
HAL Id: hal-03545774
https://hal.science/hal-03545774v1

Submitted on 27 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The complexity gap in the static analysis of cache
accesses grows if procedure calls are added

David Monniaux

To cite this version:
David Monniaux. The complexity gap in the static analysis of cache accesses grows if procedure calls
are added. Formal Methods in System Design, 2022, 59 (1-3), pp.1-20. �10.1007/s10703-022-00392-w�.
�hal-03545774�

https://hal.science/hal-03545774v1
https://hal.archives-ouvertes.fr

The complexity gap in the static analysis of cache

accesses grows if procedure calls are added

David Monniaux

January 27, 2022

Abstract

The static analysis of cache accesses consists in correctly predicting
which accesses are hits or misses. While there exist good exact and ap-
proximate analyses for caches implementing the least recently used (LRU)
replacement policy, such analyses were harder to find for other replace-
ment policies. A theoretical explanation was found: for an appropriate
setting of analysis over control-flow graphs, cache analysis is PSPACE-
complete for all common replacement policies (FIFO, PLRU, NMRU)
except for LRU, for which it is only NP-complete.

In this paper, we show that if procedure calls are added to the control
flow, then the gap widens: analysis remains NP-complete for LRU, but
becomes EXPTIME-complete for the three other policies. For this, we
improve on earlier results on the complexity of reachability problems on
Boolean programs with procedure calls.

In addition, for the LRU policy we derive a backtracking algorithm as
well as an approach for using it as a last resort after other analyses have
failed to conclude.

1 Introduction

Most processors, except the smallest ones, implement some form of caching:
fast memory close to the CPU core retains frequently accessed code and data,
to avoid slow access to external memory. A hardware cache is split into cache
sets, and a given memory block may be stored only in a certain cache set,
depending on its address. A cache set contains K blocks, where K is known as
the associativity or number of ways. When a new block is loaded into a cache
set, a cache replacement policy determines which block is to be evicted to make
room for it. The most intuitive cache replacement policy is to evict the least
recently used (LRU) block. However, due to difficulties in implementing that
policy efficiently in hardware, other policies with supposedly “close” behavior
(PLRU, NMRU) are often used instead; sometimes the simple first-in first-out
(FIFO) policy is used.

Loading data from main memory, or from a more distant level of cache, may
take 6 to 100 times the time taken for loading it from a close cache. Not only

1

v0

v1

v3

v2

a

a

c

b

d

e

(a) Original control-flow graph for two
cache sets: {a, e} and {b, c, d}.

v0

v1

v3

v2

a

a

ε

ε

ε

e

(b) The same control-flow graph sliced
for cache set {a, e}.

Figure 1: Slicing of a control-flow graph according to a cache set, from [18].
a, b, c, d, e are identifiers of memory blocks. ε means that no cache access takes
place along that edge.

does it directly affect execution time, it also results, especially in processors
with out-of-order execution, in different microarchitectural execution patterns,
themselves having an impact on execution time. Static analysis tools used to
compute bounds on worst-case execution time1 thus include a static analysis for
caches, meant to predict which accesses are always cache hits (data in cache)
and which are always misses (data not in cache).2

For almost all policies (including LRU, FIFO, PLRU and NMRU) found in
processors, analysis for exist-hit and exist-miss properties may be performed
on each cache set separately, by slicing the program according to the cache
set (Figure 1), without loss of precision (the only policy for which this is false
is pseudo-round-robin, which we do not consider here) [18].3 We shall thus
consider in this paper, without loss of generality, that the cache consists of a
single cache set.

Consider the simple setting where a program is defined by a control-flow
graph with edges adorned by identifiers of memory blocks (a, b. . .) meaning
that that block is read on that edge (Figure 1)—we consider the simple case
of read-only caches; caches with writes add some complications. Equivalently,
we can see it as a finite automaton that accepts a sequence of block accesses.
Two interesting decision problems are: at one control vertex, is block x always
in the cache (always hit), whatever the path taken from the entry point of the
graph, assuming an initially empty cache? Is it always not in cache (always
miss)? These two problems are often grouped into one: classify blocks into
“always hit”, “always miss”, and “unknown”. Equivalently, by negating the

1Absint’s aiT is one such tool, used in industries such as avionics, automotive, en-
ergy and space. https://www.absint.com/ait/ Non-commercial tools include OTAWA.
http://www.otawa.fr/

2Static analysis tools may perform more refined analyses, such as persistence analysis,
refinements according to execution paths or loop indices, etc. We do not cover these here.
Our goal is to study difficulty even in the simplest, most easily understood analysis.

3This could be incorrect if we were considering complex microarchitectures with cache
prefetching etc., since the availability of data in a cache set may result in loads being made
or not made to other cache sets. Again, we consider a simple setting here. Separate analysis
may however be used for safe overapproximations of the behavior of the system.

2

https://www.absint.com/ait/
http://www.otawa.fr/

problems, one may consider exist hit : “does there exist a path so that the
block is in the cache?”; exist miss : “does there exist a path so that the block
is not in the cache?”. Similar problems exist for an initially unknown cache,
with quantification over all paths and over all initial cache contents. All these
problems are decidable, if only by enumerating all reachable cache states (there
is a finite number of cache blocks in the problem).

Approximate static analyses affix the “unknown” classification to blocks that
may actually be “always hit” or “always miss”, but the analysis is too coarse to
notice it. In contrast, an exact static analysis affixes the “unknown” classifica-
tion only to blocks whose cache status is definitely unknown: there exist different
paths (or, if applicable, different initial cache contents) such that the block is
in the cache for one and out of the cache for another. For complexity-theoretic
results, we only consider exact analyses.4

By encoding the behavior of the cache into the program itself, seeing memory
accesses as actions on the cache contents seen as a vector of bits, one turns the
exact analysis “exist hit” and “exist miss” problems into model-checking reacha-
bility problems, solvable in PSPACE. If the control-flow graph is acyclic, similar
reasoning leads to membership in NP. Monniaux and Touzeau [13], considering
the LRU, PLRU, NMRU and FIFO policies, showed, in addition, that:

• for all these policies (for NMRU, only with an initially empty cache), the
analysis problems for acyclic control-flow graphs are NP-hard;

• for all these policies except LRU (for NMRU, only with an initially empty
cache), the analysis problems for general control-flow graphs are PSPACE-
hard;

• for LRU, all analysis problems (regardless of initial state or acyclicity) are
NP-complete.

To summarize, for all policies, the analysis problems are NP-complete for acyclic
control-flow graphs, but there is a gap between LRU (NP-complete) and the oth-
ers (PSPACE-complete) for general control-flow graphs. Monniaux and Touzeau
[13] however left to future work the question of adding procedure calls (push-
down control) to the setting.

In this paper, we show that the gap widens when procedure calls are added :
the decision problems remain NP-complete for LRU for programs with procedure
calls (Figure 2), but become EXPTIME-complete for other policies (for NMRU,
EXPTIME hardness is proved only with an initially empty cache).5

For the LRU policy, we derive backtracking algorithms that solve the exist-
miss and exist-hit problems from the arguments of the proof of membership in
NP. These algorithms may be costly, but we give an approach for using them

4A safe, constant-time, approximate static analysis is to answer “unknown” to any request.
In order to study complexity, some form of minimal precision must be imposed. It is unclear
what metric should be used for this; thus our choice to require exactness.

5For complexity theoretical purposes, we assume that the input is the program to be
analyzed, as a set of procedures consisting of explicitly represented control-flow graphs labeled
with array accesses, preceded by the associativity K of the cache written in unary notation.

