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This paper deals with local non-equilibrium models for mass transport in dual-phase and dual-region

porous media. The first contribution of this study is to formally prove that the time-asymptotic moments

matching method applied to two-equation models is equivalent to a fundamental deterministic pertur-

bation decomposition proposed in Quintard et al. (2001) [1] for mass transport and in Moyne et al. (2000)

[2] for heat transfer. Both theories lead to the same one-equation local non-equilibriummodel. It has very

broad practical and theoretical implications because (1) these models are widely employed in hydrology

and chemical engineering and (2) it indicates that the concepts of volume averaging with closure and of

matching spatial moments are equivalent in the one-equation non-equilibrium case. This work also aims

to clarify the approximations that are made during the upscaling process by establishing the domains of

validity of each model, for the mobile–immobile situation, using both a fundamental analysis and numer-

ical simulations. In particular, it is demonstrated, once again, that the local mass equilibrium assumptions

must be used very carefully.

1. Introduction

In this paper, we investigate the behavior of widely used mod-

els, especially in subsurface hydrology, for describing the transport

of a tracer through dual-phase and dual-region porous media sim-

ilar to those presented in Fig. 1. At the microscopic scale (pore-

scale or Darcy-scale in this article), these two systems are usually

thought as two continua, in which advection and Fickian diffusion/

dispersion are dominant. Upscaling mass balanced equations from

the pore-scale to the Darcy-scale in a dual-phase porous medium

is, mathematically speaking, equivalent to upscaling from the

Darcy-scale to the large-scale in a dual-region porous medium.

Hence, in this work, we consider a general framework defined by

the mathematical structure of the boundary-value problem at the

small scale rather than by the scale itself and the corresponding

physical phenomena.

A general solution to the dispersion problem at the macroscopic

scale exhibits time and spatial convolutions (non-locality) [3–8].

Direct Numerical Simulations can be used to get an accurate

response, but it is not often tractable for most of porous systems

because of the complexity involved. Degraded models, but still

rather accurate if one is concerned with the estimate of the flux ex-

changed between the different phases/regions, can be derived un-

der the form of mixed models for mobile/immobile systems, i.e.

systems with high diffusivity contrast and no advection in the

low diffusivity phase/region [9–12]. In many practical applications,

relevant constraints can be formulated concerning characteristic

times and length scales [13], that is, when the different length

scales of the system are separated by several orders of magnitude,

non-local effects tend to disappear. One way of describing the

transport while conserving partly the convolutions effects consists

in using a two-equation quasi-stationary model (Eqs. (1) and (2))

involving two macroscopic concentrations, one for each phase/re-

gion c and x. Herein, the bracket notation is used as a reminder

that concentrations appearing in the macroscopic equations are

defined in a volume averaged sense. ei is the volume fraction of

the i-phase/region and the star notation refers to the model effec-

tive parameters. In particular, a** is a first order mass exchange

coefficient.

Two-equation model:

ec@thcci
c þ V��

cc � $hcci
c þ V��

cx � $hcxi
x ¼ $ � D��

cc � $hcci
c

n o

þ $ � D��
cx � $hcxi

x
n o

ÿ a�� hcci
c ÿ hcxi

x� 	

ð1Þ
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ex@thcxi
x þ V��

xc � $hcci
c þ V��

xx � $hcxi
x

¼ $ � D��
xc � $hcci

c
n o

þ $ � D��
xx � $hcxi

x� 	

ÿ a�� hcxi
x ÿ hcci

c� 	

ð2Þ

Since this model showed good agreement in numerous works

with both numerical computations and experimental data [14–

18], it has been broadly used to explore some physical aspects of

the problem. In particular, two very different situations leading

to simple Fickian dispersion have been identified [19,1,20]. On

the one hand, when the macroscopic concentration in one-phase/

region can be expressed as a thermodynamic function of the con-

centration in the other phase/region, the situation is called local

mass equilibrium [1] and a one-equation model (Eq. (3)) repre-

sents a reasonable approximation of the mass transport problem.

One-equation local mass equilibrium model:

ec þ ex
ÿ �

@thci
cx þ V � $hcicx ¼ $ � Dequ � $hcicx

� 	

ð3Þ

where

hcicx ¼
ec

ec þ ex
hcci

c þ
ex

ec þ ex
hcxi

x ð4Þ

On the other hand, the time-infinite comportment of the first

two spatial moments reveals that two-equation models have a

time-asymptotic behaviorwhich can be described in terms of a clas-

sical advection/dispersion one-equation model (Eq. (5)) [21,22]. It

corresponds to a particular time constrained local non-equilib-

rium situation for which the tracer does not exhibit anomalous

dispersion.

