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1 INTRODUCTION 

Dynamic-Contrast-Enhanced (DCE) imaging has shown great potential for diagnosis and prediction of patient’s response to 

treatments [1–7]. As DCE data depend on the microcirculation characteristics of the tissue, it is a suitable technique to detect 

microcirculation disorders associated with pathologies such as tumors or ischemia. Under reproducible acquisition conditions 

and the same model for data analysis, the identification of patterns in DCE data can help classifying patients into different 

physiopathological groups [8–10]. 

Numerous studies pointed to the improvement of diagnosis and prognosis provided by DCE-MRI. As DCE has been mainly 

used for patient classification, simple analysis models have been favored as they are efficient to answer this question [11]. The 

simplicity and stability of these models are necessary to establish reliable and repeatable diagnostics [12,13]. Unfortunately, this 

use has led to little feedbacks in terms of pharmacokinetic (PK) or molecular interpretation. However, many published and 

commercially available PK models provide interpretive and quantitative parameters related with microcirculatory tissue 

characteristics, such as “blood flow” or “interstitial volume” [14]. The interpretation of such models is generally justified by 

reasonable qualitative assumptions, but these are only declarative interpretations that vary according to the models, which leads 

to a great variability of quantitative results depending on the model used [15–18]. To verify interpretation, we must at least 

ensure that the assumptions are not contradicted by the observations. It is therefore necessary to verify that the pharmacokinetic 

model correctly describes the DCE data before interpreting its parameters physiologically. However, this is not generally done, 

as classification takes priority. Thus, models that were well-designed to classify patients are not automatically relevant for 

physiological interpretation [17] and then care must be taken in the physiological interpretation of DCE models. 

However, for DCE users, there is a latent necessity for DCE users for new and trustable insights in terms of 

physiopathological interpretation [19–21]. Several studies have proposed techniques to compare the relevance of PK models with 

respect to the DCE data [22–26]. But, so far, and in accordance with classification, these evaluations are more concerned with 

technical performance [27] than with data agreement. The evaluation of this agreement is not trivial in DCE, explaining why it is 

generally not evaluated. To the best of our knowledge, the main obstacle is that PK models cannot be compared directly with 

DCE data. Indeed, the PK models do not describe the DCE data themselves but a transition between an arterial input and a tissue 

measurement. In this work, our hypothesis is that a model specifically designed to have good agreement with the DCE data, 

under a wide range of experimental conditions, could act as an intermediate to assess the agreement of PK models versus DCE 

data. Indeed, if such a reference model exists, it can describe the DCE data accurately and without bias. The agreement between 

a PK model and the DCE data, not directly measurable, can then be assessed by measuring the agreement between the PK model 

and the reference model. The first question is then to know if such a reference model is technically viable. We, therefore, sought 

to propose and test a model on several simulated data. 

 

DCE data are highly variable due to the diversity of acquisition conditions [28], organs and pathologies studied. To correctly 

describe DCE data beyond simple targeted cases, we considered a model with minimal hypotheses.  This, therefore, precludes 

using the parametric PK models currently available in the literature. Nevertheless, raw non-parametric models are known to be 

particularly unstable [29].  To improve its stability, non-parametric models are usually combined with appropriate regularization 

rules. A pioneering model with minimal hypotheses was proposed by Jerosch-Herold for cardiac applications [29]. It uses time 

decimation, to reduce the model dimension, followed by a  B-Splines reconstruction. It was derived from deconvolution 

techniques [30].  However, this model presents casual oscillations that are not compatible with the latent physiology of the organ. 

In this work, we aimed to extend and optimize this model to build a potential reference model. It resulted in the Free-Time-Point 
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Hermite (FTPH) model, which was tested and compared against the original B-Spline. 

We evaluated the FTPH model using simulations to investigate its ability to describe properly tissue information available in 

several types of DCE data. For this purpose, we generated data with the contrasting Two-Compartment exchange (2CX) and the 

Adiabatic Tissue Homogeneity (ATH) models described below [31], and checked numerically whether our model could fit both 

types of data accurately.  

We then assessed whether the description of the data provided by the FTPH model was of sufficiently high quality to allow 

both experienced and inexperienced users to identify the models used to generate the data. The question then was whether the 

FTPH model allowed the user to find the physiological hypothesis in agreement with his data. Relying on the FTPH results, users 

were asked to estimate the most likely pharmacokinetic hypothesis to explain the data (2CX or ATH). The predictive value of 

this observation was then quantified. Finally, several real datasets were fitted with the FTPH model to assess the model response 

against real explorations.  

2 MATERIAL AND METHODS 

2.1 Convolutional Models 

 

Most pharmacokinetic models found in literature, for MRI, CT and PET, assume that the measured Tissue Response (TIC(t)) 

results from a linear and invariant process over time derived from the arterial input function (AIF) signal. AIF corresponds to the 

contrast agent (CA) concentration coming from the arteries to be delivered into tissue. This leads to the following theoretical 

relationship between CA concentration in the AIF(t) and the CA concentration in the tissue TIC(t) for successive time points t:  

  ������ = � 	�
�� − �� ∙ �������� = 	�
 ∗ �����  (1) 

 

where TIC(t) results from a convolution (*) of AIF(t) with a tissue impulse response TIR(t).  The TIR signal corresponds with 

the amount of contrast agent remaining in the tissue after a unique input of CA at the initial time point. By definition, the TIR 

should be a positive and decreasing function.  

2.2 Deconvolution techniques 

 

2.2.1 Singular Value Decomposition 

 

Deconvolution techniques consist of extracting the TIR(t) curve from AIF and TIC. Estimating TIR(t) is ideally equivalent to 

remove the influence of the AIF from TIC. It produces a signal that is less dependent on the experimental conditions. Estimating 

the set of parameters {p} of a pharmacokinetic model involves estimating the parametric impulse response corresponding to the 

model: TIR(t , {p}). Thus, some authors equate parametric estimation with deconvolution. In this paper, a minimal-hypothesis 

model was used, meaning a model describing only TIR values, with no assumptions other than its expected decrease. 

 

Common deconvolution techniques use a matrix formalism to evaluate TIR for data defined by iterative measures. To simplify, 

AIF(t) and TIR(t) could be considered constant over short time intervals. Therefore, (1) can be reformulated with the following 

numerical approximation:  
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where Δt is the sampling interval and εi the noise in the signal. This approximation should be refined, without changes in 

formalism, by preliminary filtering the AIF signal for noise reduction and by oversampling data with any interpolation technique. 

 

Equation (2) could be written with a matrix product: 

  ��� = �. ��� + ( 

 

  

(3) 

 

where TIC, TIR and ε are time signals and the matrix A is defined as follows:  

  

� = )	�
* 0 ⋯ 0	�
- 	�
* … 0⋮ ⋮ ⋱ ⋮	�
1 	�
12* ⋯ 	�
*
3 . ∆�, � ∈ !1×1 

 

 

 

 

 

(4) 

 

being N is the number of time points.  

  

The direct inversion (3) to determine the impulse response from A and TIC leads to an ill-posed problem and small perturbation 

in the measured data can cause deleterious instabilities in the TIR assessment. Several regularization techniques have been 

proposed, mainly by truncating the singular values that produce the strongest noise amplifications and by including 

regularization terms in the inversion [32–34].  A pseudo-inverse method with singular value decomposition (SVD) and Tikhonov 

regularization was used to solve (3) by limiting noise amplification. This method consists of diagonalizing the matrix A enabling 

a pseudo inversion of A to obtain TIR in (3). Each resulting diagonal element of matrix A, named «singular value» corresponds 

to an amplification factor for specific time vectors. We used the freely available Matlab toolbox proposed by Hansen [32] to 

perform this decomposition. 

