
HAL Id: hal-03545852
https://hal.science/hal-03545852v1

Submitted on 27 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling non-equilibrium mass transport in biologically
reactive porous media.

Yohan Davit, Gerald Debenest, Brian D. Wood, Michel Quintard

To cite this version:
Yohan Davit, Gerald Debenest, Brian D. Wood, Michel Quintard. Modeling non-equilibrium mass
transport in biologically reactive porous media.. Advances in Water Resources, 2010, 33 (9), pp.1075-
1093. �10.1016/j.advwatres.2010.06.013�. �hal-03545852�

https://hal.science/hal-03545852v1
https://hal.archives-ouvertes.fr


To link to this article : DOI:10.1016/j.advwatres.2010.06.013 

URL : http://dx.doi.org/10.1016/j.advwatres.2010.06.013 

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/ 
Eprints ID: 10223 

Open Archive Toulouse Archive Ouverte (OATAO) 

OATAO is an open access repository that collects the work of Toulouse 
researchers and makes it freely available over the web where possible.  

To cite this version: Davit, Yohan and Debenest, Gérald and Wood, Brian 
D. and Quintard, Michel Modeling non-equilibrium mass transport in 
biologically reactive porous media. (2010) Advances in Water Resources, 
vol. 33 (n° 9). pp. 1075-1093. ISSN 0309-1708 

Any correspondence concerning this service should be sent to the repository administrator: 
staff-oatao@listes-diff.inp-toulouse.fr 

mailto:staff-oatao@listes-diff.inp-toulouse.fr
http://dx.doi.org/10.1016/j.advwatres.2010.06.013
http://oatao.univ-toulouse.fr/


Modeling non-equilibrium mass transport in biologically reactive porous media

Yohan Davit a,c,⁎, Gérald Debenest a,b, Brian D. Wood d, Michel Quintard a,b

a Université de Toulouse; INPT, UPS; IMFT (Institut de Mécanique des Fluides de Toulouse) Allée Camille Soula F-31400 Toulouse, France
b CNRS; IMFT F-31400 Toulouse, France
c Université de Toulouse; INPT, UPS; ECOLAB Rue Jeanne Marvig F-31055 Toulouse, France
d School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331, United States

a b s t r a c t

Keywords:

Porous media

Biofilms

Upscaling

Volume averaging

Non-equilibrium

One-equation model

We develop a one-equation non-equilibrium model to describe the Darcy-scale transport of a solute

undergoing biodegradation in porous media. Most of the mathematical models that describe the macroscale

transport in such systems have been developed intuitively on the basis of simple conceptual schemes. There

are two problems with such a heuristic analysis. First, it is unclear how much information these models are

able to capture; that is, it is not clear what the model's domain of validity is. Second, there is no obvious

connection between the macroscale effective parameters and the microscopic processes and parameters. As

an alternative, a number of upscaling techniques have been developed to derive the appropriate macroscale

equations that are used to describe mass transport and reactions in multiphase media. These approaches

have been adapted to the problem of biodegradation in porous media with biofilms, but most of the work has

focused on systems that are restricted to small concentration gradients at the microscale. This assumption,

referred to as the local mass equilibrium approximation, generally has constraints that are overly restrictive.

In this article, we devise a model that does not require the assumption of local mass equilibrium to be valid.

In this approach, one instead requires only that, at sufficiently long times, anomalous behaviors of the third

and higher spatial moments can be neglected; this, in turn, implies that the macroscopic model is well

represented by a convection–dispersion–reaction type equation. This strategy is very much in the spirit of

the developments for Taylor dispersion presented by Aris (1956). On the basis of our numerical results, we

carefully describe the domain of validity of the model and show that the time-asymptotic constraint may be

adhered to even for systems that are not at local mass equilibrium.

1. Introduction

Biodegradation in porous media has been the subject of extensive

studies from the environmental engineering point of view [1–5].

Reactions are mediated by microorganisms (primarily bacteria, fungi,

archaea, and protists, although othersmay be present) aggregated and

coated within an extracellular polymeric matrix; together, these

which form are generically called biofilms. There has been significant

interest for their role in bioremediation of soils and subsurfaces [6–12]

and, more recently, for their application to supercritical CO2 storage

[13,14]. Numerousmodels for describing the transport of solutes, such

as organic contaminants or injected nutrients, through geological

formations as illustrated in Fig. 1, have been developed. Reviews of

thesemathematical and physical representations of biofilms processes

can be found in [15] and [16].

1.1. One-equation local mass equilibrium model

In many applications, the macroscopic balance laws for mass

transport in such hierarchical porous media with biofilms have been

elaborated by inspection. For example, the advection–dispersion–

reaction type Eq. (1) is commonly considered to describe the Darcy-

scale transport of a contaminant/nutrient represented by a concen-

tration cγ
! "γ

in the water γ-phase. Brackets notations are here as a

reminder that this concentration must be defined in some averaged

sense.

∂ cγ

D Eγ

∂t + vγ

D Eγ⋅∇ cγ

D Eγ
= ∇⋅ D⋅∇ cγ

D Eγ% &

+ R ð1Þ

In this expression, vγ
! "γ

is the groundwater velocity and D is a

dispersion tensor. The reaction rate R is usually assumed to have a

Monod form R = −α
cγh iγ

cγh iγ + K
, where α and K are parameters

(discussed in Section 3.5). It is common to assume that the solute

transport can be uncoupled from the growth process [17,18], that is,

to consider that the characteristic times for these two processes are
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separated by several orders of magnitude. This Monod expression can

be extended to include both electron acceptor and electron donor

concentrations.

If one startedusing Eq. (1) as anempirical representation of themass

transport and reaction process, it would not be immediately obvious

how the microscale processes influence each of the macroscale

Nomenclature

Roman symbols

bi Closure parameter in the i-phase associated to ∇ ch iγω ,
(m).

b′
i Closure parameter in the i-phase associated to ∇ ch iγω

normalized to lγ, (−).

ci Pointwise substrate concentration in the i-phase,

(molm−3).

c ′i Pointwise substrate concentration in the i-phase

normalized with c0, (−).

c0 Substrate input concentration, (mol m−3).

Ch i Generalized spatial average of ci, (mol m−3).

cih i Superficial spatial average of ci, (mol m−3).

cih ii Intrinsic spatial average of ci, (mol m−3).

ch i Spatial average concentration (mol m−3).

ch iγω Weighted spatial average concentration (mol m−3).

c̃i Solute concentration standard deviation in the i-phase,

(mol m−3).

ĉi Solute concentration peculiar deviation in the i-phase,

(mol m−3).

Da Microscopic Damköhler number, (−).

Di Diffusion tensor in the i-phase, (m2 s−1).

DT Dispersion tensor of the one-equation non-equilibrium

model, (m2 s−1).

Dxx
* xx-component of DT, (m2 s−1).

DT

Equ Dispersion tensor of the one-equation local mass

equilibrium model, (m2 s−1).

DxxEqu* xx-component of D*Equ, (m
2 s−1).

DΣ Diffusion ratio between the ω-phase and the γ-phase,
(−).

D**ij Dispersion tensors of the two-equation model,

(m2 s− 1).

h Mass exchange coefficient of the two-equation model,

(s−1).

K Substrate half-saturation concentration, (mol m−3).

k Specific substrate half-saturation concentration,

(mol kg−1 s−1).

L Characteristic length of the field-scale, (m).

li Characteristic length of i-phase, (m).

lk The three lattice vectors that are needed to describe

the 3-D spatial periodicity, (m).

Lc Length of the representative cell, (m).

nij Normal vector poiting from the i-phase toward the

j-phase, (−).

Pe Microscopic Péclet number, (−).

R0 Radius of the REV, (m).

Rω Reaction in the ω-phase, (mol m−3 s−1).

Sij Euclidean space defining the boundary between the

i-phase and the j-phase, (−).

Sij Lebesgue measure of Sij (area of the interface), (m2).

si Closure parameter in the i-phase associated to ch iγω ,
(−).

t Time, (s).

t ′ Dimensionless time, (−).

vi Velocity at themicroscopic scale in the i-phase, (m s−1).

v′i Normalized velocity at the microscopic scale in the

i-phase, (−).

vih i Superficial spatial average of vi, (m s−1).

vih ii Intrinsic spatial average of vi, (m s−1).

vih ii Norm of the intrinsic spatial average of vi, (m s−1).

ṽi Velocity standard deviation in the i-phase, (m s−1).

vT Effective velocity of the one-equation non-equilibrium

model, (m s−1).

vx* x-component of v*, (m s−1).

vTEqu Effective velocity of the one-equation local mass

equilibrium model, (m s−1).

Vi Euclidean space defining the i-phase, (−).

Vi Lebesgue measure of V i (volume of the i-phase), (m3).

V Euclidean space defining the REV, (−).

V Lebesgue measure of V (volume of the REV), (m3).

V**ij Velocities of the two-equation model, (m s−1).

w Velocity of the fluid–biofilm interface, (m s−1).

Greek symbols

α Substrate uptake rate parameter, (mol m−3 s−1).

α * Effective reaction rate of the one-equation non-

equilibrium model, (s−1).

αEqu
* Effective reaction rate of the one-equation local mass

equilibrium model, (s−1).

γ-phase Water-phase, (−).

εi i-phase volumic fraction, (−).

ω-phase Biofilm-phase, (−).

ρbh i Microbial concentration, (kg m−3).

σ-phase Grain-phase, (−).

Subscripts, superscripts

i, j Indexes for γ or ω, (−).

k Index for x, y or z (Cartesian coordinate system), (−).

Fig. 1. Hierarchy of the main scales.



parameters that appear in the balance. To understand how information

is passed through the scales of observation, it is necessary to start by

considering themicroscale physics of the phenomena. At thepore-scale,

biofilms in porous media are usually represented by convective–

diffusive processes within the fluid γ-phase, and diffusive-reactive

processes within the biofilm ω-phase. This representation is built on

three assumptions: 1) the biofilm is thick enough to be treated as a

continuum[17,19], 2) the rate of reactionof planktonic cells (suspended

in the water-phase) can be neglected compared to biofilms species

(fixed on a surface and embedded within extracellular polymeric

substances), and 3) the microscale channels that sometimes form

within the biofilms are treated aspart of the continuousfluid-phase. The

mass exchange process between the fluid and biofilm phases is

described by a continuity of the flux and of the concentrations at the

interface, and a zero-flux condition is applied to the solid boundaries.

Eq. (1) represents a one-equation approximation of all these processes

at the Darcy-scale. Such an approach is frequently used in the literature,

although merely one physical situation, referred to as the local mass

equilibrium assumption, has been clearly identified to be properly

describedbyonly cγ
! "γ

. In this case, theaveraged concentrations inboth

phases are considered equal (strictly speaking, linked by a thermody-

namical constant often close to unity) at any given time. In other words,

when the gradients of the pointwise concentrations within each phase

can be neglected, the continuity at the interface between the biofilms

and the water-phases can be extended to the bulk phases and the

modelization can be undertaken using a one-equation model Eq. (1).