One-equation time-asymptotic non-equilibrium model:

ec þ ex
ÿ �

@thci
cx þ V � $hcicx ¼ $ � D1 � $hcicx

� 	

ð5Þ

Apart from this two-equation model and its two particular

behaviors, a one-equation non-equilibrium theory (Eq. (6)), based

on a very distinct background, is available in [1] for mass transport

and in [2] for heat transfer.

One-equation special decomposition non-equilibrium model:

ðec þ exÞ@thci
cx þ V � $hcicx ¼ $ � D� � $hcicx

� 	

ð6Þ

The method used for the development of this model differs from

the volume averaging with closure theory and finds its essence in a

peculiar perturbation decomposition. This one-equation non-equi-

librium model can also be obtained using the homogenization the-

ory and this has been devised in [2]. Numerical simulations in [1]

suggest that both one-equation local non-equilibrium models (Eqs.

(5) and (6)) might be one and the same. However, it is not straight-

forward from the expression of the dispersion tensors D1 and D*.

The main goal of this paper is to advance a formal proof for this

equivalence (Fig. 2). As an aside, it is interesting to emphasize that

very few effort has been dedicated to establishing connections be-

tween the various upscaling techniques. Noticeable exceptions are

a comparison of ensemble averaging and volume averaging [23], a

comparison of the moment matching technique and the homogeni-

zation theory [24], a comparison of the homogenization theory and

the volume averaging theory [25] and an equivalence between the

continuous time randomwalk technique and the volume averaging

theory [26].

Nomenclature

Roman symbols
Aij boundary area between the i-phase/region and the j-

phase/region (m2)
bij two-equation model closure vectorial variables (m)
bi one-equation special decomposition model closure vec-

torial variables (m)
bIi bi part I decomposition (m)
bIIi bi part II decomposition (–)
Bi one-equation time-asymptotic model closure vectorial

variables (m)
BIi Bi part I decomposition (m)
BIIi Bi part II decomposition (–)
ci concentration at the microscopic scale in the i-phase/

region (mol mÿ3)
hcii superficial average of ci (mol mÿ3)
hcii

i intrinsic average of ci (mol mÿ3)
hcicx weighted average concentration (mol mÿ3)
~ci solute concentration standard deviation in the i-phase/

region (mol mÿ3)
ĉi solute concentration special deviation in the i-phase/

region (mol mÿ3)
Di diffusion/dispersion tensor at the microscopic scale in

the i-phase/region (m2 sÿ1)
Dequ one-equation local mass equilibrium dispersion tensor

(m2 sÿ1)
D1 one-equation time-asymptotic model dispersion tensor

(m2 sÿ1)
D* one-equation special decomposition model dispersion

tensor (m2 sÿ1)
Dij two-equation model macroscopic dispersion tensors

(m2 sÿ1)
dx ÿ dc two-equation model macroscopic part of velocity

(m sÿ1)

j/ flux tensor of the quantity / (mol mÿ2 sÿ1)
V volume of a REV (m3)
li characteristic length of the i-phase (m)
L characteristic length of the field-scale (m)
nij normal to Aij pointing from i to j (–)
Pe microscopic Péclet number (–)
R0 radius of a REV (m)
ri two-equation model closure scalar variables (–)
rIIi ri part II decomposition (m)
U* macroscopic velocity contrast (m sÿ1)
Vi volume of the i-phase within a REV (m3)
vi velocity at the microscopic scale in the i-phase/region

(m sÿ1)
hvii superficial average of vi (m sÿ1)
hvii

i intrinsic average of vi (m sÿ1)
~vi velocity standard deviation in the i-phase/region (m sÿ1)
Vij two-equation model macroscopic velocities (m sÿ1)
V one-equation local mass equilibrium, time-asymptotic

and special decomposition models macroscopic velocity
(m sÿ1)

Greek symbols
a** two-equation model macroscopic exchange coefficient

(sÿ1)
b* one-equation time-asymptotic model macroscopic BI

tensorial flux (m2 sÿ1)
ei i-phase/region porosity (–)
UIi i-phase/region problem type I solution (m)
UIIi i-phase/region problem type II solution (–)

Subscript and superscript
i, j indexes for c or x (–)



Establishing the domains of validity of macroscopic models rep-

resents a critical issue for both theoriticians and experimenters.

The procedure of upscaling aims to reduce the number of degrees

of freedom of a problem by eliminating redundance in the informa-

tion at the microscopic scale (see in [27]). It must be understood

that the quantity of information that must be eliminated depends

on the problem itself but also on the tolerance that one has toward

the solutions. Hence, constraints are usually expressed in terms of

orders of magnitude of dimensionless numbers such as the Péclet

number for example. For the dual-region situation, the reader is re-

ferred to the discussion in [28] and more specifically to the Fig. 2

which provides a very good description of the domains of validity

of the different models in terms of two Péclet numbers and the ra-

tio between the two. In this article, we show that a temporal axis

must also be considered and we discuss the effect of the boundary

conditions on these domains.