3

A0

A1

A2 A3

A4

A5

a

b c

d call B

e

(a) Procedure A

B0

B1

B2 B3

B4

B5

c

d e

a call B

b

(b) Procedure B

Figure 2: Two procedures, including a recursive one. Running procedure A may
yield traces abde, accdabe, accecdabbe. . .

only when some cheaper analyses have failed to conclude on whether an access
is always a hit, always a miss, or has “definitely unknown” status.

As a secondary contribution, we provide an alternate proof (Appendix A)
that reachability in Boolean programs with procedure calls is EXPTIME-complete,
a fact already shown by Godefroid and Yannakakis [7].

2 Pushdown systems

At several points, we shall use classical results on reachability in pushdown
systems, which are used to model programs without variables (only control
locations) but with procedure calls. The set of cache blocks will be the alphabet.

A pushdown system is a quadruple (Q,Σ,Γ,∆) where Q is a finite set of
control locations, Σ is a finite word alphabet, Γ is a finite stack alphabet, ∆ ⊆
(Q×Γ)×

(

Σ∪{ε}
)

× (Q×Γ∗) is a finite set of transition rules. A pair (q, w) ∈

Q × Γ is a configuration of the automaton. If
(

(q, γ), σ, (q′, w)
)

∈ ∆, then

we write (q, γ)
σ
−֒→ (q′, w).6 We write c0

σ1...σn

−֒−−−→
∗
cn for ∃c1, . . . , cn−1 c0

σ1

−֒→

c1 ∧ · · · ∧ cn−1

σn

−֒→ cn.
To define what it means for a word to be accepted by a pushdown system, we

add to the quadruple two more items: q0 an initial state, Qf ⊆ Q a set of final
states. A word w = w1 . . . wn is accepted with arbitrary final stack if there is a
final state qf ∈ Qf , a final stack γf , a sequence of configurations c0, . . . , cn and

transitions c0
w1

−֒→ c1, . . . , cn−1

wn

−֒−→ cn such that c0 = (q0, ε) and cf = (qf , γf).
A configuration (q, w) is a word (over Q∪Γ) thus we talk of sets of configu-

rations recognized by finite automata. [3], Esparza et al. [4, Th. 3 (respectively,

6This is the same definition as [4] except we keep a word alphabet.

4

1)] proposed algorithms that compute, in polynomial time, finite automata that
recognize the set of reachable (respectively, co-reachable) configurations from
a set of configurations defined by a finite automaton. The following classical
result ensues:

Theorem 1. There is a polynomial-time algorithm that, given an explicitly
represented pushdown system and two regular sets I and F of configurations
(represented using finite automata), checks whether there are configurations i ∈

I and f ∈ F and a word w ∈ Σ∗ such that i
w
−֒→

∗
f .

By “explicitly represented” we mean that the states and the transitions are
explicitly enumerated in the input.

3 Least recently used policy

The least recently used policy operates as follows: a K-way cache (K is the
number of ways or associativity) is a list of at most K distinct cache blocks.
Blocks are taken from the finite set of blocks accessed by the program under
analysis. The age of a block is its position in the list: 0 for the most recently
used block, K − 1 for the least recently used block, and, by convention, ∞ for
blocks not in the cache. Depending on the situation being modeled, this list
may be taken initially empty (empty initial cache) or may take any initial value
(arbitrary initial cache).

When a block x is accessed, if it belongs to the current cache state then it is
moved to the foremost position in the list, and other blocks keep their relative
order; if it does not, then it is put at the foremost position and the block of
age K − 1 is evicted (if there is such a block). The block of age K − 1 is the
least recently used in the cache, thus the name of the policy. For instance, for
a 4-way cache containing initially abcd, after an access to b the cache contains
bacd, and if instead e is accessed the cache then contains eabc.

3.1 NP membership of the analysis problem

The simple observation at the basis of all methods for static analysis of LRU
caches [5, 18, 17] is that on a K-way LRU cache, a block a may be in the cache
after a finite execution e if and only if one of these conditions is met:

• if starting from an arbitrary cache state: if fewer than K distinct cache
blocks have been accessed along e;

• regardless of the initial cache state, if fewer than K distinct cache blocks
have been accessed along e since the last access to a.

In [13], the proofs that the exist-hit and exist-miss problems for control-
flow graphs adorned with cache accesses under the LRU policy could be solved
in NP relied on path compression: if there exists an execution of arbitrary
length that reaches a control location l with a in the cache (respectively, not in

5

the cache), then there exists one of polynomial length with the same property,
which is the NP witness. More specifically, the proof relied on the possibility
to “compress” an execution path between two control locations into a path of
polynomial length with the same set of control edges along the two paths, using
classical arguments such as “if the length of an execution exceeds the number
of states, then it encounters the same state twice”.

Adding procedure calls to a finite automaton classically turns it into a push-
down system. Unfortunately, we cannot expect the same kind of compression
results with pushdown systems. Indeed, if a finite automaton accepts a word
then it accepts a word of length bounded by its number of states, but the same
does not apply to pushdown systems: consider a program composed of n proce-
dures f0, . . . , fn, with fi just making two successive calls to fi+1 for i < n, and
fn executing an instruction a, then the shortest (and only) execution of f0 exe-
cutes 2n instructions a, with an exponential number of different configurations
(recall that a configuration consists in a control location and a call stack).

Instead, we will use a weaker property. The witness for the existence of an
execution path of arbitrary length is the sequence of first occurrences of block
accesses along that path. The crux of the argument is that it is possible, given
such a sequence, to check in polynomial time for the existence of an execution
path matching that sequence.

Definition 1. Letw be a word over an alphabet Σ, let F (w) denote the sequence
of first occurrences of letters in w. For instance, F (dadaaabbaaabcbbaa) = dabc.

Let us first recall the following classical result, obtained through an automa-
ton product construct:

Theorem 2. Let A be a pushdown system over alphabet Σ and let A′ be a finite
automaton (deterministic or not) over Σ. Then the intersection of the languages
recognized by A and A′ is recognized by a pushdown system with control locations
in the Cartesian product of the control locations of A and A′.

We shall use variants of the following lemma:

Lemma 1. Let A be a pushdown system over alphabet Σ. Let s be a sequence
of pairwise distinct letters in Σ. Then it is possible to check in polynomial time
for the existence of a word w accepted (with arbitrary final stack) by A such that
F (w) = s.

Proof. This problem is equivalent to testing for the nonemptiness of the intersec-
tion of the language recognized by A and the language recognized by the regular
expression Z(s) = s1s

∗
1s2(s1|s2)

∗ . . . sn(s1|s2| . . . |sn)
∗. That latter language is

recognized by the automaton

6

q0 q1 q2 qn−1 qn
s1 s2 sn

s1 s1|s2
s1|s2| . . . |sn−1

s1|s2| . . . |sn

(1)
By Theorem 2 the intersection is recognized by a pushdown system with

(n + 1)|A| control locations where |A| is the number of control locations in A.
Its emptiness can be checked in polynomial time (Theorem 1).

Theorem 3. The exist-hit and exist-miss problems can be solved in NP for both
an empty initial cache and an arbitrary initial cache.

Proof. Let A be the pushdown system defining the program to be analyzed.
A block a is in the cache at a control location q during an execution starting

from the empty cache if and only if during this execution there is a transition
over letter a followed by transitions over n < K pairwise distinct letters; in
other words, if there exists s, |s| < K such that q is reached by an execution of
A for a word matching the regular expression ?∗aZ(s) where Z(s) is as in the
proof of 1, and ? matches any block. This is solvable in NP by guessing s and
then similarly as in the proof of 1.

