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Impact of the selected equation of state on the solution of the Riemann problem for diphasic water
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We address the solution of the Riemann problem for water in the diphasic domain. We compare the solution obtained with the IAPWS equation of state (EOS) with the solution obtained with a stiffened gas EOS for pure liquid water, a tabulated EOS for the diphasic domain and a perfect gas EOS for pure steam. We obtain both convex isentropes and convex Hugoniot curves so that the Riemann problem can be solved easily and its solution is unique. Its solution, however, may not exist in some extreme cases. We analyse the effect of the EOS which has been selected

We give examples which are useful to understand the depressurization process in a tube.

Introduction

For real materials, the Riemann Problem has been considered in the pioneering work by R. Menikoff & B. Plohr [START_REF] Menikoff R | Riemann Problem for fluid flow of real materials[END_REF]. In particular, they show that when the isentropes in the (p,߬) plane are convex, then the Riemann problem may not have a solution, but it is unique. As we shall see, for water, we get convex isentropes . The main reason comes from the following diagram https://demonstrations.wolfram.com/TemperatureEntropyDiagramForWater/ This diagram shows that, for water, when one follows a given isentrope, the saturation line can be crossed only once: from the liquid to the diphasic domain or from the steam to the diphasic domain.

Since the sound speed is higher in the liquid domain than in the diphasic domain and also higher in the steam domain than in the diphasic domain, we shall deduce that for water, isentropes are convex in the ሺ, ߬ሻ domain. In [START_REF] Muller | The Riemann Problem for the Euler Equations with Nonconvex and Nonsmooth Equation of State: Construction of Wave Curves[END_REF] Müller & Voss consider so called "retrograde fluids" like dodecane for which this is not the case. In the present paper we restrict ourselves to water, for which very accurate EOS have been established like IAPWS97 [START_REF] Wagner | International Steam Tables: Properties of Water and Steam Based on the Industrial Formulation IAPWS-IF97[END_REF], which we shall study for pressures below the critical one (22.06 MPa)

The IPAWS97 EOS is very accurate, but quite costly as regards computing time. See more details in [START_REF] Quibel | Simulation of water-vapor two-phase flows with non-condensable gas[END_REF]. People frequently use stiffened gas EOS for pure liquid water and another one for pure steam water. Then they apply thermodynamic laws to obtain an EOS in the diphasic domain, as explained in [START_REF] Després | Numerical Methods for Eulerian and Lagrangian Conservation Laws[END_REF][START_REF] Helluy | Simulation numérique des écoulements multiphasiques : de la théorie aux applications[END_REF]. This induces a computational cost, and this is the reason why people build look-up tables as in [START_REF] Quibel | Simulation of water-vapor two-phase flows with non-condensable gas[END_REF] or [START_REF] Saurel | A numerical study of cavitation in the wake of a hypervelocity underwater projectile[END_REF].

In the present paper, we use look-up tables for the diphasic domain only. We complement them by a stiffened gas EOS for the pure liquid domain (IAPWS region 1) and a perfect gas EOS for pure steam domain (IAPWS region 2).

In §1 we show how to use our table to derive an EOS in the diphasic domain. In §2, we show how to combine our diphasic EOS with a modified stiffened gas EOS in the pure liquid domain.

In §3, we show how to combine our diphasic EOS with a modified perfect gas EOS in the steam domain. In §4 we address the solution of the Riemann problem with our combined EOS. We show that the isentropes we obtain in the (p,߬) plane are convex, which, according to [START_REF] Menikoff R | Riemann Problem for fluid flow of real materials[END_REF], proves that the Riemann problem has a unique solution.

Like in [START_REF] Menikoff R | Riemann Problem for fluid flow of real materials[END_REF] we use a graphical method for solving the Riemann problem. Finally, we give some specific examples in connection with depressurization.

1 Equation of state for diphasic water.

Formalism

In what follows, the subscript ݂ (resp. )ݒ stands for liquid (resp. steam) For equilibrium diphasic mixtures (steam + liquid) we have extracted from IAPWS a table of 300 lines. For 1 ≤ ݅ ≤ 300, our table gives a value ܶ for the saturation temperature and the 7 values ሺܶ ሻ, ߬ ሺܶ ሻ, ߬ ௩ ሺܶ ሻ, ߝ ሺܶ ሻ, ߝ ௩ ሺܶ ሻ, ݏ ሺܶ ሻ, ݏ ௩ ሺܶ ሻ.

