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Abstract
The Kleene theorem establishes a fundamental link between automata and expressions over the free
monoid. Numerous generalisations of this result exist in the literature; on one hand, lifting this result
to a weighted setting has been widely studied. On the other hand, beyond the free monoid, different
monoids can be considered: for instance, two-way automata, and even tree-walking automata, can
be described by expressions using the free inverse monoid. In the present work, we aim at combining
both research directions and consider weighted extensions of automata and expressions over a class
of monoids that we call pre-rational, generalising both the free inverse monoid and graded monoids.
The presence of idempotent elements in these pre-rational monoids leads in the weighted setting to
consider infinite sums. To handle such sums, we will have to restrict ourselves to rationally additive
semirings. Our main result is thus a generalisation of the Kleene theorem for pre-rational monoids
and rationally additive semirings. As a corollary, we obtain a class of expressions equivalent to
weighted two-way automata, as well as one for tree-walking automata.
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1 Introduction

Automata are a convenient tool for algorithmically processing regular languages. However,
when a short and human-readable description is required, regular expressions offer a much
more proper formalism. When it comes to weighted automata (and transducers as a special
case), the Kleene-Schützenberger theorem [20] relates weighted languages defined by means
of such automata on one side, and rational series on the other side. Unfortunately, such
expressions seem to fit mainly for one-way machines. Indeed, when it comes to two-way
machines, finding adequate formalisms for expressions is not easy [13, 14].

Two-way automata have been studied in the setting of the Boolean semiring in [9]. In this
work, Janin and Dicky consider a fragment of the free inverse monoid called overlapping tiles.
They show that runs of a two-way automaton can be described as a recognizable language of
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6:2 Weighted Automata and Expressions over Pre-Rational Monoids

overlapping tiles, which are words enriched with a starting and an ending position. Hence,
thanks to the Kleene theorem, such two-way runs can be described as regular expressions
(over tiles).

A particular class of weighted automata is that of transducers, where weights are words
on an output alphabet. For this setting, Alur et al proposed in [1] a formalism to describe
word transformations given as a deterministic streaming string transducer, a model equivalent
with deterministic (or unambiguous) two-way transducers [12]. This formalism is based
on some operators defining basic transformations that are composed to define the target
transformation. An alternative construction of these expressions starting directly from
two-way unambiguous transducers has been proposed in [3]. These expressions have also
been extended to run on infinite words [8]. The general case of non-deterministic two-way
transducers is much more challenging [13], as these machines may admit infinitely many
accepting runs on an input word. While this general case is still open (meaning that no
equivalent models of expressions are known), a solution has been proposed for the particular
case where both input and output alphabets are unary [6].

For a further weighted generalisation, the ability to sum values computed by different
runs on the same input structure (no matter if it is a word, a tree or even a graph) is also
crucial in terms of expressiveness. However, not all weighted two-way automata (or weighted
one-way automata with ε-transitions) are valid: indeed, as these machines may have infinitely
many runs over a single input, it may be the case that the automaton does not provide any
semantics for such inputs, infinite sums being not guaranteed to converge. To overcome this
issue, additional properties are required over the considered semiring: for instance, rationally
additive semirings [11] allow one to define valid non-deterministic two-way automata [15].

Our initial motivation was to elaborate on the approach proposed by Janin and Dicky in
the setting of weighted languages. As already said, the main ingredient of their approach
is to consider the free inverse monoid as an input structure. However, going one step
further, we consider a generalisation, namely pre-rational monoids. These are monoids M

such that for all finite alphabets A and for all morphisms from the free monoid A∗ to M ,
the pre-image of m ∈ M is a rational language of A∗. This class of monoids contains, in
particular, the free inverse monoid. After introducing the monoids and semirings of interest
in Section 2, we present our main contributions, which hold for pre-rational monoids and
rationally additive semirings:
1. We prove in Section 3 that all weighted automata are valid.
2. We introduce in Section 4 a syntax for weighted expressions and show that the semantics

of these expressions is always well-defined.
3. We prove in Section 5 a Kleene-like theorem stating that weighted automata and weighted

expressions define the same series.
4. We deal with the particular case of unambiguous automata and expressions in Section 6.

More precisely, our conversions are shown to preserve the ambiguity, meaning that an
element of the monoid “accepted” k times by a weighted automaton can be “decomposed”
in k different ways by the weighted expression we obtain, and vice versa.

5. In Section 7, we apply our results on two-way word automata and tree-walking automata
which can be viewed as part of the free inverse monoids (which are pre-rational) and
show how expressions are quite natural to write via a variety of examples. As a corollary,
we obtain a formalism of expressions equivalent to non-deterministic two-way transducers
(relying on the unambiguity result presented in the previous section).

Our results can be understood as a trade-off between the generality of the monoid and that
of the semiring. Indeed, instead of rationally additive semirings, one could have considered
continuous semirings in which all infinite sums are well-defined. On such semirings, weighted
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automata are valid on all input monoids [19]. However, our framework allows one to consider
semirings that are not continuous, and as a consequence we have to restrict in this case
the input monoid. On the other end of the spectrum, restricting oneself to graded monoids
(as also done in [19]) allows one to consider any semiring, since only finite sums are then
involved. However, the free inverse monoid is a typical example of non-graded monoid.

2 Monoids and semirings

We recall that a monoid (M, ·, εM ) is given by a set M and an associative product · with εM

as neutral element. For our purpose, we consider special classes of monoids:

▶ Definition 1. A monoid (M, ·, εM ) is pre-rational if for every finite alphabet A, for every
morphism µ : A∗ → M , and for every m ∈ M , the language µ−1(m) ⊆ A∗ is rational.

Many natural examples of monoids are pre-rational: the free monoid (A∗, ·, ε) over a
finite alphabet A, the natural monoid (N, +, 0), and even the one completed with an infinite
element (N ∪ {+∞}, +, 0). Other examples, of particular interest in this article, are free
inverse monoids that we study in Section 7. Another non-trivial example of pre-rational
monoid is ({L ⊆ A∗ | ε ∈ L}, ·, {ε}), with A a finite alphabet. In contrast, a typical example
of monoid that is not pre-rational is the free group generated by one element, or (Z, +, 0)
equivalently. For instance, given the morphism µ : {a, ā}∗ → Z mapping a to 1 and ā to −1,
then µ−1(0) =

{
w ∈ {a, ā}∗ | |w|a = |w|ā

}
which is not rational.