1.2. Two-equation models

Along with the identification of these limitations, models that

capture more physics of the reactive transport have been developed.

The fluid–biofilm system has some obvious similarities to mobile–

immobile (two-region, two equation)models, and onemight consider

a two-region model for biofilms in porous media under some

circumstances. Several models have been devised with an explicit

representation of the multiple-region aspects of the reactive trans-

port. These include the microcolony [20] and idealized biofilm [21–24]

models in which the porous medium is decomposed into a solid

impermeable grain, a diffusive-reactive biofilm, a diffusive boundary

layer and an advective–diffusive bulk water-phase. This representa-

tion leads to two-equation models where each equation describes

the behavior of the averaged concentration on one single phase,

and there is exchange between phases sharing common boundaries.

Such models are able to capture more complex dynamics than one-

equation local mass equilibrium models. Unfortunately, there are still

two difficulties with such representations.

Problem 1. There is only an intuitive (rather than formal) relationship

between the problem at the microscale and the one at the Darcy-scale.

Hence, (1) it is still unclearwhen thismodel shouldbe applied instead of

the one-equation localmass equilibriummodel for example, and (2) the

dependence of the effective parameters (dispersion, effective velocities,

mass exchange coefficients and effective reaction rate) on the

microscale processes and geometry remains unknown.

Problem 2. The systemof differential equations that need to be solved

is more complex, and, thus, is more difficult to use in applications.

As a solution to the Problem1, one canfindamoreprecise connection

between the macroscopic model and the associated microscale

boundary value problem through upscaling methods. The physics

of non-reactive transport has been widely addressed by deterministic

techniques such as homogenization, moments matching and volume

averaging with closure. Such approaches have been adapted to the

problem of reactive transport with biofilms in porous media. These

include the work of Wood et al. [25] and Golfier et al. [26] who used

the volume averaging with closure theory [27] to compute effective

parameters of the medium. However, except for two limit cases that

have been studied byOrgogozoet al. [28],most of theworkwith volume

averaging has focused on the local mass equilibrium assumption

which is often excessively restrictive. To address the non-equilibrium

situation in this two-phase configuration, one could consider two-

equation models Eqs. (2a) and (2b)

εγ
∂ cγ

D Eγ

∂t + V
**
γγ ⋅∇ cγ

D Eγ
+ V

**
γω ⋅∇ cωh iω = ∇ ⋅ D

**
γγ ⋅∇ cγ

D Eγ
' (

+ ∇ ⋅ D
**
γω ⋅∇ cωh iω

' (

−h** cγ

D Eγ− cωh iω
% &

ð2aÞ

εω
∂ cωh iω

∂t + V
**
ωγ ⋅∇ cγ

D Eγ
+ V

**
ωω ⋅∇ cωh iω = ∇ ⋅ D

**
ωγ ⋅∇ cγ

D Eγ
' (

+ ∇ ⋅ D
**
ωω ⋅∇ cωh iω

' (

−h** cωh iω− cγ

D Eγ% &

+ Rω: ð2bÞ

Here, cih ii is the concentration of the solute in the i-phase. V**ij and

D**ij (i and j are dummy indexes for γ, water-phase, or ω, biofilm-

phase) are the macroscopic velocities and dispersion tensors of

the two-equation model and h** is the mass exchange coefficient.

Eqs. (2a) and (2b) can be seen as a general compact way to write dual

continua models [29–35]. The previous denominations refer to the

scale of application and the physical processes involved whereas the

two-equation model definition refers to the mathematical structure

of the problem. These have been extensively used in hydrology and

chemical engineering to describe the non-reactive mass transport in

matrix-fracture media [36], in two-region large-scale systems [37] as

well as for the heat transfer [38] in two-phase/region porous media.

However, the complexity of the problem is still quite intimidating

and the dilemma of reconciling Problem 1 and Problem 2 in a non-

equilibrium situation appears fundamental.

1.3. A one-equation non-equilibrium model

There has been some interestingwork suggesting that it is possible

to develop a one-equation model that applies to non-equilibrium

conditions under some time-constraints. Cunningham and Mendoza-

Sanchez in [21] compared the behaviors of the one-equation model

Eq. (1) (“the simple model”) and the “idealized biofilm” model. They

show that these are equivalent under steady state conditions and

“effectively indistinguishable when the rate-controlling process is

either externalmass transfer or internalmass transfer”under transient

conditions. From a more fundamental perspective, Zanotti and

Carbonell showed in [39] that, for the non-reactive case, two-equation

models have a time-asymptotic behavior which can be described in

terms of a one-equation model. The demonstration is based on the

moments matching principle at long times and does not assume local

mass equilibrium. They considered the time-infinite behavior of the

first two centeredmoments of a two-equationmodel developed using

the volume averaging with closure theory. The essential idea here is

that the time-asymptotic behavior of a multidomain formulation can

be undertaken using a one-equation model even in a non-equilibrium

(i.e., where the concentrations in the two regions are not at

equilibrium relative to one another at any given time) situation.

One could follow the approach of Zanotti and Carbonell to develop

an upscaled theory for the reactive case, but their approach is not

straightforward. For example, in the reactive case it is not possible to

adopt a time-infinite limit of the zeroth order moment. This is

primarily because the chemical species is consumed by the micro-

organisms and, consequently, its mass tends toward zero. One

resolution is to consider only the smallest eigenvalue of the spatial

operator for capturing the long-time rate of consumption. However,

this approach leads to a very complex two-step analysis.



Upscaling the one-equation time-asymptotic model in one-step

would be a useful development. Dykaar and Kitanidis devised such a

technique in [40] starting directly from themicroscale boundary value

problem and using a Taylor–Aris–Brenner moment analysis. In their

approach, they computed the dispersion tensor, the effective reaction

rate and the effective solute velocity of a model porous medium with

biofilm. However, there are two areas in this previous work that could

be improved; these are as follows:

1. They considered a macroscopic average of the solute concentration

only on the fluid-phase and, while themodel does not assume local

mass equilibrium, it is ambiguous as to what the specific model

limitations are.

2. The moments matching technique in their analysis [40] makes the

assumption that the behavior of the third and higher spatial

moments can be neglected and that only the smallest eigenvalue of

the spatial operator can be considered to describe the reaction rate.

These hypotheses have different meanings in the single phase

configuration and in the multiphase situation. In the work by

Dykaar and Kitanidis, it is not clear how the phase configuration

applies to the analysis.

In the non-reactive case, it has been proven [41] that the two-step

method proposed by Zanotti and Carbonell is strictly equivalent to a

one-step technique based on a particular volume averaging theory

presented in that work. The essential feature of that theory is the

definition of a useful, but unusual, perturbation decomposition. This

decomposition is usually undertaken using fluctuations, convention-

ally defined in applications to subsurface hydrology by Gray [42]. For

that kindof description, the pointwise concentration is expressed as an

intrinsic averaged on the phase plus a perturbation. In an n-phase

system, this decomposition leads to an n-equation macroscopic

system and in our case would lead to the two-equation model

previously discussed. Rather than using an intrinsic averaged on each

phase, the perturbation concept can be extended to aweighted volume

averaging ch iγω of the pointwise concentration on all the different

phases Eq. (3), leading to a one-equation model. It is defined as

ch iγω =
εγ

εγ + εω
cγ

D Eγ
+

εω
εγ + εω

cωh iω ð3Þ

where εi is the volumic fraction occupied by the i-phase.

In this study, we use this variant of the technique of volume

averaging with closure in the reactive case to develop a one-equation

model. This model is different from those based on the local mass

equilibrium assumption in that it does not impose specific conditions

regarding the concentration in the two phases at any given time. Rather,

it requires only that at long times the resulting balance equation is fully

described by an advection–dispersion–reaction type equation, that is,

by its first two spatial moments. This assumption means that the

transport process is dispersive, and that the reactions do not themselves

lead to spatial asymmetries for an initially symmetric solute distribu-

tion. This is very much in the spirit of the work by Dykaar and Kitanidis

except that our model Eq. (4) describes the total mass present in the

system and, hence, exhibits different effective velocity v*, dispersion

tensor D* and reaction rate α*. The constraints associated with the

theoretical development are extensively discussed.

∂ ch iγω

∂t + v* ⋅∇ ch iγω = ∇⋅ D* ⋅∇ ch iγω
) *

−α* ch iγω: ð4Þ

The remainder of the article is organized as follows. First, we

derive the one-equation non-equilibrium reactive model. The micro-

scopic equations describing the system at the pore-scale are written

and we use the volume averaging upscaling process; we define a

unique fluctuation that is subsequently used to obtain a macroscopic

(but unclosed) one-equation model. Then, we establish a link

between the two scales through closure problems. Finally, we show

that a closed form of the macroscopic equation can be obtained where

effective parameters depend explicitly upon closure variables solved

over a representative cell. We explore numerically some solutions to

the closure problem, and compare the non-equilibrium model to

(1) the local equilibrium model and (2) pore-scale simulations.

2. Microscopic equations

Our study starts with the pore-scale description of the transport of

a contaminant/nutrient in the porous medium. In the fluid (γ) phase,

convective and diffusive transport are considered, and it is assumed that

there is no reaction. In the biofilm (ω) phase, only diffusive transport

anda reactionare considered. For thepurposes of this paper, thevelocity

field is assumed to be known pointwise as a vector field. Mass balanced

equations for the biofilm–fluid–solid system take the following form

γ+phase :
∂cγ
∂t + ∇⋅ cγvγ

% &

= ∇⋅ Dγ⋅∇cγ

% &

ð5Þ

BC1 : − nγσ ⋅Dγ

% &

⋅∇cγ = 0 on Sγσ ð6aÞ

BC2 : cω = cγ on Sγω ð6bÞ

BC3 : − nγω⋅Dγ

% &

⋅∇cγ = − nγω⋅Dω

% &

⋅∇cω on Sγω ð6cÞ

BC4 : − nωσ ⋅Dωð Þ⋅∇cω = 0 on Sωσ ð6dÞ

ω+phase :
∂cω
∂t = ∇⋅ Dω⋅∇cωð Þ + Rω: ð7Þ

Here, cγ is the chemical species concentration in the γ-phase, and
cω is the concentration in the ω-phase (which can be interpreted as

the volume average concentration in the extracellular space [19,25]).

The symbols Dγ and Dω represent the diffusion tensors in the γ and

ω-phases, respectively; Rω is the reaction rate in the ω-phase, the

formulation of this term is detailed in Section 3.5;nγω is the unit normal

pointing from the γ-phase to the ω-phase; nγσ is the unit normal

pointing from the γ-phase to the σ-phase; nωσ is the unit normal

pointing from the ω-phase to the σ-phase; Sγω is the Euclidean space

representing the interface between the γ-phase and theω-phase; Sγσ is

the interface between the γ-phase and the σ-phase; and Sωσ is the

interface between the ω-phase and the ω-phase.

