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ABSTRACT 

Two-dimensional, double diffusion, natural convection in a partially porous

cavity satured with a binary fluid is investigated numerically. Multiple

motions are driven by the external temperature and concentration

differences imposed across vertical walls. The wavy interface between fluid

and porous layer is horizontal. The equations which describe the fluid flow

and heat and mass transfer are described by the Navier-Stokes equations

(fluid region), Darcy-Brinkman equation (porous region) and energy and

mass equations. The finite element method was applied to solve the

governing equations. The fluid flow and heat and mass transfer has been

investigated for different values of the amplitude and the wave number of

the interface and the buoyancy ratio. The results obtained in the form of

isotherms, stream lines, isoconcentrations and the Nusselt and Sherwood

numbers; show that the wavy interface has a significant effect on the flow

and heat and mass transfer.
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1. INTRODUCTION
Double-diffusive natural convection in enclosures has been encountered in many engineering
fields, such as oceanography, astrophysics, geology, biology, and chemical processes etc.
The phenomenon of double-diffusive natural convection in an enclosure is as varied as the
thermal and solutal boundary conditions, geometry and orientation of the enclosure. Judging
from the number of potential engineering applications, the enclosure phenomena can be
organized into three classes: (1) double diffusion in an horizontal layer with vertical
temperature and concentration gradients [1–3]; (2) thermosolutal natural convection due to
horizontal temperature and concentration gradients in vertical enclosures [2,4–16] and (3)
sideways heating of an initially stratified fluid layer [17–19]. Other engineering systems,
however, may be characterized by double-diffusive behavior driven by thermal and solutal
buoyancies induced by discrete heat and mass sources. For example, possible non-
uniformities in the release of buoyant element due to heat exchanger leakage in salt-gradient
solar ponds [20], or crystal growth control [21] and in heat and moisture transport in building
elements [22–26], also warrant the investigation of double-diffusive convection induced by
discrete heat and mass sources. The literature survey illustrates the extensive works that have
been carried out on square, rectangular shallow cavities with various wall boundary
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conditions. An analytical and numerical study of natural convection heat and mass transfer
through a vertical porous layer subjected to a concentration difference and a temperature
difference in the horizontal direction has been studied by Trevisan and Bejan [27]. Many
physical systems were modelled as a two-dimensional cavity with the vertical walls held at
fixed but different temperatures or concentrations and the connecting horizontal walls
considered as adiabatic or impermeable Angirasa et al. [28] were reported a numerical study
of combined heat and mass transfer by natural convection adjacent to vertical surfaces
situated in fluid saturated porous media. Akbal and Baytas [29] have investigated a
radioactive gas transfer depending on the decay of the gas, Schmidt and concentration
Grashof numbers by natural convection in a fluid saturated porous medium. Merkin and
Mahmood [30] have investigated a model for the convective flow in a fluid-saturated porous
medium containing a reactive component. Goyeau et al. [31] have studied the double
diffusive natural convection using Darcy—Brinkman formulation in a porous cavity with
impermeable boundaries. Bahloul et al. [32] have investigated the double diffusive
convection in a long vertical cavity heated from the below and imposed concentration
gradient from the sides both analytically and numerically.

Double diffusive steady natural convection in a vertical stack of square enclosures, with
heat and mass diffusive walls, was studied numerically by Costa [33]. Recently, researchers’
studies on heat and mass transfer in composite systems constitute a fluid and porous medium
saturated with the same fluid. Gobin et al. [34] have focused on the simulation of double
diffusive convective flows in a binary fluid, confined in a vertical enclosure, divided into two
vertical layers, one porous and the other fluid. 

The combined heat and mass transfer rates for natural convection driven by the
temperature and concentration gradients have been developed in a partially porous cavity by
Singh et al. [35] and they showed that the degree of penetration of the fluid into porous
region strongly depended upon the Darcy, thermal and solutal Rayleigh numbers. Mojtabi et
al. [36] studied the Double diffusion natural convection in an enclosure filled with a liquid
and subjected to differential heating and differential species concentration. Four models were
developed to address the hydraulic effect of the upper lid on the rate of heat and mass transfer
and on the flow structures. 