The remainder of this article is organized as follows. First, we

describe the quasi-stationary two-equation model, associated to

a two-phase system (phasemight be replaced by regionwhen work-

ing at the Darcy’s scale), its time-asymptotic and local mass equi-

librium behaviors along with the model obtained through the

special perturbation decomposition. Then, we present the strict

equivalence between both one-equation local non-equilibrium

models. Finally, numerical computations illustrating the perfor-

mances of the various models on a very simple 2D geometry are

shown and the domains of validity of each model are established

for this specific problem.

2. Upscaling

2.1. Microscopic problem

Our study starts with the microscopic description of the med-

ium. The c-phase and the x-phase are both subject to advection

and diffusion and the velocity field is supposed to be known point-

wise in the whole system. Mass balanced equations for this two-

phase system take the form

@tci þ vi � $ci ¼ $ � Di � $cif g ð7Þ

Here, i represents whether c or x. ci (respectively vi and Di) is the

concentration (respectively velocity field and effective dispersion

tensor) in the i-phase. Associated boundary conditions under con-

sideration are

B:C:1 : cc ¼ cx on Acx ð8aÞ

B:C:2 : ncx � jcc ¼ ncx � jcx on Acx ð8bÞ

B:C:3 : nir � jci ¼ 0 on Air ð8cÞ

where jci is the interfacial flux vector, that is jci ¼ vici ÿ Di � $ci. ncx

is the normal vector to the boundary Acx between both phases,

pointing from c to x. The B.C.3, between the phases c, x and the

grains r, appears only when upscaling from the pore-scale to the

Darcy-scale. For the sake of simplicity and because its derivation

is straightforward, this boundary is not considered in the rest of

the paper.

2.2. Volume averaging with closure

In this section, we present the main concepts of the volume

averaging with closure theory. However, some details of the math-

ematics, extensively discussed in other articles of the literature, are

not given. Our goal is not to cloud important issues with unneces-

sary equations. A precise literature review allows the unfamiliar

and interested reader to easily reconstitute the puzzle.Fig. 2. Schematic representation of both methods.

Fig. 1. Hierarchy of the different scales for dual-region large-scale averaging (on the left) and dual-phase Darcy-scale averaging (on the right).



We study hierarchical porous media, that is, the hypothesis of

separation of length scales is assumed to be valid

lc; lx � R0 � L ð9Þ

where li is a characteristic length of the i-phase processes, R0 is the

radius of a Representative Elementary Volume (REV) and L is a char-

acteristic length of the field-scale. We name V the total volume of a

REV and Vi the volume of the i-phase within the REV.

During the integration of the microscopic equations, superficial

average as defined by Eq. (10) appears naturally

hUii ¼
1

V

Z

V

Ui dV ð10Þ

When the microscopic concentration is constant throughout the

whole phase/region, one usually expects the mean concentration

on this phase/region to be equal to the same constant. For this pur-

pose, we define an intrinsic average (Eq. (11)) as

hUii
i ¼

1

V i

Z

V

Ui dV ð11Þ

Both measures are linked by

hUii ¼ eihUii
i ð12aÞ

ei ¼
V i

V
ð12bÞ

where the volume fraction ei is taken to be constant, for the sake of

simplicity. We also introduce a weighted averaged concentration

(Eq. (13)) which extends the principle of intrinsic average to both

phases/regions and is used to describe the transport of the total

mass using one-equation models.

hcicx ¼
ec

ec þ ex
hcci

c þ
ex

ec þ ex
hcxi

x ð13Þ

The boundary-value problem (Eqs. (7) and (8)) is upscaled using

volume averaging with closure as described in [13]. In essence, this

method is based on averaging of the spatial operators and on a

decomposition of the pointwise concentration into an average plus

a fluctuation. Eq. (7) is integrated on a REV, then the average of the

derivatives are expressed in terms of derivatives of the averaged

plus integrals on the boundaries through the spatial averaging the-

orem [29,30] and the general transport theorem [31]. One usually

has to face the problem of finding a connection between perturba-

tions and averaged quantities through the resolution of what are

called closure problems. The various processes which lead to the

classical forms are not detailed because full derivation can be

found elsewhere [1,32].

2.2.1. Two-equation model

The classical formulation consists in closing the problem on

Gray’s perturbations, that is, to decompose concentrations as

ci ¼ hcii
i þ ~ci ð14Þ

Eq. (14) means that the pointwise concentration is decomposed sep-

arately for both physical phases/regions as an intrinsic average on

the phase/region plus a fluctuation. The objective is to split the

microscopic concentration into quantities varying at different scales.

