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Abstract—The vibration testing system of a large structure 

spacecraft presents inaccurate precision tracking and high 

oscillations in the neighborhood of its vibrational modes, 

particularly at higher frequencies. In the presence of varying 

modal parameters of a spacecraft such as the mode frequency 

and corresponding damping ratio, the performance of the 

controlled system degrades. Robust high precision tracking 

control of such systems with varying modal parameters is rarely 

addressed in the literature. A new closed-loop system 

architecture is proposed in this paper, based on a feedforward-

feedback tracking control strategy involving an H controller. 

Simulation results show that the new architecture allows precise 

tracking of a sine sweep acceleration reference signal avoiding 

vibrations when sweeping through modes. Furthermore, it 

appears to be highly robust against varying parameters, model 

uncertainties, as well as the presence of sensor noise. The 

proposed controller also limits the control effort to avoid the 

actuator saturation. A minimal order controller is derived 

which makes it tractable for further industrial implementation. 

Keywords—Sine Sweep Tracking, Robust Vibration Control, 

Lightly Damped Spacecraft, Dynamic Tracking Error 

I. INTRODUCTION  

Vibration testing system is an essential part of the mechanical 
qualification of large space structures, as it has to survive 
severe vibratory conditions at the very beginning phase of the 
rocket launch [1]. Traditionally, in the coupled load analysis 
(CLA), the combined dynamical model of the spacecraft and 
the launcher are used to verify the absence of any coupling of 
vibrational modes between these two structures. This analysis 
requires a precise model of the spacecraft [1], which is 
identified through the vibration testing system. Current 
control architecture of the vibration testing system presents 
overshoot, high oscillations while the reference signal sweeps 
through the spacecraft’s lightly damped mode frequencies 
[2][4][8]. This current strategy is based on a first-order sliding 

mode control [5], inducing the famous “chattering” 
phenomena, which is basically the non-smoothness of the 
command associated to the nonlinearities of the control law 
[6][7]. In this paper, the development of control strategies is 
considered to improve the tracking performance of the current 
vibration analysis system, while reducing the time of the 
vibration testing procedure by ensuring stability and 
robustness features. 

In the literature of active vibration control, classical root 
locus-based controls are widely used [10] [11], which need a 
profound knowledge of control systems engineering, but also 
lack robustness against any modal parameter variation 
because of the pole-zero flip-flop phenomena [10][11]. On the 
other hand, there are some studies demonstrating very 
promising performances of active vibration control while 
using LQ, LQG, 𝐻∞  control laws [3][11][12]. Although the 
studied systems show quite good performance, most of the 
studied cases are regulation problems [11][12]. In the study 
case, the frequency of the reference varies continuously and 
the system always remains in a transient state, never reaching 
a steady-state behavior [4]. We are therefore dealing with 
dynamic tracking error.  

In [2], a mixed sensitivity based 𝐻∞ control has been studied 
on a single vibrational mode system. The study shows a high 
level of tracking performance [2] as well as being robust 
against the variation of damping ratio and time delay, 
although it does not assess the case with varying mode 
frequencies [2]. Generally, the main drawback of the classical 
mixed sensitivity based 𝐻∞  control is the pole-zero 
cancellation phenomenon of active vibration control problems 
[3][12][13] [14]. This phenomenon becomes critical when the 
system like spacecraft has very lightly damped modes [12]. In 
addition, the simplified second degree system does not include 
any anti-resonance, unlike a real satellite-vibrator model 
[2][12]. A 𝜇 synthesis-based control can be found in [12] to 
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address the active vibration control of a regulation problem, 
which shows better robustness against parameter variation of 
the plant compared to 𝐻∞ synthesis. Despite, the 𝜇-synthesis 
requires significant amount of synthesis time for a real 
complex dynamical system, also results in higher order 
controllers [15]. The complexity of 𝜇 controller makes it quite 
challenging to implement in a real-time context with a very 
high sampling rate framework [12]. 

In this paper, the proposed closed-loop architecture uses an 
𝐻∞ based multivariable feedback control with a feedforward 
action. The motivation of the research is to increase the 
bandwidth of the controller to tackle any errors in the closed 
loop. Therefore, the feedforward controller is used for faster 
response of reference tracking [22] and the 2 degree of 
freedom feedback controller is well known in the literature 
[23] for providing better tracking error and robustness 
properties than those of a single input-output controller. 

The paper is structured as follows: Section II presents the 
spacecraft modeling issues. Section III introduces a 
systematic design procedure of the feedforward and feedback 
controller. Lastly, in Section IV, an analysis through different 
simulations illustrates the performance of the proposed 
control structure compared to the current nonlinear control. 