3. Upscaling

3.1. Average definitions

To obtain a macroscopic equation for the mass transport at the

Darcy-scale, we average each microscopic equation at the pore-scale

over a representative region (REV), V Figs. 1 and 2. Vγ and Vω are the

Euclidean spaces representing the γ- and ω-phases in the REV. Vγ and

Vω are the Lebesgue measures of Vγ and Vω, that is, the volumes of

the respective phases. The Darcy-scale superficial average of ci (where

i represents γ or ω) is defined the following way

cγ

D E

=
1

V
∫Vγðx;tÞcγdV ; cωh i = 1

V
∫Vωðx;tÞcωdV : ð8Þ

Then, we define intrinsic averaged quantities

cγ

D Eγ
=

1

Vγðx; tÞ∫Vγðx;tÞcγdV ; cωh iω =
1

Vωðx; tÞ∫Vωðx;tÞcωdV : ð9Þ



Volumes Vγðx; tÞ and Vωðx; tÞ are related to the volume V by

εγðx; tÞ =
Vγðx; tÞ

V
; εωðx; tÞ = Vωðx; tÞ

V
: ð10Þ

Hence, we have

cγ

D E

= εγðx; tÞ cγ

D Eγ
; cωh i = εωðx; tÞ cωh iω: ð11Þ

Due to the growth process, the geometry associated with the

biofilm-phase can evolve in time. However, we will assume that

changes in the Vγ and Vω volumes are decoupled from the transport

problem. There is substantial support for this approximation because

the characteristic time for growth is much larger than the character-

istic time for transport processes [17,18]. Moreover, volumic fractions

εγ and εω are also supposed constant in space so that we consider a

homogeneous porous medium.

As stated above, the goal of this article is to devise a one-equation

model that describes the evolution of the solute mass in the two

phases by a single equation at the Darcy-scale. Toward that end, we

define two additional macroscopic concentrations. The first is the

spatial average concentration, defined by

ch i = εγ cγ

D Eγ
+ εω cωh iω: ð12Þ

The second is a volume-fraction weighted averaged concentration

[17,43]

ch iγω =
εγ

εγ + εω
cγ

D Eγ
+

εω
εγ + εω

cωh iω: ð13Þ

During the averaging process, there arise terms involving the point

values for cγ, cω, and vγ. To treat these terms conventionally, one

defines perturbation decompositions as follows

cγ = cγ

D Eγ
+ c̃γ ð14Þ

cω = cωh iω + c̃ω ð15Þ

vγ = vγ

D Eγ
+ ṽγ: ð16Þ

With these decompositions, the averaging process would lead to

the formulation of a two-equation model, where a separate upscaled

equation would be developed for each phase.

We will adopt a fundamentally different concentration decompo-

sition which allows the development of a one-equation model that is

different from the one-equation model that assumes local mass

equilibrium. To do so, we define theweighted averaged concentration,

ch iγω by the decompositions

cγ = ch iγω + ĉγ ð17aÞ

cω = ch iγω + ĉω: ð17bÞ

Notice that with this definition, we do not generally have the

condition that the intrinsic average of the deviation is zero, i.e.,

c̃γ
! "γ

; c̃ωh iω = 0. However, we do have a generalization of this idea in

the form

εω ĉωh iω + εγ ĉγ

D Eγ
= 0: ð18Þ

3.2. Averaging equations

To start, the averaging operators and decompositions defined

above are applied to Eqs. (5) and (7); the details of this process are

provided in Appendix A. The result is

γ+phase

∂εγ cγ

D Eγ

∂t + ∇⋅ εγ cγ

D Eγ
vγ

D Eγ% &

= ∇⋅ εγDγ⋅ ∇ cγ

D Eγ
+

1

Vγ

∫
Sγω

nγωc̃γdS +
1

Vγ

∫
Sγσ

nγσ c̃γdS

!( )

+
1

V ∫
Sγω

ðnγω⋅DγÞ⋅∇cγdS +
1

V∫Sγσ
ðnγσ ⋅DγÞ⋅∇cγdS−∇⋅ c̃γ ṽγ

D E

ð19Þ

ω+phase

∂εω cωh iω

∂t = ∇⋅ εωDω⋅ ∇ cωh iω +
1

Vω

∫
Sωγ

nωγc̃ωdS +
1

Vω

∫
Sωσ

nωσ c̃ωdS

' (. /

+
1

V ∫
Sωγ

ðnωγ⋅DωÞ⋅∇cωdS +
1

V∫Sωσ
ðnωσ ⋅DωÞ⋅∇cωdS + εω Rωh iω

ð20Þ

3.3. The macroscopic concentration in a multiphase system

At this point, it is clear that in general one needs two macroscale

equations to describe the system (one-equation for each phase). It is not

obvious, however, if there are conditions for which the mass transport

can be represented using a single concentration andwhat should be the

definition of this macroscopic measure in a multiphase configuration.

For example, experimentally, biofilms are often studied in laboratory

devices such as columns. One may then ask the questions (1) “What

concentration are wemeasuring at the output of a column colonized by

biofilm?” and (2) “How do we establish a relationship between this

experimental measure and the concentration in our model?”

We begin by addressing the first question. The concentration

measured in an experimental system depends on the design of

the experimental system, the physical and chemical properties of the

porous medium, and on the experimental device used to make

measurements. As an example, assume that we are trying to obtain

the elution curve of a tracer (concentration ci in the i-phase) at the

output of the column by sampling the water on relatively small time

intervals ΔT (say, a hundred samples for one elution curve) and then

measuring the concentration within each volume. For highmicroscopic

Péclet numbers, one may measure a quantity close to cγ
! "γ

as the

Fig. 2. Pore-scale description of a Darcy-scale averaging volume.



transport is driven by the convection in the water-phase. For

microscopic Péclet numbers lower than unity, that is, a transport driven

bydiffusion, onemaymeasure something closer to ch iγω . In this context,

a general definition of the concentration would be

Ch i = ∫t

0
∫
V
Gðx−y; t−τÞcðy; τÞdVðyÞdτ ð21Þ

where G is a spatio-temporal kernel corresponding to a weighting

function accounting for themeasurementdevice, the columndevice and

the physics of the transport, and c is the concentration defined by

c =
cγ in the γ+phase
cω in the ω+phase
0 in the σ+phase

8

<

:

9

=

;

: ð22Þ

Then, it is necessary to address question (2), that is, wemust find a

relationship between Ch i and the concentrations appearing in our

models. There are two different ways to proceed. First, it is possible

to formulate a generalized volume averaging theory to directly

describe the transport of Ch i. This has been proposed in [44]. Second, it

is feasible to describe the transport of a relatively simple averaged

concentration and to apply the correct kernel a posteriori. In this

case, the concentration to be used in the model can be chosen on the

basis of its relevance from a theoretical point of view.

In this article, we use ch iγω [Eq. (17a)] as a macroscopic

concentration, that is,weare interested in following the spatio-temporal

macroscopic evolution of the total component mass in the porous

medium. One significant advantage of this definition is that, in a non-

reactive medium, the concentration ch iγω is conservative; unlike the

individual phase averages,which are not conservative due to interphase

mass transfer. For example, cγ
! "γ

is often used as a macroscopic

concentration but loosesmany features of the transport processes. Then,

to go back to Ch i, one needs to determine the kernel F defined by

Ch i = ∫t

0
∫
V
Fðx−y; t−τÞ ch iγωðy; τÞdVðyÞdτ: ð23Þ

The precise determination of the kernel G or F represents an

extremely difficult task; in real problems, one can usually only

approximate the correct concentration to use for a specific problem

because the kernel functions are generally not exactly known.

3.4. Development of the macroscopic balance equation

In order to obtain a single equation for describing the balance of the

concentration ch iγω , we need to combine the two macroscopic

equations given by Eqs. (19) and (20). It is then necessary to eliminate

all intrinsic concentrations, cih i i, by combining terms. This kind of

description can be developed using the nonconventional decomposi-

tions defined by ch iγω [45] which naturally arises when summing

Eqs. (19) and (20). We have applied this kind of analysis to the two

macroscale equations developed above; the detailed derivation can be

found in Appendix B. The following non-closed equation results from

that analysis

∂ ch iγω

∂t + ∇⋅
εγ

εγ + εω
ch iγω vγ

D Eγ

!

= ∇⋅ εω
εγ + εω

Dω +
εγ

εγ + εω
Dγ

!

⋅∇ ch iγω
( )

− 1

εγ + εω
∇⋅ ĉγvγ

D E

+ ∇⋅ εω
εγ + εω

Dω⋅ ∇ĉω
! "ω

+
εγ

εγ + εω
Dγ⋅ ∇ĉγ

D Eγ

!

+
εω

εγ + εω
Rωh iω:

ð24Þ

3.5. Reaction term

The form of the reaction rate has not yet been detailed but, at this

point, it is important to make further progress concerning this aspect

of the problem. The classical dual-Monod [46] reaction rate for

electron donor A and acceptor B, is widely adopted to describe biofilm

substrate uptake and growth in systems with a single substrate and a

single terminal electron acceptor. In this case, the reaction rate is

given by a hyperbolic kinetic expression of the form

Rω = −α
cAω

cAω + KA

cBω
cBω + KB

: ð25Þ

Here, the α is the substrate uptake rate parameter (often expanded

as α = k ρbh i, where k is the specific substrate uptake rate parameter,

and ρbh i is the microbial concentration; cf. [47]). One often considers

the case where the electron is not limiting cBω≫KB, in which case the

kinetics take the classical Monod form

Rω = −α
cAω

cAω + KA

ð26Þ

which can be written

Rω = −α
cω

cω + K : ð27Þ

This is beyond the scope of this paper to propose a technique to

upscale such non-linear kinetics and we will only consider the linear

case Eq. (28)

Rω = −α

K cω: ð28Þ

These linear kinetics can be seen as a particular case of the classical

Monod for which cω≪K, that is, a highly reactive biofilm or relatively

low concentrations. This approximation has been undertaken incal-

culable times [48–50] and is discussed in [21,40].

3.6. Non-closed macroscopic formulation

Introducing linear kinetics in Eq. (24) leads to

∂ ch iγω

∂t + ∇⋅
εγ

εγ + εω
ch iγω vγ

D Eγ

!

= ∇⋅ εω
εγ + εω

Dω +
εγ

εγ + εω
Dγ

!

⋅∇ ch iγω
( )

+ ∇⋅ εω
εγ + εω

Dω⋅ ∇ĉω
! "ω

+
εγ

εγ + εω
Dγ⋅ ∇ĉγ

D Eγ

!

− εω
εγ + εω

α

K ch iγω + ĉω
! "ω) *

− 1

εγ + εω
∇⋅ ĉγ ṽγ

D E

− 1

εγ + εω
∇⋅ ĉγ

D E

vγ

D Eγ% &

:

ð29Þ

Although Eq. (36) represents a macroscale mass transport

equation, it is not yet under a conventional form because deviation

concentrations still remain. Eliminating these deviation concentra-

tions, and hence uncoupling the physics at the microscale from the

physics at the macroscale, is referred to as the closure problem.



