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Today, mobile robot systems are designed for open public environments and can benefit from modeling uncertainties in their decision processes. For this reason, approaches based on Markov Decision Processes (MDP ) are proposed to control autonomous robots since few decades. Optimally solving an MDP based model to coordinate a fleet of robots can rapidly become intractable. This paper focuses on the distributive property of Multi-agent Markov Decision Processes (MMDP ) and identify an MMDP model as "Completly Distributable", "Partially Distributable" or "Distributable with Coordination". Based on those definitions, the classical multi-mobile-robot problems addressed in the literature are classified and discussed accordingly regarding the potential to compute an optimal solution in a distributive way.

Introduction

Today, mobile robot systems are designed for usage in open public spaces (homes, commercial centers, hospitals, offices, museums, streets, etc.). Robot decisionmaking needs to handle the uncertainty that such environments implies (potentially on: action outcome, time windows, dynamic environments, interactions, etc.). Markov Decision Process (MDP ) frameworks represent powerful tools to model control possibilities over systems evolving under uncertainty. Such models permit theoretically to compute an optimal policy of actions to perform while considering all the trajectories the system could take.

MDP frameworks (and more specifically Decentralized Partially Observable MDP -Dec-POMDP) allow to model decentralized systems; systems where perceptions and action capabilities are distributed on agents in the environment Dec-POMDP models the stochastic system evolution and the stochastic agent perception capabilities. The complexity to solve Dec-POMDPs prevents from computing optimal decentralized policies in real applications [START_REF] Littman | On the complexity of solving Markov decision problems[END_REF]. A Multi-agent Markov Decision Process MMDP [START_REF] Boutilier | Planning, Learning and Coordination in Multiagent Decision Processes[END_REF] takes advantage of fully observable system states to drastically reduce the complexity. The model matches decentralized systems with efficient communication, where each agent could have, at each time-step, an efficient knowledge of the overall situation.

However, more and more applications experiment MDP based approaches to control decentralized systems evolving under uncertainty and mobile robots is an emblematic one. Considering a fleet of robots deployed in the environment, the goal is to plan and coordinate their movements to achieve a common mission [START_REF] Burgard | Coordinated Multi-Robot Exploration[END_REF][START_REF] Mouaddib | Towards a Formal Framework for Multi-Objective Multi-Agent Planning[END_REF][START_REF] Matignon | Distributed Value Functions for Multi-Robot Exploration[END_REF][START_REF] Lozenguez | Punctual versus continuous auction coordination for multirobot and multi-task topological navigation[END_REF]. In top-down approaches, the idea is to identify structures in the problem definition to constrain and speedup the solving [START_REF] Canu | Dynamic Local Interaction Model: framework and algorithms[END_REF][START_REF] Beynier | Solving efficiently decentralized mdps with temporal and resource constraints[END_REF]. Potentially, the structure can be decomposed into independent sub-processes (allowing distributable optimizations). However, the use of MMDP to optimize decentralized controls remains limited to scale real applications as it is recently highlighted in [START_REF] Desquesnes | Distributed mdp for water resources planning and management in inland waterways[END_REF] to control water-way network or in [START_REF] Jourdan | Towards a distributed planning of decision making under uncertainty for a fleet of robots[END_REF] for collision free path planning.

Bottom-up approaches start with the assumption that the robots of a fleet are equipped with computing resources. Those approaches rely on Agent-Based Models (ABM ) to distribute the policy computations over all the robots. THe main idea is to allocate an MDP to each agent/robot allowing it to compute its own policy with interesting empirical results [START_REF] Burgard | Coordinated Multi-Robot Exploration[END_REF][START_REF] Matignon | Distributed Value Functions for Multi-Robot Exploration[END_REF]. However, The union of all MDPs are incomplete to model the global problem and could not guarantee an optimal solution. "Heuristic" MDP based approaches are more about handling dynamic and uncertain environments than computing an optimal joint-policy.

In this paper, we are interested in the capability to distribute MMDPs by proposing a classification as "Completly Distributable", "Partially Distributable" and "Distributable with Coordination" problems. This position paper is organized as follows: Section 2 presents the frameworks based on MDPs to address multi-robot decision-making under uncertainty. Section 3 develops the properties that permit a classification over distributability. In Section 4, a discussion about the state-of-the-art approaches based on MDPs approaches for multi-robot systems, and finally a conclusion is presented in Section 5.