B-spline approximation (see Fig. 1a) 

Since regularized deconvolution techniques do not always provide stable DCE estimates, Jerosch-Herold proposed to reduce the 

deleterious high dimension of the problem by a B-Spline representation of the TIR signal [35]. This model represents TIR as a 

sum of weighted B-spline polynomial functions of degree n:  

  

�����6� = � 78 . 98:��6�      , 78  ∈ !.;
8%*  

 

 

 

 

(5) 

 

Here 98:��6� represents the jth basis spline function of degree n, and 78 is the corresponding B-spline coefficient. The set of ti 

corresponds to the list of control points of the B-Spline approximation. A spline polynomial of degree n is a piecewise curve that 

has specific continuity properties: the curve is differentiable up to n-1 and is defined by a list of p+n+1 knots [30]. Roughly, this 

down-sampling technique reduces the NxN matrix A by a Nxp matrix D as described in the following equation. (See [30,35] for 

a more detailed description). 

   �����6� = � 78
1

8%* < 98:�=�. 	�
��6 − =��=�>
� = � ?6,8 . 78

;
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(6) 
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The estimation of TIR results, then from the evaluation of the vector α, by using the SVD technique including the Tikhonov 

regularization as described previously. The procedure thus consists of reducing the size of the model from N to p using regular 

sampling of the data, then reconstructing a regularized curve at N points using B-splines. We used the B-Spline model as a 

reference to compare with our model. The number of control points (p) was fixed to 15 and the 4th degree of B-Spline as 

proposed in the original publication.  

 

 

 

2.2.2 Free Time Point Hermite model (see Fig. 1b) 

 

The initial down-sampling of the control points of the TIR curve results from low-pass filtering of the estimated TIR by a 

frequency cutoff. However, in common parametric models, TIRs are generally characterized by sharp patterns at the beginning 

of the curve corresponding to fast flows into the vascular spaces, and smoother patterns at the end of the curve corresponding to 

slower flows out of the vascular spaces. Associating a single maximum frequency to the whole curve is therefore not necessarily 

appropriate and could cause an under-sampling of the initial part (bias of the estimated TIR curve), combined with an over-

sampling of its final part (noise). To describe local sharp signal with a moderate cost in terms of model dimension (robustness), 

the homogeneous time points of the initial Jerosh-Herorld model were replaced by flexible time points in our model. The 

associated times of the different control points then become parameters to be estimated. 

 

Moreover, the formalism of the B-Spline is complex and implicit, with no direct correspondence between the B-Spline 

parameters and the detailed properties of the TIR curve. This complicates the imposition of the decay constraint. Thus, the B-

Spline formalism was replaced by a more direct spline interpolation formalism, where TIR signals were defined by few reference 

points included in the TIR curve. Hence, the TIR curve was described by some of its points (the reference points) which were 

defined each by an abscissa and an ordinate. The decrease of TIR was performed by imposing a decrease intensity of the 

successive reference point: TIR(τi). More precisely, values were evaluated iteratively as TIR(τi) = βi ·  TIR(τi-1) for any i>1, were 

the attenuation factor βi was defined between 0 and 1. Additionally, 3 null points were used to create a discontinuity before τ1 and 

ensures zero TIR values before this time point. 

 

Finally, Splines were used to interpolate TIR points between reference points. However, conventional Splines are known to 

generate oscillation between reference-point, and thus could contradict the decreasing hypothesis. To propagate the decrease 

between the reference points, the conventional splines were replaced by the specific cubic Hermite splines, consisting of a 

piecewise cubic C1 splines [30]. Hermite interpolation conditions are often referred to as Piecewise Cubic Hermite Interpolating 

Polynomials (PCHIP). Due to the C1 property of Hermite polynomial, the monotony of the curve is conserved between reference 

points. 

 

Six reference-points defined with abscissa and ordinate, were used with the Free Time Point Hermite (FTPH) model for a 

reasonable comparison with the 15 parameters used to describe the ordinates of the initial B-Splines model. An iterative 

nonlinear least square fitting technique, as is currently used for parametric models, was used to fit the data with the FTPH model. 

In practice, curve-fitting was solved with the “lsqcurvefit” function of MATLAB R2013b (Matworks, Natick, MA) based on a 

‘Trust-Region-Reflective Optimization” [36]. 
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Both the control-points of B-splines and the reference-points for interpolating splines will be considered uniformly as 

“construction-points” throughout the rest of the paper. 

2.3 Evaluation of the FTPH model (Fig. 2) 

 

2.3.1 Data generation 

 

The evaluation of the model accuracy, its robustness and its neutrality to data type were tested with simulated data. An AIF was 

selected randomly from a previous DCE-MRI clinical study [37] with principal investigators’ authorization. The main 

parameters of the MR sequence used are available in Table 1. Two different parametric models [14,31] were used to generate 

tissue enhancements. They were selected to represent data resulting from two contrasting assumptions on CA distribution in the 

vascular space of the tissue of interest. The 2CX model (model 1) assumes an instantaneous CA dilution in the vascular space. 

This principle induces an exponentially decreasing function for the vascular contribution in the TIR. The ATH model (model 2) 

assumes a null CA dilution in the vascular space, also considered as a set of homogeneous tubes. In this model, all the CA in the 

vascular space comes out at a given time, meaning that no CA comes out before (TIR presenting an initial plateau) and that no 

CA remains in the vascular space after. Both models include an additive interstitial space. Qualitatively, the model parameters 

are the same for ATH and 2CX but the same parametric values involve different TIR patterns. 

 

Parametric values of reference for both models were taken from Schabel et al., [31] except for the blood volume which was 

multiplied by 2 to enhance the difference between models. The resulting parameters were blood flow= 100 mL/100 mL/min, 

blood volume fraction = 30%, permeability-surface product = 72 mL/100 mL/min and interstitial volume fraction = 25%. Then, 

TIC was generated by convolving the AIF with TIRs generated by both models. For generalization, various sets of parameters 

around initial parametric values were used to generate data. Moreover, the resulting TIC curves were polluted by adding random 

noise. More precisely, we generated 50 datasets both with 2CX and ATH models, without and with random Gaussian white 

noise, with a signal to noise ratio of 20. For each case, the initial parametric values were generated randomly by using white 

homogeneous noise, resulting in parameters varying from half to twice the initial parametric values. 

2.3.2 Evaluation of the TIR assessments 

 

2CX and ATH TIC-curves were analyzed with the FTPH and B-spline models resulting in estimated TIR signals. Quantitatively, 

the accuracy of the deconvolution techniques was evaluated by calculating the mean squared error (QE) which derives from the 

difference between initial and the estimated TIR signals. QE was normalized by the amplitude in the initial TIR signal. Then, the 

quality of the TIR estimation was evaluated by testing the ability of several users to identify patterns in the estimated TIR signal, 

enabling the identification of the model used to generate data. This test was established to assess the ability of the FTPH model 

to be used to identify the pharmacokinetic hypotheses which are more consistent with the observed kinetics.  Five observers with 

different levels of experience in DCE data, blinded from the models, were selected. Impulse responses, estimated by FTPH and 

B-Splines models, were shown to each observer independently in a random order, on a dedicated in-house reading software 

developed in Matlab (Mathworks, Natick, MA). Five possible answers corresponding to pattern recognition were proposed: 

“definite ATH”, “probably ATH”, “undetermined”, “probably 2CX”, and “definite 2CX”. Then, concordance tables were 

generated by comparison with the model used to generate data, resulting in sensitivity-specificity evaluations by merging 

«probable» and «definite» model detections. The level of confidence was evaluated as the percentage of the correct evaluation 
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established as ‘definite’ by the users, and reversely, the level of misleading was defined as the percentage of errors in evaluation 

despite a ‘definite’ assessment by the readers.  

