and linear speeds of non-honolomic
robots).

j = (a1, a2 . . . , a|A|) ∈ S, J =
∏
Ai∈A

Ai, |A| ≥ 2|A| (2)

Solving an MMDP consists in allocating an join-action to perform for each
state in a policy function π(s) by optimizing the expected gain. In formal terms,
the expected gain can be modeled by the Bellman equation.

V π(s) = r(s, j) + γ
∑
s′∈S

t(s, j, s′)V π(s′), with j = π(s) (3)

With an infinite horizon, the ratio γ ∈ [0, 1] balances between immediate reward
and future gains, γ is generally chosen close to 1.

By using MMDP to model multi-robot coordination problems, the number
of state variables increases with the number of robots (e.g. the position of each
robot). Controlling multi-robots in uncertain environments induces intractable
problems [18].

2.2 Factorized Model in Multi-agent Context

Factorized MDP take advantage of structure in the transition and reward func-
tions to speed-up the policy computation [5]. Discriminant state variables are
addressed first and potentially overweight the other variables in the decision pro-
cess. Those techniques permit solving MDPs without a complete enumeration
over all the states.

Multi-agent systems are characterized by sub-systems working together. That
for, MMDPs includes Transition and reward functions (t and r), in MMDPs, are
defined in a factorized way with two sets T and R of transition probabilities and
reward criteria defined on subsets of state and action variables.
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This way, a transition probability P ∈ T returns the probabilistic assignment
of target variables st ′P depending on parent variables sp′P and action variables
jP . P (st ′P |spP , jP ) is the probability that target state variables would be on sp′P
at the next time step knowing that current parent state and action variables
are spP and jP . The transition function results from the product of transition
probabilities (sub-transitions):

t(s, j, s′) =
∏
P∈T

P (st ′P |spP , jP ), with P : STP |SPP × JP → [0, 1] (4)

This way, state variables can be aggregated in subsets where each subset
matches a part of the system affected only by a subset of actions. For example,
the pose of a robot (its position and orientation variables) evolves according to
its control. 3 variables (xi, yi, oi) per robot i would evolve according to 2 actions
(linear speed and rotation).

R. Becker et al [2] proposed transition independent model where the actions
of each robot only impact its own variables. Varakantham et al. [22] presented
a more generalized approach by taking advantage of shared and private state
variables. Transition-independent approach was adapted to MMDP and tested
on intrusion detection scenarios [21]. However, in a generic form, a transition
probability P (or a sub-transition) is defined by three subsets: the target (or
controlled) state variables XTP ⊆ X (reached at time t + 1), the parent state
variables XPP ⊆ X (at time t) and the action variables AP ⊆ A.

STP =
∏

Xj∈XTP

X ′
j , SPP =

∏
Xj∈XPP

Xj , JP =
∏

Aj∈AP

Aj (5)

The target and parent state variables are not necessarily the same and some
parent variables can be shared between several sub-transitions. For instance, door
state variables (open or closed) could affect the navigation of all the robots, in
indoor environment. However, a state variable xi is defined in the target set of
one and only one sub-transitions.⋃

P∈T

STP = S, ∀(P1, P2) ∈ T 2, P1 6= P2 ⇒ STP1 ∩ STP2 = ∅ (6)

Each transition component P marks a sub-process to control and in a similar
way, the reward function could be factorized according to the sub-evaluations.
The reward function will be defined as a sum of sub-rewards (identified as criteria
C ∈ R) applied on subsets of the state and action variables. For instance, in
multi-robot missions, movement cost criteria could be defined independently for
each robot.

r(s, j) =
∑
C∈R

C(sC , jC), C : SC × JC → R (7)

2.3 Interdependent MMDP sub-processes

sub-processes are linked together by sharing common variables. A sub-process
P1 depends on another sub-process P2 if one of its target variables is a par-
ent variable of P2. Those variables can be identified as the output of P1 (the
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variables controlled by P1 and useful to another sub-process) and the input of
P2 (the variables influencing P2). The sub-processes together form an oriented
graph of dependencies (edges) between sub-processes (nodes).

Factorized MDP is directly applicable when sub-transitions and sub-rewards
follow the same decomposition (i.e. all state and action variables of each sub-
reward are included in a unique sub-transition actions and target variables). In
other terms, each reward criteria can be attached to a sub-process node of the
sub-process dependency graph.

Approaches based on structured models take advantage of low interaction
between agents to reduce the complexity to solve them [3, 7, 10]. The theoretical
work presented in [11], focuses on factorized MMDP by proposing a message-
based agent optimizations. Each agent is responsible for a sub-process and solves
it iteratively by exchanging values over shared variables. In fact, agent is requir-
ing information from its dependent sub-processes to control its output variables
in a efficient way. This family of algorithms permits for instance to handle cycles
in the sub-process dependency graph.