Showing pre-rationality might sometimes be challenging, since considering arbitrary
alphabets and arbitrary morphisms is not really convenient. An easier definition is however
possible for monoids M that are generated by a finite family G = {g1, . . . , gn} of generators.
In this case, consider the canonical morphism φ from the free monoid G∗ (considering
generators as letters) to M , that consists in evaluating the sequence of generators in M .
Then, M is pre-rational if and only if for all m ∈ M , the language φ−1(m) ⊆ G∗ is rational.
Pre-rationality is then easier to check, and this, without much of a restriction: the automata
and expressions we will consider thereafter only use a finite set of elements of the monoid
as atoms, and we can thus restrict ourselves to the finitely generated submonoid. An even
simpler sufficient condition for pre-rationality is:

▶ Lemma 2. If every element m of a monoid M has a finite number of prefixes, i.e. ele-
ments p ∈ M such that there exists p′ ∈ M with m = p · p′, then M is pre-rational.

Proof. For a finite alphabet A and a morphism µ : A∗ → M , and an element m ∈ M , with
{m1, . . . , mn} as finite set of prefixes, we can build a finite automaton reading letters of A

and, after having read a word w ∈ A∗, storing the current element µ(w) when it is a prefix
of m (going to a non-accepting sink state otherwise). This automaton can then be used to
recognise µ−1(m), by starting in the prefix εM and accepting in the prefix m. ◀

This allows us to easily show that all finitely generated graded monoids [19] (i.e. monoids M

equipped with a gradation φ : M → N such that φ(m) = 0 only if m = εM , and φ(mn) =
φ(m) + φ(n) for all m, n ∈ M) are pre-rational. Indeed, the gradation ensures that each
element m ∈ M can have only a finite number of prefixes [19, Chap. III, Cor. 1.2,p.384],
allowing us to apply the previous lemma. However, notice that the condition in Lemma 2 is
not a necessary one: (N ∪ {+∞}, +, 0) does not fulfil the condition, since +∞ has infinitely
many factors, while it is indeed pre-rational.

A semiring (K, +, ×, 0, 1) is an algebraic structure such that (K, ×, 1) is a monoid, (K, +, 0)
is a commutative monoid, the product × distributes over the sum + , and 0 is absorbing
for ×. Once again, we consider special classes of semirings, introduced in [11]:

CSL 2022



6:4 Weighted Automata and Expressions over Pre-Rational Monoids

▶ Definition 3. A semiring (K, +, ×, 0, 1) is rationally additive if it is equipped with a partial
operator defining sums of countable families, associating with some infinite families (αi)i∈I ,
with I at most countable, an element

∑
i∈I αi of K such that for all families (αi)i∈I :

Ax.1 If I is finite, the value
∑

i∈I αi exists and coincides with the usual sum in the semiring.
Ax.2 For each α ∈ K,

∑∞
n=0 αn exists.

Ax.3 If
∑

i∈I αi exists and β ∈ K, then
∑

i∈I βαi and
∑

i∈I αiβ exist, and are respectively
equal to β(

∑
i∈I αi) and (

∑
i∈I αi)β.

Ax.4 Let I be the disjoint union of (Ij)j∈J with J at most countable. If for all j ∈ J ,
rj =

∑
i∈Ij

αi exists, and if r =
∑

j∈J rj exists, then
∑

i∈I αi exists and is equal to r.
Ax.5 Let I be the disjoint union of (Ij)j∈J with J at most countable. If s =

∑
i∈I αi exists,

and for all j ∈ J , rj =
∑

i∈Ij
αi exists, then

∑
j∈J rj exists and is equal to s.

Examples of rationally additive semirings are the Boolean semiring, natural semirings
over positive rationals or reals (Q+ ∪ {∞}, +, ×, 0, 1)1, the tropical (or arctic) semiring
(Q∪{−∞, +∞} , sup, +, −∞, 0), the language semiring over a finite alphabet (2A∗

, ∪, ·, ∅, {ε}),
the sub-semiring of rational languages, or distributive lattices. Throughout this article, K
will denote a rationally additive semiring.

Let us state a few useful properties of rationally additive semirings. The support of a
family (αi)i∈I is the set {i ∈ I | αi ̸= 0} of indices of non-zero elements.

▶ Lemma 4 ([11]). Let (αi)i∈I be a countable family in K, of support J . Then,
∑

i∈I αi

exists if and only if
∑

i∈J αi exists, and when these sums exist, they are equal.

▶ Lemma 5. Let (αi)i∈I and (βi)i∈I be two countable families of K of disjoint supports,
i.e. for all i ∈ I, αi = 0 or βi = 0 (or both). If

∑
i∈I αi and

∑
i∈I βi exist, then

∑
i∈I(αi +βi)

exists and is equal to (
∑

i∈I αi) + (
∑

i∈I βi).

Proof. Let Jα and Jβ be the support of the families (αi)i∈I and (βi)i∈I , and J0 = J\(Jα∪Jβ).
If

∑
i∈I αi and

∑
i∈I βi exist,

∑
i∈I αi+

∑
i∈I βi exists, and by Lemma 4, is equal to

∑
i∈Jα

αi+∑
i∈Jb

βi. Since the supports are disjoint, this is equal to
∑

i∈Jα
(αi + βi) +

∑
i∈Jb

(αi + βi).
By definition of J0,

∑
i∈J0

(αi + βi) exists and is equal to 0. Therefore,
∑

i∈I αi +
∑

i∈I βi is
equal to

∑
i∈Jα

(αi + βi) +
∑

i∈Jb
(αi + βi) +

∑
i∈J0

(αi + βi). Ax.4 allows us to conclude. ◀

▶ Lemma 6. Let (αi,j)(i,j)∈I×J be a countable family of elements of K, such that αi,J =∑
j∈J αi,j exists for all i ∈ I, and αI,j =

∑
i∈I αi,j exists for all j ∈ J . Then,

∑
i∈I αi,J

exists if and only if
∑

j∈J αI,j exists, and when these sums exists, they are equal.