Finally, we evaluated the number of kinetics required to identify correctly the model matching the DCE data. This was 

performed for the data generated by each model, according to the following decision criterion: «the parametric model (ATH or 

2CX) is identified, after k observations, if this model was identified for the majority of the k TIR estimation technique (FTPH or 

B-Splines) ». The power of decision was evaluated by calculating the number of observations required for the algorithm to 

identify correctly the model in more than 95% of cases.  To perform this step, sets of k pairs (true model, observer identification) 

were selected randomly for a fixed model, then each observer decision was evaluated as right or wrong. For a given model and a 

k value, the process was iterated 100 times and the percentage of the correct decision was collected. This process was repeated 

for all the parametric models (ATH and 2CX), deconvolution techniques (B-Spline, FTPH) and for increasing k values until the 

proportion of correct k-decisions exceed 95%, then k was selected as a reasonable exam number to identify properly the model in 

line with the data. The algorithm was stopped for k=16, considering that it is not reasonable to expend more than 16 exams to 

select a pharmacokinetic model for the DCE analysis. The whole process was performed for noisy and noise-free data for each 

observer and pooled into synthetic tables. 

Differences between methods were evaluated with the non-parametric Wilcoxon test. The significance criterion used was 

P>0.05. 

 

 

2.4 Deconvolution on few real case studies 

To illustrate the performance of the FTPH model under real conditions, deconvolution was also tested on 4 experimental 

datasets: two datasets on regions with expected intravascular CA distribution (brain and placenta), and two datasets with specific 

micro-circulation (cortical and cortico-medullary parts of the kidney). The spatial delineation of regions of interest and baseline 

definitions (time before injection) were performed interactively with software developed in Matlab (Mathworks, Natik, MA) 

[38]. Conversion from signal to concentration assumed a simple linear relationship for simplification. Patient MRIs were selected 

randomly in clinical studies with principal investigators’ authorization. 

 

 

3 RESULTS 

3.1 Illustration on simulated case studies 

The AIF used in simulations is shown in Fig 3.a with the corresponding TIC provided after convolution using 2CX and ATH 

models, with parametric values given as reference. The corresponding “true” TIR curves were drawn in Fig.3.b and c, as plain 

curves, for two time scales. The estimated TIR curves provided by deconvolution with the FTPH model were drawn in green in 

Fig.3.b and c, for both 2CX and ATH. The corresponding TIC curves, resulting from convolution with the AIF, were drawn with 

green crosses in Fig.3.a. In this visual example, the accuracy of the FTPH fitting was high whatever the model used to generate 

data (Fig.3.a). The absence of bias and noise in the TIR curves estimated by the FTPH model enables the identification of the 

patterns corresponding to ATH and 2CX (plateau and maximal initial decrease respectively) see Fig.3.b and c. 
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3.2 Identification of microcirculation hypothesis  

In total, 200 TIR curves were generated (two models, with and without noise).  TIR curves were estimated both with FTPH and 

B-spline, from the AIF and TIC curves. Fig. 4 illustrates deconvolution results for one 2CX data and one ATH data selected 

randomly from TIR initializations (same parameters). FTPH (in left) estimated accurately the TIR curve whatever the model 

under evaluation, with and without moderate noise. Conversely, in this example, (Fig. 4, right panel) B-Spline was able to 

estimate accurately only non-noisy 2CX data, showing otherwise oscillations or loss of the initial plateau from the initial ATH 

TIR curve. 

 

The five readers selected for model identification were: one radiologist working in an independent DCE study, one engineer in 

scientific processing with more than 15 years of experience in DCE, one biostatistician, one biologist and one engineering 

student with no experience in DCE data. Each reader received indications concerning patterns to identify 2CX and ATH models. 

The model identification based on the FTPH deconvolutions was efficient with mean sensitivity and specificity over 90% for 

non-noisy data. For noisy data, a moderate loss of efficiency was evaluated, with mean values over 80% (from 80% to 86%). 

Model identification based on B-Spline was less efficient. First, in line with Fig. 4, sensitivity was low (61%) for ATH detection 

and high (97%) for 2CX, resulting in a clear asymmetry in the visual interpretation. Specificity was intermediate (75%). The 

dissymmetry was increased by noise providing a very low sensibility of ATH detection (52%) and a moderate specificity of 2CX 

detection. All sensitivity-specificity values were collected in Table 2. 

 

The number of exams required to establish a reliable model identification (95% of confidence) was computed and collected 

shown in Table 3. Globally, the number of examinations required for the evaluation was substantially lower with FTPH than 

with B-Spline. For FTPH, few data (n < 4) were required for the model identification. This number increased moderately with 

noise (n < 9). For B-Splines, the efficiency of model detection depended clearly on the model (n < 5 for 2CX and n > 16 for 

ATH), which confirms its non-neutrality. 

 

Additionally, the level of confidence of the readers in their evaluations increased from B-Splines to FTPH, from 61% to 77% (p 

= 0.056, Wilcoxon) without noise, and from 30% to 60% with noise (P <0.01, Wilcoxon), respectively. The level of misleading 

of readers decreased from B-Splines to FTPH, from 13% down to 0.8% without noise (P<0.01, Wilcoxon) and from 9% down to 

7% with noise (NS), respectively. 

 

3.3 Quantitative evaluation (see Table 4) 

 

For 2CX data without noise, both mean squared errors were low (QE < 2.6%) regardless of the deconvolution model. In other 

cases, modeling QEs were lower for FTPH than for B-Spline which provided QE of 25% for 2CX and 45% for ATH with noise. 

Regarding the FTPH modeling, QE was contained under 10% even with the noise. Differences in values found between FTPH 

and B-Splines were confirmed with Wilcoxon tests (P<5.10-5). Also, for FTPH, QEs were comparable whatever the model used 

to generate data (P>0.05) whereas for B-Splines, QE was higher for data generated by the ATH model (P<5.10-5).  
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3.4 Case studies on real data 

3.4.1 Exploration 

 

The FTPH model provided fitted TIC curves which were consistent with enhancements observed in the brain and kidney, as 

shown in the right panels of Fig. 5. In all tissues of interest, the fitting of TIC was regular and faithful regarding the shape of the 

signals measured. This suggested good compliance of the model according to different acquisition contexts. Moreover, TIR 

curves, on the left, which were estimated from AIF and TIC, were both sharp and regular, i.e. compatible both with accuracy and 

precision. The shapes of the estimated TIR curves in the brain, without any visible plateau, suggested a poor agreement with the 

ATH hypothesis. It suggests that ATH should therefore be avoided to interpret this type of data physiologically. The shapes of 

the estimated TIR curves in the kidney, indicated an initial decrease with an intermediate pattern between the 2CX and ATH 

models that could be compatible with the Schabel model [31]. Plateaus around 80 seconds suggested ATH-like behavior, but, 

unexpectedly, for tubular microcirculation. For placental data, the comparison between ATH and 2CX curves is shown in more 

detail in Fig. 6. 

