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Abstract. We develop two robust optimization models to plan the sup-
ply operations of an assembly line when the latter are subcontracted to
an external service provider. The uncertainty sets are constructed from
available information on picking times both in a classical budget-based
robust approach and by using Support Vector Clustering. Numerical ex-
periments are conducted on test instances derived from a practical case
to illustrate the effectiveness of the proposed approach. The results show
that the robust optimization approach is efficient to reduce the impact of
picking time uncertainties on production and that the SVC-based model
outperforms the classical budget-based model.

Keywords: Supply chain · Data-driven optimization · Robust optimiza-
tion.

1 Introduction

We focus on a problem derived from a practical case encountered in the aircraft
industry, in which a single assembly line manufactures several products in order
to satisfy the needs that are planned over a discrete and finite planning hori-
zon. Each final product has its own bill of material (BOM) that involves different
components. The components are stored in a remote warehouse and their picking
and delivery to the production line are handled by a third party logistic provider
(TPL) following the manufacturer’s orders. In a sense, this problem is closely
related to the class of assemble-to-order systems, which are often encountered
in the inventory control literature. The need to define both component replen-
ishment and production policies makes assemble-to-order systems particularly
challenging. Large surveys of this topic have been presented in [1] and more
recently in [2] where authors established that the general case of multiple final
products and multiple periods have not been solved to optimality yet. However,
the recent work of [3] appear like a significant step forward towards this objec-
tive. Their method is based on a two stage stochastic program which decomposes
the original problem considering the component replenishment problem as the
first stage of decision and the assignment problem as second stage decisions.

In this paper, we investigate the planning of picking orders when the available
information related to picking times at the TPL is uncertain. Several approaches
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have been developed in the literature to deal with uncertainty in optimization
problems (see [4] for a recent survey of these techniques). Stochastic program-
ming and stochastic dynamic programming are two examples of optimization
tools that are frequently applied when some parameters of the problem under
study are random. These methods relies on the assumption that the random
variables of the problem are characterized by a known probability distribution.
The main issue with this paradigm is that in most real-life applications this
knowledge is not available. To overcome the lack of accurate information, re-
searchers from the operations research community have dedicated considerable
efforts in the past decade to develop optimization methods that are robust to
imprecision in the modeling assumptions.

The concept of robust optimization was introduced by [5] who considers that
unknown parameters belong to a finite uncertainty set without making any as-
sumption on their distribution. The objective is then to find a solution that is
optimal when the uncertain parameters take their worst values in the uncertainty
set. To avoid over-conservatism, [6] and [7] introduce an ellipsoidal uncertainty
set controlled by a size parameter and derive a second-order cone robust program.
In [8], the authors propose an alternative approach that constructs a polyhedral
uncertainty set whose size is controlled by a so-called budget of uncertainty,
which also limits over-conservatism. The major advantage of the latter is that
when the original problem is formulated as a linear (or mixed integer) program,
its robust counterpart remains of the same nature, which is convenient in terms
of tractability. The design of the uncertainty sets have been in the center of
researchers considerations since the early developments of robust optimization.
One major restriction on these uncertainty sets is that they assume that un-
certain parameters are symmetrically and independently distributed. Few works
have proposed ways to reduce the effects of these drawbacks. For example, [9]
modifies the definition of the polyhedral uncertainty set to improve their average
performances and [10] integrates correlations between parameters to improve the
accuracy of the robust models in this case.

The first application of RO to inventory management is due to [11], the
authors apply the model of [8] to tackle uncertainty on the demand for a multi-
period inventory management problem. On similar topics, [12] considered a pro-
duction planning problem with uncertain costs and demands and [13] considered
uncertain returns and demands. In [14], the authors proposed a robust model
for an integrated production planning with order acceptance problem where
customer demands is uncertain. The RO approach have been extended to uncer-
tainty on raw material availablity in [15] to schedule the production of a sawmill
with uncertainty on products demand and raw material availability and in [16]
where the authors proposed a robust approach to tackle lead-time uncertainty.

The growing volume of data available at the operational level recently became
a focal point for researchers in order to better incorporate uncertainty into opti-
mization methods. We now witness the emergence of the so-called Data-Driven
Robust Optimization (DDRO) models in the literature, where uncertainty sets
are designed directly from the data available. Among the different DDRO ap-
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Fig. 1. Diagram of the problem

proaches, [17] and [18] use coherent risk measure to construct uncertainty sets
for linear optimization problems. [19] proposed and uncertainty set based on a
support vector clustering algorithm to avoid over conservatism. They introduced
a piecewise linear kernel function to derive a polyhedral uncertainty set and a
tractable reformulation of linear optimization problem. Their uncertainty set give
a better description of random variables in the case of assymetric distribution
and lead to less conservative solution than traditional uncertainty set. Their ap-
proach have been applied with succes to a multi-product inventory management
problem by [20] and to energy system optimization by [21].