II. SPACECRAFT DYNAMICAL MODEL  

In this section, the identified plant model of the spacecraft-
interface will be simplified for the optimal order controller 
design. Secondly, the modal parameters of the plant have to 
be identified for the systems performance assessment. 

A. Dynamical model 

Fig. 1 illustrates the closed-loop architecture of the current 

vibration testing system. The technical terms related to the 

system can be found in [4][5]. 

Actuator
Vibration 

Table

Sensor:
Notching

Table

High 
pass 
filter

Amplitude 
Estimator

Control
Parameters Reference

Satellite

AmplifierControl

Data 1

Data 2
 

Figure 1 – Current closed-loop system architecture 

As shown in Fig. 1, the reference signal and the control 
parameters are predefined at the beginning of the test. The 
current control methods [2] generate the acceleration 
command to the amplifier, which converts the acceleration to 
necessary force for the actuator. The actuator is linked to the 
vibration table to transmit the vibration to the satellite. The 
control accelerometers measure the acceleration of the table, 
whether the notch accelerometers are placed in the satellite 

structure and measure the satellites acceleration. A high pass 
filter with a corner frequency of 0.5 Hz eliminates the DC 
component of the signal. The filtered value of the 
measurement signal is then used to estimate the maximum 
amplitude of each pseudo period, which is compared with the 
reference amplitude to deduce error and necessary control 
effort [2][5]. For an experimental test, the control input (data 
1 in Fig. 1) and the output (data 2 in Fig. 1) signals are used to 
determine an input-output model of the composite plant.  

Since the paper mainly focuses on the controller design, the 
elaboration of the 7th order discrete time model through an 
appropriate estimation procedure based on [5][17] is not 
detailed here. This estimated model represents the first two 
modes of the satellite in the range 5 to 50 Hz. In this work, a 
continuous time modeling of the plant and of the controller is 
preferred since it is easier to compare to the real plant. Thus, 
the discrete time model is converted into a continuous time 
one, using a bilinear transformation [18], without losing any 
significant information in the range of 5 to 50 Hz. In Fig. 2, 
the magnitude response with respect to frequency of the 
discrete time and the continuous time models are compared. It 
can be noticed that the continuous time model only shifts 0.1 
Hz to the right in the first mode and 0.2 Hz in the second mode 
compared to the discrete time model, without any noticeable 
difference in the magnitude. 

 

Figure 2 Magnitude response of the full order model 

B. Model reduction  

In a second step, the obtained continuous time model is 
reduced in order to decrease the complexity. The order 
reduction is performed by considering the Hankel’s singular 
values of the full-order model by following a classical 
approach detailed in the sequel. 

First, the Hankel’s singular values are ranked considering 
their multiplicative error bound, which gives the energy of 
states [19]. The last two states seem to be less significant as 
they are less than 0.02 compared to other five states, higher 
than 0.5. They are then removed from the model, leading to a 
5th order model.  

Then, the model reduction is realized via multiplicative error 
balanced stochastic model truncation (BST), as it appears to 
emphasize a specific part of the plant (5 to 50 Hz) [19]. 
Consequently, within this specific frequency range, the BST 
method leads to an error lower than the additive reduction. In 
Fig. 3, it can be noticed that the BST method (blue) gives the 
best approximation. In the anti-resonance frequencies, an 
approximate difference with the original plant is kept under 
0.2 dB, while in the case of balanced method (red), the error 
attains approximately 1.9 dB compared to the original plant. 
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Figure 3 Comparison of error between BST and balanced reduction 

C. Modal parameter identification 

In the last step of modeling, modal parameters of the plant are 
determined, obtained from the fifth order model derived 
above. This model will be used for control design and 
robustness analysis. The general form of a fifth order transfer 
function can be written as follows: 

 
5 4 3 2

5 4 3 2 1 0

5 4 3 2

1 2 3 4 5

( )

( )

+ + + + +
=

+ + + + +

b s b s b s b s b s bB s

A s s a s a s a s a s a
 (1) 

where 𝑠  is the Laplace variable, 𝑎1..5 and 𝑏1..5 are the 

denominator and numerator coefficients respectively. Using 

the partial fraction decomposition [25] of eq. (1) leads to: 