Distributing a MDP solving generally gives the capacity to each agent to
compute its own policy in a cooperative way [8, 19]. However, solving factorized
MMDP is not necessarily distributable depending on the structure of it sub-
process dependency graph. More importantly, the alignment constraint over sub-
transition and sub-reward is restrictive when applied on realistic scenarios. For
instance, when the reward depends on the overall duration of the mission, the
optimal plan for a robot is impacted by the plan of the robot with the worst
duration. The distributivity of MMDPs is not obvious if all the robots are bound
together as in task allocation (multiple traveling salesman problem [20, 15]) or
in collision free path planning (multiple path planning problem [23]).

3 Distributivity of an MMDP

This paper investigates the possibility to distribute the policy computation by
splitting a large MMDP into smallest, almost independent sub-MMDPs solvable
in a parallelized way. The idea is to classify MMDPs over three levels of distribu-
tivity: complete, partial or coordinated. This section proposes a formal definition
of that distributivity before a discussion, in the next section, regarding classical
mobile robot applications.

3.1 Complete Distributivity

Complete Distributivity is achieved if a global MMDP can be decomposed into
several independent and smaller MMDPs, defined on subsets of state and action
variables. The main idea is to decompose the value function of a global MMDP
model M into a sum of several independent value functions. Each subset of the
state and action variables defines a sub MMDP model Mα, allocated to an agent
α ∈ Ag , (Ag set of all the agents) that will be responsible of solving it.

M ≡
⋃
α∈Ag

Mα, V π(s) ≡
∑
α∈Ag

V απ(sα), π =
⋃
α∈Ag

απ (8)
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There is an equivalence between a global MMDP and a collection of sub-MMDP
if optimally solving the global model corresponds to optimizing the bellman
equation of all the sub-MMDPs.

By considering a Factored-MMDP each sub-MMDP model Mα is built over
a set of sub-processes. Mα is built over the sub-transitions and sub-rewards
associated to the bound sub-processes.

tα(sα, jα, s′α) =
∏
P∈Tα

P (stP |spP , jP ) (9)

rα(sα, jα) =
∑
C∈Rα

C(sC , jC) (10)

Each sub-model Mα is required to be independent. State and action variables
need to be sufficient to predict their evolution and evaluate the consequences.
In other words, whatever a sub-process included in Mα, all dependent sub-
processes are also included to Mα. By considering the direct graph built over the
dependencies of Factored MMDP sub-processes, the Mα sub-MMDP matches
a disconnected sub-graph. Searching for the distributivity of a Factored MMDP
consist in searching disconnect part in the associated sub-process graph.

It is important to notice that the sub-models are not necessarily disjoint. The
system could include state variables not controllable by any action variable, and
each of then is added to all sub-models that include controllable state variables
depending on it. Typically, temporal problems include a state variable modeling
discreet times that would affect some elements (outdoor luminosity for instance).
In the direct graph, those variables are considered only as input variables of sub-
problems and will not be an output variable in any of the edges.

The MMDP would be classified as “completely distributable” if such a de-
composition can be defined. The solving complexity is reduced in a logarithmic
scale over the sizes of the global state and action space. However, “completely
distributive” MMDPs have a very poor interest while they only model systems
with components evolving without any interaction between them.

3.2 Partial Distributivity

Partial distributivity is based over the sub-process dependency graph resulting
from Factorized MMDP. An MMDP is considered partly distributable if several
of its sub-processes are independent enough to be solved in parallel.

A sub-process PI is independent of PJ if no one of the output variables of
PI can affect the sub-process PJ in a direct way (included in the input variables
of PJ ) or a recursive way (by following all the descendants of PI ). In other
words, there is no direct path from PI to PJ in the oriented graph modeling the
dependencies of the sub-processes. Solving PI and PJ in a distributable way is
possible if PI is independent of PJ and vice versa.

The resolution of a Factored MMDP resulting in a direct acyclic graph of
sub-process dependencies can be performed in a hierarchical way from the in-
dependent sub-processes (sub-processes with no output variables) toward the
root sub-processes (sub-processes with no controllable input variables). Then,
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the computation can be distributed by following separate branches in the direct
acyclic graph. Only a subset of the sub-processes can be optimized in a parallel
way, and the distributive potentiality (the number of sub-processes solved in a
parallel way) depends on the structure of the graph, the average connectivity
of the sub-process nodes. A distributivity ratio of a Factored MMDP can be
computed by comparing the total number of sub-processes |T | and the size of
the longest path in the graph |maxPath|:

distributivityRatio =
|T | − |maxPath|

|T | (11)

It is possible to relax the acyclic constraint by artificially cutting cycles in the
direct graph of sub-processes before distributing the hierarchical optimization.
The algorithm would require to visit several times each sub-process before con-
verging. The message-based agent optimizations approach [11] addresses such
configuration. However, Partial Distributivity relies on factorized Multi-agent
MDP (i.e. sub-processes are defined on similar sub-transitions and sub-rewards).