The remainder of this paper is organized as follows. Section 2 presents the
supply planning problem that motivates this study, along with a deterministic
mathematical formulation. In Section 3 we derive two tractable robust formula-
tions of the problem from the budget-based and the SVC-based uncertainty sets,
respectively. Finally Section 4 presents the experimental protocol and the nu-
merical results obtained with both robust formulations, while Section 5 contains
our concluding remarks and some perspective for future research directions.

2 Problem statement and deterministic formulation

We study the case of a single assembly line that combines different components
into several final products over a finite planning horizon discretized into T pe-
riods. We denote I and J the set of products and components, respectively. In
each period t = 1, . . . , T , the system faces a demand dit for product i ∈ I that is
assembled on demand, i.e. it is impossible to manufacture a product in advance,
then store it to satisfy a future demand. For all product i ∈ I and component
j ∈ J , let rij be the number of components j required to produce one unit of
product i.

All components are assumed to be available at all time in a remote ware-
house managed by a TPL provider, who is in charge of delivering the assembly
line based on its orders for components, as represented on Figure 1. For each
picking operation for component j ∈ J , the quantity collected by an operator is
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limited to a maximum batch size of mj units. Note that several batches of the
same components can be scheduled in the same period. The picking time for a
particular batch of component j of size xj can be divided into two main parts.
First, we consider a fixed time pj that corresponds to the travel time between
the shipping point and the zone where components j are stored, which is spent
regardless of the quantity that is transported. In addition, we consider a per-unit
picking time τj . For all period t = 1, . . . , T , the total picking time spent by the
TPL provider to collect all the components delivered to the assembly line in
period t cannot exceed a maximum work capacity Ct.

Any demand for product i that is not satisfied immediately is backlogged
until the corresponding product is assembled in a subsequent period. Each unit
of product i incurs a backlogging penalty cost bi during each period it is back-
logged. Whenever a component j is available on the assembly line but is not
immediately used to manufacture an end product, it disturbs the production
process by interfering with people and other goods moving nearby. We model
this situation with a per-unit, per-period obstruction cost oj . The problem con-
sists in planning the quantity of each component delivered to the assembly line
by the TPL in each period such that the sum of the obstruction and backlog-
ging costs is minimized. We declare decision variables, xjt as the quantity of
components j ∈ J that should be brought to the assembly line during period
t. These variables are closely related to variables vjt reprensenting the number
of distrinct picking operations of components j ∈ J performed during period t.
Variables sjt represent the number of component j ∈ J held on the border of
the assembly line at the end of period t. Variables uit denotes the number of
final product i ∈ I produced during period t and finally, variables Pt and Ot

respectively denotes penalty costs caused by the backlogging of final product
demand and the total obstruction cost for period t.

We formulate the problem with the following MIP:

min

T∑
t=1

Ot + Pt (1)

s.t. sjt = sj1 +

t−1∑
k=1

xjk −
∑
i∈I

rijuik ∀j ∈ J, ∀t = 2, . . . , T (2)

∑
i∈I

uitrij ≤ sjt + xjt ∀j ∈ J, ∀t = 1, . . . , T (3)

t∑
k=1

uik ≤
t∑

k=1

dik ∀i ∈ I, ∀t = 1, . . . , T (4)

vjt ≥ xjt/mj ∀j ∈ J, ∀t = 1, . . . , T (5)∑
j∈J

vjtpj + τjxjt ≤ Ct ∀t = 1, . . . , T (6)
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Ot ≥
∑
j∈J

oj

(
sjt + xjt −

∑
i∈I

uitrij

)
∀t = 1, . . . , T (7)

Pt ≥
∑
i∈I

bi

(
t∑

k=1

dik − uik

)
∀t = 1, . . . , T (8)

xjt, sjt, Pt, Ot ∈ R+ ∀j ∈ J, ∀t = 1, . . . , T (9)

uit, vjt ∈ N+ ∀i ∈ I, ∀j ∈ J, ∀t = 1, . . . , T (10)

The objective (1) aims at minimizing the total cost incurred over the plan-
ning horizon. The inventory balance constraints (2) update the stock levels in
each period. Constraints (3) ensure that the quantity of component j ∈ J avail-
able in period t are sufficent to perform the planned assembly operations. Con-
straints (4) impose that the system never manufactures more units of product
i ∈ I than the expressed demand. The minimum number of picking batches cor-
responding to the quantity of components j ordered in each period t is defined
in constraints (5). Constraints (6) ensure that the total picking time does not
exceed the picking capacity of the TPL provider in any period t. Constraints (7)
and (8) define the components holding costs and final product backlogging costs
incurred in each period t, respectively. Finally, constraints (9) and (10) define
the domain of the decision variables.