We have ܶ ଵ = 335 ܭ and ܶ ଷ = 634 ܭ which gives limits to our domain of validity. From our table, following Müller & Voss [START_REF] Muller | The Riemann Problem for the Euler Equations with Nonconvex and Nonsmooth Equation of State: Construction of Wave Curves[END_REF], we proceed in the following way :

Method A: to compute , ܶ and ,ݏ when ߬ and ߝ are given:

Let ݕ ఛ ሺܶሻ = ൫߬ -߬ ௩ ሺܶሻ൯ ቀ߬ ሺܶሻ -߬ ௩ ሺܶሻቁ ൗ ݕ ఌ ሺܶሻ = ൫ߝ -ߝ ௩ ሺܶሻ൯ ቀߝ ሺܶሻ -ߝ ௩ ሺܶሻቁ ൗ
To compute ܶ we just have to solve the equation ݕ ఛ ሺܶሻ = ݕ ఌ ሺܶሻ. This is a nonlinear equation with one unknown ܶ which can be easily solved by 

• finding ݅ such that ݕ ఛ ሺܶ ሻ > ݕ ఌ ሺܶ ሻ and ݕ ఛ ሺܶ ାଵ ሻ < ݕ ఌ ሺܶ ାଵ ሻ • solving a second-degree equation to find ߠ such that ൫߬ -߬ ௩ ሺܶሻ൯ ቀߝ ሺܶሻ -ߝ ௩ ሺܶሻቁ = ൫ߝ -ߝ ௩ ሺܶሻ൯ ቀ߬ ሺܶሻ -߬ ௩ ሺܶሻቁ

Sound speed

If we use ߬, ݏ as the primitive variables, so that we can use Method A, we have

(1) ܿ = ߬ ඥ-߲ ߲߬ ⁄ .
With ߬, ߝ as the primitive thermodynamic variables, we can use Method B and

(2) ܿ = ߬ ඥ. ߲ ߲ߝ ⁄ -߲ ߲߬ ⁄

In the following test we replace partial derivatives by finite differences, and we get the results given in Fig 2 for  = 12.9 .ܽܲܯ Note that we obtain 2 superposed curves. We notice that the sound speed in a diphasic mixture is much lower than in the liquid phase, where it is of the order of 800 to 1200 m/s. This result is well known.

Equation of state for the liquid phase

For the pure liquid phase, we shall use a stiffened gas EOS. [START_REF] Faccanoni | Étude d'un modèle fin de changement de phase liquide-vapeur[END_REF] (3)  = ߛ- ஶ + ሺߛ -1ሻሺߝ -ݍሻ/߬ However, in the standard stiffened gas model, ݍ is a constant, whereas here we shall require that  = ߛ- ஶ + ሺߛ -1ሻሺߝ -ݍሻ/߬ ሺሻ on the saturation line , ߬ ሺሻ, ߝ ሺሻ, which means that we shall select

ݍ = ݍሺሻ = ߝ ሺሻ -ሺ + ߛ ஶ ሻ߬ ሺሻ/ሺߛ -1ሻ)
This is necessary to define a continuous (but not differentiable) value of ߝ across the saturation line. More precisely, for a given point in the pure liquid domain ሺ߬, ሻ, we first determine a point ሺ߬ ,  ሻ on the saturation line such that, (4)

+ ஶ = ሺ +  ஶ ሻ ሺ߬ ߬ ⁄ ሻ ఊ ߬ = ߬ ሺ ሻ Then we compute ݍ = ߝ ሺ ሻ -ሺ + ߛ ஶ ሻ߬ /ሺߛ -1ሻ
And finally, we compute ߝ = ݂ሺ߬, ሻ by using (4).

In table 1 we compare the specific internal energy obtained with our method, with ߛ = 2.79 and  ஶ = 186, and the one given by IAPWS97.