The convective flows due to double-diffusion in a partially porous cavity saturated by a
binary fluid have many applications, such as, soil pollution, thermal insulation, grain storage,
dispersion of chemical contaminations through water saturated soil, storage of nuclear waste,
fuel cells, heat removal from nuclear fuel debris in nuclear reactors, thermal energy storage
system, solar collectors with a porous absorber. Another interesting application can be found
in the accurate modeling of the boundary conditions at a fluid porous interface. Therefore,
an understanding of the transport phenomena from a porous layer to a clear fluid layer and
vice versa, and of the corresponding interface boundary conditions has become even more
important. Most of the published studies on the natural convection in composite systems deal
with cases in which the buoyancy forces are due to the variations of temperature only. As for
as the boundary conditions, the use of the Brinkman correction allows to impose the
continuity of the velocities and the tangential stresses to the fluid-porous interface. An
alternative to the momentum transport description to the interface has been proposed by
Ochoa-Tapia and Whitaker [37]. The authors established a boundary tangential stress-jump
condition using the average volume technique. The choice of the interfacial condition was
also analyzed recently by Goyeau et al. [38].

However, the studies of double diffusive convection in composite enclosures are very
important in numerous scientific and industrial problems. A numerical study has been made
of the double-diffusive natural convection in a rectangular fluid-saturated vertical porous



enclosure by Mamou et al. [39]. They showed that the effects of the buoyancy ratio to be
rather significant on the flow pattern and heat and mass transfer. Bennacer et al. [40]
performed a numerical analysis on the double diffusive, natural convection in a closed,
vertical enclosure fitted with two symmetrical porous layers confining a fluid layer. Costa et
al. [41] have used a control volume finite element method for simulating flows through a
coupled fluid saturated porous and open domain. 

Generally, the interface between the porous and fluid may not be flat or smooth everywhere.
The shape of this interface may be from wavy form.  For example, substrate of an agricultural
greenhouse, thermal insulation. On the other hand, the bibliographical study shows that no
work was found on the double-diffusive natural convection in partially porous cavity with a
wavy interface (originality). The main object of the present study is to consider the effect of
wavy shape horizontal interface on the double diffusive natural convection in a cavity. The
equations which describe the fluid flow and heat and mass transfer are described by the Navier-
Stokes equations (fluid region), Darcy- Brinkman equation (porous region) and energy and
mass equations. The finite element method was applied to solve the governing equations. The
fluid flow and heat and mass transfer has been investigated for different values of the amplitude
and the wave number of the interface and the buoyancy ratio. The results obtained in the form
of isotherms, stream lines, isoconcentrations and the Nusselt and Sherwood numbers; show that
the wavy interface has a significant effect on the flow and heat and mass transfer.

2. MATHEMATICAL FORMULATION
The physical domain under investigation is a two-dimensional fluid-saturated
Darcy–Brinkman partially porous cavity as illustrated in Figure 1. The square cavity is of
side L and the Cartesian coordinates(x,y). It is assumed that the third dimension of the cavity
is large enough so that the fluid, heat and mass transports are two-dimensional. Gravity acts
in the negative y-direction. the vertical surfaces are held at a constant temperature and
concentration TH , CL, at  x = 0 and TC, CR at x = L, respectively. The horizontal walls are
adiabatic and impermeable. The horizontal wavy interface is considered to be permeable and
fluid can flow from one layer to the other. In the present study, the porous layer covers the
entire bottom wall of the cavity and its fluid/porous medium interface is placed at the
horizontal mid plane of the cavity, i.e. at y = L/2. The fluid within the porous medium
saturates the solid matrix and both are assumed to be in local thermodynamic equilibrium.
The fluid flow is assumed to be laminar, incompressible, and the porous medium is assumed
to be a homogenous and isotropic. Viscous dissipation and porous medium inertia are not
considered, and the Soret and Dufour effects are neglected. Thermophysical properties are
supposed constant. The fluid layer is filled with a Newtonian fluid of constant physical
properties. According to Boussinesq’s approximation, the density is assumed to be a linear
function of temperature and concentration as follow:

By employing the aforementioned assumptions into the macroscopic conservation
equations of mass, momentum, energy and species and by combining the equations system
for the two portions porous/fluid by a parameter:
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The nondimensional version of the governing system of transport equations are as follow:

(1)

(2)

(3)

(4)

(5)

The nondimensional transport equations are obtained by adopting the following
nondimensional quantities:
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Figure 1 Physical model.