Multi-Robot Decision Making Under Uncertainty

Planning in mobile robot applications mainly relies on path or trajectory planning that ends up in Traveling Salesman Problems (TSP ). In multi-robot context, path planning requires to take congestion problems or tasks and resource allocation into account. Solving those problems in a deterministic case is already challenging [START_REF] Yu | Planning optimal paths for multiple robots on graphs[END_REF] and even more in a stochastic case.

Because of the difficulty to solve and learn Dec-POMDPs, its usage for real multi-robot scenarios is limited. This paper focus on fully observable Markov Decision Process by investigating factorized properties.

Planning and Uncertainty in Mobile Robotics

Uncertainty is omnipresent in robotics applications due to the perception and action loop in the real world, the lack in knowledge and/or the uncontrolled stochastic events. Markov Decision Process MDP is a stochastic automaton modeling the dynamics of a system under uncertainty regarding action possibilities. Multi-agent MDPs (MMDPs) increase the model by considering that agents performed actions simultaneously.

Multi-agent MDP is a tuple S, J, t, r where S is the set of system states, J the set of joint-actions and t and r are respectively the transition and reward functions. The transition function models the probable dynamics of the system. t(s, j, s ) return the probability to end in state s by doing the joint-action j in state s. The reward function evaluates the interest to perform the joint-action j in the state s (r(s, j) ∈ R).

In applications, states and joint-actions are defined by variables with finite domains. The state space results from the Cartesian product of state variables X i ∈ X. It has an exponential size over the number of variables (e.g. |S| = 2 |X| in the case of binary variables with |X| state variables).

s = (x1, x2 . . . , x |X| ) ∈ S, S = X i ∈X Xi, |S| ≥ 2 |X| (1)
Similarly to state definition, the joint-actions result from the Cartesian product of the action variables. Each action variable A i ∈ A matches a control lever or actuator in the overall systems. To notice that agents can be responsible for several action variables (for instance, rotation and linear speeds of non-honolomic robots).

j = (a1, a2 . . . , a |A| ) ∈ S, J = A i ∈A Ai, |A| ≥ 2 |A| (2)
Solving an MMDP consists in allocating an join-action to perform for each state in a policy function π(s) by optimizing the expected gain. In formal terms, the expected gain can be modeled by the Bellman equation.

V π (s) = r(s, j) + γ s ∈S t(s, j, s )V π (s ), with j = π(s) (3) 
With an infinite horizon, the ratio γ ∈ [0, 1] balances between immediate reward and future gains, γ is generally chosen close to 1.

By using MMDP to model multi-robot coordination problems, the number of state variables increases with the number of robots (e.g. the position of each robot). Controlling multi-robots in uncertain environments induces intractable problems [START_REF] Mouaddib | Towards a Formal Framework for Multi-Objective Multi-Agent Planning[END_REF].

Factorized Model in Multi-agent Context

Factorized MDP take advantage of structure in the transition and reward functions to speed-up the policy computation [START_REF] Boutilier | Stochastic dynamic programming with factored representations[END_REF]. Discriminant state variables are addressed first and potentially overweight the other variables in the decision process. Those techniques permit solving MDPs without a complete enumeration over all the states.

Multi-agent systems are characterized by sub-systems working together. That for, MMDPs includes Transition and reward functions (t and r), in MMDPs, are defined in a factorized way with two sets T and R of transition probabilities and reward criteria defined on subsets of state and action variables. This way, a transition probability P ∈ T returns the probabilistic assignment of target variables st P depending on parent variables sp P and action variables j P . P (st P |sp P , j P ) is the probability that target state variables would be on sp P at the next time step knowing that current parent state and action variables are sp P and j P . The transition function results from the product of transition probabilities (sub-transitions):

t(s, j, s ) = P ∈T P (st P |sp P , jP ), with P :

ST P |SP P × JP → [0, 1] (4) 
This way, state variables can be aggregated in subsets where each subset matches a part of the system affected only by a subset of actions. For example, the pose of a robot (its position and orientation variables) evolves according to its control. 3 variables (x i , y i , o i ) per robot i would evolve according to 2 actions (linear speed and rotation).