The results are given along an isochore line ߬ =1.4877 L/kg We note that the results are very close to each other. We also note that the parameter ݍ is almost constant Note that there are some points ሺ߬, ሻ in the liquid domain for which we shall not be able to find ሺ߬ ,  ሻ. Let ሺ߬ ,  ሻ denote the smallest point on the saturation line in our table this will be the case for the points on the left of the isentropic curve 

+  ஶ = ሺ +  ஶ ሻ ሺ߬ ߬ ⁄ ሻ ఊ . For these points we select ݍ = ݍ = ߝ ሺ ሻ -ሺ + ߛ ஶ ሻ߬ /ሺߛ -1ሻ
This gives an EOS which is incomplete in the sense of Menikoff-Plohr, but can be completed as indicated in [START_REF] Menikoff R | Riemann Problem for fluid flow of real materials[END_REF].

To evaluate an isentrope with such an EOS, we can proceed in the following way :

-We start from ሺ߬, ߝ, ሻ satisfying ߝ = ݂ሺ߬, ሻ -We introduce increments ሺ݀߬, ݀ߝ, ݀ሻ satisfying both -݀ߝ = ݂ ఛ ݀߬ + ݂ ݀ and -݀ߝ = ߬݀- We easily find a relation between ݀ and ݀߬, which allows to evaluate the isentropic curve by increment.

More explicitly, we have To adjust the parameters ߛ and  ஶ of our SG EOS it is desirable to have a look at the sound speed as illustrated in Table 1 Tsat (K) Obviously in both cases our isentrope is continuous but there is a strong slope discontinuity between both domains. This corresponds to a strong discontinuity of the sound speed ܿ. Note that such an isentropic curve is convex. It has a slope discontinuity on the saturation line. But since the slope depends on ܿ ଶ and since ܿ decreases, the isentropic curve is globally convex.

ሺ +  ஶ ሻ ߬ ఊ = ሺ +  ஶ ሻ ሺ߬ ሻ ఊ ߝ = ݍ + ൫ሺߛ+ ஶ ሻ߬൯ ሺߛ -1ሻ ⁄ (a) ߛሺ +  ஶ ሻ ߬ ఊିଵ ݀߬ + ߬ ఊ ݀ = ߛሺ +  ஶ ሻ ሺ߬ ሻ ఊିଵ ݀߬ + ሺ߬ ሻ ఊ ݀ (b) ݀߬ = ௗఛ ௗ బ ݀ (c) ݀ߝ = ݍ݀ + ൫ሺߛ+ ஶ ሻ ݀߬ + ߬ ݀൯ ሺߛ -1ሻ ⁄ (d) ݍ݀ = ௗఌ ௗ బ ݀ -൫ሺ + ߛ ஶ ሻ݀߬ + ߬ ݀ ൯/ሺߛ -1ሻ ( 
Psat (Mpa) ܿ IAPWS (m/s) ߛ  ஶ (Mpa) ܿ SG (m/
3 Equation of state for the steam phase

First, we recall that, for water, on both sides of the steam saturation line, the sound speed is always higher on the pure steam side.

Here is what we get with IAPWS on Fig 4. At ߬ = ,݃݇/ܮ535.43  = 5.664 ܽܲܯ the isentropic curve is shown on Fig. 7 Note that for  > 5.664 ܽܲܯ we are in the pure steam domain and for  < 5.664 ܽܲܯ in the diphasic domain.

4: Solution of the Riemann problem with our equation of state

We shall consider the case where we have the same fluid with two different states separated by a diaphragm which is to be removed at time ݐ = 0.

We then have ݑ ோ = ݑ = 0 and we shall assume that  ோ >  .

We anticipate that we shall have a 1-shock (propagating to the left) and a 3-rarefaction wave propagating to the right.

For ݐ > 0 we shall have an intermediate constant state ݑ * ,  * , itself subdivided in 2 parts separated by a contact discontinuity. On the left (resp. on the right) of the contact discontinuity, we shall have ߬ = ߬ ଵ (resp. ߬ = ߬ ଶ ).

We have 4 unknowns ݑ * ,  * , ߬ ଶ , ߬ ଵ , and we need 4 scalar equations.