The initial conditions with τ = 0 are:

U = V = θ = C = 0

The nondimensional boundary conditions for Eqs. (1)-(5)  are as follows:

For τ > 0: U = V = 0 and θ = C = 1 at
U = V = θ = C = 0 at
∂θ/∂Y = ∂C/∂Y = U = V = 0 at

At the wavy interface between the porous/fluid medium, the continuity conditions are as
following: 

The local and average Nusselt and Sherwood numbers are defined, respectively, as
follows:

3. NUMERICAL METHOD AND VALIDATION
Numerical results are obtained by solving the system of differential eqns (1)–(5), with
appropriate boundary conditions, using the Galerkin finite-element method in order to ensure
continuity of the convective and diffusive Fluxes, overall energy and momentum
conservation. The two-dimensional spatial domain is divided into quadrangle elements
(unstructured mesh) and a Lagrange-quadratic interpolation has been chosen. Accuracy tests
were performed for the steady state results using five sets of uniform grids as shown in
Table1.
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Table1

Grid Sizes Nuavg Shavg

22 × 22 1,705 1,702
32 × 32 1,765 1,758
42 × 42 1,763 1,756
52 × 52 1,763 1,756
62 × 62 1,763 1,756

The mesh is refined near the boundaries and we have adopted 1764 elements and the
number of freedom degree is equal to 7225 (Figure.2). The grid selected for 42 × 42 as a



trade off between numerical accuracy, stability and computational time. A nonlinear solver
has been used and the nonlinear tolerance has been set to 10−6.

Table 2 shows the comparison of Nuavg for various values of the Width of porous region
(S). The accuracy of the numerical code was checked in the case of Natural convection flow
and heat transfer between a fluid layer and a porous layer inside a rectangular enclosure
subject to a temperature difference in the vertical directional. The results concern mass
transfer due to purely thermal natural convection (N = 0) for Darcy-Brinkman model. These
results are in good agreement with those presented by Beckermann et al [42] and S.B.Sathe
et al [43]. 

4. RESULT AND DISCUSSION
In the foregoing simulations, the main interest in this study is focused on the effect of the
horizontal wavy interface (porous-fluid) on the structure of the fluid flow, and the heat and
mass transfer for in the partially porous cavity. The following parameters are fixed:

Figure 3 represents the distribution of the isoconcentrations, the streamline and, the
isotherms for various values of dimensionless amplitude A = 0; 0,05; 0,1; 0,15; 0,2. The
streamlines are organized in a convective cell of strong intensity of the flow circulation
forces in the fluid region, while the flow fluid in the porous region is almost motionless; this
distribution indicates clearly that the warm and solute enriched fluid flows along the hot
vertical wall. It is observed that the phenomena of reversed transport occur along the cold
vertical wall and the fluid flow in a clockwise circulation. The isotherms and
isoconcentration lines are characterized by a thermal and mass stratification in the porous
portion which is characterized by a weak thermal and mass gradient. In the center of the fluid
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Figure 2 Mesh grid.

Table 2 Validation of the numerical code in the case of pure thermal convection 
(N = 0) for Ra = 105, Pr = 0,71, kr = 2, ε = 0,51, Da = 0,002.

Present study Beckermann S.B.Sathe et al
Nuavg Nuavg Nuavg

S = 0,25 3,19 3,4 3,6
S = 0,5 3,26 3,2 3,34
S = 0,75 3,008 3,101 2,9



layer these isotherms and isoconcentrations are perpendicular to the temperature gradient and
concentration of the vertical walls. The structure of the distribution field proves that the flow
intensity is more important in the fluid layer than in the porous one thus favoring a
convective mode of flow in the fluid portion. It is observed that this intensity of circulation
forces weakens with the increase in the adimensional amplitude A and the zone of the pseudo
conductive flow widens. 
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Figure 3 Isoconcentration lines, Streamlines and isotherms for Ra = 105; N = 1;
Da = 10−4; Le = 0, 84; n = 3; Pr = 0,71, ε = 0, 5 and A = 0, 0 − 0,05 − 0, 1 − 0, 15 − 0,2.