R. Becker et al [START_REF] Becker | Solving Transition Independent Decentralized Markov Decision Processes[END_REF] proposed transition independent model where the actions of each robot only impact its own variables. Varakantham et al. [START_REF] Varakantham | Exploiting coordination locales in distributed pomdps via social model shaping[END_REF] presented a more generalized approach by taking advantage of shared and private state variables. Transition-independent approach was adapted to MMDP and tested on intrusion detection scenarios [START_REF] Scharpff | Solving Transition-Independent Multi-Agent MDPs with Sparse Interactions[END_REF]. However, in a generic form, a transition probability P (or a sub-transition) is defined by three subsets: the target (or controlled) state variables XT P ⊆ X (reached at time t + 1), the parent state variables XP P ⊆ X (at time t) and the action variables A P ⊆ A.

ST P = X j ∈XT P X j , SP P = X j ∈XP P Xj, JP = A j ∈A P Aj (5) 
The target and parent state variables are not necessarily the same and some parent variables can be shared between several sub-transitions. For instance, door state variables (open or closed ) could affect the navigation of all the robots, in indoor environment. However, a state variable x i is defined in the target set of one and only one sub-transitions.

P ∈T ST P = S, ∀(P 1, P 2) ∈ T 2 , P 1 = P 2 ⇒ ST P 1 ∩ ST P 2 = ∅ (6) 
Each transition component P marks a sub-process to control and in a similar way, the reward function could be factorized according to the sub-evaluations. The reward function will be defined as a sum of sub-rewards (identified as criteria C ∈ R) applied on subsets of the state and action variables. For instance, in multi-robot missions, movement cost criteria could be defined independently for each robot.

r(s, j) = C∈R C(sC , jC ), C : SC × JC → R (7)
2.3 Interdependent MMDP sub-processes sub-processes are linked together by sharing common variables. A sub-process P 1 depends on another sub-process P 2 if one of its target variables is a parent variable of P 2. Those variables can be identified as the output of P 1 (the variables controlled by P 1 and useful to another sub-process) and the input of P 2 (the variables influencing P 2). The sub-processes together form an oriented graph of dependencies (edges) between sub-processes (nodes). Factorized MDP is directly applicable when sub-transitions and sub-rewards follow the same decomposition (i.e. all state and action variables of each subreward are included in a unique sub-transition actions and target variables). In other terms, each reward criteria can be attached to a sub-process node of the sub-process dependency graph.

Approaches based on structured models take advantage of low interaction between agents to reduce the complexity to solve them [START_REF] Beynier | Solving efficiently decentralized mdps with temporal and resource constraints[END_REF][START_REF] Canu | Dynamic Local Interaction Model: framework and algorithms[END_REF][START_REF] Jilles | Error-Bounded Approximations for Infinite-Horizon Discounted Decentralized POMDPs[END_REF]. The theoretical work presented in [START_REF] Guestrin | Multiagent planning with factored mdps[END_REF], focuses on factorized MMDP by proposing a messagebased agent optimizations. Each agent is responsible for a sub-process and solves it iteratively by exchanging values over shared variables. In fact, agent is requiring information from its dependent sub-processes to control its output variables in a efficient way. This family of algorithms permits for instance to handle cycles in the sub-process dependency graph.

Distributing a MDP solving generally gives the capacity to each agent to compute its own policy in a cooperative way [START_REF] Chades | A Heuristic Approach for Solving Decentralized-POMDP: Assessment on the Pursuit Problem[END_REF][START_REF] Nair | Taming decentralized pomdps[END_REF]. However, solving factorized MMDP is not necessarily distributable depending on the structure of it subprocess dependency graph. More importantly, the alignment constraint over subtransition and sub-reward is restrictive when applied on realistic scenarios. For instance, when the reward depends on the overall duration of the mission, the optimal plan for a robot is impacted by the plan of the robot with the worst duration. The distributivity of MMDP s is not obvious if all the robots are bound together as in task allocation (multiple traveling salesman problem [START_REF] Oliehoek | Approximate solutions for factored dec-pomdps with many agents[END_REF][START_REF] Lozenguez | Punctual versus continuous auction coordination for multirobot and multi-task topological navigation[END_REF]) or in collision free path planning (multiple path planning problem [START_REF] Yu | Planning optimal paths for multiple robots on graphs[END_REF]).

Distributivity of an MMDP

This paper investigates the possibility to distribute the policy computation by splitting a large MMDP into smallest, almost independent sub-MMDP s solvable in a parallelized way. The idea is to classify MMDP s over three levels of distributivity: complete, partial or coordinated. This section proposes a formal definition of that distributivity before a discussion, in the next section, regarding classical mobile robot applications.