4. Closure

4.1. Deviation equations

To close Eq. (29), we first need to develop balance equations for the

concentration deviations, ĉγ and ĉω. Going back to their definitions

Eq. (17a) suggests that these equations can be obtained by subtracting

the averaged equation Eq. (24) to the microscopic mass balanced

Eqs. (5) and (7). To make further progress, it is also necessary to make

some simplifications. We will assume that all the terms containing only

second order derivatives of surface integrated or volume averaged

quantities are negligible as compared to spatial derivatives of

fluctuation quantities over the REV. Terms containing derivatives of

averaged quantities are often referred to as non-local terms. Thismeans

that these cannot be calculated locally on a REV; rather, they act as

source terms and, if they cannot beneglected, that is, if the hypothesis of

separation of length scales is not valid, they impose a coupling between

the microscale and the macroscale problems.

Eq: ð5Þ minus Eq: ð24Þ

∂ĉγ
∂t + ∇⋅ vγ ĉγ

% &

= ∇⋅ Dγ⋅∇ĉγ

% &

−∇⋅ ṽγ ch iγω
% &

− εω
εω + εγ

∇⋅ vγ

D Eγ
ch iγω

% &

−∇⋅ εω
εγ + εω

Dω⋅ ∇ĉω
! "ω

+
εγ

εγ + εω
Dγ⋅ ∇ĉγ

D Eγ

!

+
α

K
εω

εω + εγ
ch iγω + ĉω

! "ω) *

+
1

εγ + εω
∇⋅ ĉγvγ

D E

:

ð30Þ

Eq: ð7Þ minus Eq: ð24Þ

∂ĉω
∂t = ∇⋅ Dω⋅∇ĉω

) *

+
εγ

εγ + εω
∇⋅ vγ

D Eγ
ch iγω

% &

−∇⋅ εω
εγ + εω

Dω⋅ ∇ĉω
! "ω

+
εγ

εγ + εω
Dγ⋅ ∇ĉγ

D Eγ

!

−α

K
εγ

εω + εγ
ch iγω +

α

K
εω

εω + εγ
ĉω
! "ω−α

K ĉω

+
1

εγ + εω
∇⋅ ĉγvγ

D E

:

ð31Þ

We will impose the condition that we are interested in primarily

the asymptotic behavior of the system; thus, we can adopt a quasi-

steady hypothesis. In essence, this constraint indicates that there is a

separation of time scales for the relaxation of ĉγ and ĉω as compared

to the time scale for changes in the average concentration, ch iγω . Such
constraints can be put in the form

TT

γ≫
l2γ

jjDγ jj
;

lγ

vγ

D Eγ

TT

ω≫
l2ω

jjDω jj
;

K
α

ð32Þ

where Tγ
* (respectively Tω

* ) is a characteristic time associated to
∂ĉγ
∂t

(respectively
∂ĉω
∂t ); ‖:‖ is the tensorial norm given by

‖T‖ =
1

2

ffiffiffiffiffiffiffiffiffiffi

T : T
p

=
1

2

ffiffiffiffiffiffiffiffiffiffi

TijTji

q

: ð33Þ

The vector norm is given by

vγ

D Eγ
= vγ

D Eγ⋅ vγ

D Eγ% &1
2
: ð34Þ

This hypothesis is the key to understanding the time-asymptotic

behavior of the model developed herein. It has been shown in [41,45],

in the non-reactive case, that this quasi-stationarity assumption is

equivalent to time-asymptotic models derived through moments

analysis [39] from two-equation models. In other words, the

assumption of quasi-stationarity on the ĉ perturbations is much

more restrictive than the one on c̃ which leads to the two-equation

model. One other way of seeing it is to express ĉ as

ĉi = ĉi
! "i

+ c̃i ð35Þ

so that

∂ĉi
∂t =

∂ ĉi
! "i

∂t +
∂c̃i
∂t : ð36Þ

Hence, imposing constraints on
∂ĉi
∂t results in constraints on

∂c̃i
∂t but

also on
∂ ĉi
! "i

∂t ; in opposition to constraints only on
∂c̃i
∂t in the two-

equation quasi-stationary models. With these approximations, the

closure problems can be rewritten as follows

∇⋅ðvγ ĉγÞ = ∇⋅ Dγ⋅∇ĉγ

% &

−∇⋅ ṽγ ch iγω
% &

− εω
εω + εγ

∇⋅ vγ

D Eγ
ch iγω

% &

+
α

K
εω

εω + εγ
ch iγω + ĉω

! "ω) *

−∇⋅ εω
εγ + εω

Dω⋅ ∇ĉω
! "ω

+
εγ

εγ + εω
Dγ⋅ ∇ĉγ

D Eγ

 !

+
εγ

εγ + εω
∇⋅ ĉγ ṽγ

D Eγ
+ vγ

D Eγ⋅∇ ĉγ

D Eγ% &

ð37Þ

BC1 : − nγσ ⋅Dγ

% &

⋅∇ĉγ = nγσ ⋅Dγ

% &

⋅∇ ch iγω on Sγσ ð38aÞ

BC2 : ĉω = ĉγ on Sγω ð38bÞ

BC3 : − nγω⋅Dγ

% &

⋅∇ĉγ = − nγω⋅Dω

% &

⋅∇ĉω

− nγω⋅ Dω−Dγ

% &n o

⋅∇ ch iγω on Sγω

ð38cÞ

BC4 : − nωσ ⋅Dωð Þ⋅∇ĉω = nωσ ⋅Dωð Þ⋅∇ ch iγω on Sωσ ð38dÞ

0 = ∇⋅ Dω⋅∇ĉω
) *

+
εγ

εγ + εω
∇⋅ vγ

D Eγ
ch iγω

% &

−α

K
εγ

εω + εγ
ch iγω

+
α

K
εγ

εω + εγ
ĉω
! "ω−α

K ĉω

−∇⋅ εω
εγ + εω

Dω⋅ ∇ĉω
! "ω

+
εγ

εγ + εω
Dγ⋅ ∇ĉγ

D Eγ

!

+
εγ

εγ + εω
∇⋅ ĉγ ṽγ

D Eγ
+ vγ

D Eγ⋅∇ ĉγ

D Eγ% &

:

ð39Þ

4.2. Representation of the closure solution

Themathematical structure of this problem indicates that there are a

number of nonhomogeneous quantities involving ch iγω that act as

forcing terms. Under the conditions that a localmacroscopic equation is



desired, it can be shown (c.f., [51]) that the general solution to this

problem takes the form

ĉγ = bγ⋅∇ ch iγω−sγ ch iγω ð40Þ

ĉω = bω⋅∇ ch iγω−sω ch iγω: ð41Þ

Here, the variables bγ, bω, sγ, and sω can be interpreted as integrals

of the associated Greens functions for the closure problem. This

closure fails to capture any characteristic time associated to the

exchange between both phases in opposition to the closure used for

two-equation models which describes one characteristic time

associated with the exchange. Only non-local theories or direct

pore-scale simulations would be able to recover all the characteristic

times involved in this process.

Upon substituting this general form into the closure problem, we

can collect terms involving ∇ ch iγω and ch iγω . The result is the

following set of closure problems in which derivatives of averaged

quantities are neglected

Problem I (s-problem)

∇⋅ vγsγ

% &

= ∇⋅ Dγ⋅∇sγ

% &

−α

K
εω

εω + εγ
−α

K
εγ

εω + εγ
sγ

D Eγ
ð42Þ

BC1 : − nγσ ⋅Dγ

% &

⋅∇sγ = 0 on Sγσ ð43aÞ

BC2 : sω = sγ on Sγω ð43bÞ

BC3 : − nγω⋅Dγ

% &

⋅∇sγ = − nγω⋅Dω

% &

⋅∇sω on Sγω ð43cÞ

BC4 : − nωσ ⋅Dωð Þ⋅∇sω = 0 on Sωσ ð43dÞ

0 = ∇⋅ Dω⋅∇sωð Þ + α

K
εγ

εω + εγ
+

α

K
εω

εω + εγ
sωh iω−α

K sω: ð44Þ

Problem II (b-problem)

vγ⋅∇bγ = ∇⋅ Dγ⋅∇bγ

% &

−ṽγ−
εω

εω + εγ
vγ

D Eγ−α

K
εγ

εω + εγ
bγ

D Eγ

+
εω

εγ + εω
Dω⋅ ∇sωh iω +

εγ
εγ + εω

Da⋅ ∇sγ

D Eγ−2Dγ⋅∇sγ

+ vγsγ−
εγ

εω + εγ
sγvγ

D Eγ

ð45Þ

BC1 : − nγσ ⋅Dγ

% &

⋅∇bγ = nγσ ⋅Dγ

% &

1−sγ

% &

on Sγσ ð46aÞ

BC2 : bω = bγ on Sγω ð46bÞ

BC3 : −nγω⋅ Dγ⋅∇bγ−Dω⋅∇bω

% &

= −nγω⋅ Dω−Dγ

% &

1−sγ

% &

on Sγω

ð46cÞ

BC4 : − nωσ ⋅Dωð Þ⋅∇bω = nωσ ⋅Dωð Þ 1−sωð Þ on Sωσ ð46dÞ

0 = ∇⋅ Dω⋅∇bωð Þ +
εγ

εγ + εω
vγ

D Eγ
+

α

K
εω

εω + εγ
bωh iω−α

Kbω

+
εω

εγ + εω
Dω⋅ ∇sωh iω +

εγ
εγ + εω

Dγ⋅ ∇sγ

D Eγ−2Dω⋅∇sω

−
εγ

εω + εγ
sγvγ

D Eγ
:

ð47Þ

The mathematical procedure carried out for the development

of these two boundary value problems leads to a coupling between

both closure parameters. For example, the quantity vγsγ appears in

Eq. (45). Such terms, connecting the closure parameters associated

with different orders of derivatives of themacroscopic concentrations,

are not classical in the volume averaging method and are usually

neglected, especially for the development of the so-called two-

equation models. It has been proven that this coupling is necessary

when solving the classical Graetz problem [52]. However, whether

this additional feature leads to a better description of the mass

transport in disordered porous media, or whether this should be

neglected is still a matter of debates.

4.3. Closure assumptions

There is an interesting discussion concerning the concept of

representative elementary volume (REV) which is often misunder-

stood. Within hierarchical porous media, there is substantial redun-

dancy in the spatial structure of the transport processes at the

microscale, that is, the information needed to calculate the effective

parameters is contained in a relatively small representative portion

of the medium. Within this REV, internal boundary conditions, say

Eq. (46a) for example, between the different phases are determined

by the physics at the pore-scale. However, in order to ensure unicity of

the s and b fields, it is alsomandatory to adopt a representation for the

external boundary condition between the REV and the rest of the

porous medium. This condition is not determined by the physics at

the pore-scale but rather represents a way of closing the problem. At

first, it is unclear how this choice should be made and it results in a

significant amount of confusion in the literature. From a theoretical

point of view, if the REV is large enough (read if the hypothesis of

separation of length scales is verified), it has been shown [27] that

effective parameters do not depend on this boundary condition.

In the real world, this constraint is never exactly satisfied, that is,

the boundary condition influences the microscopic fields and the

effective parameters. However, it is important to notice that in the

macroscopic Eq. (29), ĉ appears only under integrated quantities.