A block a is outside the cache at a control location q during an execution
starting from the empty cache if and only if either this execution reaches q after
using only labels different from a, or it reaches q after at least one occurrence
of a followed by at least n ≥ K pairwise distinct letters distinct from a. The
first case is obtained by checking the reachability of q in the restriction of A to
letters different from a, in polynomial time (Theorem 1). The second case is
obtained by guessing a sequence s1, . . . , sn of pairwise different accesses distinct
from a and again using a variant of the proof of 1, where the final state of the
finite automaton loops onto itself with any letter (allowing for more letters than
s1, . . . , sn).

There exists an initial cache state and an execution such that a is in the
cache at control location q if and only if there exists a sequence s = s1, . . . , sn of
distinct letters with n < K such that one reaches q after reading a word w such
that F (w) = s, or there exists a sequence s = s1, . . . , sn, n < K, and words
w1, w2 such that w1w2 leads to q and F (w2) = a, s1, . . . , sn. Both cases can be
checked in NP, as in previous paragraphs.

There exists an initial cache state and an execution such that a is not in the
cache at control location q if and only if there exists a sequence reaching q by
going only through letters distinct from a, which can be checked in polynomial
time, or there exists a sequence of pairwise distinct letters also distinct from a
s = s1, . . . , sn, n ≥ K, and words w1, w2 such that w1w2 leads to q and F (w2) =
a, s1, . . . , sn, which can be checked in NP, as in previous paragraphs.

7

Corollary 1. The exist-hit and exist-miss problems are NP-complete for both
an empty initial cache and any initial cache.

Proof. These problems subsume the corresponding problems for finite (non
pushdown) automata, which were proved to be NP-hard by [13].

3.2 Backtracking algorithm

We shall now see how to exploit the NP structure of the LRU analysis decision
problem to build backtracking algorithms. The question we address is: given
a program possibly consisting of multiple procedures, and a control edge q1

a
−→

q2 labelled with an access to block a within that program, answer whether
this access is unreachable, always-hit, always-miss, or has “definitely unknown”
status, for the LRU policy. This problem has two variants depending on whether
the initial cache is assumed to be empty or arbitrary.

We have seen that membership in NP is established by “guessing” a se-
quence of newly seen blocks in their order of appearance, whence a reachability
problem for a pushdown system is created and checked in polynomial time.
The backtracking algorithm will explore possible sequences, and chronologically
backtrack when it notices it has entered a search branch that cannot lead to
reachability.

Let us begin with the “exist-hit” from the initial empty cache subproblem:
for an access q1

a
−→ q2 in the pushdown program, find if there is an execution such

that this access is in the cache starting from an empty cache; in other words, if
there is an execution from the program start to a first access to a, then accesses
to fewer than K distinct blocks, then q1

a
−→ q2. This is equivalent to computing

the set of all configurations occurring just after accessing a and reachable from
the initial state, then checking if there is an execution with accesses to fewer
than K distinct blocks from one such configuration to control location q1. The
reachable configurations, a regular set, can be computed in polynomial time
[3]; the question is to find the remainder of the execution, accessing a sequence
s = s1 . . . sn of fewer thanK distinct blocks. For this, we conduct a backtracking
search over s. Similarly, the problem with arbitrary initial cache reduces to that
backtracking search.

Let us now cast the results of Section 3.1 in a more effective light in order
to derive a backtracking algorithm. Consider Theorem 1 and its proof, which,
given a sequence of letters s, constructs the product P (s) of the finite automaton
(1) with the pushdown system. Remark that this product can be constructed
iteratively as s is extended: when a new letter is added to s, new states are added
to the product. Then, we compute the regular set of configurations reachable
by this automaton, using the algorithm from Bouajjani, Esparza, and Maler [3].
Again, if a new letter l is added to s, and we need to compute the reachable states
for the product automaton P (sl) then we can retain the reachable configurations
pertaining to the states already in P (s) and just compute the ones for the new
states. If no reachable configurations are found in these new states, the search
stops exploring sl and backtracks. If a “winning” state (a state with control

8

location q1 in the pushdown system) is found with those states, the search
terminates. All letters l are tried, except for a; the search goes recursively with
prefix sl. Sequences of length greater than or equal to K are not explored.

The backtracking algorithm may be modified to look for sequences that lead
to the eviction of a, to solve the “exist-miss” problem. Let B be the original
pushdown system from which edges labeled a are removed; we pre-compute the
configurations co-reachable from q1 in that pushdown system. We then look for
a block sequence s such that |s| = K. A winning state (p, f) in the product
pushdown system, where p is a control state in the original pushdown system
and f is a state of the finite automaton, is one where the set of its reachable
configurations intersects with the set of configurations at p co-reachable from q1
in B. In other words, there is at least one configuration reachable by a sequence
of distinct letters of length at leastK, and co-reachable using transitions labeled
by letters other than a from q1, which establishes the existence of a sequence
of at least K distinct letters, distinct from a, reaching q1. Sequences of length
greater than K need not be explored.

A further improvement to both algorithms is to systematically intersect the
sets of reachable configurations with the co-reachable sets of configurations from
B, since we are interested only in configurations that can ultimately lead to a1.

3.3 Combination with other algorithms

Touzeau et al. [18] proposed using their exact analysis as a last resort when
other, cheaper analyses, could not resolve the analysis problem, focusing it on
the unresolved accesses. In this section, we take this approach one step further.

They proposed using as a first step an analysis tracking the possible ages of
the blocks [17], improving upon the well-known age interval analysis proposed
by Ferdinand and Wilhelm [5]. That age interval analysis computes, at every
location and for every block a, an upper bound ha and a lower bound la on the
age of that block in the cache (+∞ denoting a block outside the cache), whatever
the execution. This analysis can prove that some blocks are always in the cache,
or outside of the cache, at a given location. Touzeau et al. [17] improve upon that
analysis by considering, for every block a and every reachable location, the set
S of ages for a reachable by all executions at that location, and computing four
bounds la, l

′
a, h

′
a, ha such that la ≤ minS ≤ l′a and h′a ≤ maxS ≤ ha; in other

words, there is at least one execution that reaches that location with the age for
a at most l′a and one execution that reaches it with that age at least h′a. This
may establish cheaply that the status of some blocks is “definitely unknown” at
some locations, meaning that there exist executions for which they are in the
cache and some in which they are not. The more expensive exact analysis is
called only when the age-based analyses cannot conclude that a block must be
in the cache at that location, must be outside of the cache, or has cache status
“definitely unknown”.