Then, the problem is closed by imposing [22,Eq. (48)] (in which g is

used instead of c)

~ci ¼
X

k¼c;x

bik � $hcki
k ÿ ri hcci

c ÿ hcxi
xÿ �

ð15Þ

This source term decomposition, based on the superposition princi-

ple of linear operators, authorises to fully uncouple the boundary-

value problems on bik and ri from the macroscopic quantities. It

leads, under a quasi-stationary hypothesis on the problem for ~ci,

to the following two-equation model with an exchange term a** be-
tween both phases [22] Eqs (58) and (60) (in which g is used instead

of c)

ei@thcii
i þ V��

li � $hcii
i þ V��

ij � $hcji
j

¼ $ � D��
li � $hcii

i
n o

þ $ � D��
ij � $hcji

j
n o

ÿ a�� hcii
i ÿ hcji

j
n o

ð16Þ

We do not specify the entire set of effective parameters of the two-

equation problem because they can be found in [22, Eqs. (59) and

(61)] (in which g is used instead of c). Meanwhile, it is important to

keep inmind that the exchange coefficient a** is only a part of the to-

tal interfacial flux, the rest being included in the velocitiesVij, and can

be expressed as [22, Eq. (54)] (in which g is used instead of c)

a�� ¼ ÿ
1

V

Z

Acx

ncx � vcrc ÿ Dc � $rc
ÿ �

dA ð17Þ

It must be understood that this first order expansion (Eq. (15)) loses

some features of the real concentration fields. This created some

confusion in the literature about the value of the mass exchange

coefficient (see [33] for a discussion).

One-equation local mass equilibrium:

The local mass equilibrium situation corresponds to

hcci
c ffi hcxi

x ffi hcicx ð18Þ

In other words, this means that the concentration gradients

within the phases/regions are sufficiently small to extend the ther-

modynamic equilibrium at the interface to the bulk phases/re-

gions. This represents a very particular physical situation for

which the total mass within the medium can be described by a sin-

gle weighted concentration hcicx, that is, by a one-equation model

such as Eq. (19). The associated constraints have been extensively

discussed and can be found in [13,34–36]. These are usually ex-

pressed in terms of orders of magnitude of dimensionless numbers.

In this situation, a reasonable approximation [13] of the two-equa-

tion model is [1, Eq. (20)] (in which g is used instead of c)

ðec þ exÞ@thci
cx þ V � $hcicx ¼ $ � Dequ � $hcicx

� 	

ð19Þ

It can be obtained by summing Eqs. (1) and (2) and, therefore, the

local mass equilibrium dispersion tensor can be written [1, Eq.

(22)] (in which g is used instead of c)

Dequ ¼
X

i;j¼c orx

D��
ij ¼

X

k¼c;x

ek Dk � Iþ $Bkð Þ ÿ ~vkBkh i
k

ð20Þ

The effective velocity takes the very simple form [1, Eq. (23)] (in

which g is used instead of c)

V ¼ echvci
c þ exhvxi

x ð21Þ

One-equation time-asymptotic non-equilibrium model:

Matching the first two spatial moments [21] (in which a, b is

used instead of c, x), one is able to find that the two-equation

model has a one-equation time-asymptotic behavior which can

be written [22, Eq. (67)] (in which g is used instead of c)

ðec þ exÞ@thci
cx þ V � $hcicx ¼ $ � D1 � $hcicx

� 	

ð22Þ

In essence, this means that the description of the mass transport at

long times can be undertaken using an advection–dispersion type

equation, that is, the behavior of higher order moments can be ne-

glected. It is not clear in the literature what are the physical and

temporal constraints which allow such an approximation. This is

beyond the scope of this study to provide such an analysis but this

aspect of the problem will be the subject of further investigation.

The dispersion tensor (Eq. (50)) can be written [21, Eqs. (97)–

(99)]



D1 ¼
X

i;j¼c orx

D��
ij þ

1

a��
U� þ d

��
x ÿ d

��
c

� �

U� ÿ b�ð Þ

¼ Dequ þ
1

a��
U� þ d

��
x ÿ d

��
c

� �

U� ÿ b�ð Þ ð23Þ

Both parts of this expression have very distinct physical meaning.
P

i;j¼c orxD
��
ij represents the sum of the dispersion terms, which

strictly speaking, corresponds to local mass equilibrium dispersion,

and is rather similar to the single phase situation. However, the sec-

ond part stands for the multiphase aspects. It expresses the contrast

between the c-phase and the x-phase. It tends toward 0 when the

exchange coefficient a** tends toward infinity and is mainly driven

by the square of

U� ¼ ecex
hvci

c ÿ hvxi
x

ec þ ex
ð24Þ

It also contains

b� ¼ ÿ
1

V

Z

Acx

ncx � jBc dA ð25aÞ

d
��
x ÿ d

��
c ¼

X

k¼c;x

ek Dk � $rk ÿ ~vkrkh i
k

ð25bÞ

This asymptotic behavior was proved directly from the lower-

scale equation in [37] for stratified systems, and used extensively

in [19] which introduced the word Taylor’s dispersion, for that par-

ticular case, because of the square dependence of the dispersion

coefficient with the velocity difference.