Complete Distributivity

Complete Distributivity is achieved if a global MMDP can be decomposed into several independent and smaller MMDPs, defined on subsets of state and action variables. The main idea is to decompose the value function of a global MMDP model M into a sum of several independent value functions. Each subset of the state and action variables defines a sub MMDP model M α , allocated to an agent α ∈ Ag, (Ag set of all the agents) that will be responsible of solving it.

M ≡ α∈Ag M α , V π (s) ≡ α∈Ag V απ (s α ), π = α∈Ag απ (8) 
There is an equivalence between a global MMDP and a collection of sub-MMDP if optimally solving the global model corresponds to optimizing the bellman equation of all the sub-MMDP s. By considering a Factored-MMDP each sub-MMDP model M α is built over a set of sub-processes. M α is built over the sub-transitions and sub-rewards associated to the bound sub-processes.

t α (s α , j α , s α ) = P ∈T α P (stP |sp P , jP ) (9) r α (s α , j α ) = C∈R α C(sC , jC ) (10) 
Each sub-model M α is required to be independent. State and action variables need to be sufficient to predict their evolution and evaluate the consequences. In other words, whatever a sub-process included in M α , all dependent subprocesses are also included to M α . By considering the direct graph built over the dependencies of Factored MMDP sub-processes, the M α sub-MMDP matches a disconnected sub-graph. Searching for the distributivity of a Factored MMDP consist in searching disconnect part in the associated sub-process graph.

It is important to notice that the sub-models are not necessarily disjoint. The system could include state variables not controllable by any action variable, and each of then is added to all sub-models that include controllable state variables depending on it. Typically, temporal problems include a state variable modeling discreet times that would affect some elements (outdoor luminosity for instance). In the direct graph, those variables are considered only as input variables of subproblems and will not be an output variable in any of the edges.

The MMDP would be classified as "completely distributable" if such a decomposition can be defined. The solving complexity is reduced in a logarithmic scale over the sizes of the global state and action space. However, "completely distributive" MMDPs have a very poor interest while they only model systems with components evolving without any interaction between them.

Partial Distributivity

Partial distributivity is based over the sub-process dependency graph resulting from Factorized MMDP. An MMDP is considered partly distributable if several of its sub-processes are independent enough to be solved in parallel.

A sub-process PI is independent of PJ if no one of the output variables of PI can affect the sub-process PJ in a direct way (included in the input variables of PJ ) or a recursive way (by following all the descendants of PI ). In other words, there is no direct path from PI to PJ in the oriented graph modeling the dependencies of the sub-processes. Solving PI and PJ in a distributable way is possible if PI is independent of PJ and vice versa.

The resolution of a Factored MMDP resulting in a direct acyclic graph of sub-process dependencies can be performed in a hierarchical way from the independent sub-processes (sub-processes with no output variables) toward the root sub-processes (sub-processes with no controllable input variables). Then, the computation can be distributed by following separate branches in the direct acyclic graph. Only a subset of the sub-processes can be optimized in a parallel way, and the distributive potentiality (the number of sub-processes solved in a parallel way) depends on the structure of the graph, the average connectivity of the sub-process nodes. A distributivity ratio of a Factored MMDP can be computed by comparing the total number of sub-processes |T | and the size of the longest path in the graph |maxPath|:

distributivityRatio = |T | -|maxPath| |T | (11) 
It is possible to relax the acyclic constraint by artificially cutting cycles in the direct graph of sub-processes before distributing the hierarchical optimization. The algorithm would require to visit several times each sub-process before converging. The message-based agent optimizations approach [START_REF] Guestrin | Multiagent planning with factored mdps[END_REF] addresses such configuration. However, Partial Distributivity relies on factorized Multi-agent MDP (i.e. sub-processes are defined on similar sub-transitions and sub-rewards).

Coordinated Distributivity

We propose to investigate a "forced" distributivity where join-policies could be built and optimized in a distributed way, in a constrained search space. The idea is to restrict the action capabilities in order to force a distributable model. Then the action restrictions can be negotiated by the agents during coordination phase. Intuitively, by "fixing" or "forbidding" some of the actions, it is possible to solve or erase some interaction dilemmas. For example, in collision-free multiple path planning, definitely fixing passages into a specific one-way direction allows each robot to plan its movements more independently. A robot does no more need to know the other robots trajectories to decide whether it can enter a narrow passage.