It is possible to run these analyses on programs with procedures calls by
“flattening” the structure, abstracting these calls by replacing each edge from l
to l′ labeled with a call by one call edge going from l to the start of the called

9

a1 a2 b1 b2

Pstart Pend

call P call P

Figure 3: “Flattened” control-flow includes paths that cannot be executed in
the real system. The two “call P” edges are replaced by call and return edges
(dashed). The path (thick lines) a1 → Pstart . . . Pend → b2 cannot be executed
on the real system, because the call and return sites do not match, but exists in
the “flattened” system. The “flattened” system thus strictly over-approximates
the original behaviors.

procedure, and a return edge going from the end of that procedure back to l′.
If a procedure is called only from one location, this amounts to inlining that
procedure at the point of call, and does not introduce any extra abstraction.
However, if a procedure is called from multiple locations, this introduces spu-

rious execution traces. Suppose P is called from two places a1
call P
−−−−→ a2 and

b1
call P
−−−−→ b2. The flattened control structure allows executions a1

call P
−−−−→ b2 and

b1
call P
−−−−→ a2, which are impossible in the original program (Fig. 3). Upper and

lower bounds on ages la and ha computed on the flattened structure are sound,
meaning that are valid for the original pushdown structure, but the l′a and h′a
bounds, as well as the exact analysis, are not necessarily valid because they may
reflect executions that exist in the flattened structure but not in the pushdown
structure. For instance, if, in the above example, a block a is always in the
cache when reaching a1, but never in the cache when reaching b1, and P is such
that it it neither evicts a nor accesses it in both calls, then a is always in the
cache when reaching a2 and never in the cache when reaching b2. However, in

the flattened control structure, the spurious execution a1
call P
−−−−→ b2 leads to a in

the cache at position b2, and the spurious execution b1
call P
−−−−→ a2 leads to a out

of the cache at position a2.
If a small procedure is used only a few times, it makes sense to treat it as

inlined at the point of call for the purpose of analysis—either inlining it for real
into the control-flow graph of the caller procedure, or descending into the call
during analysis in a way that simulates inlining. We however need to really deal
with the pushdown structure when there are (possibly recursive) procedures.
We propose running first the analyses of Touzeau et al. [18] on the flattened
structure, disregarding the results of return edges when they would be used to
establish the existence of an execution. For the interval analysis, this means
taking l′a = +∞ and h′a = 0 when going through a return edge; for the exact
analysis on the flattened structure, this means that diagnoses “a is always in
the cache at this location” and “a is never in the cache at this location” can be
retained, but not diagnoses “a is definitely unknown as this location”.

10

We thus propose using the backtracking algorithm of Section 3.2 only on the
cases that still have not been classified by the above approach.

4 Presentation of other policies

In this section, for completeness, we recall facts from Monniaux and Touzeau
[13]. The details of the policies are not important in our proof, since we will
reuse many of their reduction arguments.

The FIFO policy, also known as “round-robin”, stores block according to
their age, but a crucial difference is that the age is not that of the most recent
access to the block, but of its entrance to the cache: in contrast to LRU, a block
is not rejuvenated if it is accessed when it is already in the cache. This allows
implementing it simply using an index into a circular buffer. For instance, if a
K-way cache contains abcd in ascending age and b is accessed, the cache remains
abcd; if e is accessed, it then contains eabc.

FIFO however has worse practical performance than LRU [1]. “Pseudo
LRU” replacement policies, meant to do in practice what LRU does (evict blocks
that were not used recently), were thus proposed, in particular [1, 16]:

• one based on a tree of direction bits leading to cache lines, named “Tree
PLRU”, “PLRU-t”, or simply, as in this paper, “PLRU”;

• one based of “most recently used” bits, named “PLRU-m”, “MRU” or, as
in this paper, “NMRU” [12].

Pseudo-LRU policies yield comparable practical performance to LRU [1], but
they are very different from the point of view of static analysis. For instance, a
PLRU cache may, with a specifically concocted cache access pattern, indefinitely
retain some data that was used only once at the beginning of execution and is
never accessed again [10], which of course cannot happen with LRU. This results
in domino effects: the cache behavior of a loop body may be indefinitely affected
by the cache contents before the loop [2]. All of this makes the static analysis
of programs over PLRU caches difficult; there are no known precise and fast
analyses for this policy and for NMRU.

PLRU The cache lines of a PLRU cache, which may contain cached blocks,
are arranged as the leaves of a full binary tree — thus the number of ways K
is a power of 2, often 4 or 8. Two lines may not contain the same block. Each
internal node of the tree has a tag bit, which is represented as an arrow pointing
to the left or right branch. The state of the cache is thus the content of the
lines and the K − 1 tag bits.

There is always a unique line such that there is a sequence of arrows from
the root of the tree to the line; this is the line pointed at by the tags. Tags are
said to be adjusted away from a line as follows: on the path from the root of
the tree to the line, tag bits are adjusted so that the arrows all point away from
that path.

When a block a is accessed:

11

• If the block is already in the cache, tags are adjusted away from this line.

• If the block is not already in the cache and one or more cache lines are
empty, the leftmost empty line is filled with a, and tags are adjusted away
from this block.

• If the block is not already in the cache and no cache line is empty, the
block pointed at by the tags is evicted and replaced with a, and tags are
adjusted away from this block.

NMRU The state of an K-way NMRU cache is a sequence of at most K
memory blocks αi, each tagged by a 0/1 “MRU-bit” ri saying whether the
associated block is to be considered not recently used (0) or recently used (1),
denoted by αr1

1 . . . αrK
K .

An access to a block in the cache, a hit, results in the associated MRU-bit
being set to 1. If there were already K − 1 MRU-bits equal to 1, then all the
other MRU-bits are set to 0.

An access to a block a not in the cache, a miss, results in:

• if the cache is not full (number of blocks less than K), then a1 is appended
to the sequence

• if the cache is full (number of blocks equal to K), then the leftmost (least
index i) block with associated MRU-bit 0 is replaced by a1. If there were
already K − 1 MRU-bits equal to 1, then all the other MRU-bits are set
to 0.

5 EXPTIME-completeness for Boolean register

machines with procedure calls

Touzeau et al. [18] showed PSPACE-hardness for PLRU, NMRU and FIFO
analysis problems by providing, for each policy, a way to simulate a “Boolean
register machine”. We extend this definition with procedure calls and prove
EXPTIME-completeness.

5.1 Extension to procedure calls

Definition 2. A Boolean register machine [13] is defined by a number r of
registers and a directed (multi)graph with an initial node and a final node, with
edges adorned by instructions of the form:

Guard vi = b where 1 ≤ i ≤ r and b ∈ {0,1},

Assignment vi := b where 1 ≤ i ≤ r and b ∈ {0,1}.

12

The register state is a vector of r Booleans. An edge with a guard vi = b may
be taken only if the i-th register contains b; the register state is unchanged. The
register state after the execution of an edge with an assignment vi := b is the
same as the preceding register state except that the i-th register now contains b.

The reachability problem for such a system is the existence of a valid execu-
tion starting in the initial node with all registers equal to 0, and leading to the
final node.

Monniaux and Touzeau [13, Lemma 20] show:

Lemma 2. The reachability problem for Boolean register machines is PSPACE-
complete.

Godefroid and Yannakakis [7] introduced Boolean programs or extended re-
cursive state machines, which are essentially Boolean register machines except
that:

1. they allow procedure calls

2. they have local variables

3. they allow arbitrary transition relations with arbitrary guard predicates
and arbitrary commands assigning new values to registers using arbitrary
Boolean functions of the current values of registers.

They prove the following theorem, for which we give an alternative proof in
Appendix A:

Theorem 4. The reachability problem in Boolean programs is EXPTIME-
complete.

Their result, however, establishes hardness in too generic a class of programs
for our purposes: we want neither local variables nor arbitrary transitions. The
following two lemmas get rid of them.

Lemma 3. Reachability in a Boolean program using arbitrary transitions re-
duces, in polynomial time, to reachability in a Boolean program only using con-
stant guards and assignments.

Proof. Monniaux and Touzeau [13] remark that arbitrary transitions defined
by Boolean functions can be simulated only using “guard” and “assignment”
elementary operations, with only linear blowup. To each subterm s of the
expressions in the transition we associate a register variable:

• variables bi or b
′
i are retained;

• for the result r of each operator, a fresh variable is created.