Because of this, the dependence of effective parameters upon the

solution of the closure problem is essentially mathematically of a

weak form [53]. Hence, one could choose, say, Dirichlet, Neumann,

mixed or periodic boundary conditions to obtain a local solution

which produces acceptable values for the associated averaged

quantities. As previously discussed in the literature [54–58], the

periodic boundary condition lends itself very well for this application

as it induces very little perturbation in the local fields, in opposition to,

say, Dirichlet boundary conditions. It must be understood that this

does not mean that the medium is interpreted as being physically

periodic. For the remainder of this work, we will assume that the

medium can be represented locally by a periodic cell Eq. (48) and that

the effective parameters can be calculated over this representative

part of the medium.

Periodicity : ĉiðx + lkÞ = ĉiðxÞ k = x; y; z: ð48Þ

We also have Eqs. (49) and (50)

Periodicity : biðx + lkÞ = biðxÞ k = x; y; z ð49Þ

Periodicity : siðx + lkÞ = siðxÞ k = x; y; z: ð50Þ

In these Eqs. (48)–(50), we have used lk to represent the three

lattice vectors that are needed to describe the 3-D spatial periodicity.

In addition to these periodic boundary conditions, one usually needs

to impose constraints on the intrinsic averaged of the closure fields in

order to ensure unicity of the solutions. To find out these additional

equations, we use c̃γ
! "γ

; c̃ωh iω = 0. In our case, this is not necessary to



constrain the fields because the reactive part of the spatial operator

ensures, mathematically, unicity of the solutions. However, numerical

computations, in situations where the reaction has little importance in

comparison to other processes, can lead to some discrepancies. To avoid

this problem, it is important to impose εω ĉω
! "ω

+ εγ ĉγ
! "γ

= 0, that is,

εω bωh iω + εγ bγ

! "γ
= 0 and εω sωh iω + εγ sγ

! "γ
= 0.

4.4. Closed macroscopic equation

Substituting Eqs. (40) and (41) into Eq. (29) leads to

∂ ch iγω

∂t + v
T⋅∇ ch iγω = ∇⋅ D

T⋅∇ ch iγω
% &

−α
T
ch iγω ð51Þ

where the effective parameters are given by

v
T
=

εγ
εγ + εω

vγ

D Eγ
+ Dγ⋅ ∇sγ

D Eγ− sγvγ

D Eγ% &

+
εω

εγ + εω
Dω⋅ ∇sωh iω +

α

K bωh iω
% &

ð52Þ

D
T
=

εγ
εγ + εω

Dγ⋅ I−I sγ

D Eγ
+ ∇bγ

D Eγ% &

− vγbγ

D Eγh i

+
εω

εγ + εω
Dω⋅ I−I sωh iω + ∇bωh iω

) *= >

ð53Þ

αT =
α

K
εω

εγ + εω
1− sωh iω
) *

: ð54Þ

For simplicity, the volumic fractions are taken to be constants. If

the model is applied to media with non constant porosities, one

should take care to consider gradients of ε (c.f., Appendixes).

Moreover, the macroscopic equation is written under a non-

conservative form so that it exhibits only effective velocity, dispersion

and effective reaction rate. It is convenient to write it this way for the

purpose of comparing the asymptotic model with other models.

However, a more general conservative expression would be

∂ ch iγω

∂t + ∇⋅
εγ

εγ + εω
ch iγω vγ

D Eγ

!

= ∇⋅ D
T

c⋅∇ ch iγω
% &

−∇⋅ d
T

c ch iγω
% &

−v
T

c⋅∇ ch iγω−α
T

c ch iγω

ð55Þ

where the effective parameters are given by

d
T

c =
εγ

εγ + εω
Dγ⋅ ∇sγ

D Eγ− sγvγ

D Eγ% &

+
εω

εγ + εω
Dω⋅ ∇sωh iω
) *

ð56Þ

v
T

c =
εω

εγ + εω

α

K bωh iω ð57Þ

D
T

c =
εγ

εγ + εω
Dγ⋅ I−I sγ

D Eγ
+ ∇bγ

D Eγ% &

− vγbγ

D Eγh i

+
εω

εγ + εω
Dω⋅ I−I sωh iω + ∇bωh iω

) *= >

ð58Þ

αT

c =
α

K
εω

εγ + εω
1− sωh iω
) *

: ð59Þ

At this point, if vT
c plays mathematically the role of a velocity, it is

directly linked to the chemical reaction and should not be discarded if

one considers non-convective flows.

5. Numerical results

Ideally, one could compare the theory developed above with the

results of direct experimental measurements conducted at both the

microscale and at the macroscale. Theoretically, it is possible to

obtain a three dimensional image of the three phases biofilm–

liquid–solid. This is an area of active research [59], and workers are

continuing to develop methods such that the microscale structure

of a biofilm within a porous medium can be measured [60,61].

Currently, however, the results from such multi-scale experimental

measurements are not available. The goal of this section, then, is to

provide some characteristic features of the model previously

devised on a simplified 2D medium Figs. 3 and 4 using numerical

methods.

We adopt a conceptual construction which captures the main

physics of the problem. In Fig. 4, σ-phase is represented by solid black,

the γ-phase is given by light grey, and the grey lies for the ω-phase.

One should notice that at the macroscale only a 1D model is needed

for this particular geometry. For both the 2D and 1D models, the

output boundary condition is set to free advective flux. For the

purposes of this study, 1) we obtain the velocity field by solving

Stokes equations, with no-slip conditions on lateral boundaries,

over the entire system, 2) we will only consider a spheric diffusion

tensor for the biofilm and water-phases, 3) we fix K=0.5 and

DΣ =
Dω

Dγ
= 0:3 and take lγ=0.5. Numerical calculations were per-

formed using the COMSOL™ Multiphysics package 3.5 based on a

finite element formulation. For the resolution of Stokes equation, we

use quadratic Lagrange elements for the velocities and linear for the

pressure. For the resolution of the advection–diffusion equations, we

use a quadratic Lagrange element formulation. Residuals are com-

puted using a quadrature formula of order 2 for linear Lagrange

elements and 4 for quadratic Lagrange elements. The linear systems

Fig. 3. Total geometry.

Fig. 4. Representative cell.



are solved using the direct solver UMFPACK based on the Unsym-

metric MultiFrontal method. Mesh convergence was carefully exam-

ined for each computation.

For these simulations, we have the following precise goals

1. To establish the behavior of the effective parameters as functions of

Péclet and Damköhler numbers.

2. To compare these effective parameters with those of the local mass

equilibrium model, as developed in [26].

3. To validate the model against pore-scale simulations both

stationary and transient.

The problem Eqs. (5)–(7) at the pore-scale can be rewritten under

the following dimensionless form

γ+phase :
∂c′γ
∂t′

+ Pe∇⋅ c
′
γv

′

γ

% &

= Δc
′
γ ð60Þ

BC1 : −nγσ ⋅∇c
′
γ = 0 on Sγσ ð61aÞ

BC2 : c
′
ω = c

′
γ on Sγω ð61bÞ

BC3 : −nγω⋅∇c
′
γ = −DΣnγω⋅∇c

′
ω on Sγω ð61cÞ

BC4 : −DΣnωσ ⋅∇c
′
ω = 0 on Sωσ ð61dÞ

ω+phase :
∂c′ω
∂t′

= ∇⋅ DΣ∇c
′
ω

% &

−DaDΣc
′
ω ð62Þ

where the normalized concentrations and velocity are given by

c
′
ω =

cω
c0

ð63Þ

c
′
γ =

cγ
c0

ð64Þ

v
′
γ =

vy

vγ

D Eγ: ð65Þ

The concentration c0 is the amplitude of the input concentration.

Notice that we impose c0≪K which is a sufficient constraint for the

linearization of the reaction rate. We have adopted the following

additional definitions for dimensionless quantities

t
′
=

t vγ

D Eγ

lγ
: ð66Þ

The ratio between the diffusion coefficients in the ω-phase and γ-
phase is

DΣ =
Dω

Dγ

: ð67Þ

The Péclet and Damköhler numbers are specified by

Da =
αl2γ
KDω

ð68Þ

Pe =
vγ

D Eγ
lγ

Dγ

: ð69Þ

The closure problems Eqs. (42)–(47) take the form in dimension-

less quantities

Problem I (s-problem)

Pe∇⋅ v
′

γsγ

% &

= Δsγ−Da
εω

εω + εγ
−Da

εγ
εω + εγ

sγ

D Eγ ð70Þ

BC1 : −nγσ ⋅∇sγ = 0 on Sγσ ð71aÞ

BC2 : sω = sγ on Sγω ð71bÞ

BC3 : −nγω⋅∇sγ = −DΣnγω⋅∇sω on Sγω ð71cÞ

BC4 : −DΣnωσ ⋅∇sω = 0 on Sωσ ð71dÞ

Periodicity : siðx + lxÞ = siðxÞ ð71eÞ

0 = ∇⋅ DΣ∇sω
) *

+ Da
εγ

εω + εγ
+ Da

εω
εω + εγ

sωh iω−Dasω: ð72Þ

Problem II (b-problem)

Pe v
′

γ⋅∇b
′

γ−v
′

γsγ + ṽ′

γ

% &

= ∇⋅ ∇b
′

γ

% &

−2∇sγ−Da
εγ

εω + εγ
b
′

γ

D Eγ

− Pe
εω + εγ

sγv
′

γ

D E

+
εω

εγ+εω
DΣ ∇sωh iω

+
εγ

εγ + εω
∇sγ

D Eγ

ð73Þ

BC1 : −nγσ ⋅∇b
′

γ = nγσ 1−sγ

% &

on Sγσ

ð74aÞ

BC2 : b
′

ω = b
′

γ on Sγω

ð74bÞ

BC3 : −nγω⋅ ∇b
′

γ−DΣ∇b
′

ω

% &

= −nγω DΣ−1
) *

1−sγ

% &

on Sγω

ð74cÞ

BC4 : −nωσ ⋅∇b
′

ω = nωσ 1−sωð Þ on Sωσ

ð74dÞ

Periodicity : b
′

i ðx + lxÞ = b
′

i ðxÞ ð74eÞ

0 = ∇⋅ DΣ∇b
′

ω

% &

−2DΣ∇sω + Da
εω

εω + εγ
b
′

ω

D Eω−Dab
′

ω

− Pe
εω + εγ

sγv
′

γ

D E

+
εω

εγ + εω
DΣ ∇sωh iω +

εγ
εγ + εω

∇sγ

D Eγ

ð75Þ

Fig. 5. Normalized longitudinal dispersion of the non-equilibrium model as a function

of Pe and Da numbers.



where

ṽ′
γ =

ṽγ

vγ

D Eγ b
′

γ =
bγ

lγ
b
′

ω =
bω

lγ
: ð76Þ

Notice that, if one fixes DΣ, the set of equations only depends upon

Pe and Da.