Notice that there are usually six closure (or mapping) variables

associated to the two-equation model, that is bcc, bcx, bxc, bxx, rc,

rx. In the expression of the dispersion (Eq. (23)) only four closure

variables remain, namely rc, rx and Bc, Bx. They are simply related

to those of the two-equation model by

Bc ¼ bcc þ bcx ð26aÞ

Bx ¼ bxc þ bxx ð26bÞ

Closure problems:

The set of effective parameters previously introduced can be

computed through the resolution of the two following closure

problems. They can be straightforwardly derived from [22, Eqs.

(49)–(56)] (in which g is used instead of c).

vc � $rc ¼ $ � Dc � $rc
� 	

ÿ eÿ1
c a�� ð27aÞ

B:C:1 : rc ¼ rx ð27bÞ

B:C:2 : ÿncx � jrc ÿ jrx

� �

¼ 0 ð27cÞ

vx � $rx ¼ $ � Dx � $rxf g þ eÿ1
x a�� ð27dÞ

vc � $Bc ¼ $ � Dc � $Bc

� 	

ÿ ~vc ÿ eÿ1
c b� ð28aÞ

B:C:1 : Bc ¼ Bx ð28bÞ

B:C:2 : ÿncx � jBc ÿ jBx

� �

¼ ÿncx � Dx ÿ Dc

ÿ �

ð28cÞ

vx � $Bx ¼ $ � Dx � $Bxf g ÿ ~vx þ eÿ1
x b� ð28dÞ

2.3. Special perturbation decomposition

A different way to obtain one-equation local non-equilibrium

models consists in decomposing concentrations as follows:

ci ¼ hcicx þ ĉi ð29Þ

In this case, the fluctuation is defined in relation to the

weighted average on both phases/regions. The problem is closed

using [1, Eq. (52)] (in which g is used instead of c), [2, Eqs. (42)
and (43)], for heat transfer (in which b, r is used instead of c, x)

ĉi ¼ bi � $hci
cx ð30Þ

It has been proposed in [1] for the large-scale averaging prob-

lem and applied in [38] for a reactive case (linear kinetics). This

decomposition may be very efficient since it allows to directly

develop a macroscopic one-equation model, to reduce the num-

ber of closure parameters and it is also useful for upscaling var-

ious class of problems such as reactive ones. The counterpart is

that the assumptions behind the first order closure and the qua-

si-stationarity of the fluctuations problems are stronger in this

case because (1) the closure recovers less characteristic times

than the ~c decomposition and (2) the norm of the ĉi perturbation

is larger than the norm of ~ci. The macroscopic mass balanced

equation takes the form [1, Eq. (56)] (in which g is used instead

of c)

ec þ ex
ÿ �

@thci
cx þ V � $hcicx ¼ $ � D� � $hcicx

� 	

ð31Þ

The ĉi perturbation decomposition leads to the following expression

of dispersion, see in [1, Eq. (57)] (in which g is used instead of c) and
[38].

D� ¼
X

k¼c;x

ek Dk � Iþ h$bki
k

� �

ÿ hvkbki
k

h i

ð32Þ

Closure problem:

The determination of effective parameters requires the calcula-

tion of a single problem which can be found in [1, Eqs. (53)– (55)]

(in which g is used instead of c) and in [38].

vc � $bc ¼ $ � Dc � $bc
� 	

ÿ ~vc ÿ eÿ1
c U

� ð33aÞ

B:C:1 : bc ¼ bx ð33bÞ

B:C:2 : ÿncx � jbc ÿ jbx

� �

¼ ÿncx � ðDx ÿ DcÞ ð33cÞ

vx � $bx ¼ $ � Dx � $bxf g ÿ ~vx þ eÿ1
x U

� ð33dÞ

3. Formal equivalence

The goal of this part is to obtain a formal proof of the equiva-

lence between Eqs. (22) and (31), that is, to prove D* = D1.