 3 51 2 4

6
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𝑃1 ..  𝑃5  are the poles of the model, 𝑅1. . 𝑅5  the numerator 

complex coefficients, 𝑅6  a real gain. As the plant contains 

two modes, consequently, there are two pairs of conjugate 

poles for each mode and a real 5th pole. In eq. (2), conjugate 

poles and numerators are gathered, which leads to: 
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Eq. (3) is a detailed form of eq. (2), where the complex poles 

and zeros are expressed in terms of real and imaginary parts. 
Then eq. (3) can be rewritten by redefining variables to obtain 

modal parameters in view of a parametric design model of 

the plant, as follows: 
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 (4) 

Eq. (4) exhibit the modal parameters such as the mode 
frequency and mode damping, (Ω1, 𝜉1) for the first mode and 
(Ω2, 𝜉2) for the second mode. They are obtained from Eq. (3): 

2
1

2 2

2 2 2 2 2 2 1 2

1 1 1 2 2 2
2 2 2

1 1 2 2

2
  = − == + −  = + −

+ +

m m
m n m n
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III. PROPOSED CONTROL ARCHITECTURE 

The proposed architecture of Fig. 4 uses an additional 
feedforward action, which is the inverse of the nominal plant 
model, to deliver an accurate anticipative command to the 
actuator. The multivariable two input one output feedback 
controller is used to compensate tracking error and noise-
disturbance. This structure will facilitate the design of the 
robust controller, leading to an increase of the robustness of 
the system against modal parameter variations. In general, this 
strategy increases the bandwidth of the control and the gain of 
correction, solving the issue of pole-zero compensation of a 
lightly damped structure [13]. 

Plant

+

-

FeedForward

+

+

FeedBack

+

-

𝑢𝑐𝑜𝑚  

Sensor

𝑢𝑓𝑓  
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𝑦𝑚𝑒𝑠  𝑦𝑎𝑏𝑠  

𝑒1 

𝑒2 𝑦𝑎𝑏𝑠  

0

 

Figure 4 Proposed closed-loop system architecture 

The first reference input is a sinusoidal acceleration signal 
with variable frequency called 𝑐𝑜𝑙𝑎 [1][4] and the second one 
is a constant value of 0 [20], that emphasizes the cancellation 
of the disturbance action on the output. The errors associated 
to the references are denoted respectively 𝑒1  and 𝑒2 . The 
control effort, 𝑢𝑐𝑜𝑚 , is the sum of the feedforward action, 
denoted 𝑢𝑓𝑓, and the feedback action denoted 𝑢𝑓𝑏 . 𝑦𝑎𝑏𝑠  and 

𝑦𝑚𝑒𝑠 are the real and measured output acceleration. 

A. Closed-loop specification 

Let first define the specification of the closed-loop system 

from an industrial point of view. The tracking error has to be 

kept less than ±1% of the amplitude of 𝑐𝑜𝑙𝑎 (can reach upto 

2g) under parameter variation, resulting in a significant 

vibration reduction of the system. Given the actuation limit 

of 75g, the closed-loop system must use the minimum control 

effort and keep it below the saturation limit. In this paper, we 

limit the analysis to a single mode of the satellite, which is 

between 5 to 20 Hz and we emphasize the performance of the 

system in terms of modal parameter variations of that given 

mode. There are mainly two factors, which introduce 

parameter variations of the system. Firstly, the derivation of 

the continuous time synthesis model from the full order 

identified discrete time model accounts for almost 1.5% of 

uncertainties on the mode damping. Moreover, the dynamics 

identified from a very low-level test differs from the 

qualification level test by a frequency shift of -5% and 15% 

of damping. Lastly, an analysis is required to ensure the 

stability of the system.  

B. 𝐻∞ feedback control synthesis 

Firstly, the industrial specifications are transformed into 
frequency domain constraints in order to derive an 
optimization problem formulation [2][21]. Fig. 5 defines the 
closed-loop synthesis model. 
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Figure 5 𝐻∞ synthesis architecture 

The frequency domain constraints are imposed on the system 
via four weighting functions, denoted 𝑤1, 𝑤2, 𝑤3 and 𝑤4.  

The feedforward controller 𝐾𝑓𝑓(𝑠) is defined by: 

 1
( ) ( )

nf f om
K s G s

−
=  (5) 

where 𝐺𝑛𝑜𝑚(𝑠) is the plant dynamics obtained from eq. (4) 
with the nominal values of (Ω1, 𝜉1) and (Ω2, 𝜉2). 

1) Problem formulation 

The controller 𝐾∞(𝑠)  has to satisfy performance criteria 
defined by frequency domain weights. Fig. (6) illustrates the 
linear fractional transformation (LFT) of the given problem. 