Then, the truth table of each operator is encoded: for an operator r = op(x1, . . . , xn)
(n ≤ 2 for conventional Boolean operators), for each of the 2n possible choices of
the inputs, a sequence of guards on x1, . . . , xn keeps only that choice, followed
by an assignment to r of the correct value; a nondeterministic choice is made
between all these inputs. (Several choices of inputs can be collapsed into the
same sequence, if possible.)

13

Example 1. Consider a transition from (b1, b2) to (b′1, b
′
2) defined as (b′1 =

b1) ∧ (b′2 = b1 ∧ ¬b2). Create a fresh variable r standing for the result of ¬b2.
The b′1 := b1, r := ¬b2 and b′2 := b1 ∧ r operations are encoded into:

b1 = 0 b′1 := 0

b1 = 1 b′1 := 1

b2 = 0 r := 1

b2 = 1 r := 0

b1 = 1 r = 1 b′2 := 1

b1 = 0

r = 0 b′2 := 0

Lemma 4. Reachability in a Boolean program using local variables and only
constant guards and assignments reduces, in polynomial time, to reachability
in a Boolean program only using constant guards and assignments but no local
variables.

Proof. We essentially need a mechanism for saving registers on the stack at
function entry and restoring them at function exit.

A procedure P is turned into R + 1 procedures P0, . . . , PR where R is the
number of registers ri1 , . . . , riR to save. P0 is just P . Calls to P are replaced
by calls to PR. Each procedure Pj (1 ≤ j ≤ R) consists of two sequences, with
nondeterministic choice between them:

• guard rij = 0; call Pj−1; assignment rij := 0;

• guard rij = 1; call Pj−1; assignment rij := 1.

Example 2. Procedure P has local variables r5 and r7. We create procedures
P1 and P2 as follows:

P2 start

q02

q12

return

r5 = 0
call P1 r5 := 0

r5 = 1
call P1 r5 := 1

P1 start

q01

q11

return

r7 = 0
call P r7 := 0

r7 = 1
call P r7 := 1

Essentially, we use the call stack to store the value of r5 (encoded into a return
control location q02 or q12 depending on its value), then the value of r7 (encoded
into a return control location q01 or q11 depending on its value).

We have gotten rid of the arbitrary transitions and the local variables. Let
us now proceed with the rest of the reductions. Monniaux and Touzeau [13]
prove the following:

14

• The reachability problem on Boolean register machines with acyclic con-
trol flow graph is NP-complete.

• The reachability problem on Boolean register machines is PSPACE-complete.

and we will similarly prove that the reachability problem on Boolean programs
where the only transitions are constant guards and constant assignments and
without local variables is EXPTIME-complete.

Boolean programs where the only transitions are constant guards and con-
stant assignments and without local variables are, equivalently, Boolean register
machines with procedure calls:

Definition 3. A Boolean register machine with procedure calls is defined by a
number r of registers, a number P ≥ 1 of procedures, and P directed (multi)graphs,
called procedures, with an initial node and a final node, with edges adorned by
instructions of the form:

Guard vi = b where 1 ≤ i ≤ r and b ∈ {0,1},

Assignment vi := b where 1 ≤ i ≤ r and b ∈ {0,1},

Call call(i) where 1 ≤ i ≤ P .

A control location in such a machine is a pair (i, j) where 1 ≤ i ≤ P is
the index of a procedure and j is a control vertex inside procedure i. The
configuration of a Boolean register machine with procedure calls consists of a
control location, the state of the r registers, and a call stack, a (possibly empty)
sequence of control locations. The execution starts at vertex 1 of procedure
1 with an empty stack and zeroes in the registers. When a procedure i with
Ni control locations is called, its execution starts at location (i, 1) and stops
at location (i, Ni); a location is then popped from the stack and control is
transferred to it.

A reachability problem in such a machine is whether a given control location
is reachable.

Lemma 5. The reachability problem for Boolean register machines with proce-
dure calls lies in EXPTIME.

Proof. Theorem 4 states membership in EXPTIME for the more general case
with local variables and arbitrary transitions.

Theorem 5. The reachability problem for Boolean register machines with pro-
cedure calls is EXPTIME-complete.

Proof. Compose the reductions of 3, 4 and Theorem 4 to establish hardness.

15

6 EXPTIME-completeness for non-LRU policies

We show EXPTIME-hardness by reducing arbitrary reachability problems on
Boolean register machines with procedure calls to “exist-hit” and “exist-miss”
problems. We reuse Monniaux and Touzeau [13]’s encoding of the Boolean regis-
ters into the cache state, and their transformation of Boolean register machines
into control-flow graphs adorned with cache blocks, suitable for cache analysis.
This transformation retains the structure of the control-flow, replacing each in-
struction edge from the Boolean register machine by a “gadget” making cache
accesses. To deal with multiple procedures in our problems, we translate each
procedure independently and retain call instructions.

6.1 Encoding for programs without procedures

Monniaux and Touzeau [13] considered programs without procedures. For each
replacement policy, they have

• a notion of well-phased cache state: the initial cache state is well-phased
and all gadgets preserve well-phasedness (that is, at their boundary: they
use not well-phased states inside the gadget);

• a notion of a well-formed cache state corresponding to a register state,
meaning it encodes that state; only well-formed cache states are meaning-
ful for the transformation of the reachability problems;

• well-phased but not well-formed cache states may only lead to further
well-phased but not well-formed cache states; well-phased but not well-
formed cache states appear in valid execution traces of the cache analysis
problems that are not meaningful for the reduction.

Their reductions turn a Boolean register machine into a control flow graph
with edges adorned with cache blocks, and thus a reachability problem into a
cache analysis problem, as follows:

• A prologue, set at the entry point of the control flow graph, suitably
initializes the cache contents;

• the main part of the control-flow graph is identical to the Boolean register
machine where each instruction (guard or assignment) is replaced by a
“gadget”: a piece of control-flow graph adorned with cache accesses; the
gadget simulates on the cache state what happens to the Boolean registers;
if a guard fails, the gadget stops execution or leads to well-phased but not
well-formed cache content;

• an epilogue, leading to the exit point of the control-flow graph, filters
out well-phased but not well-formed cache content and prepares the cache
so that the exist-miss or exist-hit problem at the control-flow graph exit
points exactly answers the reachability problem for the Boolean register
machine.

16

The prologue is different if the initial cache is empty or has arbitrary content,
and the epilogue is different for exist-miss and exist-hit problems.

Their results can be summarized as: the execution traces of the Boolean
register machine reaching the final state of that machine are in a one-to-one
correspondence with the execution traces of the control-flow graph that reach
the exist-hit (respectively, exist-miss) condition at the end: the execution se-
quence of edges in the Boolean register machine maps to a sequence of “gad-
gets” (prologue, then one gadget per edge of the Boolean register machine, then
epilogue). The control-flow graph labeled with cache blocks may have other
executions, but they create not well-formed cache content and thus are ignored
by the condition in the epilogue.

The encoding, the notions of well-phasedness and well-formedness, and the
gadgets used, are completely different for each policy. We refer readers to Mon-
niaux and Touzeau [13] for more details, and shall here just sketch how they
encode the reachability problem for a Boolean register machine to the exist-
hit problem for the FIFO cache. The associativity of the cache is chosen as
K = 2r−1. The alphabet of cache blocks is {(ai,b)1≤i≤r,b∈{0,1}}∪{(ei)1≤i≤r}∪
{(fi)1≤i≤r−1} ∪ {(gi)1≤i≤r−1}.