3.1. Mathematical development

At this point, the mapping variables rc, rx, Bc, Bx and bc, bx
are solutions of different boundary-value problems (Eqs. (27),

(28) and (33)). In order to find a relationship between these

closure variables, we introduce the following source terms

decomposition based on the superposition principle for linear

operators

Bi ¼ BIi þ BIIib
� ð34aÞ

bi ¼ bIi þ bIIiU
� ð34bÞ

ri ¼ rIIia
�� ð34cÞ

As a consequence of the previous decomposition, Eqs. (27), (28) and

(33) reduce to only two boundary-value problems. BIi and bIi are

solutions of the following closure problem type I

vc � $UIc ¼ $ � Dc � $UIc

� 	

ÿ ~vc ð35aÞ

B:C:1 : UIc ¼ UIx ð35bÞ

B:C:2 : ÿncx � j
UIc

ÿ j
UIx

� �

¼ ÿncx � ðDx ÿ DcÞ ð35cÞ

vx � $UIx ¼ $ � Dx � $UIxf g ÿ ~vx ð35dÞ



Unicity of the solutions is provided by the following conditions

echBIci
c þ exhBIxi

x ¼ 0 ð36aÞ

echbIci
c þ exhbIxi

x ¼ 0 ð36bÞ

BIIi, bIIi and rIIi are solutions of the following closure problem Type II

vc � $UIIc ¼ $ � Dc � $UIIc

� 	

ÿ eÿ1
c ð37aÞ

B:C:1 : UIIc ¼ UIIx ð37bÞ

B:C:2 : ÿncx � jUIIc
ÿ jUIIx

� �

¼ 0 ð37cÞ

vx � $UIIx ¼ $ � Dx � $UIIxf g þ eÿ1
x ð37dÞ

Unicity of the solutions is provided by the following conditions

echBIIci
c þ exhBIIxi

x ¼ 0 ð38aÞ

echbIIci
c þ exhbIIxi

x ¼ 0 ð38bÞ

hrIIxi
x ¼

1

a��
; hrIIci

c ¼ 0 ð38cÞ

bIi and BIi are solutions of the same problem and satisfy the same

unicity equation. Hence, we have

bIi ¼ BIi ð39Þ

which implies

bi ¼ Bi ÿ BIIib
� þ bIIiU

� ð40Þ

It is also important to notice that bIIi and BIIi are solution of the same

problem Type II and satisfy the same unicity equations so that we

have

bi ¼ Bi þ bIIi U
� ÿ b�ð Þ ð41Þ

Finally bIIi and rIIi are solution of the same problem but do not sat-

isfy the same unicity equations so that they only differ by a con-

stant. After some simple algebra, we obtain

bi ¼ Bi þ
1

a��
ri ÿ

ex
ðec þ exÞ

� �

U� ÿ b�ð Þ ð42Þ

3.2. Conclusion and discussion

Injecting this expression of bi, i.e. Eq. (42), in Eq. (32) straight-

forwardly leads to

D� ¼ D1 ð43Þ

One may realize that the physics underlying the time-asymp-

totic hypothesis in one-phase or two-phase systems have very dif-

ferent backgrounds. In the single-phase configuration, the equality

of the dispersion tensors between the volume averaging theory as

devised by Whitaker [13] and the moments matching technique as

devised by Brenner [39] is straightforward. In this single-phase

case, the problem is not homogenizable at very short times, that

is, one needs to consider only long times to avoid the convolutions.

This limitation corresponds to the time needed for a particle to vis-

it the entire microscopic domain. In a dual-phase situation, this

assumption of the single-phase case is reminiscent to the quasi-

stationary hypothesis on the standard perturbations, although

not exactly similar because of the contrast of properties and of

the exchange between both phases. The time-asymptotic behavior

of the two-equation model corresponds to a macroscopic relaxa-

tion of the two-equation boundary-value problem, that is, a relax-

ation of the first two spatial moments or of the nonstandard

perturbation. This represents a very different approximation.

The result expressed by Eq. (43) provides a direct equivalence

between the moments matching method and a special volume

averaging theory based on a different decomposition technique.

This conclusion has various consequences.

� Two-equation models provide a solid basis for exploring physi-

cal aspects of the dispersion problem.

� Going back to the discussion about the choice of the proper

mass transfer coefficient (see [33,26]) the results obtained in

this paper show that the other proposed values would lead to

an incorrect asymptotic dispersion equation, even if they can

work better at some limited stages of the transient evolution.

� We use the moments matching technique on an already homog-

enized set of equations, that is, we do not start at the micro-

scopic scale as proposed in [39]. Although it has not been

devised yet, we believe that the two-equation model can be

obtained using the method in [39] and the equivalence devel-

oped in this article strongly reinforces the relationship between

the volume averaging theory and the moments matching

techniques.