Considering a subset of joint-policies Π, it is possible to degrade a model M in a model DM Π by considering only the transitions and rewards activated by the joint-policies in Π. DM Π is built from M by reducing all the probabilities P ∈ T and the reward criteria C ∈ R definitions to handle only the actions that are included in, at least, one of the policies in Π.

With a Factorized MMDP, it consists in refining the inside structure of subprocesses in order to limit the dependencies. This process results in removing edges artificially in the direct graph modeling the sub-process dependencies in a way that the degraded model becomes completely distributable.

One subset of joint-policies Π potentially permits to distribute the computation. In most cases, applying a "coordinated distributivity" to a problem modeled as M consists in forbidding some actions (definitely or in specific configuration). The distributed computation converges to an optimal join-policy in the search space defined by Π.

Guaranteeing the optimality on the global MMDP requires to build several subsets of joint-policies in a way that their union covers all possible jointpolicies. By assuming that such a decomposition of joint-policies provides the global MMDP, optimally solving the global MMDP will consist in computing an optimal solution to each degraded model before selecting the best solution.

To guarantee a distributive computation all over the solving process, each of the subsets of joint-policies has to generate distributable degraded MMDP. Distributed solving of MMDP s permits to decrease the combinatorial explosion on variables and to parallelize the computation. The interest of the method to compute an optimal solution depends on the number of degraded models to test (i.e. if distributing the computation does not require to test an exponential number of degraded model).

Use-Cases and Discussions

The notion of distributivity with degraded model permits to navigate from completely distributable to strongly interactive MMDPs. A completely distributive MMDP models a system composed of independent sub-systems. A strongly interactive MMDP models a complex system where the components are interacting with a large number of the other components that results in strongly connected sub-processes.

By navigating among mobile robot problems addressed in the literature, it is possible to classify problems regarding the possibility to distribute the computation between: "completely distributable", "partially distributable" and "distributable with coordination".

Independent mobile robots

Classical multi-robot problems rely on planning a path for each of the robots of the fleet. In the simplest definition, each robot has one destination to reach and the movement outcome is under the assumption that a robot (α) movement is never impacted by other robots. The system state is composed of the robots' positions and the evolution of each robot position depends on the performed movement action. Potentially, the position evolution could be different at different time steps (with a discrete time variable t).

Pα(Position α | t, Positionα, Moveα) (12) 
Rewards model, for each robot α, a constant cost cst while the destination dest α is not reached.

Cα(Positionα) = 0 if Positionα = destα -cst else ( 13 
)
This model is very simple and matches poor scenarios. However, it is coherent, for instance, for individual vehicles navigating on the public road networks. The coordination can be achieved through a learning mechanism with a congestion probabilistic knowledge defined over t. Aroor et Al. [START_REF] Aroor | Online learning for crowdsensitive path planning[END_REF] use this approach to allow a robot to navigate in a crowded-environment. There is no guarantee over the optimality of the emergent coordination in multi-robot context.

Swarm Robotic

Partial distributivity can be applied if the interaction between the robots is sparse and local. Each of the robots is in interaction with a limited number of other robots (ideally always the same other robots).

In fact, Swarm Robotics start from the assumption that complex global behavior can be defined by decisions taken in local interactions. The decisions are taken only regarding the neighboring rather than overall considerations. The platooning scenario is one of the emblematic and successful use cases of Swarm Robotics. In this scenario a fleet of robot moves across a cluttered environment toward a goal position by maintaining a formation at best.

There is no Factored MMDP approach applied to compute swarm behaviors, to my knowledge, in robotics. However, "Partial distributivity" presents a formal framework to optimize swarm behaviors. The decision can be handled locally by the agent itself (by reading only the variables attached to the action to perform) but it is also true for the computation of the decisions to take.

Multiple Path Planning

The coordination of several mobile robots sharing an environment where each of the robots can block other robots in their movement is known as collision-free multiple path planning problem. In its probabilistic formulation, the probability for a robot α to achieve its movement also depends on the position and the movement of all the other robots (β, δ, . . .) at the same time step t. 

In parallel, the fleet of cooperative robots will share tasks to achieve. As a first approximation, each task is located somewhere in the environment and requires a unique robot to be done. Then, in parallel to movement evolution, the probability that the task will be performed depends on if one of the robots is in the appropriate position and doing the appropriate action.