Figure 4 represents the distribution of the isoconcentrations, the streamlines, and the
isotherms for various values of the undulation number n=1, 2, 3 and 4. The flow structure
always arises in a convective cell characterized by a vortex which moves from the cold
vertical wall towards the hot vertical one. The isoconcentrations and the isotherms are always
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Figure 4 Isoconcentration lines, Streamlines and isotherms for Ra = 105; N = 1;
Da = 10−4; Le = 0, 84; A = 0,1; Pr = 0,71, ε = 0,5 and n = 1, 2, 3, 4.



characterized by their thermal and mass stratifications in the porous zone. While in the fluid
layer, the latter become almost parallel to the gravitation always favoring the convective
mode flow at the centre of the fluid layer. With the increase in the undulation number n, the
convective cell narrows more and more allowing to favored the conductive and diffusive
mode flow in most of the cavity. One observes also the large temperature and concentration
gradients located on the top part of the cavity. The effect of the undulation number also
appears on the temperature values, as well as on the concentrations and stream functions. 

Figure 5 represents the evolution of the local Nusselt and Sherwood numbers along the
cold vertical wall, for various values of the adimensional amplitude A=0; 0,1 and 0,2. These
two numbers evolve in the same way and increase along the cold vertical wall. The figure
shows that the increase in the value of the amplitude A does not have any influence on the
variation of  local Nusselt and Sherwood numbers in the porous layer, while a light variation
on the values of  two numbers is observed in the fluid layer with the amplitude variation.

Figure 6 represents the variation of the average Nusselt and the Sherwood numbers
according to the value of the dimensionless amplitude A, on the cold vertical wall. The two
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Figure 5 Local Nusselt number, and local Sherwood number for Ra = 105; N = 1;
Da = 10−4; Le = 0.84; n = 2,5; ε = 0,5 at X = 1.
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numbers evolve almost linearly and in a decreasing way with the increase of the
dimensionless amplitude A report. The value of A has a considerable influence on the rate of
heat and mass transfer. It is noted that the values of the heat transfer rate are higher than that
of the mass transfer whatever the value of amplitude A.

Figure 7 represents the variation of the average Nusselt and the Sherwood numbers
according to the undulation number N. The evolution of these two numbers is characterized
by a minimal value which corresponds to the same value of undulation n = 3. The maximum
value of Nuavg corresponds to the value n = 2, while the maximum value of Shavg corresponds
to n = 1. It is also noticed that the two numbers evolve in a decreasing way with the increase
of the undulation number N. The variation of N gives a rate of mass transfer increasingly
higher than that of the rate of heat transfer.

Figure 8 represents the distribution of the isotherms, the streamlines and the
isoconcentrations for various values of the Buoyancy ratio N = −10, −1 and 10. It is
observed that the distribution is carried out according to two cases:

1st case, N <−1: The structure of the flow is characterized by only one convective cell
whose intensity of the circulation forces is more important in the fluid layer. The cell is
characterized by an anticlockwise circulation and the appearance of a vortex in the vicinity
of the top (hot) vertical wall. While moving away from the vertical walls of the fluid layer,
the isotherms and the isoconcentrations are characterized by a heat and mass flow
perpendicular to the gradient of temperature and concentration. These flows become tilted in
the porous layer. The convective flow mode is more favored in the fluid layer where a high
thermal and mass gradient is observed on the top part of the cavity. 

2nd case, N >−1: It is observed that the transport phenomena is reversed and the flow
structure is always characterized by only one more intense convective cell in the fluid layer
which circulates in a clockwise direction. This convective cell is characterized by a vortex in
the vicinity of the top of the cold vertical wall. The isoconcentrations and the isotherms are
always characterized by a high heat and mass gradient in the upper part of the cavity.