First, let ݃ሺ߬ሻ =  ܿ ோ ሺߪሻ ߪ ⁄ ݀ߪ ఛ ఛ బ
and ܿ ோ ሺ߬ሻ = ܿሺ߬, ݏ ோ ሻ, we shall use the fact that not only the entropy ݏ but also the Riemann invariant ܴ = ݑ -݃ሺ߬ሻ, is constant along a 3-rarefaction wave.

We refer the reader e.g. to [START_REF] Corot | Numerical simulation of shock waves in a bi-fluid flow: application to steam explosion[END_REF] We now get our first two equations: (4)

ݑ * -݃ሺ߬ ଶ ሻ -൫ݑ ோ -݃ሺ߬ ோ ሻ൯ = 0 (5)  * -݂ሺ߬ ଶ , ݏ ோ ሻ = 0
where the latter gives the isentrope associated to the right state. We have seen on Fig. 3 that we can use the IAPWS isentrope by a SG isentrope with a good approximation. This is also true in the ሺ,ݑ ሻ plane as described by ( 4) : see Fig. 8. 

Hugoniot curves.

Examples of Hugoniot curves

An example is shown in [START_REF] Menikoff R | Riemann Problem for fluid flow of real materials[END_REF] where the Hugoniot curves both in the ሼ߬, ሽ plane and the ሼ,ݑ ሽ plane are not convex. This is not what we find here, for water. We shall consider 3 cases: 1. a case where the Hugoniot curve starts from the saturation curve and stays in the steam domain 2. a case where the Hugoniot curve is crossing the saturation curve on the steam side 3. a case where the Hugoniot curve is ending at the saturation curve on the liquid side On Fig. 10 we represent 2 curves : the yellow one is given by IAPWS while the blue one is given by the perfect gas equation with ߛ = 1.28. And, with the SG approximation, we get That is (after some easy calculations) : On Fig 13, we plot the Hugoniot curve in ሼ,ݑ ሽ axes. We represent The IAPWS curve in red in the steam domain. The blue curve corresponds to the diphasic domain. There is no significant difference if we use the perfect gas EOS with ߛ = 1.28 or even ߛ = 1.26 in the steam domain.

 = ߝ -ݍ - ߛ ஶ ߬ ߛ -1 - 1 2  ሺ߬ -߬ ሻ ߬ ߛ -1 + 1 2 ሺ߬ -߬

Graphical solution to the Riemann problem

To graphically solve the Riemann problem, we just have to find the intersection in the ሼ,ݑ ሽ plane of the isentropic curve starting from the state ሼ߬ ோ ,  ோ , ݑ ோ ሽ and the Hugoniot curve starting from the state ሼ߬ ,  , ݑ ሽ.

Here is an example: we take ሼ39 ܮ ݇݃ ⁄ , 0. We notice that the rarefaction wave is made of 2 parts : the first one propagates rapidly (900 m/s) to the right and decreases the pressure from 15 MPa to 10.97 MPa, that is the saturation pressure located on the same isentropic curve as ሼ߬ ோ , ܲ ோ ሽ. The second part is relatively slow (~68 m/s) and decreases from 10.97 MPa to 3.48 MPa. We can say that there is a fast depressurization, which hardly decreases the volumic mass, followed by a slow depressurization.

Another Case

As we have seen above, the Hugoniot curve may stop at the liquid saturation line. This means that the solution of the Riemann problem may not exist. However it will be in extreme situations. It cannot happen for a shock tube where we have ݑ ோ = ݑ = 0 at least in the pressure domain that we consider here (0.0218 MPa ≤  ≤ 17.75 ܽܲܯ ). We give an example on We also observe that even though the Hugoniot curve ends at ሼ1.3083 ,݃݇/ܮ 5.664 ܽܲܯሽ (see Fig 12). The intersection occurs at ሼ-272 ,ݏ/݉ 1.25 ܽܲܯሽ which is far from the end. The reason is that the liquid water is hardly compressible, so that the velocity of the liquid does not increases very much in a rarefaction wave, while its pressure decreases a lot.

To build a Riemann Problem with no solution, we should take ݑ ோ ≤ -400 ݏ/݉ at least, the other data being unchanged.

Conclusion :

IAPWS97 is a reference equation of state for water. To save computing time in finite difference of finite volume computations, it is possible to use computationally more efficient equations of state.