 

3.4.2 Comparison 

FTPH modeling was also compared to 2CX and ATH modeling on placental data, as shown in Fig. 6. TICs indicates that the 

ATH model provided a poorer fit than 2CX and FTPH models. Qualitatively, the fits of 2CX and FTPH were very accurate. 

Comparison of impulse responses indicates that 2CX and FTPH provided nearly equal TIRs. The exponential hypothesis, 

considered a priori by the 2CX model, was confirmed after by the FTPH model as an output of the data. This TIR equality 

suggested an absence of indetermination. Indeed, the 2CX and FTPH models being independent, if there were several equivalent 

micro-circulatory hypotheses or TIR patterns to explain the measured TIC equivalently, it would have been unlikely that the two 

models would converge towards the same solution. 

4 DISCUSSION 

The accuracy and precision of the FTPH model to assess TIRs were confirmed in a framework of simulated data. Mean squared 

errors lower than 10% were found in the data generated by the two 2CX and ATH models. This error, including bias and noise, 

was small enough to allow observers to identify the tissue microcirculation assumption underlying their data, regardless of the 

initial microcirculatory assumption. Moreover, results performed on several clinical data suggested that the FTPH model could 

be used for a larger scope of acquisitions. Overall, these results show the potential of the FTPH model for describing various 

DCE datasets neutrally and accurately. 

A correct DCE data description is not limited to a correct description of tissue observation (TIC). TIC provides only information 

on the evolution of the amount of contrast agent in the tissue, following injection. The transition between the entry of the contrast 

agent into the tissue (AIF) and its presence over time (TIC) depends on the mobility of the contrast agent within the different 

tissue structures, i.e. on the tissue microcirculation. As it is widely accepted that this transition can be expressed as a convolution 

with a tissue impulse response (TIR), TIR is assumed to be a correct description of the DCE data (the AIF, TIC pair). Thus, TIR 

contains the microcirculatory information; it is accessible only as data derived from AIF and TIC; and it is a common component 

of all deconvolution models. This consideration explains respectively (i) why we tried to evaluate properly TIR with our model 

and not TICs as is more commonly performed [24], (ii) why we evaluated the descriptive capabilities of our model not directly 
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on data but rather on TIRs which were assumed to be known thanks to simulations, (iii) and why a correct assessment of the TIR 

with a model such as the FTPH can be used as a reference for any PK model. 

The main innovation of the FTPH model versus B-Spline, was the introduction of construction points with variable time steps. 

This property allows the model to focus on the data description where the information is located. Beyond the simple technical 

aspect, this allowed us to remove an implicit hypothesis from the original B-Spline model that limited its scope. In the original 

model, the homogeneous sampling of the construction points (data features) assumes that the TIR information is distributed 

homogeneously over time. Technically, it induces a cut-off frequency and, therefore, homogeneous smoothing. However, 

theoretically, the minimum-hypothesis model does not contain this assumption. This produces a mismatch between the 

theoretical model and its numerical transcription. As this mismatch is based on technical considerations, this issue is particularly 

difficult to identify from a final user specialized in physiological or medical issues. Moreover, the B-Splines model does not 

strictly verify the decay hypothesis, as shown by the oscillations in Fig. 4 B. This second drift was corrected with the FTPH 

model. Thus, thanks to a more faithful numerical transcription of the theoretical minimal-hypothesis model, we have improved 

the control over a technical tool, simplified its formulation and then improved its TIR assessment efficiency. Theoretically, the 

minimal-hypothesis model only indicates that (1) the number of data features (model dimension) must be moderate because not 

all the measurements are independent, and (2) TIR is a decreasing function. Conventional deconvolution techniques are based on 

linear regularization methods, which are based on efficient signal processing techniques, but their relationship with the simple 

theoretical minimal-hypothesis model remains unclear. This concerns especially the regularization process, for the definition of 

the regularity metrics and he settings of the weighting between regularity and accuracy [32]. The consequences concerning the 

mismatch between the numerical and the theoretical model are more difficult to establish than with a simple sampling. This may 

explain why, to our knowledge, no TIR assessment has been proposed even though deconvolution techniques have been used in 

DCE for years [39]. 

 

Most of the previous studies in the literature had as main objective to retrieve sufficient information to classify patients. In this 

case, the search for information is subjected to a compromise because the needs are related to capture information, provide stable 

results, and provide results sufficiently synthetic to facilitate a decision-making process. Interestingly, not all physiological 

information is necessarily useful to identify the stage of pathology. It has even been shown that refining the description of TIRs 

by complex models could be detrimental to the discriminant capacity of the classification [11]. This explains why the simple 

Tofts-Kety model is currently used in oncology rather than the more physiological but more complex 2CX or ATH models [13]. 

With conventional parametric models, the TIRs assessment is voluntarily roughly approximate to ensure good robustness of the 

results. Thus, it is not necessary to describe the AIF/TIC transition in full detail to provide a diagnosis. Without reliable 

measurement or assessment of AIF, investigators should even be limited to the descriptive analyses of TICs. Indeed, in some 

cases, it was possible to discriminate pathological statuses using TIC descriptions only, assuming that AIFs were close between 

patients, or assuming that TICs could be compared to another internal reference tissues [40,41]. However, with these approaches, 

the link with microcirculation remains vague. This is why most investigators use convolution models. Overall, with conventional 

methods, the risks of bias are usually tolerated to reduce the risk of instability as much as possible, in order to improve inter-

patient and inter-center reproducibility [16,18,27]. This approach is consistent as long as the DCE analysis is used as a black box. 

However, if the parameters of the DCE models need to be interpreted in terms of tissue microcirculation, approximations and 

partial descriptions become an issue. However, attempts at interpretation from PK models are not uncommon [5,19], even when 

the models were not designed for this purpose. Information criteria were developed in line with the conventional classification 

challenge. The Bayesian and Akaike-type criteria: BIC, AIC, AICc and F-Test [12,13,24–26] were addressed to assess the 
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"quality" of DCE models used for data fitting. They derive from TIC and measure the performance of information retrieval. The 

performance increases with the integration of information into the model representation and decreases with the number of 

parameters required to establish this representation. These criteria propose an “ideal balance” between information retrieval and 

risk of instability, in accordance with the objective of classification [44]. Indeed, the more information available, the easier it will 

be to discriminate between groups of patients. Conversely, the more parameters are provided, the less this information will be 

usable by classification systems. However, these comparative criteria only provide a scale of appreciation between different 

models [24]. They do not indicate the performance of the best of the models tested in terms of agreement with data. Then, they 

do not determine whether a model is sufficiently consistent with the data to be considered as a valid physiological explanation of 

the observed data.  

 

When DCE data are fitted with a model, this model provides three results: a set of parameters {p}; the corresponding 

parameterized impulse response (TIR (t, {p})) and the TIC assessment (TICa) obtained by convolving TIR with AIF. The set of 

parameters {p} corresponds to a synthesis of the information needed to build TIR. If the parameters are interpreted in 

physiological terms, they are also used to explain TIR, thus explaining the pharmacokinetic transition from AIF to TIC. TIR 

itself, considered as a signal, regardless of the formulation used to perform its calculation, is a simple description of the 

transition from AIF to TIC. TICa is a by-product of AIF and the assessed TIR. It does not directly carry the pharmacokinetic 

information but can be directly compared to the measured tissue response. The Bayesian and Akaike-type criteria are based on 

the evaluation of the differences between the estimated and the observed TIC. Another approach was previously proposed to 

evaluate the TIC gap: the Fraction of Modeling Information (FMI), which was renormalized with the Fraction of Lasting 

Information (FLI) [22,24]. While the Akaike criteria compares the TIC error to the model dimension, the FMI criteria compares 

the total TIC error with the basic TIC error resulting only from the noise magnitude. The difference is the modeling error, which 

corresponds to the discrepancy between the model and the data that the model claims to explain. However, FMI, as Akaike-type 

criteria, is based on TIC analysis. It is thus AIF-dependent, and therefore less informative than an analysis performed on TIRs. 