Proof. Immediate by Ax.4 and Ax.5. ◀

3 Series and Weighted Automata

A K-series over M is a mapping s : M → K associating a weight s(m) with each element m

of the monoid. The set of all such series is denoted by K⟨⟨M⟩⟩. Notice that the pointwise
sum of two series s1 and s2, defined for all m ∈ M by (s1 + s2)(m) = s1(m) + s2(m),
is a series. However, the Cauchy product s1 · s2 mapping m to the possibly infinite sum∑

m1m2=m s1(m1) × s2(m2) might not exist2. We define two canonical injections: M →
K⟨⟨M⟩⟩ which maps m to the characteristic function of m (mapping m to 1 and the other

1 All infinite sums of elements in Q+ do not converge towards a rational number or +∞, but all geometric
sums do. In particular, this semiring is not continuous (see [19, Chap. III, Sec. 5]).

2 Here and in the following,
∑

m1m2=m
is the sum over all pairs (m1, m2) ∈ M2 such that m1m2 = m.
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elements from M to 0), and K → K⟨⟨M⟩⟩ which maps k to the function mapping the neutral
element εM of M to k and all other values to 0. For this reason, we often abuse notations
and consider K and M as subsets of K⟨⟨M⟩⟩.

We now introduce the notion of weighted automata we consider in this article: weights
are taken from a rationally additive semiring K and labels from a pre-rational monoid M .

▶ Definition 7. A K-automaton over M , or simply a weighted automaton, is a tuple A =
(Q, I, ∆, F ), with Q a finite set of states, I ⊆ Q the set of initial states, ∆ ⊆ Q × M ×K× Q

the finite set of transitions each equipped with a label in M and a weight in K, and F ⊆ Q

the set of final states.

We introduce two mappings λA and πA that extract the label and the weight of a
transition, that we can extend to morphisms from ∆∗ to M and the multiplicative monoid of
K, respectively. A run of A is then a sequence w of transitions (pi, mi, ki, qi)1≤i≤n such that
for all i, qi = pi+1. The label of a run is given by λA(w); its weight is πA(w). The run is
said to be accepting if p1 ∈ I and qn ∈ F . We let RA ⊆ ∆∗ denote the rational language of
all accepting runs. The semantics of A is the series JAK such that for all m ∈ M , the weight
JAK(m) is the sum of the weights of accepting runs that are labelled by m, if the (potentially
infinite) sum exists: JAK(m) =

∑
w∈RA∩λ−1

A (m) πA(w).
The automaton A is called valid if the sum in JAK(m) exists for all m ∈ M . Instead

of enforcing properties on the automata for them to be valid, we ensure their validity by
combining the rational additivity of K and the pre-rationality of M . The crucial technical
property considers the special case of the monoid of strings A∗ over a finite alphabet A. We
then lift the result using pre-rationality. For a language L ⊆ A∗ and a semiring K, we denote
by χL ∈ K⟨⟨A∗⟩⟩ its characteristic series in K, defined for all w ∈ A∗ as χL(w) = 1 if w ∈ L,
and 0 otherwise. By Lemma 4, we have that for all series s over A∗,∑

w∈L

s(w) is defined iff
∑

w∈A∗

s(w)χL(w) is defined, and then these sums are equal. (1)

▶ Lemma 8. For every finite alphabet A, morphism π : A∗ → K, and rational language
L ⊆ A∗, the sum

∑
w∈L π(w) exists.

Proof. The proof is by induction on rational languages, denoted by unambiguous regular
expressions [5]. Indeed, all rational languages can be obtained by closing the set of finite
languages by the operations of disjoint unions, unambiguous concatenations (the concatena-
tion L1 · L2 is unambiguous when each word w of L1 · L2 can be uniquely decomposed as
w = w1 · w2 with w1 ∈ L1 and w2 ∈ L2), and unambiguous Kleene stars (the Kleene star L∗

is unambiguous when each word w ∈ L∗ can be uniquely decomposed as w = w1 · · · wn with
n ∈ N and wi ∈ L for all i). Please note that for convenience, the sentences “A = B” should
be read as “B exists and is equal to A”.

First, for finite languages L, the sum
∑

w∈L π(w) exists, by Ax.1. In the case where L is
the disjoint union of two languages L1 and L2, such that

∑
w∈L1

π(w) and
∑

w∈L2
π(w) exist,∑

w∈L1

π(w) +
∑

w∈L2

π(w) =
∑

w∈A∗

π(w)χL1(w) +
∑

w∈A∗

π(w)χL2(w) (by 1)

=
∑

w∈A∗

(π(w)χL1(w) + π(w)χL2(w)) (by Lemma 5)

=
∑

w∈A∗

π(w)χL1∪L2(w) (disjoint union)

=
∑

w∈L1∪L2=L

π(w).

CSL 2022



6:6 Weighted Automata and Expressions over Pre-Rational Monoids

If L is the unambiguous concatenation of two languages L1 and L2 such that
∑

u∈L1
π(u)

and
∑

v∈L2
π(v) exist, then( ∑

u∈L1

π(u)
)

×
( ∑

v∈L2

π(v)
)

=
∑

u∈L1

(
π(u) ×

∑
v∈L2

π(v)
)

(by Ax.3)

=
∑

u∈L1

∑
v∈L2

π(u)π(v) (by Ax.3)

=
∑

(u,v)∈L1×L2

π(u)π(v) (by Ax.4)

=
∑

(u,v)∈L1×L2

π(uv) (π is a morphism).

Moreover, by unambiguity, there exists a bijection from the pairs of L1 × L2 to the words of
the concatenation L1 · L2 sending (u, v) to uv. Bijections on the support of families conserve
the summability property by [11, Proposition 3], therefore

∑
w∈L π(w) exists (and is equal

to
∑

(u,v)∈L1×L2
π(uv)).