3.3 Coordinated Distributivity

We propose to investigate a “forced” distributivity where join-policies could be
built and optimized in a distributed way, in a constrained search space. The idea
is to restrict the action capabilities in order to force a distributable model. Then
the action restrictions can be negotiated by the agents during coordination phase.
Intuitively, by “fixing” or “forbidding” some of the actions, it is possible to solve
or erase some interaction dilemmas. For example, in collision-free multiple path
planning, definitely fixing passages into a specific one-way direction allows each
robot to plan its movements more independently. A robot does no more need
to know the other robots trajectories to decide whether it can enter a narrow
passage.

Considering a subset of joint-policies Π, it is possible to degrade a model M
in a model DMΠ by considering only the transitions and rewards activated by
the joint-policies in Π. DMΠ is built from M by reducing all the probabilities
P ∈ T and the reward criteria C ∈ R definitions to handle only the actions that
are included in, at least, one of the policies in Π.

With a Factorized MMDP, it consists in refining the inside structure of sub-
processes in order to limit the dependencies. This process results in removing
edges artificially in the direct graph modeling the sub-process dependencies in a
way that the degraded model becomes completely distributable.

One subset of joint-policies Π potentially permits to distribute the com-
putation. In most cases, applying a “coordinated distributivity” to a problem
modeled as M consists in forbidding some actions (definitely or in specific con-
figuration). The distributed computation converges to an optimal join-policy in
the search space defined by Π.

Guaranteeing the optimality on the global MMDP requires to build sev-
eral subsets of joint-policies in a way that their union covers all possible joint-
policies. By assuming that such a decomposition of joint-policies provides the



8 Guillaume Lozenguez

global MMDP, optimally solving the global MMDP will consist in computing an
optimal solution to each degraded model before selecting the best solution.

To guarantee a distributive computation all over the solving process, each
of the subsets of joint-policies has to generate distributable degraded MMDP.
Distributed solving of MMDPs permits to decrease the combinatorial explosion
on variables and to parallelize the computation. The interest of the method to
compute an optimal solution depends on the number of degraded models to
test (i.e. if distributing the computation does not require to test an exponential
number of degraded model).

4 Use-Cases and Discussions

The notion of distributivity with degraded model permits to navigate from com-
pletely distributable to strongly interactive MMDPs. A completely distributive
MMDP models a system composed of independent sub-systems. A strongly in-
teractive MMDP models a complex system where the components are interacting
with a large number of the other components that results in strongly connected
sub-processes.

By navigating among mobile robot problems addressed in the literature, it is
possible to classify problems regarding the possibility to distribute the compu-
tation between: “completely distributable”, “partially distributable” and “dis-
tributable with coordination”.

4.1 Independent mobile robots

Classical multi-robot problems rely on planning a path for each of the robots
of the fleet. In the simplest definition, each robot has one destination to reach
and the movement outcome is under the assumption that a robot (α) move-
ment is never impacted by other robots. The system state is composed of the
robots’ positions and the evolution of each robot position depends on the per-
formed movement action. Potentially, the position evolution could be different
at different time steps (with a discrete time variable t).

Pα(Position ′
α | t, Positionα, Moveα) (12)

Rewards model, for each robot α, a constant cost cst while the destination
destα is not reached.

Cα(Positionα) =

{
0 if Positionα = destα

−cst else
(13)

This model is very simple and matches poor scenarios. However, it is coherent,
for instance, for individual vehicles navigating on the public road networks. The
coordination can be achieved through a learning mechanism with a congestion
probabilistic knowledge defined over t. Aroor et Al. [1] use this approach to allow
a robot to navigate in a crowded-environment. There is no guarantee over the
optimality of the emergent coordination in multi-robot context.
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4.2 Swarm Robotic

Partial distributivity can be applied if the interaction between the robots is
sparse and local. Each of the robots is in interaction with a limited number of
other robots (ideally always the same other robots).

In fact, Swarm Robotics start from the assumption that complex global be-
havior can be defined by decisions taken in local interactions. The decisions are
taken only regarding the neighboring rather than overall considerations. The
platooning scenario is one of the emblematic and successful use cases of Swarm
Robotics. In this scenario a fleet of robot moves across a cluttered environment
toward a goal position by maintaining a formation at best.

There is no Factored MMDP approach applied to compute swarm behaviors,
to my knowledge, in robotics. However, “Partial distributivity” presents a formal
framework to optimize swarm behaviors. The decision can be handled locally by
the agent itself (by reading only the variables attached to the action to perform)
but it is also true for the computation of the decisions to take.