Moreover, the FMI is a scalar that does not allow us to appreciate the nature of the mismatch between modeling and 

measurement. It would therefore be interesting to have criteria based on TIRs to complement the tools already available that are 

based on TIC analysis. 

 

In our study, we used the FTPH model to describe TIR in a way that was both parsimonious and as neutral as possible. The 

objective was to have an optimized tool for the description of the transition from AIF to TIC, without constraints imposed either 

by synthesis requirements (parametric models) or by technical tools that are challenging to control well (usual nonparametric 

models). However, the TIR assessment is challenging. The convolution with the AIF acts as a low pass-filter which can reduce 

differences between TICs from differences that could appear more clearly in TIR curves. The advantage of TIR is that it derives 

directly from the pharmacokinetic information being sought. The concern is that there is no baseline measure available to know 

the "true observed TIR". We, therefore, tested the FTPH model efficiency from known simulated TIRs.  Complex and divergent 

models were used for the simulation to test the FTPH model under a variety of non-trivial experimental conditions. The 

agreement between the FTPH model and our data was high. And indeed, the FTPH model allowed even inexperienced users to 

evaluate the type of microcirculation that was in agreement with their data.  To our knowledge, this capability has not been 

reported for any other model. Thus, although the "true TIR" is not directly measurable from the data (AIF, TIC), our results 

suggest that the FTPH model is a viable model to provide a satisfactory assessment of this curve (agreement with the data). In 
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other words, the FTPH model was a viable descriptive reference model (DRM) of DCE data, which verifies our original 

hypothesis. 

 

Assuming that the FTPH model can be considered a DRM under most of the experimental conditions (which remains to be 

demonstrated), the FTPH model would provide means of evaluating the agreement between any PK model and any new DCE 

dataset by comparing TIRPK and TIRFTPH. This comparison was performed when we analyzed the real data by comparing TIRFTPH 

to the expected or calculated shapes of TIRPK, for PK equals 2CX and ATK respectively. It suggested for instance that a 2CX-

type model should be more appropriate than an ATH-type model for analyzing cerebral and placental data if physiological 

indications are to be drawn from it. In the simulation analysis, we evaluated quantitatively the agreement between the FTPH 

model and the ground truth generated by the 2CX and ATH models, using the mean squared error between TIRFTPH and TIRPK, 

where PK corresponded either to ATH or 2CX. On new data, where the microcirculatory assumptions are poorly established, the 

same logic can be applied but in the other direction: the model to be tested is the PK model and the ground truth corresponds to 

the FTPH model which is assumed to be a DRM. The agreement still consists of a calculation of the mean squared error between 

TIRPK and TIRFTPH. However, these are only conditional perspectives on the fact that the FTPH model remains a reference model 

in a broader context than that of our study. Furthermore, it should be noted that consistency between modeling and observations 

is a necessary condition for the interpretation of pharmacokinetic parameters (TIRPK with TIRDRM). But the descriptive capacity 

of TIRPK does not guarantee the explanatory capacity of the {p}, used to define TIR, in terms of physiology. For this, the 

previous internal controls have to be completed by validation studies [42,43]. However, this is out of the scope of our study. 

 

Parametric PK models and the FTPH model do not have the same function. PK models have to simultaneously meet several 

objectives: to be stable, to extract essential information, to provide synthetic and if interpretable results. Their ability to address 

these various properties globally makes PK models useful from a technical point of view, especially for classification. However, 

these multiple functionalities generally make them unsuitable for performing one function optimally, independently of their other 

functions. In particular, they are not optimal for describing accurately DCE data. Thus, they usually describe the DCE data more 

or less roughly. On the contrary, the FTPH model was designed to specifically address this concern. It is expected to fulfill this 

function better than the KP models, and it is, therefore, likely to serve as a reference in this field. Conversely, it does not provide 

an easily manipulated synthesis and does not bring any interpretation except the minimal assumption of a convolution. The 

FTPH model is, therefore, a complementary tool to the standard models 

 

Different limitations were identified concerning both the FTPH model and the challenge designed to test its performances. First, 

this initial study had a limited scope. The evaluation concerned limited types of data (2CX and ATH), with limited levels of 

noise. Few evaluation criteria were used in simulated data and the evaluations on measured data were just use-cases, for 

illustrative purposes only. However, a wider generalization is beyond the scope of this initial study. We have already shown that 

the search for a well-conditioned deconvolution method is possible in DCE, which opens interesting perspectives to better 

explore microcirculation in-vivo or to better estimate the interpretative value of current PK models. Second, the optimization 

technique used to fit the data with the FTPH model was not completely explored. For simplification, a current method available 

in our laboratory was used.  Alternative algorithms were not explored nor the impact of parametric initialization and so on. 

Third, the generality of the FTPH model presented here should be further improved. For simplicity, six points were chosen to test 

the FTPH model. An adaptive technique should be considered to dimension the model according to the level of information 

available in the data. Moreover, the input function in the tissue should not be equal but derive from the AIF measured upstream 
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in a large artery. Then a short period of growth could be allowed before imposing the main decrease in the FTPH model, to 

include the dispersion of the contrast agent from the large artery to the tissue input, and thus make the model compatible with 

gamma variate patterns. Fourth, any model including convolution assumes that a correct measurement of arterial input is 

available. However, a correct measurement of AIF can be experimentally complicated. In this case, we recommend not to 

interpret the obtained parameters. Similarly, we have assumed that the various signal distortions and other artifacts, which are the 

subject of other publications [27], are either minor or corrected. 

 

5 CONCLUSION 

The free-time-point-Hermite model constitutes a direct and robust model to describe the TIR curves. It employs the localization 

of a few mobile construction-points defined in abscissa and ordinate, combined with an adequate interpolation and a direct 

decreasing constraint. Our results suggest that such a tool can be used to explore the microcirculatory structure expressed in DCE 

data. More generally, access to well-conditioned deconvolution techniques is likely to serve as a reference TIR for estimating the 

interpretative value of conventional PK models, and to explore data with a minimal hypothesis, so that the observer can be 

guided in the formulation of new pharmacokinetic hypotheses. 

 

Acknowledgments 

FTPH evaluation was possible in patient data thanks to the agreements of principal investigators of several studies that are 

namely Nathalie Siauve, Catherine Lefort and Laure Fournier. Thanks to Thomas Viel for improving the readability of the paper. 

 

REFERENCES  

 

[1] K.V. Lund, T.G. Simonsen, G.B. Kristensen, E.K. Rofstad, Pharmacokinetic analysis of DCE-MRI data of locally advanced cervical carcinoma with the 

Brix model, Acta Oncologica. 58 (2019) 828–837. https://doi.org/10.1080/0284186X.2019.1580386. 

[2] G. Dodin, J. Salleron, S. Jendoubi, W. Abou Arab, F. Sirveaux, A. Blum, P.A. Gondim Teixeira, Added-value of advanced magnetic resonance imaging to 

conventional morphologic analysis for the differentiation between benign and malignant non-fatty soft-tissue tumors, Eur Radiol. (2020). 

https://doi.org/10.1007/s00330-020-07190-0. 