Finally, suppose that L is the unambiguous Kleene star L∗
1, and

∑
w∈L1

π(w) exists. In
particular, for all n ∈ N, the iterated concatenation Ln

1 is unambiguous, and thus, with a
straightforward induction using the previous case,

∑
w∈Ln

1
π(w) exist and we have( ∑

w∈L1

π(w)
)n

=
∑

w∈Ln
1

π(w).

By Ax.2,
∑∞

n=0

( ∑
w∈L1

π(w)
)n

exists, and by (1), we have:

∞∑
n=0

( ∑
w∈L1

π(w)
)n

=
∞∑

n=0

∑
w∈Ln

1

π(w) =
∞∑

n=0

∑
w∈A∗

π(w)χLn
1
(w).

By unambiguity, for all w ∈ A∗, the infinite sum
∑∞

n=0 π(w)χLn
1
(w) has finite support (at

most 1 non-zero element) and therefore exists (by Lemma 4). By Lemma 6, we deduce that
∞∑

n=0

∑
w∈A∗

π(w)χLn
1
(w) =

∑
w∈A∗

∞∑
n=0

π(w)χLn
1
(w) =

∑
w∈A∗

π(w)
∞∑

n=0
χLn

1
(w) (by Ax.3)

=
∑

w∈A∗

π(w)χL∗
1
(w) (by unambiguity)

=
∑
w∈L

π(w). ◀

From this result, to have a sufficient condition for validity we only need to have sums
over rational languages, hence our requirement that M is pre-rational.

▶ Theorem 9. If M is a pre-rational monoid, then every K-automaton A over M is valid,
i.e. JAK(m) exists for all m ∈ M .

Proof. Since M is pre-rational, the morphism λA is such that for all m ∈ M , λ−1
A (m) is a

rational language. Therefore, so is the language RA ∩ λ−1
A (m) of accepting runs that are

labelled by the element m. Lemma 8 gives that JAK(m) =
∑

w∈RA∩λ−1
A (m) πA(w) exists. ◀

Together with reasonable assumptions on computability for K and M , this also gives a
procedure to evaluate the weight JAK(m). Notice that this is a priori non-trivial, since it
involves an infinite sum. We say that M is effectively pre-rational if for all morphisms µ : A∗ →
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M and elements m ∈ M , one can compute a representation of the rational language µ−1(m).
We say that K is computable if internal operations (finite sums and products) of K are
computable, as well as Kleene star (geometric sum). Observe that we do not require
computability of arbitrary infinite sums, but only geometric ones.

▶ Proposition 10. If M is effectively pre-rational and K is computable, then for all K-
automata A over M and all elements m ∈ M , one can compute JAK(m). This computation is
achieved using a number of internal operations of K (i.e. sum, product and Kleene iteration)
that is polynomial in the size of A and in the size of a deterministic automaton recognising
λ−1

A (m).

Proof. By assumption of pre-rationality, the language λ−1
A (m) is rational. Moreover, by

effectiveness, we can let Dm be a deterministic automaton that recognises λ−1
A (m). We denote

by nm its number of states. The K-automaton Am obtained by considering the product of A
and Dm (with respect to the alphabet ∆ of transitions of A) thus restricts the runs of A to
the ones labelled by m. In addition, as Dm is deterministic, the accepting runs of A over m

are in bijection with those of Am. If we denote by n the number of states of A, then Am has
n × nm states. By removing all labels (replacing them by εM ), we obtain a K-automaton
that associates with the element εM the weight JAmK(εM ) = JAK(m). Applying classical
translations from automata to regular expressions such as state-elimination algorithms yields
an expression equivalent to JAK(m). This expression involves sum and product in K, as well
as Kleene star, which can be computed in K. As this expression only involves element εM ,
it can be evaluated during its computation, allowing to obtain the value of JAK(m) using a
number of internal operations of K that is polynomial in n and nm. ◀

4 Weighted Expressions

We now introduce the formalism of weighted expressions to generate K-series over a monoid M .

▶ Definition 11. The set of K-expressions over M , or simply weighted expressions, is
generated by the grammar (with k ∈ K and m ∈ M):

W ::= k | m | W + W | W · W | W ∗.

Expressions k and m are said to be atomic. We call subexpressions of W all the weighted
expressions appearing inside W : for instance, the subexpressions of W = (2 · a + b)∗ are 2,
a, b, 2 · a, 2 · a + b, and W . To define the semantics of weighted expressions, we will use a
sum operator over infinite families. As the semiring K is supposed to be rationally additive,
some of these infinite sums exist, some others do not3. Then, the semantics of a weighted
expression W is the series JW K ∈ K⟨⟨M⟩⟩ defined inductively as follows:

JkK is the series mapping εM to k and other elements to 0;
JmK is the characteristic series of m;
JU + V K = JUK + JV K;
for all m ∈ M , JU · V K(m) =

∑
m1m2=mJUK(m1) × JV K(m2) if the sum exists;

for all m ∈ M , JW ∗K(m) =
∑∞

n=0JW
nK(m) if the sum exists (with W n the expression

inductively defined by 1 if n = 0 and W · W n−1 otherwise).

3 In the rationally additive semiring (Q+ ∪ {∞}, +, ×, 0, 1), the infinite sum
∑

i∈N 1/i! does not exist,
since it converges to the non-rational real number e.
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6:8 Weighted Automata and Expressions over Pre-Rational Monoids

The last two cases, defining the semantics of the concatenation (or Cauchy product) of
two weighted expressions, and the Kleene star of a weighted expression, are subject to the
existence of the infinite sums: we say that a weighted expression is valid when its semantics
exists for all m ∈ M (as well as the semantics of all its subexpressions, in particular).

More usual regular expressions are recovered by considering the Boolean semiring and
the monoid A∗ over a finite alphabet A: in the following, such expressions are called Kleene
expressions, and denoted by letters E, F, G, while weighted expressions are denoted by
letters U, V, W . Notice that Kleene expressions are valid, as expected, since the infinite sum
(i.e. disjunction in the Boolean semiring) is always defined in this case. Their semantics JEK
is the characteristic series of the language L(E) classically associated with such a regular
expression: alternatively, we can see L(E) as the support of JEK (all words w ∈ A∗ such
that JEK(w) is true). For any other semiring K, we let χE be the characteristic function of
the language of E to the semiring K, i.e. a shortcut notation for the series χL(E) ∈ K⟨⟨A∗⟩⟩
defined in Section 3.