PX (DoneY | DoneY , Positionα, Actα, Position β , Act β , Position δ , Act δ , . . .) (15) 
Multiple Path Planning and task allocation are difficult problems to solve in a distributed way while it puts global constraints on all the robot's actions. Considering that, the robot moves through a graph (e.g. modeling the possible paths in a warehouse), the collision-free multiple path planning problem can be modeled as an arc orientation problem coupled with a simple multiple path planning problem.

Arc orientation represents the way robots can move between two positions A and B (only A to B or B to A would be authorized at each time step t). By considering a fixed policy on graph configurations the subset of authorized jointpolicies Π is composed of the joint robot movements accordingly. The resulting degraded MMDP is distributable over robots computing resources. However, the problem is still hard to solve while there are 3 |Arc|×H possible graph configurations with H the planning horizon (i.e. t ∈ [0, H]).

The model for planning with several task-positions to reach would include a boolean state variable for each of the tasks. The variable records if a task Y is performed or not (DoneY = {True, False}). The set of the robot actions (movements) is increased with actions allowing robots to perform tasks. This MMDP could be degraded by determining the robot authorized to perform a given task. This way Multi-task multi-robot mission can be decomposed in an allocation problem coupled to a path planning problem. Each test of a new allocation will require an update on the robot paths.

Limitation in "coordinated distributivity"

By using degraded MMDP, both "collision free" and "multi-task" features in multiple path planning can be seen as resources and task allocation coupled to path planning. In [START_REF] Burgard | Coordinated Multi-Robot Exploration[END_REF][START_REF] Matignon | Distributed Value Functions for Multi-Robot Exploration[END_REF], the task-targets match the frontiers between known and unknown areas in exploration missions. The robots plan their movements using MDP to the next target frontier to extend in a cooperative way. Due to the high dynamics of the robot knowledge, update and plan actualization are frequently performed based on heuristic coordination. Classically, allocations are handled with auction protocols where each agent bids over the allocation of tasks and resources [START_REF] Khamis | Multi-robot Task Allocation: A Review of the State-of-the-Art[END_REF].

This approach was extended in [START_REF] Lozenguez | Punctual versus continuous auction coordination for multirobot and multi-task topological navigation[END_REF] to allow robots to coordinate themselves at the beginning of the mission and by considering several tasks to reach per robot. Task Allocation can be coupled with Collision-Free Multiple Path Planning. This problem, defined under a deterministic evolution, is effectively solved optimally [START_REF] Ma | Optimal target assignment and path finding for teams of agents[END_REF] by taking advantage of decomposable structure.

In stochastic environment, the joint policy maintains a certain blur over the system evolution. Efficient multi-agent policies would require to plan reallocation of resources and tasks depending on the occurrence of uncontrolled events. The guarantee of finding eventually the optimal joint-policy using "coordinated distributed approach" depends on the theoretical capability of the allocation generator to explore all the possibilities in the time and event space (which would be intractable in practice).

Conclusion

This paper focuses on the notion of distributivity for planning under uncertainty and defines a classification of Multi-agent Markov Decision Process (MMDP ). The classification is over "Completely Distributable", "Partially Distributable" and "Distributable with Coordination". This classification is formalized depending on the structure of the sub-processes inherent to MMDP. "Completely distributable" matches independent sub-processes and serves only as theoretical definition with a very poor interest in application. "Partially distributable" can be applied when sub-processes dependencies connect each sub-process with only few other sub-processes. In that case, the distribution of the computation could follow the topology of the sub-process dependencies graph. In robotic applications some scenarios (multiple-path planning, task allocation) are hard to distribute while maintaining some guarantees over an optimal solving. Each of the robots are potentially in interaction with all the others. "Coordinated distributivity" set up a formal frame to split individual computations process in a distributable way. However, possibilities over the coordination configurations require a shared computation.

Some mobile robot problems remain strongly interactive and do not permit to simply distribute the model with a theoretical guarantee to converge to an optimal solution. By using "Coordinated distributivity" the number of coordination possibilities is exponential and prevents from investigating all of them. In future work, we aim to address strongly interactive multi-robot path planning under uncertainty. Forcing a distributed computation of the coordination configuration could be heuristically performed by including coordination variables inside the sub-processes individually solved.

  Pα(Position α | t, Positionα, Moveα, Position β , Move β , Position δ , Move δ , . . .)