[3] C. Hayes, A.R. Padhani, M.O. Leach, Assessing changes in tumour vascular function using dynamic contrast-enhanced magnetic resonance imaging, NMR 

in Biomedicine. 15 (2002) 154–163. https://doi.org/10.1002/nbm.756. 

[4] Z. Liu, B. Feng, C. Li, Y. Chen, Q. Chen, X. Li, J. Guan, X. Chen, E. Cui, R. Li, Z. Li, W. Long, Preoperative prediction of lymphovascular invasion in 

invasive breast cancer with dynamic contrast-enhanced-MRI-based radiomics, J Magn Reson Imaging. 50 (2019) 847–857. 

https://doi.org/10.1002/jmri.26688. 

[5] M. Claudon, E. Durand, N. Grenier, A. Prigent, D. Balvay, P. Chaumet-Riffaud, K. Chaumoitre, C.-A. Cuenod, M. Filipovic, M.-A. Galloy, L. Lemaitre, D. 

Mandry, E. Micard, C. Pasquier, G.H. Sebag, M. Soudant, P.-A. Vuissoz, F. Guillemin, DCE MR Urography Study Group, Chronic urinary obstruction: 

evaluation of dynamic contrast-enhanced MR urography for measurement of split renal function, Radiology. 273 (2014) 801–812. 

https://doi.org/10.1148/radiol.14131819. 

[6] M. Fan, P. Zhang, Y. Wang, W. Peng, S. Wang, X. Gao, M. Xu, L. Li, Radiomic analysis of imaging heterogeneity in tumours and the surrounding 

parenchyma based on unsupervised decomposition of DCE-MRI for predicting molecular subtypes of breast cancer, Eur Radiol. 29 (2019) 4456–4467. 

https://doi.org/10.1007/s00330-018-5891-3. 

[7] K. Sun, H. Zhu, W. Chai, Y. Zhan, D. Nickel, R. Grimm, C. Fu, F. Yan, Whole-lesion histogram and texture analyses of breast lesions on inline quantitative 

DCE mapping with CAIPIRINHA-Dixon-TWIST-VIBE, Eur Radiol. 30 (2020) 57–65. https://doi.org/10.1007/s00330-019-06365-8. 

[8] B. Turkbey, P.L. Choyke, PIRADS 2.0: what is new?, Diagn Interv Radiol. 21 (2015) 382–384. https://doi.org/10.5152/dir.2015.15099. 



13 

 

[9] K. Pinker, L. Moy, E.J. Sutton, R.M. Mann, M. Weber, S.B. Thakur, M.S. Jochelson, Z. Bago-Horvath, E.A. Morris, P.A. Baltzer, T.H. Helbich, Diffusion-

weighted Imaging with Apparent Diffusion Coefficient Mapping for Breast Cancer Detection as a Stand-Alone-Parameter: Comparison with Dynamic 

Contrast-enhanced and Multiparametric Magnetic Resonance Imaging, Invest Radiol. 53 (2018) 587–595. https://doi.org/10.1097/RLI.0000000000000465. 

[10] L. Desquilbet, Guide pratique de validation statistique de méthodes de mesure : répétabilité, reproductibilité, et concordance, (n.d.) 47. 

[11] C. Duan, J.F. Kallehauge, G.L. Bretthorst, K. Tanderup, J.J.H. Ackerman, J.R. Garbow, Are complex DCE-MRI models supported by clinical data?, 

Magnetic Resonance in Medicine. 77 (2017) 1329–1339. https://doi.org/10.1002/mrm.26189. 

[12] J.P.B. O’Connor, A. Jackson, G.J.M. Parker, G.C. Jayson, DCE-MRI biomarkers in the clinical evaluation of antiangiogenic and vascular disrupting agents, 

British Journal of Cancer. 96 (2007) 189–195. https://doi.org/10.1038/sj.bjc.6603515. 

[13] A. Shukla‐Dave, N.A. Obuchowski, T.L. Chenevert, S. Jambawalikar, L.H. Schwartz, D. Malyarenko, W. Huang, S.M. Noworolski, R.J. Young, M.S. 

Shiroishi, H. Kim, C. Coolens, H. Laue, C. Chung, M. Rosen, M. Boss, E.F. Jackson, Quantitative imaging biomarkers alliance (QIBA) recommendations 

for improved precision of DWI and DCE-MRI derived biomarkers in multicenter oncology trials, Journal of Magnetic Resonance Imaging. 49 (2019) e101–

e121. https://doi.org/10.1002/jmri.26518. 

[14] S.P. Sourbron, D.L. Buckley, Tracer kinetic modelling in MRI: estimating perfusion and capillary permeability, Phys. Med. Biol. 57 (2011) R1–R33. 

https://doi.org/10.1088/0031-9155/57/2/R1. 

[15] L. Beuzit, P.-A. Eliat, V. Brun, J.-C. Ferré, Y. Gandon, E. Bannier, H. Saint‐Jalmes, Dynamic contrast-enhanced MRI: Study of inter-software accuracy and 

reproducibility using simulated and clinical data, Journal of Magnetic Resonance Imaging. 43 (2016) 1288–1300. https://doi.org/10.1002/jmri.25101. 

[16] T. Heye, M.S. Davenport, J.J. Horvath, S. Feuerlein, S.R. Breault, M.R. Bashir, E.M. Merkle, D.T. Boll, Reproducibility of dynamic contrast-enhanced MR 

imaging. Part I. Perfusion characteristics in the female pelvis by using multiple computer-aided diagnosis perfusion analysis solutions, Radiology. 266 

(2013) 801–811. https://doi.org/10.1148/radiol.12120278. 

[17] N.A. Pack, E.V.R. DiBella, Comparison of Myocardial Perfusion Estimates From Dynamic Contrast-Enhanced Magnetic Resonance Imaging With Four 

Quantitative Analysis Methods, Magn Reson Med. 64 (2010) 125–137. https://doi.org/10.1002/mrm.22282. 

[18] T. Niu, P. Yang, X. Sun, T. Mao, L. Xu, N. Yue, Y. Kuang, L. Shi, K. Nie, Variations of quantitative perfusion measurement on dynamic contrast enhanced 

CT for colorectal cancer: implication of standardized image protocol, Phys. Med. Biol. 63 (2018) 165009. https://doi.org/10.1088/1361-6560/aacb99. 

[19] H.J. van de Haar, S. Burgmans, J.F.A. Jansen, M.J.P. van Osch, M.A. van Buchem, M. Muller, P.A.M. Hofman, F.R.J. Verhey, W.H. Backes, Blood-Brain 

Barrier Leakage in Patients with Early Alzheimer                     Disease, Radiology. 281 (2016) 527–535. https://doi.org/10.1148/radiol.2016152244. 

[20] J. Nickander, R. Themudo, A. Sigfridsson, H. Xue, P. Kellman, M. Ugander, Females have higher myocardial perfusion, blood volume and extracellular 

volume compared to males – an adenosine stress cardiovascular magnetic resonance study, Scientific Reports. 10 (2020) 10380. 

https://doi.org/10.1038/s41598-020-67196-y. 

[21] H. Everaars, P.A. van Diemen, M.J. Bom, S.P. Schumacher, R.W. de Winter, P.M. van de Ven, P.G. Raijmakers, A.A. Lammertsma, M.B.M. Hofman, R.J. 

van der Geest, M.J. Götte, A.C. van Rossum, R. Nijveldt, I. Danad, R.S. Driessen, P. Knaapen, Comparison between quantitative cardiac magnetic resonance 

perfusion imaging and [15O] H2O positron emission tomography, Eur J Nucl Med Mol Imaging. 47 (2020) 1688–1697. https://doi.org/10.1007/s00259-019-

04641-9. 