We shall see that thanks to our hypothesis of K being rationally additive, and restricting
ourselves to pre-rational monoids, all weighted expressions are valid:

▶ Theorem 12. Let K be a rationally additive semiring, and M be a pre-rational monoid.
Every K-expression W over M is valid, i.e. the semantics JW K(m) exists for all m ∈ M .

Notice that this theorem relies on both its assumptions on M and K:
If M is not pre-rational, then the expressions may not be valid. For instance, consider
M to be the free group generated by a single element a (with a−1 its inverse in the free
group), and K be the semiring of rational languages over the alphabet {A, B}. Then, the
expression (a · {A} + a−1 · {B})∗ would associate with the element εM of M the language
of words over {A, B} having as many A’s than B’s, which is not rational, and thus not a
member of K.
If K is not rationally additive, then the expressions may not be valid. For instance,
considering the semiring (Q, +, ×, 0, 1), and the (pre-rational) trivial monoid {εM }, the
expression W = (−1)∗ gives as a semantics JW K(εM ) =

∑
n∈N(−1)n that is the archetypal

diverging series in Q.

The rest of this section is devoted to the proof of this theorem. This proof is split into
two parts. We first show that the validity of a weighted expression obtained by the rewriting
of “letters” in an unambiguous Kleene expression is equivalent to the existence of sums
resembling the ones of Lemma 8. We then explain how to generate such an unambiguous
Kleene expression from a weighted expression W , and apply the previous result to show the
validity of W .

More formally, a Kleene expression E (over a monoid A∗) is called unambiguous if for all
its subexpressions E′:

if E′ = F + G, then L(F ) ∩ L(G) = ∅;
if E′ = F · G, then for all w ∈ A∗, there exists at most one pair (w1, w2) ∈ L(F ) × L(G)
such that w1w2 = w;
if E′ = F ∗, then for all w ∈ A∗, there exists at most one natural number n, and one
sequence (w1, w2, . . . , wn) ∈ (L(F ))n such that w1w2 · · · wn = w.

As a direct corollary, for every semiring K,
if E + F is unambiguous, then χE+F = χE + χF ;
if E · F is unambiguous, then χE·F (w) =

∑
uv=w χE(u)χF (v);
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if E∗ is unambiguous, then χE∗ =
∑∞

n=0 χEn , this infinite sum having indeed a finite
support and being thus meaningful in any semiring (and formally existing in a rationally
additive semiring).

Given two morphisms λ : A∗ → M and π : A∗ → K, we let Eλ,π be the weighted expression
obtained from a Kleene expression E by substituting every letter a appearing in E by the
expression λ(a) · π(a), and by replacing Booleans true and false by elements 1 ∈ K and 0 ∈ K.

The next lemma aims at linking the validity of Eλ,π with the existence of specific infinite
sums. The same result is also fundamental in our later proofs of translations between
automata and expressions in the next section.

▶ Lemma 13. Let E be an unambiguous Kleene expression over a free monoid A∗, M be
a monoid (not necessarily pre-rational), K be a rationally additive semiring, λ : A∗ → M

and π : A∗ → K be two morphisms. Then, Eλ,π is valid if and only if for all m ∈ M

and all subexpressions F of E, the sum
∑

λ(w)=m π(w)χF (w) exists (where the sum is
over all words w ∈ A∗ such that λ(w) = m). In this case, for all m ∈ M , JEλ,πK(m) =∑

λ(w)=m π(w)χE(w).

Starting from a weighted expression W , and in order to use Lemma 13 which only applies
to unambiguous Kleene expressions, we will modify W to interpret it as an unambiguous
Kleene expression. We define its indexed expression I(W ) as the Kleene expression over
an alphabet being a finite subset of (K ∪ M) × N, obtained by replacing each of its atomic
subexpression ℓ ∈ K ∪ M by a letter (ℓ, i) ∈ (K ∪ M) × N where i is a unique index (starting
from 0 for the leftmost one) associated with each atomic subexpression. For instance, with
the weighted expression W = (2 ·a+3 ·b)∗ ·(a+5 ·b+3), one associates the indexed expression
I(W ) = ((2, 0)·(a, 1)+(3, 2)·(b, 3))∗ ·((a, 4)+(5, 5)·(b, 6)+(3, 7)). From the indexed expression,
one can recover the initial expression, by forgetting about the index. Formally, we let λ be the
morphism from ((K∪M)×N)∗ to M such that λ(x, n) = x if x ∈ M and εM otherwise, and π

be the morphism from ((K∪M)×N)∗ to K such that π(x, n) = x if x ∈ K and 1 otherwise. For
the above example, I(W )λ,π = ((εM ·2)·(a·1)+(εM ·3)·(b·1))∗ ·((a·1)+(εM ·5)·(b·1)+(εM ·3)),
which is equivalent to W . More generally, we obtain:

▶ Lemma 14. For all weighted expressions W over M , I(W )λ,π is valid if and only if W is
valid. When valid, they have the same semantics.

We would like to conclude by combining this result with Lemma 13 and by using the
pre-rationality of the monoid M , as in Theorem 9. However, I(W ) might not be unambiguous
as expected, as shown by the example W = (m∗)∗, with m ∈ M , that gives rise to the
(ambiguous) Kleene expression I(W ) = (((m, 0))∗)∗: indeed, the word (m, 0)(m, 0) has
several possible decompositions in the semantics of I(W ). To patch this last issue, we simply
incorporate a dummy marker after each Kleene star as follows: from a weighted expression W ,
ϕ(W ) is inductively defined by:

if W is an atomic expression, ϕ(W ) = W ;
if W = U + V then ϕ(W ) = ϕ(U) + ϕ(V );
if W = U · V then ϕ(W ) = ϕ(U) · ϕ(V );
if W = U∗ then ϕ(W ) = (ϕ(U))∗ · 1, with 1 being the neutral element of the semiring K.