The main idea is to encode the value of registers by loading the blocks ai,b
into the cache (ai,1 is used when the register i contains 1, and ai,0 is used for 0).
The blocks ei are used to distinguished valid Boolean machine executions from
executions where the machine should have halted. Finally, blocks fi and gi are
used in epilogue to turn valid states into cache hits and invalid states into cache
misses.

The register state v1, . . . , vr of the register machine is to be encoded as the
FIFO state, acting essentially as a delay-line memory:

a1,v1e2a2,v2 . . . erar,vr . (2)

FIFO states that are not of this form are considered not well-formed.
The register machine graph is turned into a cache analysis graph as follows.

• From the cache analysis initial node If to the register machine former ini-
tial node Ir there is a prologue, a sequence of accesses a1,0e2 . . . ar−1,0erar,0.

• Each guard edge vi = b is replaced by the gadget

start end

φ1,0

φ1,1

φi−1,0

φi−1,1

φi,b
φi+1,0

φi+1,1

φr,0

φr,1

(3)
where φi,b denotes the sequence of accesses ai,beiai,b.

17

• Each assignment edge vi := b is replaced by the gadget

start end

φ1,0

φ1,1

φi−1,0

φi−1,1

ψi,b

φi+1,0

φi+1,1

φr,0

φr,1

(4)
where ψi,b denotes the sequence of accesses eiai,bei.

• From the register machine former final node Fr to a node Fa there is a
sequence of accesses ψ1,0 . . . ψr,0, constituting the first part of the epilogue.

• From Fa to a node Fh there is a sequence of accesses

a1,0g1e2f2a2,0g2 . . . er−1fr−1ar−1,0gr−1erfr,

constituting the second part of the epilogue.

• The final node is Ff = Fh.

The main difficulty in this reduction is that the Boolean register machines
may terminate traces if a guard is not satisfied, whereas the cache problem has
no guards and no way to terminate traces. The workaround is that cache states
that do not correspond to traces from the Boolean machine are irremediably
marked as not well-formed: they may lead only to more not well-formed states.

The encoding is chosen such that:

Lemma 6. Assume starting in a well-formed FIFO state, corresponding to state
σ, then any path through the gadget encoding an assignment or a guard

• either leads to a well-formed FIFO state, corresponding to the state σ′

obtained by executing the assignment, or σ′ = σ for a valid guard;

• or leads to a not well-formed state.

Lemma 7. Assume starting in a not well-formed state, then any path through
the gadget encoding an assignment or a guard leads to a not well-formed state.

Corollary 2. Any path from a well-formed FIFO state in Ir to Fr in the FIFO
graph

• either corresponds to a valid sequence of assignments and guards from the
register machine from Ir to Fr, and leads to a well-formed FIFO state
corresponding to the final state of that sequence

• or corresponds to an invalid sequence of assignments and guards from the
register machine (some guards were no satisfied), and leads to a not well-
formed FIFO state.

18

Conversely, any valid sequence of assignments and guards from the register
machine maps from Ir to Fr transforms a well-formed FIFO state into a well-
formed FIFO state, corresponding respectively to the initial and final states of
that sequence.

The epilogue is chosen so that it recognizes only correct states, whose en-
codings produce a cache hit, while not well-formed states lead to a cache miss:

Theorem 6. There is an execution of the FIFO cache from If to Ff such that
ar,0 is in the final cache state if and only if there is an execution of the Boolean
register machine from Ir to Fr.

6.2 Extension to programs with procedure calls

We extend our control flow graphs labeled with cache blocks with procedure
calls, mimicking the procedure calls on the Boolean register machines, and we
apply the same reduction: guards and assignments are replaced by gadgets,
prologue and epilogue are added; the difference is that we deal with procedure
calls, which are kept intact.

The execution traces of the Boolean register machine with procedure calls
reaching the final state of that machine are in a one-to-one correspondence
with the execution traces of the control-flow graph with procedure calls, with
control edges adorned by cache accesses, that reach the exist-miss (or exist-miss)
condition at the end.

This reduction proves EXPTIME-hardness of the exist-miss and exist-hit
problems for control-flow graphs with cache block accesses and procedure calls
for the same cases as Monniaux and Touzeau [13] proves PSPACE-hardness
without procedure calls.

Membership in EXPTIME is easy to establish by reduction to Boolean pro-
grams, for which reachability properties are known to be in EXPTIME. Indeed,
a cache has an internal state, which can be encoded as a vector of bits (as in
hardware): for FIFO, it consists of K block labels (if there are n blocks in the
system, each label takes ⌈log1(K − 1)⌉ + 1 bits); for PLRU it consists of the
block labels and the direction of the arrows in the PLRU tree; for NMRU it con-
sists of the block labels and MRU bits. For each of these policies, the effect of
an access on the cache is implemented by a simple program using comparisons,
assignments, etc.: if the block is in the cache, refresh it, if it is not, evict a block
from the cache according to the policy and load the block. This simple program
can be expanded (as in the real hardware caches) into logical gates operating
on the cache state, taking as input also the binary encoding of the label of the
block being accessed. The number of these logical gates is polynomial in K and
in the number n of distinct blocks in the cache analysis problem. Logical gates
can be encoded into Boolean program guards and assignments, as in Example 1.

Putting all together, we prove:

Theorem 7. The exist-miss and exist-hit problems are EXPTIME-complete for
PLRU and FIFO caches for both empty cache and arbitrary cache initialization

19

and control-flow graphs with procedure calls. The exist-miss and exist-hit prob-
lems are EXPTIME-complete for NMRU caches for empty cache initialization
and control-flow graphs with procedure calls.

7 Conclusion and perspectives

Our work is yet another indication that LRU caches are easier to analyze stati-
cally and thus more suitable for applications where it is important to have static
cache analysis—those requiring justifiable bounds on worst-case execution time,
and possibly in security and cryptography where one must not leak information
through a cache side channel.

One may object that our work, as that of Monniaux and Touzeau [13], estab-
lishes the hardness of unrealistic cases, with unbounded associativity and con-
voluted access patterns. They already addressed this objection: with bounded
associativity, the problems can be polynomially expanded and solved (the ex-
ponential is in the associativity), so they cannot be distinguished using the
usual complexity classes; and attempting to establish asymptotic differences in
polynomial degrees also leads to difficulties.

We have proposed a backtracking algorithm, based on the NP structure,
for solving the analysis problems in the case of the LRU policy, as well as an
approach for using this algorithm only as a last resort when some approximations
have failed to resolve certain cases.

Are there practically efficient algorithms for solving analysis problems for the
other policies, for which we proved the analysis to be EXPTIME-complete? Our
proof of EXPTIME membership is basically “expand exponentially the problem
into one we know how to solve in polynomial time”, which is obviously explosive.
Would there be lazy approaches to this expansion, leading to tolerable execution
time and space on practical instances?

References

[1] Hussein Al-Zoubi, Aleksandar Milenkovic, and Milena Milenkovic. “Per-
formance Evaluation of Cache Replacement Policies for the SPEC CPU2000
Benchmark Suite”. In: Proceedings of the 42Nd Annual Southeast Regional
Conference. ACM-SE 42. Huntsville, Alabama: ACM, 2004, pp. 267–272.
isbn: 1-58113-870-9. doi: 10.1145/986537.986601.