[22] D. Balvay, F. Frouin, G. Calmon, B. Bessoud, E. Kahn, N. Siauve, O. Clément, C.A. Cuenod, New criteria for assessing fit quality in dynamic contrast-

enhanced T1-weighted MRI for perfusion and permeability imaging, Magn Reson Med. 54 (2005) 868–877. https://doi.org/10.1002/mrm.20650. 

[23] T. Gaa, W. Neumann, S. Sudarski, U.I. Attenberger, S.O. Schönberg, L.R. Schad, F.G. Zöllner, Comparison of perfusion models for quantitative T1 

weighted DCE-MRI of rectal cancer, Sci Rep. 7 (2017) 1–9. https://doi.org/10.1038/s41598-017-12194-w. 

[24] A. Lecler, D. Balvay, C.-A. Cuenod, L. Marais, M. Zmuda, J.-C. Sadik, O. Galatoire, E. Farah, J.E. Methni, K. Zuber, O. Bergès, J. Savatovsky, L. Fournier, 

Quality-based pharmacokinetic model selection on DCE-MRI for characterizing orbital lesions, Journal of Magnetic Resonance Imaging. 50 (2019) 1514–

1525. https://doi.org/10.1002/jmri.26747. 

[25] N. Dikaios, D. Atkinson, C. Tudisca, P. Purpura, M. Forster, H. Ahmed, T. Beale, M. Emberton, S. Punwani, A comparison of Bayesian and non-linear 

regression methods for robust estimation of pharmacokinetics in DCE-MRI and how it affects cancer diagnosis, Computerized Medical Imaging and 

Graphics. 56 (2017) 1–10. https://doi.org/10.1016/j.compmedimag.2017.01.003. 

[26] M. Lowry, B. Zelhof, G.P. Liney, P. Gibbs, M.D. Pickles, L.W. Turnbull, Analysis of prostate DCE-MRI: comparison of fast exchange limit and fast 

exchange regimen pharmacokinetic models in the discrimination of malignant from normal tissue, Invest Radiol. 44 (2009) 577–584. 

https://doi.org/10.1097/RLI.0b013e3181b4c1fe. 

[27] H. Kim, Variability in Quantitative DCE-MRI: Sources and Solutions, J Nat Sci. 4 (2018). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5841165/ 

(accessed March 24, 2020). 

[28] C.A. Cuenod, D. Balvay, Perfusion and vascular permeability: basic concepts and measurement in DCE-CT and DCE-MRI, Diagn Interv Imaging. 94 (2013) 

1187–1204. https://doi.org/10.1016/j.diii.2013.10.010. 



14 

 

[29] M. Jerosch-Herold, C. Swingen, R.T. Seethamraju, Myocardial blood flow quantification with MRI by model-independent deconvolution, Med. Phys. 29 

(2002) 886–897. https://doi.org/10.1118/1.1473135. 

[30] H. Prautzsch, W. Boehm, M. Paluszny, Bézier and B-spline techniques, Springer, New York, NY, 2002. 

[31] M.C. Schabel, A unified impulse response model for DCE-MRI: A Unified Impulse Response Model for DCE-MRI, Magnetic Resonance in Medicine. 68 

(2012) 1632–1646. https://doi.org/10.1002/mrm.24162. 

[32] P.C. Hansen, REGULARIZATION TOOLS: A Matlab package for analysis and solution of discrete ill-posed problems, Numerical Algorithms. 6 (1994) 1–

35. https://doi.org/10.1007/BF02149761. 

[33] S. Sourbron, R. Luypaert, P.V. Schuerbeek, M. Dujardin, T. Stadnik, M. Osteaux, Deconvolution of dynamic contrast-enhanced MRI data by linear 

inversion: Choice of the regularization parameter, Magnetic Resonance in Medicine. 52 (2004) 209–213. https://doi.org/10.1002/mrm.20113. 

[34] K. Murase, Y. Yamazaki, S. Miyazaki, Deconvolution analysis of dynamic contrast-enhanced data based on singular value decomposition optimized by 

generalized cross validation, Magn Reson Med Sci. 3 (2004) 165–175. 

[35] M. Jerosch-Herold, C. Swingen, R.T. Seethamraju, Myocardial blood flow quantification with MRI by model-independent deconvolution, Medical Physics. 

29 (2002) 886–897. https://doi.org/10.1118/1.1473135. 

[36] Solve nonlinear curve-fitting (data-fitting) problems in least-squares sense - MATLAB lsqcurvefit - MathWorks France, (n.d.). 

https://fr.mathworks.com/help/optim/ug/lsqcurvefit.html?searchHighlight=lsqcurvefit&s_tid=doc_srchtitle (accessed July 12, 2017). 

[37] I. Thomassin-Naggara, N. Soualhi, D. Balvay, E. Darai, C.-A. Cuenod, Quantifying tumor vascular heterogeneity with DCE-MRI in complex adnexal 

masses: A preliminary study, J Magn Reson Imaging. (2017). https://doi.org/10.1002/jmri.25707. 

[38] D. Balvay, I. Troprès, R. Billet, A. Joubert, M. Péoc’h, C.A. Cuenod, G. Le Duc, Mapping the Zonal Organization of Tumor Perfusion and Permeability in a 

Rat Glioma Model by Using Dynamic Contrast-enhanced Synchrotron Radiation CT 1, Radiology. 250 (2009) 692–702. 

https://doi.org/10.1148/radiol.2501071929. 

[39] Z. Szabó, G. Torsello, C. Reifenrath, R. Porschen, H. Vosberg, [An experimental study of liver perfusion using non-diffusible radiotracers: differentiation of 

the arterial and portal venous components by deconvolution analysis of first-pass time-activity curves], Nuklearmedizin. 27 (1988) 209–218. 

[40] I. Thomassin-Naggara, D. Balvay, C.A. Cuenod, E. Daraï, C. Marsault, M. Bazot, Dynamic contrast-enhanced MR imaging to assess physiologic variations 

of myometrial perfusion, Eur Radiol. 20 (2010) 984–994. https://doi.org/10.1007/s00330-009-1621-1. 

[41] D. Ippolito, S.G. Drago, A. Pecorelli, C. Maino, G. Querques, I. Mariani, C.T. Franzesi, S. Sironi, Role of dynamic perfusion magnetic resonance imaging in 

patients with local advanced rectal cancer, World J. Gastroenterol. 26 (2020) 2657–2668. https://doi.org/10.3748/wjg.v26.i20.2657. 

[42] M. Jerosch-Herold, N. Wilke, MR first pass imaging: quantitative assessment of transmural perfusion and collateral flow, Int J Card Imaging. 13 (1997) 

205–218. https://doi.org/10.1023/a:1005784820067. 

[43] Y. Zhao, L. Hubbard, S. Malkasian, P. Abbona, S. Molloi, Dynamic pulmonary CT perfusion using first-pass analysis technique with only two volume 

scans: Validation in a swine model, PLoS ONE. 15 (2020) e0228110. https://doi.org/10.1371/journal.pone.0228110. 