We directly obtain:

▶ Lemma 15. Let W be a weighted expression. The Kleene expression I(ϕ(W )) is
unambiguous.
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We are now ready to conclude the proof of Theorem 12, moreover showing that for
all weighted expressions W and m ∈ M , JW K(m) =

∑
λ(w)=m π(w)χI(ϕ(W ))(w). Indeed,

operation ϕ(·) does not change the semantics of an expression, and therefore, ϕ(W ) is valid
if and only if W is valid, in which case they share the same semantics. Using the result of
Lemma 15, we can apply Lemma 14: W is valid if and only if I(ϕ(W ))λ,π is valid, in which
case they are equivalent. Let L = L(I(ϕ(W ))) ∩ λ−1(m). Since M is pre-rational, L is a
rational language, and

∑
w∈L π(w) exists. Moreover,∑

w∈L

π(w) =
∑

λ(w)=m

π(w)χI(ϕ(W ))(w)

= JI(ϕ(W ))λ,πK(m) (by Lemma 13)
= Jϕ(W )K(m) (by Lemma 14)
= JW K(m) (W and ϕ(W ) are equivalent).

5 A Kleene-Like Theorem

Our main result is the following Kleene-like theorem, stating the constructive equivalence
between expressions and automata over a pre-rational monoid and weighted over a rationally
additive semiring.

▶ Theorem 16. Let K be a rationally additive semiring, and M be a pre-rational monoid.
Let s ∈ K⟨⟨M⟩⟩ be a series. Then s is the semantics of some K-automaton over M if and
only if it is the semantics of some K-expression over M .

The rest of this section is devoted to the proof of this theorem, that consists in constructive
translations of automata into equivalent expressions, and vice versa.

From Automata to Expressions. The idea is to build a K-expression from an unambiguous
expression generating the accepting runs of the automaton. Let A = (Q, ∆, I, F ) be a
K-automaton over M . By applying the result of [5], we build an unambiguous Kleene
expression E over ∆∗ recognising the language RA of the accepting runs of A. By Lemma 13,
that we can apply on E since EλA,πA is valid (by Theorem 12), we have

JEλA,πAK(m) =
∑

λA(w)=m

πA(w)χE(w) =
∑

w∈RA|λA(w)=m

πA(w) = JAK(m).

the second equality coming from (1), since L(E) = RA.

From Expressions to Automata. We have shown in the previous section how, from a
K-expression E over M , we can construct an unambiguous Kleene expression I(ϕ(E)) and
two morphisms λ and π from4 (K∪ M) ×N to respectively M and K, such that I(ϕ(E))λ,π is
equivalent to E, and by Theorem 12, JEK(m) =

∑
λ(w)=m π(w)χI(ϕ(E))(w). We let {0, . . . , n}

be the set of indices used in I(ϕ(E)).
By [5], we can build (for instance, by considering the position automaton) from I(ϕ(E)) an

equivalent unambiguous Boolean automaton A = (Q, ∆, I, F ) with ∆ ⊆ Q×
(
(K∪M)×N

)
×Q

its set of transitions labelled by indexed atomic elements appearing in E. Here, unambiguous
means as usual that every accepted word in A is associated with a unique accepting run.

4 As before, in fact, we work with a finite subset of this set.
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From A, we build a K-automaton B = (Q×{0, . . . , n}, ∆′, I ×{0}, F ×{0, . . . , n}) over M

with transitions defined as follows: for all transitions (p, (m, i), q) ∈ ∆, with m ∈ M , we add
the transition ((p, j), m, 1, (q, i)) ∈ ∆′, and for all transitions (p, (k, i), q) ∈ ∆, with k ∈ K,
we add the transition ((p, j), εM , k, (q, i)) ∈ ∆′. The transfer of indices from letters to states
enables us to obtain a bijection f from accepted words of A to accepting runs of B. Moreover,
this bijection preserves the labels and weights, meaning that for all u = (x0, i0) · · · (xm, im)
accepted by A, we have λ(u) = λB(f(u)), and π(u) = πB(f(u)). Therefore, by applying the
change of variable w = f(u), we obtain

JBK(m) =
∑

w∈RB∩λ−1
B (m)

πB(w) =
∑

u∈L(I(ϕ(E)))∩λ−1(m)

π(u) =
∑

λ(u)=m

π(u)χI(ϕ(E))(u) = JEK(m).

6 Dealing with Ambiguity

We have already encountered ambiguity in the context of the Boolean semiring and free
monoids. We now study this notion for weighted expressions and automata. To do so, we
use the rationally additive semiring (N∞ = N ∪ {∞} , +, ×, 0, 1) where all infinite sums exist:
in particular, the sum over a family containing an infinite number of non-zero values is ∞,
and otherwise the sum is equal to the finite sum over the support of the family. We call this
semiring the counting semiring.

▶ Definition 17. Given a K-expression W over the monoid M , the ambiguity amb(W, m)
of W at m is a value in N∞ defined inductively over W as follows:

for W = n ∈ M , amb(n, m) = 1 if n = m, and 0 otherwise;
for W = k ∈ K, amb(k, m) = 1 if m = εM , and 0 otherwise;
for W = U + V , amb(U + V, m) = amb(U, m) + amb(V, m);
for W = U · V , amb(U · V, m) =

∑
m1m2=m amb(U, m1) × amb(V, m2);

for W = U∗, amb(U∗, m) =
∑

n∈N amb(Un, m).
An expression is called unambiguous if its ambiguity at every point is at most 1.

For instance, the expression W = 2 · a + 3 · a · a over the free monoid {a}∗ is unambiguous,
while W ∗ has ambiguity 2 at the word aaa = a · aa = aa · a.

The attentive reader may have noticed that the ambiguity of W is exactly the semantics
of W where every atomic weight of K is replaced with the unit 1 of N∞. Given two rationally
additive semirings K1 and K2, K1 ×K2 is also a rationally additive semiring with the natural
component-wise operations. In particular, given a K-expression W , we can define a K × N∞-
expression W ′ by replacing every weight k ∈ K appearing in W by (k, 1) ∈ K × N∞. Then,
the ambiguity of W at m is the second component of the weight JW ′K(m).