� This equality (Eq. (43)) also allows to see a similar problem from

two different viewpoints Table 1. The long time limit is tra-

duced, in the ĉ decomposition, as a quasi-stationary closure

problem and this is a new interesting way of seeing the time-

asymptotic hypothesis in the multiphase configuration. More-

over, Eq. (43) shows that a very strong relationship exists

between the closure on ĉ and the moments matching method

limited to the second order, as applied in [21,22].

4. A simple example: a 2D medium

In this part, we are interested in computing the previous models

on a simple 2D geometry (Fig. 3) in order to catch the main char-

acteristics of the problem. We show that even for an input signal

introducing many characteristic times, the time-asymptotic model

may give a rather good approximation at short times and gains in

precision as the time tends toward infinity.

The c-phase is convective and diffusive whereas the x-phase is

only diffusive (called mobile–immobile situation). One example of

such a system could be the study of a tracer transport between two

plates colonized by biofilms (aggregations of micro-organisms

coated in protective extra-cellular substances). The closure prob-

lems type I and type II (Fig. 4) presented in the next section are

solved using the Comsol™ multiphysics package. Notice that

Table 1

Equivalence of the approximations associated to the volume averaging theory and to the moments matching technique.

Approximation of Moments matching technique Volume averaging theory

Convolutions in space Spatial moments matching up to the second order First order closure

Convolutions in time Time-infinite behavior of the spatial moments Quasi-stationarity of the closure problems

Fig. 3. Schematic description of the 2D system.



because of the very particular geometry and because we impose

periodic boundary conditions, the closure field is 1D. We also fully

solve the balanced momentum equations so that we do not con-

sider any upscaling of momentum equations. The closure problems

only depends upon a Péclet number defined as

Pe ¼
hvci

cL

Dc
ð44Þ

where we choose

L ¼ 1 ð45aÞ

Dx

Dc
¼ 0:8 ð45bÞ

ex ¼ 0:2 ð45cÞ

The dimensionless time is defined by

t0 ¼
hvcit

L
ð46Þ

and the concentration is normalized to the amplitude of the input

concentration.

On the one hand, we solve the entire 2D microscopic problem

on a total length of 60L (called DNS for Direct Numerical Simula-

tion) for a square input for different Péclet numbers. On the other

hand, we solve the 1D upscaled local equilibrium, non-equilibrium

and two-equation models on a total length of 60L (Fig. 5–7). Then,

we observe breakthrough curves at 10L and 50L for Péclet numbers

of 2, 20 and 200.

In Fig. 5, we see that the three homogenized models provide a

very good approximation of the transport problem. At low Péclet,

time and space non-locality tend to disappear because time and

length scales are separated by several orders of magnitude. Mean-

while, some very little discrepancy still remains at the peak of the

signal at 10L. At the very beginning of the system, the time-width

of the signal propagating is of the same order of magnitude as the

characteristic time for the relaxation of the effective parameters.

When the signal spreads, the non-locality disappears and at 50L

all the signals are in good agreement. The propagation is even slow

enough for the local mass equilibrium assumption to be well-

founded, that is, the exchange coefficient is big enough for the

Fig. 4. Norm of the bi field for Pe = 200.

Fig. 5. Breakthrough curves for Pe = 2 after (a) 10L and (b) 50L for a square input of

width dt0 = 5 starting at t0 = 0. The solid line corresponds to the DNS, the dotted line

to the local mass equilibrium model, the dashed line with triangles to the two-

equation model and the dashed-dotted line with stars to the time-asymptotic

model.

Fig. 6. Breakthrough curves for Pe = 20 after (a) 10L and (b) 50L for a square input of

width dt
0

= 5 starting at t
0

= 0. The solid line corresponds to the DNS, the dotted line

to the local mass equilibrium model, the dashed line with triangles to the two-

equation model and the dashed-dotted line with stars to the time-asymptotic

model.

Fig. 7. Breakthrough curves for Pe = 200 after (a) 10L and (b) 50L for a square input

of width dt0 = 5 starting at t0 = 0. The solid line corresponds to the DNS, the dotted

line to the local mass equilibrium model, the dashed line with triangles to the two-

equation model and the dashed-dotted line with stars to the time-asymptotic

model.



multiphase contrast term in the expression of the time-asymptotic

dispersion (Eq. (23)) to be insignificant.

When the Péclet number reaches values around 20, the local

mass equilibrium assumption starts to become inappropriate.

Fig. 6 shows that the local mass equilibrium model gives a poor

approximation of the signal whereas both non-equilibrium models

are still in good agreement. The fact that the peaks for these two

models arise earlier than the one of the DNS is again characteristic

of non-locality. Memory functions or fully non-local theories (such

as n-equations models) should be considered in this case.

For Péclet numbers around 200, Fig. 7, the local mass equilib-

rium model is completely inaccurate. The two-equation model

provides the best approximation because it captures more charac-

teristic times than the time-asymptotic one. Except for non-local-

ity (especially at 10L), it recovers the shape of the signal.