[44] R. Paudyal, Y. Lu, V. Hatzoglou, A. Moreira, H.E. Stambuk, J.H. Oh, K.M. Cunanan, D.A. Nunez, Y. Mazaheri, M. Gonen, A. Ho, J.A. Fagin, R.J. Wong, 

A. Shaha, R.M. Tuttle, A. Shukla‐Dave, Dynamic contrast-enhanced MRI model selection for predicting tumor aggressiveness in papillary thyroid cancers, 

NMR in Biomedicine. 33 (2020) e4166. https://doi.org/10.1002/nbm.4166. 

 

  



15 

 

Table 1. Parameters of the MRI sequences 

 

Table 2. Efficiency of the identification of pharmacokinetic hypotheses. Sensibility and specificity for Hermite and B-spline 

model to identify data generated with ATH and 2CX assumptions. (presented as mean values with standard deviations) 

 

 

Table 3. Average number of tests to identify the pharmacokinetic hypothesis. Number of measurements required to identify the 

initial pattern (2CX or ATH assumptions) with 95% of confidence, with Hermite and B-spline modeling. 

 

 

Table4. Estimated error of the TIR. Modeling errors (QE in %) between initial impulse responses generated with ATH and 2CX 

models and Hermite and B-spline estimations, for noisy (SNR = 20) and non-noisy data. Values: means with standard deviation 
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Figure 1: Graphical representation of the deconvolution models model. (a) The B-Spline model is defined by 15 control points 

which can be modified in amplitude. Their temporal location is homogeneous. The assessed TIR curve is continuously 

constructed from the control points using the B-Spline technique, including conventional splines. The decay constraint is not 

imposed directly on the reconstructed curve. (b) The FTPH model is defined by 6 reference points included in the final assessed 

TIR curve which can be modified both in amplitude and time. The decay constraint was imposed on the reference point and 

propagated by interpolation between these points by using a Hermite’s spline. 

 

Figure 2: Assessment of deconvolution models. A measured arterial input function (AIF) was convolved with impulse responses 

(TIR) generated by two competing DCE models (2CX and ATH), to produce noisy tissue responses (TIC). Then, AIF and TICs 

were provided to the B-Splines and FTPH deconvolution models that generated an assessment of the initial TIRs (TIRa). The 

difference between TIRa and TIRs was then evaluated in terms of relative root mean square error and difficulty to visually 

identify the original model from the observation of the TIRe. 

 

Figure 3: Example of Hermite analysis performed on data generated with 2CX and ATH models for simulated data without 

noise. (a) Data fitting with the Hermite model (green) of data generated with a 2CX (blue) and a ATH (dashed red). The 

corresponding arterial input function (AIF in dark red) was indicated with its own scale. (b and c) Corresponding tissue impulse 

response (TIR) signals, for the initial time points in (b) and all time points in (c). In this example, Hermite enabled a correct 

fitting of the signal and a correct recovery of initial TIR curves bearing tissue information. 

 

Figure 4: Tissue impulse responses (TIR) from 2CX and ATH data fitted with Hermite and B-spline models, with and without 

noise. (Up) initial 2CX TIC-curve. (Down) initial ATH TIC-curve. (Left) fitted by Hermite. (Right) fitted by B-Spline. In these 

examples, the TIC assessment by Hermite was correct whatever the model and the noise condition. Oscillations and loss of 

information are visible for the B-Spline model. 

 

Figure 5: Hermite’s model applied on 4 different study cases and for 3 different patients during MRI acquisitions. (Left) tissue 

impulse responses estimated by Hermite. (Right) fitting of tissue responses, including enhancements measured in tissues, data 

fitting with Hermite model, and the difference (crosses): the residue. Line 1 in brain (a-b), and line 2 in placenta (c-d), tissues 

with intravascular distribution. Line 3 and 4 in kidney: (e-f) in a cortical region, (g-h) in a cortico medular region. Fittings were 

consistent for each tissue response. Corresponding unnoisy tissue impulse responses (TIR) provided descriptions which were not 

in line with the ATH model. 

Figure 6. Comparison between the 2CX and ATH parametric models versus the FTPH model. (Left) Impulse Responses: TIRs; 

(Right) Tissue Responses:  TICs. The TIC curves indicate that the ATH model describes the data (black) more coarsely than the 

2CX (blue) and the FTPH model (green). FTPH and 2CX describe TIC correctly. These indications are confirmed in the TIRs, 

which provide additional information. The differences are more noticeable due to a noise reduction compared to the 

measurements. Moreover, the nature of the differences can be clarified: the hypothesis of a minimal transit time in the tissue (red 

plateau) is not confirmed by observation (FTPH data-based model). The 2CX and ATH TIRs overlap, apart from the first point. 

As the TICs are the result of a convolution of the TIRs with the arterial input (AIF), different TIRs can provide very close TICs. 

In this case, the "true TIR" is undetermined and several TIRs from different models are plausible, which weakens the 

interpretative value of each model. In this example this is not the case: two independent models converged to the same TIR, 
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which suggests that the description provided by the 2CX model is the only one compatible with the observation. The TIR of the 

2CX model is therefore in agreement with the data and seems to be imposed by the data itself. 

 

 

 

 















Tissue 
TR 

(ms) 

TE 

(ms) 

Flip 

Angle 

Duration 

 

Time 

points 

Sequen-

ce 

Kidney 

(Human) 
2.1 0.9 15° 99s 589 3D 

Brain 

(Human) 
4 2.3 8° 373s 130 3D 

Placenta 

(Rat) 
11.4 1.0 90° 587s 500 2D 

Table 1. Parameters of the MRI sequences 



 

Hermite model assessments 

Without noise SNR = 20 

Sensibility Specificity Sensibility Specificity 

ATH 91 (± 9) % 98 (± 5) % 86 (± 12) % 83 (± 13) % 

2CX 97 (± 5) % 93 (± 10) % 80 (± 11) % 86 (± 12) % 

 

B-spline model assessments 

Without noise SNR = 20 

Sensibility Specificity Sensibility Specificity 

ATH 56 (± 16) % 99 (± 2) % 46 (± 16) % 94 (± 5) % 

2CX 98 (± 5) % 70 (± 17) % 85 (± 8) % 67 (± 5) % 

Table 2. Efficiency of the identification of pharmacokinetic hypotheses. Sensibility and specificity for Hermite 

and B-spline model to identify data generated with ATH and 2CX assumptions. (presented as mean values with 

standard deviations) 

 



 

Nb 95% 
Hermite model B-spline model 

Noise-free SNR = 20 Noise-free SNR = 20 

ATH 3.8 (± 2.17) 8.6 (± 9.32) >16 (± 6.6) >16 (± 0) 

2CX 2.4 (± 0.5) 8.2 (± 9.55) 4.2 (± 4.9) 5.4 (± 4.3) 

Table 3. Mean exams number to identify the pharmacokinetic hypothesis. Number of measures required to 

identify the initial pattern (2CX or ATH assumptions) with 95% of confidence, with Hermite and B-spline 

modeling. 

 



Table4. Estimation error of the TIR. Modeling errors (E in %) between initial impulse responses generated with 

ATH and 2CX models and Hermite and B-spline estimations, for noisy (SNR = 20) and non-noisy data. Values: 

means with standard deviation 

E 
Hermite model 

Without noise SNR = 20 

ATH 3.35 (± 2.9) % 8.33 (± 3.9) % 

2CX 2.52 (± 0.9) % 6.89 (± 2.4) % 

E 
B-spline model 

Without noise SNR = 20 

ATH 15.87 (± 6.09) % 44.89 (± 83.6) % 

2CX 1.16 (± 1.1) % 24.94 (± 74.4) % 