5.1. Effective velocity, dispersion and reactive behavior

In this section, we solve the closure parameter problems (70)–(75)

over the cell Fig. 4 for large ranges of Pe and Da. Then, the associated

effective parameters are computed and presented Fig. 5 for the

longitudinal dispersion Dxx
* normalized with

εγ
εγ + εω

Dγ +
εω

εγ + εω
Dω;

Fig. 6 for the x-component of the effective velocity vx
* normalized with

εγ
εγ + εγ

vγ
! "γ

; Fig. 7 for the effective kinetics α normalized with

εω
εγ + εγ

α

K. For low Pe and high Da, the length scale constraints needed

to develop the closed macroscopic equation are not satisfied.

However, the constraints previously developed are expressed in

terms of order of magnitudes so that it is not clear what is the exact

limit between the homogenizable and non-homogenizable zones.

Because of this, the entire space of Pe,Da parameter is kept and we do

not clearly establish this frontier.

5.1.1. Velocity

Effective parameters strongly depend upon the type of boundary

conditions at the small scale, that is, the dispersion in a, say, Dirichlet

bounded system or in a Neumann bounded problem may drastically

change. In our case, for low Da, the boundary between the biofilm-

phase and the fluid-phase is a flux continuity whereas, as Da tends

toward infinity, the concentration in the biofilm-phase and at the

boundary tends toward zero, which can be interpreted, for conceptual

purposes, as a Dirichlet boundary condition. In other words, when

Pe≫1 and Da≫1 the medium can conceptually be represented by a

zero-concentration layer surrounding the biofilm, that is, the

substrate reaches a limited interstitial space corresponding to the

maxima of the local velocity field. It results in an increase of the

apparent velocity with both Pe and Da numbers.

5.1.2. Dispersion

The dispersion exhibits the classical form, and increases mainly with

the Pe number as the hydrodynamic dispersion becomes predominant.

However, the log scale hides the fact that D* actually depends also onDa

and this is presented in Fig. 8. We observe a drastic reduction of the

longitudinal dispersion at high Da and it is in agreement with previous

studies [40,62,63]. The physics underlying this effect is reminiscent to the

one causing an augmentation of the apparent velocity. As a boundary

layer in which cγ=0 surrounds the biofilm-phase, the solute is confined

in a small portion of the fluid-phase or, more precisely, undertakes

biodegradation as soon as it reaches the edges of this zone. Themolecules

of solute far away from the entrance have not visited the entire γ-phase
but rather a narrow central portion in which the fluctuations of the

velocity field are limited. As a consequence, the substrate spreading due

to hydrodynamic dispersion (reminiscent to the Taylor dispersion in a

tube) is reduced. Additionally, it is important to keep in mind that our

model porous medium does not exhibit any transverse dispersion. If it

was to be considered, one would expect a different behavior for the

transverse dispersion (see discussions in [40,62,63]).

5.1.3. Effectiveness factor

The effective reaction rate depends almost only on Da because the

mass transfer through the boundary is mainly driven by diffusion. It

seems that, for low Da, the reaction rate is maximum and decreases

when the consumption is too elevated compared to diffusion. It

suggests that the reaction rate could be written under the form ηRmax

with η≤1 a function of Da. Notice that Dykaar and Kitanidis [40],

following the work of Shapiro [63] for a surface reactive medium, also

established a theoretical framework for this kind of effectiveness

factor using the moments matching technique. However, their model

describes an averaged concentration only on the water-phase rather

than the total mass present in the porous medium at a given time. The

Fig. 6. Normalized x-component of the effective velocity of the non-equilibrium model

as a function of Pe and Da numbers.

Fig. 7. Normalized effective reaction rate of the non-equilibriummodel as a function of

Pe and Da numbers.

Fig. 8.Normalized dispersion behavior of the non-equilibriummodel for Pe=1000 as a

function of Da number.



reader is referred to the Section 3.3 for an extensive discussion of this

point.

5.2. Relationship with the local mass equilibrium model

In this part, we compare the local mass equilibrium model as

developed in [26] with the non-equilibrium one-equation model. The

local mass equilibrium model takes the form

∂ ch iγω

∂t + v
T

Equ⋅∇ ch iγω = ∇⋅ D
T

Equ⋅∇ ch iγω
% &

−α
T

Equ ch iγω ð77Þ

where the effective parameters are given by

v
T

Equ =
εγ

εγ + εω
vγ

D Eγ
ð78Þ

D
T

Equ =
εγ

εγ + εω
Dγ ∇bγEqu

D Eγh i

+
εω

εγ + εω
Dω ∇bγEqu

D Eγh i

− 1

εγ + εω
ṽγbγEqu

D E

ð79Þ

α
T

Equ =
α

K
εω

εγ + εω
: ð80Þ

The closure parameters are solutions of the following problem

γ+phase : Pe v
′

γ⋅∇b
′

γEqu + ṽ′

γ

% &

= ∇⋅ ∇b
′

γEqu

% &

ð81Þ

BC1 : −nγσ ⋅∇b
′

γEqu = nγσ on Sγσ ð82aÞ

BC2 : b
′

ωEqu = b
′

γEqu on Sγω ð82bÞ

BC3 : −nγω⋅ ∇b
′

γ−DΣ∇b
′

ωEqu

% &

= −nγω DΣ−1
) *

on Sγω ð82cÞ

BC4 : −nωσ ⋅∇b
′

ωEqu = nωσ on Sωσ ð82dÞ

Periodicity : b
′

iEquðx + lxÞ = b
′

iEquðxÞ ð82eÞ

ω+phase : 0 = ∇⋅ DΣ∇b
′

ωEqu

% &

−Dab
′

ωEqu ð83Þ

where

b
′

γEqu =
bγEqu

lγ
b
′

ωEqu =
bωEqu

lγ
: ð84Þ

In the local mass equilibriummodel, the effective reaction rate and

velocity are constant in terms of Pe and Da numbers. Notice that, on

Fig. 6 and Fig. 7 the effective parameters of the non-equilibriummodel

are directly normalized with those of the equilibrium one. Because of

this, the comparison is straightforward and both are close to each

other for Da≤1.

For the dispersion, the relative difference between both models, in

terms of Pe and Da numbers, is presented in Fig. 9. For Pe≤1, the

relative difference is close to zero so that both models are equivalent

for Da≤1 and Pe≤1. It has been shown in [26] that this region of the

Da, Pe space represents the entire region of validity of the local mass

equilibriummodel. As a direct consequence, it turns out that the non-

equilibrium model includes the equilibrium one when this one is

valid. A thorough study of the transient behavior for both models is

performed and discussed in the next section.

5.3. Comparison with direct numerical simulation

The aim of this section is to provide direct evidences that the

model allows a good approximation of the situation at the pore-scale,

to catch its limits and to study some physics of the problem. On the

one hand, we solve the entire 2D microscopic problem on a total

length of 120Lc (called DNS for direct numerical simulation). On the

other hand, we solve the 1D upscaled models on a total length of

120Lc. First, we observe the stationary response of the system for

different Péclet and Damköhler numbers. Both boundary conditions at

the output are free advective flux. Then, we study the breakthrough

curves at 20Lc, 60Lc and 100Lc for a square input of a width of δt ′=5

starting at t ′=0 for different Péclet and Damköhler numbers.

5.3.1. Stationary analysis

The comparison of the concentration fields between the DNS and

the non-equilibrium model is presented Fig. 10 for Pe=10, Da=10;

Fig. 11 for Pe=100, Da=100 and Fig. 12 for Pe=1000, Da=1000.

Each circle, cross and square represents the value of ch iγω integrated

on a cell. We solve the stationary boundary value problem Eqs. (5)–

(7) with an input Dirichlet boundary condition of amplitude c0. Then

the results are normalized using the value of ch iγω calculated on the

first cell (DNSB) and on the cell number 20 (DNSA) for Fig. 10 and

Fig. 11; and on the first cell (DNSB), on the cell number 20 (DNSA) and

40 (DNSC). The origin of the spatial base is modified consequently to

make them all start at 0.

Fig. 10.DNS and non-equilibriummodel stationary concentration fields forPe=10 and

Da=10 using normalization on the first cell (DNSB) and on the cell number 20 (DNSA).

Fig. 9. Relative differences of the longitudinal dispersion between local mass

equilibrium and non-equilibrium models as functions of Pe for different Da numbers.



For all the different situations, the model provides a very good

approximation of the physics at the pore-scale. As previously

discussed, the non-equilibrium model is time-constrained because

of the hypothesis of quasi-stationarity on ĉi. In this section, we are

interested in global stationarity, that is, a special time-constrained

situation for which the quasi-stationarity hypothesis is very well

satisfied. However, for Pe=100, Da=100 and Pe=1000, Da=1000

some discrepancies arise between the different normalizations. If the

concentration is normalized using ch iγω calculated on a cell far away

from the input boundary, the results are closer between the DNS and

the homogenized model. The reason for this is that, in the DNS, by

imposing a Dirichlet boundary input, we impose c̃γ = 0 and this

cannot be captured by the macroscopic model. As a consequence, the

flux on Sγω is overestimated in the DNS on the first cells as compared

to the homogenized model. When Pe=10, Da=10, this overestima-

tion does not even reach the second cell. For Pe=100, Da=100,

it starts to exceed the first cell. For Pe=1000, Da=1000, the

discrepancy propagates very far from the boundary input as even the

normalization on the cell number 20 does not give a satisfying result

as compared to the one on the cell number 40. These discrepancies

appear because of the specific ordering of the porous medium and

would not propagate so far from the input in a disordered medium.

This question of the impact of boundary conditions on the comparison

between direct numerical simulations and macroscopic predictions

has received some attention in the literature [64–66]. Corrections of

the macroscale boundary conditions, or mixed microscale/macroscale

approaches are available [65–67] but this is beyond the scope of this

paper to develop such techniques.

5.3.2. Transient analysis

In this subsection, we study the transient behaviors of the one-

equation non-equilibrium and equilibrium models for a square input

of width δt ′=5 starting at t ′=0. Concentrations are normalized to

the amplitude of the square input and the time t ′ is normalized with

the characteristic time associated to the advective term. Notice that in

Fig. 11. DNS and non-equilibrium model stationary concentration fields for Pe=100

and Da=100 using normalization on the first cell (DNSB) and on the cell number 20

(DNSA).

Fig. 12. DNS and non-equilibrium model stationary concentration fields for Pe=1000

and Da=1000 using normalization on the first cell (DNSB), on the cell number 20

(DNSA) and on the cell number 40 (DNSC).

Fig. 13. Transient breakthrough curves for the DNS, the local non-equilibrium and

equilibriummodels for a square input of δt ′=5 forPe=1 andDa=10−5 after a) 20Lc;

b) 60Lc; c) 100Lc.

Fig. 14. Transient breakthrough curves for the DNS, the local non-equilibrium and

equilibrium models for a square input of δt ′=5 for Pe=100 and Da=10−5 after

a) 20Lc; b) 60Lc; c) 100Lc.



the transient case, we cannot avoid the issue previously presented as

the concentration cannot be renormalized straighforwardly.

5.3.2.1. Influence of the Pe number. On Fig. 13, the three homogenized

models provide a very good approximation of the transport problem.