▶ Definition 18. Given a K-automaton A over the monoid M , the ambiguity of A at m is
a value in N∞ defined as the number (potentially ∞) of runs with label m. An automaton is
called unambiguous if its ambiguity at every point is at most 1.

Just as for expressions, the ambiguity of an automaton may be viewed as the semantics of
the automaton where the weights of transitions are replaced by the unit of N∞. Given A
over K, we can define A′ by replacing all weights k ∈ K of transitions by (k, 1) ∈ K × N∞.
Then the ambiguity of A at m is exactly the second component of JA′K(m). Now we claim:

▶ Theorem 19. Let K be a rationally additive semiring, M be a pre-rational monoid,
s ∈ K⟨⟨M⟩⟩, and k ∈ N. Then, s is the semantics of a K-automaton over M of ambiguity k

if and only if it is the semantics of a K-expression over M of ambiguity k.
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ℓ r ℓ r ℓ r ℓ r

ℓ r

ℓ

Figure 1 Munn bi-rooted trees of the elements of I({ℓ, r}): ℓ, r̄, ℓ̄rℓ̄r, and (ℓℓ̄r)2ℓ.

Proof. The procedures of section 5 to go from expressions to automata and back, over a
pre-rational monoid M , preserve ambiguity. Indeed, the two constructions used to prove
Theorem 16 do not introduce new weights. Thus, starting from a K-expression W , one
considers the K × N∞-expression W ′ defined above. Transforming W ′ into an automaton
preserves the semantics, and all the transitions have a second component equal to 1. Thus,
the second component of the semantics, which is preserved, is exactly the ambiguity of the
automaton. Forgetting about the second component, we get the result. Note that converting
W to W ′ is not actually a necessary step to build the automaton, it is simply a mental crutch
to make the argument simpler. Symmetrically when going from automata to expressions,
the transformation does not introduce new weights and thus preserves ambiguity. ◀

7 Free Inverse Monoids and Applications to Walking Automata

We conclude this article by demonstrating why our model is able to encompass and reason
about the usual models of two-way automata and tree-walking automata. To do so, we
consider the free inverse monoid, as it was observed by Pécuchet [18] to be linked with this
model. Dicky and Janin even gave in [9, Theorem 3.21] the equivalence in the boolean case
between two-way automata and regular expressions, using this monoid.

Let A be a finite alphabet, and A = {a | a ∈ A} be a copy of A. We define the
function † : (A ∪ A)∗ → (A ∪ A)∗ inductively as: ε† = ε, (ua)† = au†, and (ua)† = au†.

▶ Definition 20. The free inverse monoid I(A) generated by a finite alphabet A is the
quotient of (A ∪ A)∗ by the following equivalence relations:

“x† and x are pseudo-inverses”: for all x ∈ (A ∪ A)∗, xx†x = x, and x†xx† = x†;
“idempotent elements commute”: for all x, y ∈ (A ∪ A)∗: xx†yy† = yy†xx†.

Notice that xx† are indeed idempotent elements of the free inverse monoid, since
(xx†)(xx†) = (xx†x)x† = xx†.

The elements of this monoid are convenientely represented via tree-like structures, the
Munn bi-rooted trees [17]. They are directed graphs, whose underlying undirected graph is a
tree, and two special nodes are marked, the initial and the final one. Examples of elements
of the monoid with their Munn tree representation are given in Figure 1. Note that if you
see a ∈ A as the traversal of an edge labelled by a, and a its traversal in reverse, an element
of (A ∪ A)∗ describes a complete walk over the graph of the corresponding element of I(A).

With this tree representation in mind, we see that every element of I(A) has finitely
many prefixes, since such a prefix is a subtree of x, with the same initial node. Thanks to
Lemma 2, we obtain

▶ Proposition 21. The free inverse monoid is pre-rational.

We can thus apply our results on this pre-rational monoid, for instance by considering
expressions. In the Boolean semiring, for example, the expression (ℓ · ℓ̄ · r)∗ · ℓ describes the
language of Munn bi-rooted trees that are “right-combs” (see the rightmost tree of Figure 1),
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when considering ℓ to be left children, and r right ones. The initial node is at the top while
the final one is the farthest away from it. We can add weights to this expression: in the
tropical semiring (Z∪{−∞, +∞} , sup, +, −∞, 0), the unambiguous expression (ℓ · ℓ̄ · r · 1)∗ · ℓ
associates with a comb the length of its rightmost branch. More generally, the expression
W =

[ ∑
a∈A

(
a · 1 + ā · (−1)

)]∗ computes the (signed) length of the path linking the initial
and final nodes in any Munn bi-rooted tree over alphabet A: each tree is associated with the
difference between the number of positive letters of A and the number of negative letters
of Ā of the unique acyclic path linking the initial node to the final node. On the trees of
Figure 1, these lengths are respectively 1, −1, 0, 3. They represent the difference of “levels”
in-between the initial and final nodes. Each tree is associated with many decompositions in
the semantics of the expression W , but all of them have the same weight (and the chosen
semiring has an idempotent sum operation).

Two-way Automata. Over an alphabet A, we can consider the free inverse monoid I(A ⊎
{⊢, ⊣}), with two fresh symbols ⊢ and ⊣ that will help us distinguish the leftmost and
rightmost letters of the word. To model two-wayness, only certain elements of I(A ⊎ {⊢, ⊣})
are of interest, namely elements of ⊢A∗⊣, that have linear Munn bi-rooted trees with the
initial node at the leftmost position, and the final node at the rightmost one. The Munn
bi-rooted tree representation of such an element is given in Figure 2.

We thus consider weighted automata and expressions over I(A) with weights in K,
a rationally additive semiring, and restrict our attention to words of ⊢A∗⊣. From an
automata perspective, this is a way to define the usual model of two-way automata, a forward
movement of a two-way automaton being simulated by reading of a letter in A while a
backward movement is simulated by reading a letter in Ā. Indeed, our model of weighted
automata over I(A) can also be simulated by the usual two-way weighted automata, since
non-atomic elements of the monoid can be split into atomic elements. Therefore, in this
specific context, Theorem 16 gives a new way to express the semantics of two-way weighted
automata (over a rationally additive semiring) by using expressions.