However, even for a square input signal and high Péclet numbers,

the time-asymptotic model is still rather accurate. As the signal

spreads, all the non-equilibrium models tend toward the correct

solution and this means that domains of validity need a time

dimension. Results suggest that the one-equation local non-equi-

librium model might represent, in cases such as intermediate

Péclet numbers, macroscopic stationarity or asymptotic regimes,

a good compromise, in terms of computational demand, between

the two-equation and the local mass equilibrium models. The

importance of non-locality is also emphasized and becomes partic-

ularly obvious in the high Péclet number situation.

On the basis of these results, domains of validity can be deter-

mined for a square input signal identical in both phases Fig. 8.

When the Péclet number is below or approximately unity, the lo-

cal mass equilibrium condition is verified except at very short

times where fully non-local theories or n-equation models should

be considered. Above unity, the situation is more complex as

three different regimes are identified. At very short times, the

situation can not be described even by the quasi-stationary

two-equation model and non-local theories are necessary. At

intermediate times, the two-equation model represents the only

alternative to convolutions. As the time tends toward infinity

and the signal spreads, the one-equation non-equilibrium model

can be used to describe the mass transport. The boundaries be-

tween these different regimes depend, among others, on the input

boundary condition, on the microscopic topology and on the pro-

cesses. The constraints associated to the boundary (1) and (2),

Fig. 8, between the non-local and local zone have been exten-

sively discussed [32,22,20,28,8]. However, little is known on the

limitations associated with (3), Fig. 8, and it requires further

investigation.

Concerning the influence of the boundary conditions on the do-

mains of validity, it is important to emphasize that two-equation

models allow to modify separately the conditions for each phase

unlike one-equation models. As a consequence, in situations where

the boundary conditions in one-phase are very different from the

conditions in the other phase, two-equation models must be con-

sidered at the expense of one-equation models. Additionally,

two-equation models are likely to provide a better approximation

of the transport processes when many modes are excited, that is,

for a Dirac input for example.

5. Conclusion

In this work, we provide a comparison of deterministic models

used in hydrology and chemical engineering, that is, the quasi-sta-

tionary two-equation model (Eqs. (47) and (48)), the one-equation

local mass equilibrium (Eq. (49)), time-asymptotic (Eq. (50)) and

special decomposition (Eq. (51)) models.

Two-equation model:

ec@thcci
c þ V��

cc � $hcci
c þ V��

cx � $hcxi
x ¼ $ � D��

cc � $hcci
c

n o

þ$ � D��
cx � $hcxi

x
n o

ÿ a�� hcci
c ÿ hcxi

x� 	

ð47Þ

ex@thcxi
x þ V��

xc � $hcci
c þ V��

xx � $hcxi
x ¼ $ � D��

xc � $hcci
c

n o

þ$ � D��
xx � $hcxi

x� 	

ÿ a�� hcxi
x ÿ hcci

c� 	

ð48Þ

One-equation local mass equilibrium model:

ec þ ex
ÿ �

@thci
cx þ V � $hcicx ¼ $ � Dequ � $hcicx

� 	

ð49Þ

One-equation time-asymptotic non-equilibrium model:

ec þ ex
ÿ �

@thci
cx þ V � $hcicx ¼ $ � D1 � $hcicx

� 	

ð50Þ

One-equation special decomposition non-equilibrium model:

ec þ ex
ÿ �

@thci
cx þ V � $hcicx ¼ $ � D� � $hcicx

� 	

ð51Þ

� The fundamental analysis carried out in Section 3 leads to

D1 = D*. It has broad practical implications since these one-

equation models, because of their intrinsic simplicity, are

widely used by experimenters. In addition, these models were

obtained using very distinct techniques, that is, moments

matching for the time-asymptotic model and a closure on a

peculiar perturbation for the model (Eq. (51)). From a theoreti-

cal point of view, equivalence between these two methods

shows that (1) two-equation models provide a reliable basis

for the study of the dispersion problem, (2) the idea of matching

moments up to the second order is similar to the closure on the

spatial perturbations and (3) the time-asymptotic limit of the

moments corresponds to the quasi-stationarity of the perturba-

tion problem.

� The numerical results obtained for a mobile–immobile problem

with different Péclet numbers show that (1) the local mass

equilibrium model has a restricted area of validity and must

be used very carefully (see discussion in [40]), (2) the one-equa-

tion non-equilibrium model produces a reasonable approxima-

tion of the transport at long times, even for a square input signal

and high Péclet numbers, (3) the two-equation model gives, in

all cases, better results and (4) domains of validity representa-

tions need a time dimension.
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