In the present paper, we have selected a stiffened gas EOS in the liquid domain, a tabulated EOS in the diphasic domain and a perfect gas EOS in the steam domain. This is valid from pressures below the critical pressures. However, for the sake of accuracy, it is recommended to carefully select the parameters ߛ, and  ஶ . 

Fig 2

 2 Fig 2 Sound speed evaluated either with (2) or (3) as a function of the steam mass fraction x

Proposition 1 :

 1 e) ݀ߝ = ߬݀- The unknowns are ݀߬, ,݀ ݀߬ , ݀ , ݀ߝ, ݍ݀ and we have 5 equations. If we prescribe ݀߬ we can evaluate ݀ like the 5 other unknowns. Along an isentrope, we have ݀ = ݀߬ = ݍ݀ = 0 Proof : (a) gives ߛሺ +  ஶ ሻ ߬ ఊିଵ ݀߬ + ߬ ఊ ݀ = 0 i-e ߛሺ +  ஶ ሻ ݀߬ + ݀߬ = 0 (c) + (e) give ߬݀- = ൫ሺߛ+ ஶ ሻ ݀߬ + ߬ ݀൯ ሺߛ -1ሻ ⁄ i-e ሺߛ -1ሻ߬݀ + ߛ+‪ሺ ஶ ሻ ݀߬ + ߬ ݀ = 0 which is equivalent. ∎ It follows that in the ሺ߬, ሻ plane, the isentropes for our EOS satisfy (4) It also follows that the sound speed can be computed by the well known formula ܿ = ඥߛሺ+ ஶ ሻ߬

Fig. 4 Fig 5 Fig 7

 457 Fig.4 sound speed ܿ on both sides of saturation lineSince ܿ ଶ gives the slope of the isentrope in the ሺ߬, ሻ plane, this proves that the isentropes are convex. For the pure steam phase, we shall approximate the IAPWS EOS by a perfect gas EOS. More precisely we still use (3), but with  ஶ = 0. On Fig 5,we compare the sound speed along the saturation line but on the steam side with IAPWS. The results show that ߛ = 1.26 is better at low pressure, and ߛ = 1.28 at higher pressures.

Fig. 8

 8 Fig.8 Rarefaction wave starting from  ோ = 15 ,ܽܲܯ ߬ ோ = 1.4746 ,݃݇/ܮ ݑ ோ = 0

Now what happens along the 1 1 :

 11 -shock? Proceeding as DESPRÉS B. [5, p.155], we obtain :  ሻሺ߬ ଵ -߬ ሻ = 0 Since ߝ ଵ = ݂ሺ߬ ଵ ,  ଵ ሻ equation (6) defines a (so called Hugoniot) curve in the plane (߬, ሻ. This gives our third equation. We denote by  ଵ =  ுை ሺ߬ ଵ ሻ the relation we just obtained between  ଵ et ߬ ଵ . On Fig. 7 we compare the isentropic curve starting at ߬ = 234.535 ݃݇/ܮ ; ܲ = 0.555 ܽܲܯ ; ݑ = 0 and the Hugoniot curve starting at the same point. We notice that both curves are close to each other around the point ሼ߬ , ܲ ሽ, but this is a well-known result. Note that on Fig 7 the Hugoniot curve ends at a saturated steam state ሼ34.535 ݃݇/ܮ ,5.664 ܽܲܯሽ Remark To obtain the Hugoniot curve in the ሺ,ݑ ሻ plane we simply use the relation between the jumps across the shock ሾሿሾ߬ሿ + ሾݑሿ ଶ = 0 . It gives our fourth equation.∎

Fig 9

 9 Fig 9 Hugoniot curve starting from  = 0.600 ,ܽܲܯ ߬ = 315 ܮ ݇݃ ⁄ on the saturation line

Fig 10

 10 Fig 10 Hugoniot curve crossing the steam saturation line in ሼ 34.53 ,݃݇/ܮ 5.664 ܽܲܯሽ in ሼ߬, ሽ axes.

Fig 11 showsFig 11 3 ∶Fig 12

 1111312 Fig 11 shows that the parameter ߛ is sensitive on this case. The trend is correctly represented with ߛ = 1.28 not quite so with ߛ = 1.26.