At low Péclet, low Damköhler numbers, time and space non-locality

tend to disappear because time and length scales are fully separated.

The signal even propagates slowly enough for the local mass

equilibrium assumption to be valid. Meanwhile, some very little

discrepancy, probably due to the flux overestimation discussed in the

Section 5.3.1, exists at the peaks.

When the Péclet number reaches values around 100, the local

mass equilibrium assumption becomes clearly inappropriate. Fig. 14

shows that the local mass equilibrium model gives a poor approxi-

mation of the signal whereas the non-equilibrium one is still in good

agreement. The fact that the peaks for 20Lc are not in such a good

agreement is characteristic of non-locality. Memory functions (con-

volutions) or two-equation models should be considered in this case.

However, when the signal spreads, non-locality tends to disappear

and the breakthrough curves are in very good agreement.

For Péclet numbers around 1000, Fig. 15, we show that there are

some huge discrepancies between both homogenized model and the

DNS, especially at 20Lc because of the strong non-locality. However,

for long times, the non-equilibriummodel seems to recover the tailing

and the peak of the signal. Results suggest that the one-equation local

non-equilibriummodelmight represent, in cases such as intermediate

Péclet numbers or time-asymptotic regime, a good compromise, in

terms of computational demand, between fully transient theories and

the local mass equilibrium model. The importance of non-locality is

also emphasized and becomes particularly obvious in the high Péclet

number situation.

5.3.2.2. Influence of the Da number. When Pe=100 and Da=100

(Fig. 16) and when Pe=1000 and Da=1000 (Fig. 17), the local mass

equilibrium model obviously does not recover the total mass of

the system, that is, the reaction rate is overestimated. The non-

equilibriummodel is muchmore correct on this aspect. Meanwhile, at

20Lc it fails to capture non-locality and some discrepancies remain

even when the signal spreads at 60Lc and 100Lc unlike for the low Da

situation. This difference probably comes from the overestimation, in

the DNS, of the flux on the first cells. In the non-reactive case, this

effect has very little influence on the breakthrough curves whereas it

is of special importance for high Da situation as the mass overex-

changed disappears. However, unlike the situation Pe=1000 and

Da=10−5, the one-equation non-equilibrium model recovers cor-

rectly the shape of the signal. It suggests that in the highly reactive

case, the long-time regime may be adhered quicker than in the low

reactive case (despite the shift coming from the input boundary

discrepancies).

5.4. Conclusions concerning the numerical simulations

First, we study all the effective parameters as functions of Pe and

Da numbers. We show that the dispersion exhibits differences

between the reactive and the non-reactive case and this is coherent

with other studies [40,62,63]. Effective reaction rate and velocities are

also presented and we show that they mainly depend upon the Da

number. We also emphasize that the non-equilibriummodel includes

the local mass equilibrium one when the conditions of validity of this

model are satisfied. From a theoretical point of view, one should

Fig. 15. Transient breakthrough curves for the DNS, the local non-equilibrium and

equilibrium models for a square input of δt ′=5 for Pe=1000 and Da=10−5 after

a) 20Lc; b) 60Lc; c) 100Lc.

Fig. 16. Transient breakthrough curves for the DNS, the local non-equilibrium and

equilibrium models for a square input of δt ′=5 for Pe=100 and Da=100 after

a) 20Lc; b) 60Lc; c) 100Lc.

Fig. 17. Transient breakthrough curves for the DNS, the local non-equilibrium and

equilibrium models for a square input of δt ′=5 for Pe=1000 and Da=1000 after

a) 20Lc; b) 60Lc; c) 100Lc.



realize that for this special case, the quasi-stationary analysis is the

same for both the Gray decomposition and the non-zero averaged

decomposition since the local mass equilibrium assumption means

c̃γ = ĉγ and c̃ω = ĉω.

Then, by comparison with direct numerical simulations at the

pore-scale, we show that the model is perfectly adapted to stationary

analysis since this represents a special time-constrained case for

which the quasi-stationarity on ĉi is very well satisfied. We also

establish the following limitations

• The model fails to capture very small time phenomena. Two-

equation models or fully transient theories may be required in this

case. The underlying consequence is that domains of validity for the

different models must need a time dimension and not only

dimensionless parameters such as Pe and Da numbers.

• We emphasize that important discrepancies, coming from the

boundary conditions, can propagate through the entire system for

high Pe and high Da numbers. Although, it might not propagate so

far in disordered media, it requires further investigation.

There are two additional constraints which require supplementary

theoretical and numerical research. The first one concerns the

assumption on the reaction rate. Herein, we suppose that the

concentration of the solute is relatively small, that is, we can consider

only linear kinetics. Upscaling of non-linear Monod type reaction rate

in a general framework is an area of active research. The second one

deals with the assumption that the effective parameters can be

calculated on a REV in which the geometry of the biofilm is fixed. For

example, in a real medium, one may have to consider fluctuations of

the porosities or variations of the representative geometry and it is

unclear how these would affect the domain of validity of the time-

asymptotic model.

6. Discussion and conclusions

6.1. Relation to other works

In this article, we derive a one-equation non-equilibrium model

for solute transport in saturated and biologically reactive porous

media. Undertaking the description of multiphase reactive transport

using a single one equation approximation has been done countless

times by experimenters. However, very few works have focused on

developing a theoretical basis and on addressing the validity of this

approach. Two situations allowing such a description have been

identified in the past and are clarified in our study. On the one hand,

when gradients within the bulk phases are relatively small, a single

partial differential equation on the concentration in the water-phase

can be used to describe the mass transport. This situation is often

referred to as the local mass equilibrium condition and has been

extensively discussed in [24,26]. On the other hand, it has been

suggested that a completely different type of constraint can be

formulated to allow a description with merely one equation.

Cunningham and Mendoza-Sanchez in [21] have shown that the

one-equation model is strictly equivalent to the multicontinuum

approach under steady state conditions. This behavior has also been

proved many years before in the non-reactive case by Zanotti and

Carbonell in [39].

Our analysis can be seen as an extension and a complement of the

works by Cunningham andMendoza-Sanchez [21] and by Dykaar and

Kitanidis [40]. In comparison with the work by Cunningham and

Mendoza-Sanchez, we provide a direct connection between the

microscopic processes and the macroscale description for, virtually,

extremely complex topologies. Our development is based on the

calculation of the effective parameters on a representative volume

possibly accounting for very complex geometries. In addition to the

approach by Dykaar and Kitanidis, we propose to take into account the

total mass in the system rather than just the mass in the water-phase.

The strategy adopted in [40] is clearly an extension of the work by

Shapiro and Brenner [63] but additional constraints are necessary in

the multiphase situation and this is not clearly emphasized. The

domain of validity of our model is clearly established on the basis of

(1) comparisons between the upscaled results and the direct

numerical simulations at the pore-scale and (2) discussions

concerning the first-order closure and the quasi-stationarity of the

problems on the perturbations.

Concerning the technique itself, we use a ĉ decomposition for

concentrations which is a more general case of the one introduced in

[45] for mass transport and in [68] for heat transfer. We start our

analysis with the microscale description of the medium and then

average the equations to obtain a Darcy-scale description of the

medium. In short times, the multidomain approach provides a better

approximation of the transport processes because, the closure on the

c̃ fluctuations captures more characteristic times and because, as

previously discussed, the quasi-stationarity of the perturbation

problem on ĉ is much stronger than the one on c̃. In the non-reactive

situation, these theoretical aspects have been extensively described in

[39] and in [41] but this is the first application to a reactive situation.

6.2. General conclusions

In past research, the calculation of effective parameters has been

largely undertaken using tracer techniques and inverse optimization

on the basis of empirical models. The main problems with this

approach are that (1) the macroscale equation are elaborated on the

basis of simple conceptual schemes and it is unclear how much

information these models are able to capture, (2) the effective

parameters, say the dispersion, are often considered as intrinsic to a

medium and not recalculated every time a physical parameter such as

the Péclet number is modified and (3) there is no clear relationship

between the definition of the macroscopic concentrations and the

concentration measured.

Given the advances in terms of imaging techniques [60,61] and of

understanding of the transport processes, we believe that upscaling

represents an alternative in many cases. The volume averaging theory

lends itself very well for the exploration of the physics of the transport

as well as for the expression of the effective parameters as a function

of the microscale processes on a representative volume.

In conclusion, we provide a solid theoretical background for the

one-equationmodel alongwith (1) constraints concerning its validity,

(2) a method for the calculation of the effective parameters and (3) a

precise definition of the macroscopic concentration. When applying

the model to experimental results, these three points should be

carefully examined.

Acknowledgements

Support from CNRS/GdR 2990 is gratefully acknowledged. The

third author (BDW) was supported in part by the Office of Science

(BER), U.S. Department of Energy, Grant No. DE-FG02-07ER64417.

Appendix A

In this Appendix, we develop the volume averaged equations for

each phase. We start with the pore-scale description of the medium

γ+phase :
∂cγ
∂t + ∇⋅ cγvγ

% &

= ∇⋅ Dγ⋅∇cγ

% &

ð85Þ

BC1 : − nγσ ⋅Dγ

% &

⋅∇cγ = 0 on Sγσ ð86aÞ

BC2 : cω = cγ on Sγω ð86bÞ



BC3 : − nγω⋅Dγ

% &

⋅∇cγ = − nγω⋅Dω

% &

⋅∇cω on Sγω ð86cÞ

BC4 : nωσ ⋅Dωð Þ⋅∇cω = 0 on Sωσ ð86dÞ

ω+phase :
∂cω
∂t = ∇⋅ Dω⋅∇cωð Þ + Rω: ð87Þ

To develop equations governingmass transport at themacroscopic

scale, we need to average each equation

γ+phase :
∂cγ
∂t

* +

+ ∇⋅ cγvγ

% &D E

= ∇⋅ Dγ⋅∇cγ

% &D E

ð88Þ

ω+phase :
∂cω
∂t

A B

= ∇⋅ Dω⋅∇cωð Þh i + Rωh i: ð89Þ

Then, we are confronted to the classical problem of averaging

time derivatives and spatial operators. For this purpose, we use the

following theorems

General transport theorem [69]

∂cγ
∂t

* +

=
∂ cγ

D E

∂t − 1

V
∫SγωðtÞ nγω⋅w

% &

cγdS ð90Þ

∂cω
∂t

A B

=
∂ cωh i
∂t − 1

V
∫SωγðtÞ nωγ⋅w

% &

cωdS ð91Þ

with w the velocity of the interface.