[2] Christoph Berg. “PLRU Cache Domino Effects”. In: 6th International
Workshop on Worst-Case Execution Time Analysis (WCET’06). Ed. by
Frank Mueller. Vol. 4. OpenAccess Series in Informatics (OASIcs). Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2006, pp. 69–
71. isbn: 978-3-939897-03-3. doi: 10.4230/OASIcs.WCET.2006.672.

20

http://worldcat.org/isbn/1-58113-870-9
http://dx.doi.org/10.1145/986537.986601
http://worldcat.org/isbn/978-3-939897-03-3
http://dx.doi.org/10.4230/OASIcs.WCET.2006.672

[3] Ahmed Bouajjani, Javier Esparza, and Oded Maler. “Reachability Anal-
ysis of Pushdown Automata: Application to Model-Checking”. In: CON-
CUR ’97: Concurrency Theory, 8th International Conference, Warsaw,
Poland, July 1-4, 1997, Proceedings. Ed. by Antoni W. Mazurkiewicz and
Józef Winkowski. Vol. 1243. Lecture Notes in Computer Science. Springer,
1997, pp. 135–150. doi: 10.1007/3-540-63141-0 10.

[4] Javier Esparza et al. “Efficient Algorithms for Model Checking Pushdown
Systems”. In: Computer Aided Verification, 12th International Confer-
ence, CAV 2000, Chicago, IL, USA, July 15-19, 2000, Proceedings. Ed.
by E. Allen Emerson and A. Prasad Sistla. Vol. 1855. Lecture Notes in
Computer Science. Springer, 2000, pp. 232–247. doi: 10.1007/10722167 20.

[5] Christian Ferdinand and Reinhard Wilhelm. “Efficient and Precise Cache
Behavior Prediction for Real-Time Systems”. In: Real-Time Systems 17.2–
3 (Dec. 1999), pp. 131–181. issn: 0922-6443. doi: 10.1023/A:1008186323068.

[6] Hana Galperin and Avi Wigderson. “Succinct Representations of Graphs”.
In: Information and Control 56.3 (1983), pp. 183–198.doi: 10.1016/S0019-9958(83)80004-7.

[7] Patrice Godefroid and Mihalis Yannakakis. “Analysis of Boolean Pro-
grams”. In: Tools and Algorithms for the Construction and Analysis of
Systems (TACAS). Ed. by Nir Piterman and Scott A. Smolka. Vol. 7795.
Lecture Notes in Computer Science. Springer, 2013, pp. 214–229. doi:
10.1007/978-3-642-36742-7\ 16.

[8] Leslie M. Goldschlager. “The Monotone and Planar Circuit Value Prob-
lems Are Log Space Complete for P”. In: SIGACT News 9.2 (July 1977),
25–29. issn: 0163-5700. doi: 10.1145/1008354.1008356.

[9] Raymond Greenlaw, H. James Hoover, and Walter L. Ruzzo. Limits to
parallel computation: P-completeness theory. Oxford Univ. Press, 1995.
url: https://homes.cs.washington.edu/~ruzzo/papers/limits.pdf.

[10] Reinhold Heckmann et al. “The influence of processor architecture on the
design and the results of WCET tools”. In: Proceedings of the IEEE 91.7
(2003), pp. 1038–1054. doi: 10.1109/JPROC.2003.814618.

[11] Richard E. Ladner. “The Circuit Value Problem is Log Space Complete
for P”. In: SIGACT News 7.1 (Jan. 1975), 18–20. issn: 0163-5700. doi:
10.1145/990518.990519.

[12] Adam Malamy, Rajiv N. Patel, and Norman M. Hayes.Methods and appa-
ratus for implementing a pseudo-LRU cache memory replacement scheme
with a locking feature. US patent 5,353,425. US Patent Office, Oct. 1994.
url: https://patents.google.com/patent/US5353425.

[13] David Monniaux and Valentin Touzeau. “On the Complexity of Cache
Analysis for Different Replacement Policies”. In: Journal of the ACM
66.6 (Nov. 2019), 41:1–41:22. issn: 0004-5411. doi: 10.1145/3366018. arXiv:
1811.01740.

[14] Christos H. Papadimitriou. Computational complexity. Addison-Wesley,
1993. isbn: 9780201530827.

21

http://dx.doi.org/10.1007/3-540-63141-0_10
http://dx.doi.org/10.1007/10722167_20
http://worldcat.org/issn/0922-6443
http://dx.doi.org/10.1023/A:1008186323068
http://dx.doi.org/10.1016/S0019-9958(83)80004-7
http://dx.doi.org/10.1007/978-3-642-36742-7_16
http://worldcat.org/issn/0163-5700
http://dx.doi.org/10.1145/1008354.1008356
https://homes.cs.washington.edu/~ruzzo/papers/limits.pdf
http://dx.doi.org/10.1109/JPROC.2003.814618
http://worldcat.org/issn/0163-5700
http://dx.doi.org/10.1145/990518.990519
https://patents.google.com/patent/US5353425
http://worldcat.org/issn/0004-5411
http://dx.doi.org/10.1145/3366018
http://arxiv.org/abs/1811.01740
http://worldcat.org/isbn/9780201530827

[15] Christos H. Papadimitriou and Mihalis Yannakakis. “A Note on Succinct
Representations of Graphs”. In: Information and Control 71.3 (1986),
pp. 181–185. doi: 10.1016/S0019-9958(86)80009-2.

[16] Jan Reineke. “Caches in WCET analysis: predictability, competitiveness,
sensitivity”. PhD thesis. Universität des Saarlandes, 2008. url: http://www.rw.cdl.uni-saarland.de/~

[17] Valentin Touzeau et al. “Ascertaining Uncertainty for Efficient Exact
Cache Analysis”. In: Computer aided verification (CAV). Ed. by Viktor
Kuncak and Rupak Majumdar. Springer, 2017. eprint: 1709.10008.

[18] Valentin Touzeau et al. “Fast and Exact Analysis for LRU Caches”. In:
Proc. ACM Program. Lang. 3 (Jan. 2019), 54:1–54:29. issn: 2475-1421. doi:
10.1145/3290367. arXiv: 1811.01670. url: http://doi.acm.org/10.1145/3290367.

A Alternative proof for EXPTIME-completeness

of reachability in Boolean programs

Godefroid and Yannakakis [7] claim EXPTIME-hardness for reachability in
Boolean programs (Theorem 4), but they refer the reader to a full version of
their article, which is available only by request to the authors. We thus pro-
vide, in the next subsections, an independent proof of EXPTIME-hardness for
Boolean programs.

Note that EXPTIME membership is easily established. A Boolean register
machine with procedure calls may be expanded into an equivalent pushdown
system, at the cost of exponential blowup: just consider one control location
in the pushdown automaton for each control location in the Boolean register
machine and each of the (exponentially many) vector of values of the registers;
then apply Theorem 1.

A.1 Succinctly represented problems

We have seen how a reachability problem involving Boolean registers can be
expanded into a reachability problem not involving registers, that is, a reacha-
bility problem in an oriented graph at the cost of exponential blowup. This is
an instance of a more general pattern relating the complexity of problems when
they are represented as explicit lists of transitions versus “implicit” list of tran-
sitions, for instance involving registers, in the same way that a small Boolean
formula is a succinct representation for a much larger explicit truth table.