3 Robust models for uncertain setup times

In practice, the manufacturer often has incomplete or imprecise knowledge on
the picking times. As a consequence, some combinations of her orders may ex-
ceed the picking capacity of the TPL provider, forcing the latter to postpone
some operations to subsequent periods. This delay in some components delivery
induces two types of inefficiencies on the assembly line. Indeed, missing compo-
nents (i) prevent the manufacturer to assemble some of the products, leading to
backlogging penalty costs and (ii) leave the other components in the BOM on
the border of the line, disturbing other production operations This double effect
strongly incentivizes the planner to protect her decisions against uncertain setup
times.

In what follows, we assume that we have at our disposal a set of historical
setup times P = {p(1), . . . ,p(N)} and we investigate the performance of two
robust optimization models in this context.

3.1 Interval based robust model.

As a first robust approach, we consider the classical uncertainty set of [8] defined
by :

Ut =

{
p

∣∣∣∣∣pjt = p̄j + p̂jzjt,
∑
j

|zjt| ≤ Γt, ∀j ∈ J

}
(11)
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where p̄j is called the nominal value of pj and p̂j is a maximal deviation.
The scaled deviation coefficient zjt = (pj − p̄j)/p̂j ∈ [−1, 1] ensures that pjt ∈
[p̄j − p̂j , p̄j + p̂j ] for all components j ∈ J and period t and that the total
scaled deviation of p never exceeds the budgets of uncertainty Γ . The robust
counterpart of the capacity constraint is then obtained thanks to duality theory
(see [8] for details), where constraints (6) are replaced with:

∑
j∈J

vjtp̄j + xjtτj + qtΓt +
∑
j∈J

wjt ≤ Ct ∀t = 1, . . . , T (12)

qt + wjt ≥ p̂jvjt ∀j ∈ J,∀t = 1, . . . , T (13)

where q ≥ 0 and w ≥ 0 are additional real variables obtained from the dual
formulation of the left-hand side of constraints (6).

3.2 Support Vector Clustering based model.

We now consider an alternative, data-driven approach introduced in [19] to con-
struct uncertainty sets directly from P. This method rely on the Support Vector
Clustering algorithm introduced in [22] and results in a polyhedral uncertainty
set that gives a more precise description of P. By using the SVC algorithm we
obtain a vector α = {αk, k = 1, ..., N} that defines whether a given sample
p ∈ P resides in the uncertainty set U . More precisely, samples with αk = 0
are strictly contained in U . Samples p(k) with positive αk are called support
vectors (SV). Points for which 0 < αk < 1/Nν lie exactly on the boundary of U
and are referred to as boundary support vectors (BSV). In addition, the samples
contained in SV \{BSV } with αk = 1/Nν are considered as outliers and are
located outside of U . The regularization parameter ν ∈ [0, 1] is used to control
the portion of samples in P covered by U . In practice when N →∞, the latter
portion tend to be 1− ν (see [19] and [22] for details).

Similar to the robust framework of [8] the capacity constraint can be refor-
mulated as ∑

k∈SV

(µkt − λkt)
TQp(k) + ηθ +

∑
j∈J

xjtτj ≤ Ct , ∀t = 1, . . . , T (14)

with the additional constraints :∑
k∈SV

Q(λkt − µkt) + vt = 0 (15)

λkt + µkt = ηαk1 ∀k ∈ SV (16)

where Q is called the weighting matrix and is defined by Q = Σ−
1
2 with

Σ the covariance matrix of p, θ = min
k′∈BSV

(∑
k∈SV αk||Q(p(k′) − p(k)||1

)
and

λkt > 0, µkt > 0, η > 0 are additional real variables obtained from the dual
formulation of the left-hand side of constraints (6) (see [19] for details).
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4 Experimental results

We first describe several rules that we apply to generate the instances we use to
evaluate the performances of the different models presented above. The specific
assumptions we consider are listed below, with the objective reflect the frame-
work of application cases: rij is chosen randomly from an interval [rj , rj ], the
smallest interval is [2,4] and the widest is [10,25]. Each product i requires a
subset Ji ⊂ J of components. oj is chosen randomly in [0, 1], bi = ρ

∑
j∈J rijoj ,

where ρ represents a ratio between the penalty incurred for backlogging a de-
mand for product i versus the maximum obstruction cost of its components. In
our numerical experiments, we use ρ = 5, but this value can be adjusted de-
pending on the context. In order to primarily focus on the impact of the setup
times uncertainty, we disregard the linear part of picking times and set τj = 0
and mj = 3 maxi∈I rij for all j ∈ J . Demands are deterministic with values
drawn from a normal distribution whose parameters vary among products. We
compute the capacity of the TPL Ct from the average time needed to pick the
required components in each period, that we increase by a given percentage to
ensure that it is not always saturated.