In the critical case where N = −1 the distribution is characterized by a pure conduction
and diffusion mode where the second order law of Fick is checked. The isotherms and the
isoconcentrations are completely parallel to the vertical walls.
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Figure 9 represents the variation of the Nusselt and the average Sherwood numbers
according to the Buoyancy ratio N. The increase in the N decreases the heat and mass
transfer until the critical point N = −1 where the pure conduction and diffusion appear. For
Values of N > −1, the heat and mass transfer increase. It is also noticed that the variation of
the average Nusselt number is slightly high with that of average Sherwood number, except
in the case where: −2 ≤ N ≤ 0, the variation of Nuavg and Shavg are almost the same.

Figure 10 represents the numerical cloud of points of the variation average Nusselt and
Sherwood numbers according to the buoyancy ratio makes it possible to adopt a
mathematical regression equation based on the square methods optimization.

An exponential model is selected for the case N > −1:

Sh e e
avg

–0,6N –0,06N= − +8 7 0 65 6 06, ( , , )

Nu e e
avg

–0,8N –0,07N= − +8 9 0 6 6 1, ( , , )
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Figure 8 Isotherms Streamlines and Isoconcentration for Ra = 105; Da = 10−4; 
Le = 0, 84; n = 3; Pr = 0,71, ε = 0,5, A = 0,1 and N = 10; −1, −10. 
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For the case N < −1, a seven order model is selected:

The test of Student and Fischer were used to determine the significance of the parameters
of the regression equations. With a confiance interval of 0,99 and a regression coefficient 
R = 0,99.

5. CONCLUSION
Using the Navier Stokes equations coupled to the Darcy Brinkman model, a numerical study,
based on the finite element method, has been conducted to analyse the influences of the wavy
interface parameters and the buoyancy ratio on the double diffusive natural convection
occurring in a square cavity containing simultaneously a saturated horizontal porous layer
and binary fluid (air + pollutant) . The following conclusions can be drawn.

- The flow is in a clockwise direction in the region of the fluid and porous layer except
in the case of the effect buoyancy ratio. The cell is characterized by an anticlockwise
circulation.

- The dimensionless amplitude of the wavy interface does not have any influence on the
heat and mass transfers in the porous layer.

- For various values of the amplitude, the rate of heat transfer is higher than that of the
mass transfer. 

- The increase in the value of the amplitude widened the pseudoconductif zone of the
cavity, which favoured the separation of the binary fluid.

- Increase in undulation number n, weakened the force circulation of the flow.
The buoyancy ratio has a considerable influence on the transport phenomena and the

rotation direction of the flow.   
- The evolution of the average Nusselt and Sherwood numbers follows exponential and

polynomial mathematical regressions with a regression coefficient R = 0,99.
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Nomenclature
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A dimensionless amplitude, a/L
a amplitude  . . . . . . . . . . . . . . . . . . .m
C species concentration  . . . . . . .kgm−3

D mass diffusivity  . . . . . . . . . . . .m2s−1

Da Darcy number
k thermal diffusivity
K permeability of the porous layer  . .m2

L height of square porous cavity  . . . .m
Le Lewis number
N buoyancy ratio
Nuavg average Nusselt number
NuL local Nusselt number
P pressure  . . . . . . . . . . . . . . . . . .Nm−2

Pr Prandtl number
Ra thermal Rayleigh number
Shavg average Sherwood number
ShL local Sherwood number
τ* time  . . . . . . . . . . . . . . . . . . . . . . . .s
T temperature  . . . . . . . . . . . . . . . . . .K
U* velocity components along x  . . .ms−1

V* velocity components along y  . . .ms−1

U,V nondimensional velocity components
x,y Cartesian coordinates
X, Y nondimensional coordinates

Greek symbols
� thermal diffusivity  . . . . . . . . . .m2s−1

�T coefficient of thermal expansion  .K−1

�c coefficient of concentration 
expansion  . . . . . . . . . . . . . . .m3kg−1

� fluid kinematic viscosity  . . . . .m2s−1

� dimensionless temperature
� fluid density . . . . . . . . . . . . . .kg m−3

� nondimensional time
� porosity

Subscripts
f fluid
p porous
eff effective
L left
R right
* Dimensional properties
C cold and H hot