4.3 Multiple Path Planning

The coordination of several mobile robots sharing an environment where each of
the robots can block other robots in their movement is known as collision-free
multiple path planning problem. In its probabilistic formulation, the probability
for a robot α to achieve its movement also depends on the position and the
movement of all the other robots (β, δ, . . .) at the same time step t.

Pα(Position ′
α | t, Positionα, Moveα,

Positionβ , Moveβ ,Positionδ, Moveδ, . . .)
(14)

In parallel, the fleet of cooperative robots will share tasks to achieve. As
a first approximation, each task is located somewhere in the environment and
requires a unique robot to be done. Then, in parallel to movement evolution, the
probability that the task will be performed depends on if one of the robots is in
the appropriate position and doing the appropriate action.

PX(DoneY ′ | DoneY , Positionα, Actα,
Positionβ , Actβ , Positionδ, Actδ, . . .)

(15)

Multiple Path Planning and task allocation are difficult problems to solve
in a distributed way while it puts global constraints on all the robot’s actions.
Considering that, the robot moves through a graph (e.g. modeling the possible
paths in a warehouse), the collision-free multiple path planning problem can
be modeled as an arc orientation problem coupled with a simple multiple path
planning problem.

Arc orientation represents the way robots can move between two positions
A and B (only A to B or B to A would be authorized at each time step t). By
considering a fixed policy on graph configurations the subset of authorized joint-
policies Π is composed of the joint robot movements accordingly. The resulting
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degraded MMDP is distributable over robots computing resources. However, the
problem is still hard to solve while there are 3|Arc|×H possible graph configura-
tions with H the planning horizon (i.e. t ∈ [0, H]).

The model for planning with several task-positions to reach would include
a boolean state variable for each of the tasks. The variable records if a task
Y is performed or not (DoneY = {True,False}). The set of the robot actions
(movements) is increased with actions allowing robots to perform tasks. This
MMDP could be degraded by determining the robot authorized to perform a
given task. This way Multi-task multi-robot mission can be decomposed in an
allocation problem coupled to a path planning problem. Each test of a new
allocation will require an update on the robot paths.

4.4 Limitation in “coordinated distributivity”

By using degraded MMDP, both “collision free” and “multi-task” features in
multiple path planning can be seen as resources and task allocation coupled to
path planning. In [6, 17], the task-targets match the frontiers between known and
unknown areas in exploration missions. The robots plan their movements using
MDP to the next target frontier to extend in a cooperative way. Due to the high
dynamics of the robot knowledge, update and plan actualization are frequently
performed based on heuristic coordination. Classically, allocations are handled
with auction protocols where each agent bids over the allocation of tasks and
resources [13].

This approach was extended in [15] to allow robots to coordinate themselves
at the beginning of the mission and by considering several tasks to reach per
robot. Task Allocation can be coupled with Collision-Free Multiple Path Plan-
ning. This problem, defined under a deterministic evolution, is effectively solved
optimally [16] by taking advantage of decomposable structure.

In stochastic environment, the joint policy maintains a certain blur over the
system evolution. Efficient multi-agent policies would require to plan realloca-
tion of resources and tasks depending on the occurrence of uncontrolled events.
The guarantee of finding eventually the optimal joint-policy using “coordinated
distributed approach” depends on the theoretical capability of the allocation
generator to explore all the possibilities in the time and event space (which
would be intractable in practice).

5 Conclusion

This paper focuses on the notion of distributivity for planning under uncertainty
and defines a classification of Multi-agent Markov Decision Process (MMDP).
The classification is over “Completely Distributable”, “Partially Distributable”
and “Distributable with Coordination”. This classification is formalized depend-
ing on the structure of the sub-processes inherent to MMDP. “Completely dis-
tributable” matches independent sub-processes and serves only as theoretical
definition with a very poor interest in application. “Partially distributable” can
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be applied when sub-processes dependencies connect each sub-process with only
few other sub-processes. In that case, the distribution of the computation could
follow the topology of the sub-process dependencies graph. In robotic applica-
tions some scenarios (multiple-path planning, task allocation) are hard to dis-
tribute while maintaining some guarantees over an optimal solving. Each of
the robots are potentially in interaction with all the others. “Coordinated dis-
tributivity” set up a formal frame to split individual computations process in
a distributable way. However, possibilities over the coordination configurations
require a shared computation.

Some mobile robot problems remain strongly interactive and do not permit
to simply distribute the model with a theoretical guarantee to converge to an
optimal solution. By using “Coordinated distributivity” the number of coordi-
nation possibilities is exponential and prevents from investigating all of them. In
future work, we aim to address strongly interactive multi-robot path planning
under uncertainty. Forcing a distributed computation of the coordination con-
figuration could be heuristically performed by including coordination variables
inside the sub-processes individually solved.
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