4.1 Evaluation of the solution

To conclude on the performance of the models we need to evaluate how these
solutions performs in the face of uncertainty. To do that we first generate a set
P of N = 400 historical setup times to define the models. We then generate
a set of 10 000 setup time scenarios S following the same distribution than P.
Each scenario is composed of one setup time for each component j ∈ J and
each period t = 1, . . . , T . Finally we evaluate the real cost of each scenario for
the given solution in three steps. For each scenario: we simulate the picking
operations to obtain the realized quantity of each components delivered in each
period; we compute the optimal production plan for the quantities delivered;
and we evaluate the cost of the obtained production plan.

4.2 Setup time distribution

We assume that the TPL provider organizes the storage of the components in
order to optimize the picking operations. Specifically, components are stored
in such a way that their accessibility improves with their order frequency. We
consider three types of components and separate them based on their storage
area. We assume that both the mean and the variability of the setup times
decrease with component accessibility. In our instances, we thus we generate
setup times using Gamma distributions with three different shape parameters,
one for each type of component.

In practice, setting the budget parameter Γt is hard and the performance
obtained for a given parameter value heavily depends on the characteristics of the
instance. In order to compare both models, we set Γt to cover a certain portion
of P, by iteratively increasing its value until we reach the desired coverage.



8 B. Loger et al.

Fig. 2. Evolution of the average costs for different data coverage

4.3 Results

Figure 2 shows the mean value of the total, obstruction and backlogging costs
obtained by the SVC based model with different data coverage. The instance
considered is composed of 8 components and 4 products and the ratio between
the obstruction and backlogging cost parameters oj and bi are set to reflect a high
preference to avoid backlogging. We observe that the backlogging cost strictly
decreases as the data coverage increases which corresponds to the preference
based on the costs. The obstruction cost decreases when the data coverage is
lower than 0.45 and increases otherwise. The total cost decreases to reach its
lowest value for 60% of data coverage. Beyond that point, the reduction in back-
logging costs do not compensate the increase of obstruction costs, which leads to
a slow increase in the total cost. We also observe that the obstruction costs are
nearly the same for 1% and 90% of data coverage while the backlogging costs
decrease from 1195 to 26 in this interval.

Figure 3 presents the average backlogging and obstruction costs obtained by
the classical and SVC based robust models. The considered instance is composed
of 8 components and 4 products, the planning horizon is 5 periods. Each point
corresponds to a different value of data coverage in [1%,50%]. We observe that for
the same backlogging cost, the SVC based model leads to a smaller obstruction
cost than the classical robust model. For example, when both backlogging costs
are equal to 288, the obstruction cost of the SVC based solution is 259 whereas it
is 317 for the classical robust solution. We also observe that the SVC based model
can lead at the same time to a lower obstruction cost and a lower backlogging
cost. For example, the SVC based model leads to a backlogging cost of 251
with an obstruction cost of 273 whereas the classical robust model leads to a
backlogging cost of 260 with an obstruction cost of 346.

5 Conclusion

In this paper, we considered a data driven robust optimization approach to plan
the picking operations of an assembly line when the latter are subcontracted to
an outside service provider. Experimental results show that the proposed method
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Fig. 3. Comparison of backlogging and obstruction costs obtained with different data
coverage

efficiently reduces the impact of uncertainties on the performance of the assem-
bly line. By controlling the level of robustness of the model, good tradeoffs can
be found between reducing the backlog of assembly operations and minimizing
the quantity of components stored on the border of the assembly line. In com-
parison with a classical budget based robust optimization model, the data driven
model yields better performance on the test instances. The proposed robust ap-
proach aims at respecting the maximum picking time capacity of the service
provider and ignore the consequences of robustness on the solution cost. Hence,
it is difficult to define the robustness level in order to find the optimal trade-
off. Future research may consider a multi-stage data-driven robust optimization
approach to overcome this drawback. However, such methods generally lead to
more complex formulations and make their application to large-scale industrial
cases impossible.
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