Consider for example the function that maps a word ⊢w⊣ with w = w0 · · · wn−1 ∈ {a, b}∗

to the set of words {(wn−1 · · · w0)k | k ∈ N}. Considering the semiring of regular languages,
a weighted expression describing this function is(

⊢ · (a + b)∗ · ⊣ · ⊣ · (a · {a} + b · {b})∗ · ⊢
)∗ · ⊢ · (a + b)∗ · ⊣.

Notice the last pass over the word that allows one to finish the reading on the rightmost
position, i.e. the final node.

Consider the alphabet A = {0, 1}. For a word w ∈ A∗, let w|2 denote the rational number
between 0 and 1 that is written as 0.w in binary. Then, consider the following weighted
expression with weights in (Q+ ∪ {+∞}, +, ×, 0, 1):

W = ⊢ ·
(

0 · 1
2 + 1 · 1

2

)∗
· 1 · 1

2 · (0 + 1)∗ · ⊣.

⊢ a b a c ⊣

Figure 2 Munn bi-rooted tree of the “word” ⊢abac⊣.

CSL 2022



6:14 Weighted Automata and Expressions over Pre-Rational Monoids

a

b c

d d

(⊤, a)
(0, b)

⊥

(1, c)
(0, d)

⊥

(1, d)

⊥

Figure 3 A binary tree, and its encoding in I(A′).

It associates with a word ⊢w⊣ the value w|2, since it non-deterministically chooses a position i

labelled by 1 in w and computes the value 1/2i. By considering the expression

(W · ⊣ · (0 + 1)∗ · ⊢)∗ · W.

that consists in repeating the computation of W any number of times (at least once),
with a reset of the word in-between, we associate with a word ⊢w⊣ the value

∑∞
n=1 wn

|2 =
w|2/(1 − w|2).

Tree-Walking Automata. Another model captured by our approach is the one of tree-
walking automata. These are automata whose head moves on the nodes of a rooted tree
of a bounded arity m. As for words before, we can encode such trees labelled with a finite
alphabet A by elements of I(A′) with an extended alphabet A′ = ({0, . . . , m − 1} ∪ {⊤}) ×
A ∪ {⊥}. In elements of I(A′), nodes contain no information, only edges do. The idea is
thus to simulate the root of a tree labelled with a by a single node labelled with (⊤, a); the
i-th child of a node, labelled with a ∈ A, will be simulated with a node of label (i, a); finally,
under each leaf of the tree, we add a node labelled with ⊥. The root of the tree will be
both the initial and the final node of the encoding, simulating a tradition of tree-walking
automata to start and end in the root of the tree (without loss of generality).

As an example, consider the binary tree on the left of Figure 3. It is modelled by the
following element of I(A′), obtained from the Munn bi-rooted tree represented on the right
by a depth-first search: (⊤, a)(0, b)⊥⊥ (0, b) (1, c)(0, d)⊥⊥ (0, d) (1, d)⊥⊥ (1, d) (1, c) (⊤, a).

When restricting the semantics of weighted automata and expressions to elements of I(A′)
that are encoding of trees, Theorem 16 gives an interesting model of weighted expressions
equivalent to weighted tree-walking automata over rationally additive semirings.

The depth-first search of a tree is describable by an unambiguous weighted expression
(and thus also an unambiguous weighted automaton): letting (i, A) denote

∑
a∈A(i, a), and

restricting ourselves to trees with nodes of arity 0 or 2 to simplify the writing, we let

W0 = (0, A)∗ · ⊥ , W1 = ⊥ · (1, A)
∗

, and Wsucc = W1 · (0, A) · (1, A) · W0.

The weighted expression W0 finds the leftmost leaf; W1 returns to the root from the rightmost
leaf; and Wsucc goes from a leaf to the next one in the depth-first search. Then, the depth-first
search is implemented by the weighted expression (⊤, A) · W0 · W ∗

succ · W1 · (⊤, A).
By Theorem 19, there exists an equivalent non ambiguous automaton, that thus visits the

whole tree. Since it is possible to reset the tree, going back to the root, in a non ambiguous
fashion, we can remove the requirement for the automata and the expressions to visit the
whole tree while starting and ending at the root. This allows for more freedom in the models.
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Taking advantage of this relaxation, it is possible to count the maximal number of
occurrences of a letter a in branches of the tree, starting at the root of the tree, non-
deterministically going down the chosen branch, and ending at the bottom: using the
rationally additive semiring (N ∪ {−∞, +∞}, sup, +, −∞, 0),(

(⊤, a) · 1 + (⊤, A \ {a})
)

·
(
(0, a) · 1 + (0, A \ {a}) + (1, a) · 1 + (1, A \ {a})

)∗ · ⊥.

8 Conclusion

We have given an application of our result to tree-walking automata. A natural extension
consists in investigating other kinds of structure like Mazurkiewicz traces or grids.

Our approach is able to capture tree-walking automata, however it is intrinsically more
of a tree-generating automaton model. Over trees it does not make a huge difference but
it does if we try to extend this approach to more general graph-walking automata models.
A natural way to define weighted automata over graphs is to take the sum of the weights
of all paths over a given graph (in a sense already explored in [16], but limiting itself to
non-looping runs). This means that a given path in the automaton can be a run in different
graphs, which is not compatible with our approach of generating monoid elements.

One possible research direction would be to consider so-called SD-expressions introduced by
Schützenberger (see [10]). These expressions were shown to coincide with star-free expressions
with the advantage of not using the complement (instead restricting the languages over
which the Kleene star can be applied, namely to prefix codes with bounded synchronisation
delay) which means it can be applied to the quantitative setting. Indeed, in [7], the authors
extended the result to transducers and showed that these expressions correspond to aperiodic
transducers. These expressions are naturally adapted to the unambiguous setting (maybe
this restriction can be overcome) but it would be interesting to study their expressive power
in the context of pre-rational monoids.

A final direction would be to use logics instead of expressions, to describe in a less
operational way the behaviour of weighted automata over monoids. Promising results have
already been obtained in specific contexts, like non-looping automata walking (with pebbles)
on words, trees or graphs [4], but a cohesive point of view via monoids is still lacking.
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