Spatial averaging theorems [70,71]

∇cγ

D E

= ∇ cγ

D E

+
1

V
∫Sγω

nγωcγdS +
1

V
∫Sγσ

nγσ cγdS ð92Þ

∇cωh i = ∇ cωh i + 1

V
∫Sωγ

nωγcωdS +
1

V
∫Sωσ

nωσcωdS: ð93Þ

Hence, we have

γ+phase :
∂εγ cγ

D Eγ

∂t − 1

V
∫SγωðtÞ nγω⋅w

% &

cγdS + ∇⋅ εγ ch iγω vγ

D Eγ% &

= ∇⋅ Dγ⋅∇ εγ cγ

D Eγ% &n o

+ ∇⋅ Dγ⋅
1

V
∫Sγω

nγωcγdS +
1

V
∫Sγσ

nγσ cγdS

' (. /

+
1

V
∫Sγω

ðnγω⋅DγÞ⋅∇cγdS +
1

V
∫Sγσ

ðnγσ ⋅DγÞ⋅∇cγdS−∇: ĉγvγ

D E

ð94Þ

ω+phase :
∂εω cωh iω

∂t − 1

V
∫SωγðtÞ nωγ⋅w

% &

cω

= ∇⋅ Dω⋅ ∇ εω cωh iω
C D

+
1

V
∫Sωγ

nωγcωdS +
1

V
∫Saσ

nωσcωdS

' (. /

+
1

V
∫Sωγ

ðnωγ⋅DωÞ⋅∇cωdS+
1

V
∫Sωσ

ðnωσ ⋅DωÞ⋅∇cωdS+ εω Rωh iω:

ð95Þ

It has already been emphasized [17] that characteristic times

associated to biofilm motion are long as compared to the one

associated with the mass transport so that we can write

γ+phase :
∂εγ cγ

D Eγ

∂t + ∇⋅ εγ ch iγω vγ

D Eγ% &

= ∇⋅ Dγ⋅ ∇ εγ cγ

D Eγn o

+
1

V
∫Sγω

nγωcγdS +
1

V
∫Sγσ

nγσ cγdS

' (. /

+
1

V
∫Sγω

ðnγω⋅DγÞ⋅∇cγdS +
1

V
∫Sγσ

ðnγσ ⋅DγÞ⋅∇cγdS−∇: ĉγvγ

D E

ð96Þ

ω+phase :
∂εω cωh iω

∂t =∇⋅ Dω⋅ ∇ εω cωh iω
C D

+
1

V
∫Sωγ

nωγcωdS+
1

V
∫Sωσ

nωσ cωdS

' (. /

+
1

V
∫Sωγ

ðnωγ⋅DωÞ⋅∇cωdS +
1

V
∫Sωσ

ðnωσ ⋅DωÞ⋅∇cωdS

+ εω Rωh iω:

ð97Þ

We use the following decompositions cγ = cγ
! "γ

+ c̃γ, cω =

cωh iω + c̃ω and

cωh iωx + y = cωh iωx + y⋅∇ cωh iωx + ⋅⋅⋅ ð98Þ

cγ

D Eγ

x + y
= cγ

D Eγ

x
+ y⋅∇ cγ

D Eγ

x
+ ⋅⋅⋅ ð99Þ

where x is the vector pointing the position of the center of the REV

and y is the vector pointing inside the REV. Thenwe can neglect all the

non-local terms involving y provided that R0
2≪L2 [27], where L is a

characteristic field-scale length, and this is expressed by

1

V
∫Sγω

nγωcγdS +
1

V
∫Sγσ

nγσcγdS

=
1

V
∫Sγω

nγω cγ

D Eγ

x + y
dS +

1

V
∫Sγσ

nγσ cγ

D Eγ

x + y
dS

+
1

V
∫Sγω

nγωc̃γdS +
1

V
∫Sγσ

nγσ c̃γdS

≃ cγ

D Eγ

x

1

V
∫Sγω

nγωdS +
1

V
∫Sγσ

nσωdS

' (

+
1

V
∫Sγω

nγωc̃γdS +
1

V
∫Sγσ

nγσ c̃γdS

ð100Þ

1

V
∫Sωγ

nωγcωdS +
1

V
∫Sωσ

nωσcωdS

=
1

V
∫Sωγ

nωγ cωh iωx + ydS +
1

V
∫Sωσ

nωσ cωh iωx + ydS

+
1

V
∫Sωγ

nωγc̃ωdS +
1

V
∫Sωσ

nωσ c̃ωdS

≃ cωh iωx
1

V
∫Sωγ

nωγdS +
1

V
∫Sωσ

nωσdS

' (

+
1

V
∫Sωγ

nωγc̃ωdS +
1

V
∫Sωσ

nωσ c̃ωdS:

ð101Þ

Then, using spatial averaging theorems for unity gives

−∇εω =
1

V
∫Sωγ

nωγdS +
1

V
∫Sωσ

nωσdS ð102Þ

−∇εγ =
1

V
∫Sγω

nγωdS +
1

V
∫Sγσ

nγσdS: ð103Þ

Hence, we have

1

V
∫Sωγ

nωγcωdS +
1

V
∫Sωσ

nωσcωdS

≃−∇εω cωh iωx +
1

V
∫Sωγ

nωγc̃ωdS +
1

V
∫Sωσ

nωσ c̃ωdS

ð104Þ

1

V
∫Sγω

nγωcγdS +
1

V
∫Sγσ

nγσ cγdS

≃−∇εγ cγ

D Eγ

x
+

1

V
∫Sγω

nγωc̃γdS +
1

V
∫Sγσ

nσωc̃γdS:

ð105Þ



Finally, injectingEqs. (104) and (105) into Eqs. (94) and (95) leads to

γ+phase :
∂εγ cγ

D Eγ

∂t + ∇⋅ εγ ch iγω vγ

D Eγ% &

= ∇⋅ εγDγ⋅ ∇ cγ

D Eγ
+

1

Vγ

∫Sγω
nγωc̃γdS +

1

Vγ

∫Sγσ
nγσ c̃γdS

!( )

+
1

V
∫Sγω

ðnγω⋅DγÞ⋅∇cγdS +
1

V
∫Sγσ

ðnγσ ⋅DγÞ⋅∇cγdS−∇: ĉγvγ

D E

ð106Þ

ω+phase :
∂εω cωh iω

∂t =∇⋅ εωDω⋅ ∇ cωh iω+ 1

Vω

∫Sωγ
nωγc̃ωdS+

1

Vω

∫Sωσ
nωσ c̃ωdS

' (. /

+
1

V
∫Sωγ

ðnωγ⋅DωÞ⋅∇cωdS +
1

V
∫Sωσ

ðnωσ ⋅DωÞ⋅∇cωdS

+ εω Rωh iω:
ð107Þ

Appendix B

In this part, we develop the macroscopic one-equation non-closed

form of themodel startingwith the averaged equations for each phase

γ+phase :
∂εγ cγ

D Eγ

∂t + ∇⋅ εγ ch iγω vγ

D Eγ% &

= ∇⋅ εγDγ⋅ ∇ cγ

D Eγ
+

1

Vγ

∫Sγω
nγωc̃γdS +

1

Vγ

∫Sγσ
nγσ c̃γdS

!( )

+
1

V
∫Sγω

ðnγω⋅DγÞ⋅∇cγdS +
1

V
∫Sγσ

ðnγσ ⋅DγÞ⋅∇cγdS−∇⋅ ĉγvγ

D E

ð108Þ

ω+phase :
∂εω cωh iω

∂t =∇⋅ εωDω⋅ ∇ cωh iω+ 1

Vω

∫Sωγ
nωγc̃ωdS+

1

Vω

∫Sωσ
nωσ c̃ωdS

' (. /

+
1

V
∫Sωγ

ðnωγ⋅DωÞ⋅∇cωdS +
1

V
∫Sωσ

ðnωσ ⋅DωÞ⋅∇cωdS

+ εω Rωh iω:
ð109Þ

Then, we make the flux term disappear by summing equations

over the γ-phase and the ω-phase and by using the flux-continuity

hypothesis at the interface between γ and ω.

∂ ch i
∂t + ∇⋅ εγ ch iγω vγ

D Eγ% &

= ∇⋅ εωDω⋅∇ cωh iω + εγDγ⋅∇ cγ

D Eγn o

+∇⋅ Dω⋅
1

V
∫Sωγ

nωγc̃ωdS+
1

V
∫Sωσ

nωσ c̃ωdS

' (. /

+∇⋅ Dγ⋅
1

V
∫Sγω

nγωc̃γdS +
1

V
∫Sγσ

nγσ c̃γdS

' (. /

+ εω Rωh iω−∇: ĉγvγ

D E

:

ð110Þ

Then, we make intrinsic total average equation appear dividing by

εγ+εω (supposed constant over time and space) as it is the one used

in the decompositions of concentrations.

∂ ch iγω

∂t + ∇⋅
εγ

εγ + εω
ch iγω vγ

D Eγ

!

= ∇⋅ εω
εγ + εω

Dω⋅∇ cωh iω +
εγ

εγ + εω
Dγ⋅∇ cγ

D Eγ

( )

+ ∇⋅ εω
εγ + εω

Dω⋅
1

Vω

∫Sωγ
nωγ ĉωdS +

1

Vω
∫Sωσ

nωσ ĉωdS

' (

( )

+ ∇⋅
εγ

εγ + εω
Dγ⋅

1

Vγ

∫Sγω
nγω ĉγdS +

1

Vγ

∫Sγσ
nγσ ĉγdS

!( )

+
εω

εγ + εω
Rωh iω− 1

εγ + εω
∇: ĉγvγ

D E

:

ð111Þ

Finally, we use the following relations

cγ

D Eγ
= ch iγω + ĉγ

D Eγ
ð112Þ

cωh iω = ch iγω + ĉω
! "ω ð113Þ

c̃γ = ĉγ− ĉγ

D Eγ
ð114Þ

c̃ω = ĉω− ĉω
! "ω ð115Þ

which gives

∂ ch iγω

∂t + ∇⋅
εγ

εγ + εω
ch iγω vγ

D Eγ

!

= ∇⋅ εω
εγ + εω

Dω +
εγ

εγ + εω
Dγ

!

⋅∇ ch iγω
( )

+ ∇⋅ εω
εγ + εω

Dω⋅∇ ĉω
! "ω

+
εγ

εγ + εω
Dγ⋅∇ ĉγ

D Eγ
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+ ∇⋅ εω
εγ + εω

Dω⋅
1

Vω

∫Sωγ
nωγ ĉωdS +

1

Vω

∫Sωσ
nωσ ĉωdS

' (
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εγ

εγ + εω
Dγ⋅

1

Vγ

∫Sγω
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1

Vγ

∫Sγσ
nγσ ĉγdS
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εγ + εω

Dω⋅
1

Vω

∫Sωγ
nωγ ĉω

! "ω
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1

Vω

∫Sωσ
nωσ ĉω

! "ω
dS
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εγ

εγ + εω
Dγ⋅

1

Vγ
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nγω ĉγ

D Eγ
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1

Vγ

∫Sγσ
nγσ ĉγ

D Eγ
dS
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+
εω

εγ + εω
Rωh iω− 1

εγ + εω
∇⋅ ĉγvγ

D E

:

ð116Þ

Then, using spatial averaging theorems for unity gives

−∇εω =
1

V
∫Sωγ

nωγdS +
1

V
∫Sωσ

nωσdS

−∇εγ =
1

V
∫Sγω

nγωdS +
1

V
∫Sγσ

nγσdS

ð117Þ

So that we can write

∂ ch iγω
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εγ

εγ + εω
ch iγω vγ

D Eγ
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