Galperin and Wigderson [6] studied the complexity of various problems on
graphs when these graphs are succinctly represented, by which they mean that
graph vertices are labeled by a vector of bits, and the adjacency relation is de-
fined by a Boolean circuit taking as inputs two vectors of bits and answering one
bit: whether the vertices labeled by these two vectors are connected. Papadim-
itriou and Yannakakis [15] generalized their results: a NP-complete problem
(respectively, P-complete; NLOGSPACE-complete) problem on explicitly rep-
resented graphs, under some fairly permissive condition on the reduction used

22

http://dx.doi.org/10.1016/S0019-9958(86)80009-2
http://www.rw.cdl.uni-saarland.de/~reineke/publications/DissertationCachesInWCETAnalysis.pdf
1709.10008
http://worldcat.org/issn/2475-1421
http://dx.doi.org/10.1145/3290367
http://arxiv.org/abs/1811.01670
http://doi.acm.org/10.1145/3290367

for showing this completeness property, becomes NEXPTIME-complete (re-
spectively, EXPTIME-complete; PSPACE-complete) on succinctly represented
graphs. A well-known example of this phenomenon is the reachability prob-
lem: given two vertices in a directed graph, say whether one is reachable from
another—it is NLOGSPACE-complete on explicitly represented graphs, and
becomes PSPACE-complete on succinctly represented graphs, where it is also
known as the reachability problem in implicit-state model checking.

The reachability problem for explicitly represented pushdown systems, which
are very close to Boolean register machines with procedure calls but no regis-
ters, is known to be P-complete. We can thus hope that it becomes EXPTIME-
complete for succinctly represented pushdown systems; however we cannot use
Papadimitriou and Yannakakis’ results because they pertain solely to graph
problems. We can however follow the same general approach as their hardness
proof: analyze the reduction from the acceptance problem for polynomial-time
Turing machines to the problem for explicitly represented pushdown systems,
which are close to Boolean programs without registers, and construct a reduction
from the acceptance problem for exponential-time Turing machines to the prob-
lem for succinctly represented pushdown systems, which are close to Boolean
programs with registers.

It takes four reduction steps to show that the reachability problem for
Boolean register machines with procedure calls and 0 registers is P-hard: (i) from
the acceptance problem for polynomial-time Turing machines to the circuit value
problem (CVP) [9, p. 4.2] (ii) from the CVP to the monotone circuit value
problem [9, A.1.3] (iii) from the monotone CVP to the emptiness problem for
context-free grammars [9, A.7.2] (iv) from emptiness in context-free grammars
to reachability in Boolean programs with local variables.

A.2 Reductions for explicit descriptions

The circuit value problem (CVP) is: given a Boolean circuit, using logical gates
∧, ∨, ¬, with known inputs, compute its output. The first reduction step [11] [9,
Th. 4.2.2] encodes the bounded deterministic execution of a Turing machine into
a circuit in much the same way that one encodes the bounded nondeterministic
execution of a Turing machine into a Boolean satisfiability problem: the value
ci,j of each cell at each position j in the tape at each point in time i > 0
is defined as a function of ci−1,j−1, ci−1,j and ci+1,j , with a different value
whether the read/write head is on the cell; then these values ci,j are encoded
into a vector of bits (of size logarithmic in the size of the tape alphabet and the
number of control states), and one then obtains a circuit. It then suffices to add
initialization for values c0,j of the cells at time 0, and a test for a reachability
condition.

The monotone CVP is: given a Boolean circuit, using logical gates ∧ and ∨
with known inputs, compute its output. Obviously it is a subset of the general
CVP. A general CVP can be encoded into a monotone CVP by using “dual rail
encoding” [8] [9, Th. 6.2.2]: each wire b in the original circuit is encoded into
two wires b0 and b1, where b0 is 1 if b is 0, 0 if b is 1, and b1 is 1 if b is 1, 0 if

23

b is 0. It is possible to simulate each ∧ or ∨ gate of the original circuit by two
monotone gates; ¬ gates map to swapping of two wires.

Let us now encode the monotone CVP into the context-free grammar empti-
ness problem [9, A.7.2, crediting Martin Tompa]. To each wire wi in the circuit
one associates a nonterminal νi. If wi is initialized to 1, then we add a rule
νi → ε (meaning that νi accepts the empty word; equivalently one may intro-
duce a nonterminal a and have a rule νi → a). We add no rule if wi is initialized
to 0. If wi is defined as wj ∨ wk, then we add two rules νi → νj and νi → νk.
If wi is defined as wj ∧ wk, then we add a rule νi → νjνk. The nonterminal
ν1 to test for emptiness is the one that corresponds to the output wire of the
monotone circuit.

Finally, let us encode the context-free grammar emptiness problem into the
reachability problem for a Boolean program without registers. This is the well-
known relationship between context-free grammars and procedure calls in struc-
tured programs. Each nonterminal in the grammar becomes a procedure. A
derivation rule L→ R1 . . . Rn becomes a sequence of calls to th procedures cor-
responding to nonterminals R1 to Rn, starting in the initial control location of
the procedure associated with nonterminal L and ending in the final location of
that procedure.

A.3 Lifting reductions to implicitly represented problems

In the above reductions, circuits are described as a list of gates. The first
reduction step, from Turing machines to CVP, is however highly repetitive: the
same construction is applied for all i > 0 and j. We thus use the notion of
succinctly described circuit [14, ch. 20]: wires wi are identified by their index i
written in binary, and gates in the succinctly represented circuits are introduced
by rules of the form C(i, j, k) : wi = wj ∧ wk, C(i, j, k) : wi = wj ∨wk, C(i, j) :
wi = ¬wj , where C is a condition over the binary encodings of indices i, j, k,
itself expressed as a Boolean circuit, that constrains for which indices the gate is
created. The notion of succinctly described monotone circuit is defined similarly.

The encodings described above for turning a reachability problem on the
execution of a polynomially bounded Turing machine into an explicitly described
CVP of polynomial size, then into an explicitly described monotone CVP of
polynomial size, can be applied to turn a reachability problem on the execution
of an exponentially bounded Turing machine into a succinctly described CVP of
polynomial size, then into a succinctly described monotone CVP of polynomial
size.7

We define similarly the notion of a succinctly represented context-free gram-
mar. A succinct rule C(i, j, k) : νi → νjνk (for arity 2; other arities are similarly
defined), where C is a Boolean circuit over the binary encodings of i, j and k,

7Succinctly described circuits, and the EXPTIME-completeness of their value problem,
have long been known [14, Ch. 20]. We however recall how to establish this result for
the sake of completeness and easier understanding of how we turn successive reductions for
P-completeness for explicitly described problems into successive reductions for EXPTIME-
completeness on succinctly described problems.

24

encodes a family of rules νi → νjνk for all i, j, k such that C(i, j, k) returns 1.
As with explicitly described monotone CVPs, a succinctly described monotone
CVP can be transformed into a succinctly represented context-free grammar
emptiness problem.

The variables i, j etc. are binary encodings. For the final reduction to
Boolean register machines with procedures, we put these Boolean encodings
into the local variables of the Boolean programs.

25

	Introduction
	Pushdown systems
	Least recently used policy
	NP membership of the analysis problem
	Backtracking algorithm
	Combination with other algorithms

	Presentation of other policies
	EXPTIME-completeness for Boolean register machines with procedure calls
	Extension to procedure calls

	EXPTIME-completeness for non-LRU policies
	Encoding for programs without procedures
	Extension to programs with procedure calls

	Conclusion and perspectives
	Alternative proof for EXPTIME-completeness of reachability in Boolean programs
	Succinctly represented problems
	Reductions for explicit descriptions
	Lifting reductions to implicitly represented problems