  ߝ = ݍ + ሺ + ߛ ஶ ሻ߬/ሺߛ -1ሻ)

ሻFig 13

 13 Fig 13 Hugoniot curve in ሼ,ݑ ሽ axes for case 2.

  894 ,ܽܲܯ 0 ݉/ݏሽ on the left and ሼ1.4746 ܮ ݇݃ ⁄ , ,ܽܲܯ51 0 ݉/ݏሽ on the right. Here is what we get on Fig 14. The intersection is obtained for  * ≅ 3.48 ܽܲܯ and ݑ * ≅ -293 .ݏ/݉ This corresponds to ߬ ଶ ≅ 13.3 ܮ ݇݃ ⁄ on the isentrope and ߬ ଵ ≅ 5.2 ܮ ݇݃ ⁄ on the Hugoniot.

Fig 14 :Fig 16

 1416 Fig 14 : Graphical solution to the Riemann Problem in a ሼ,ݑ ሽ diagram

  Fig 18 RP with ሼ߬ = 234 ܮ ݇݃ ⁄ ,  = 0.555 ܽܲܯሽ ሼ߬ ோ = 1.216 ܮ ݇݃ ⁄ ,  ோ = 17.75 ܽܲܯሽ

  

•

  From the value of ߠ, compute ܶ (and similarly ) by ܶ = ሺ1 -ߠሻܶ ାଵ + ߠܶ • Let ݕ * denote the common value of ݕ ఛ ሺܶሻ and ݕ ఌ ሺܶሻ we let ݏ = ݕ

	In the same way, we solve ݕ ఛ ሺܶሻ = ݕ ௦ ሺܶሻ = ݕ * where ݕ ఛ ሺܶሻ = ൫߬ -߬ ௩ ሺܶሻ൯ ቀ߬ ሺܶሻ -߬ ௩ ሺܶሻቁ ൗ
	ݕ ௦ ሺܶሻ = ൫ݏ -ݏ ௩ ሺܶሻ൯ ቀݏ ሺܶሻ -ݏ ௩ ሺܶሻቁ ൗ The details are left to the reader. ∎
	Evaluation of isentropes.
	With method B it is very easy to plot an isentrope.
	With method A, we proceed by increment. If we start from ൫߬, ߝ, ሺ߬, ߝሻ൯ we move to ൫߬ + ݀߬, ߝ + ݀ߝ, ሺ߬ + ݀߬, ߝ + ݀ߝሻ൯ by choosing ݀ߝ = ߬݀- On Fig 1 we start from ߬ = 363.21 ,݃݇/ܮ with ݏ = 2.661 ܬ݇ ݇݃ ܭ ⁄ ; for method A we take ⁄ ݀߬ = -3 ݃݇/ܮ and we check that at the end of the curve (߬ = 3.21 ,)݃݇/ܮ we obtain ݏ = 2.653 ܬ݇ ݇݃ ܭ ⁄ ⁄ that is a relative error of 0.3%. Of course such an error decreases if we decrease ݀߬.
	Fig 1. Isentropic curve starting from ߬ = 363.21 ,݃݇/ܮ with ݏ = 2.661 ܬ݇ ݇݃ ܭ ⁄ ⁄

* ݏ ሺܶ ሻ + ሺ1 -ݕ * ሻ ݏ ௩ ሺ ܶሻ∎ Method B: to compute , ܶ and ߝ, when ߬ and ݏ are given:

Table 1 IAPWS

 1 Specific energy vs SG specific energy for ߬ =1.4877 L/kg

	m/s
	MPa

  , we draw the isentrope starting from  = 15 ܽܲܯ and ߬ = 1.4746 ݃݇/ܮ in the liquid domain. We complement our isentrope in the two-phase mixture domain by using method B previously described in §1. We compare the IAPWS isentrope with the SG isentrope with ߛ = 2.79 and  ஶ = 186. Even though this is not supposed to be the optimal choice, according to Table1, we see on Fig3that both isentropes are close to eachother. Note that the IAPWS isentrope crosses the saturation line at P=10.97 MPa , ߬ = 1.4877 ݃݇/ܮ while the SG isentrope crosses it at P=10.92 MPa, ߬ = 1.4855 ݃݇/ܮ so that the accuracy is acceptable.

	On Fig 3						
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