𝐾∞  

𝑃 𝑅 
𝑍 

𝑦 

𝑒 𝑢𝑓𝑏  

 

Figure 6 LFT model 

In Fig. 6, 𝑅 = [𝑅1  𝑅2]𝑇 = [𝑐𝑜𝑙𝑎  0]𝑇 is the reference input, 

𝑒 =  [𝑒1  𝑒2]𝑇  the tracking error and 𝑍 = [𝑧1  𝑧2 𝑧3 𝑧4]𝑇   the 

exogenous output. The LFT associated to Fig. 6 can be 

written as: 
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The expression of 𝑃(𝑠) is given below: 
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𝑃 is the augmented model of Fig. (5) and 𝐾∞ is the feedback 
controller, then the LFT between 𝑃  and 𝐾∞  is denoted by 
𝐹(𝑃, 𝐾∞). 

The definitions of the sensitivity functions are given by: 

- Sensitivity: 𝑆  between 𝑒1  and 𝑅1 , we restrain this 
function to minimize the tracking error of the input 𝑐𝑜𝑙𝑎. 

- Complementary sensitivity: 𝑇  between 𝑒3  and 𝑅1 
(𝑐𝑜𝑙𝑎), is used to constrain the effect of sensor noise 

- 𝐾𝑆 between 𝑒4 and 𝑅1(𝑐𝑜𝑙𝑎) is used to limit the actuator 
signal 

By the application of the small gain theorem [20], we can 
obtain the design criteria, as follows: 

 
( )

( )

( )

1

2

3

( ) ( )

( ) ( )

( ) ( )

S s w s

K S s w s

T s w s
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


 

 (8) 

where 𝜎  is the upper singular value and 𝛾 > 0 . The 𝐻∞ 

feedback controller is obtained by minimizing ‖𝐹(𝑃, 𝐾∞)‖∞ 

for the set of 𝐾∞(𝑠) which stabilizes the internal states of the 

system. The minimum gain is called 𝐻∞ optimal gain 𝛾𝑜𝑝𝑡. 

From eq. (8) it comes: 

 
1

2

3

( ) ( )

( , ) ( ) ( )

( ) ( )

opt

S s w s

F P K K S s w s

T s w s


 



=   (9) 

C. Weight selection for 𝐻∞ control 

In this section, we introduce a systematic way to transform 

the industrial specifications of the closed loop vibration 

testing system to frequency domain weights 𝑤1, 𝑤2 and 𝑤3. 

The tracking error is constrained via the weight 
1

𝑤1
 [21]. As 

previously mentioned, considering the dynamic tracking, 

time domain verification is needed to quantify the tracking 

error of the closed-loop system. As we intend to evaluate up 

to 20 Hz including the first mode, 𝑤1 is chosen to constrain 

the magnitude near 20 Hz at approximately -20 dB and the 

bandwidth of this weight is 147 Hz. This value is chosen as 

small as possible, since a higher corner frequency of 
1

w1
 will 

result in a controller with bad noise filtering properties at 

lower frequencies. The chosen weighting function is: 

 
1

1 1.4 0.14

1571

s

w s

+
=

+
 (10) 

The specification is to limit the bandwidth of the 

complementary sensitivity function as low as possible to 

filter as much as possible sensor noises. At the same time, we 

cannot lower this value arbitrarily as we need a minimum 

bandwidth to keep the tracking error within the tolerance. So 

the bandwidth of this weight has been fixed at a minimum 

value, which is 443 Hz, and its magnitude crosses 0 dB at 

254 Hz to satisfy the 𝐻∞ optimization criteria. 

 
8

5 8

3

1 2287 2.615 10

1.144 10 1.868 10

s

w s

+
=

+
 (11) 

The low frequency amplitude has been set at the maximum 
value of acceleration (75 g) delivered by the vibrator. It 
reaches 0 dB at the maximum operative frequency (1700 Hz) 

of the vibrator. The expression of 
1

w2
 is given by: 

 
4 9

5 7

2

1 1.037 10 1.075 10

1.037 10 1.433 10

s

w s

+
=

+
 (12) 

𝑤4 is further chosen equal to 1, see section IV.A.2. The 𝐻∞ 

controller is determined for these weighting functions by 
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solving an optimization problem, using the robust control 

toolbox of MATLAB [24].  
 

IV. SIMULATION RESULTS 

A. Frequency domain analysis 

1) Analysis of the synthesized controller 

The designed controller satisfying the constraints of eq. (9) is 

illustrated in Fig. 7.  

As the order of this synthetized controller is the sum of the 

orders of the different dynamics, (5th order for each of plant 

and feedforward controller, a single order for each of the 

three weights), totaling a 13th order controller, which remains 

acceptable in the real time simulation using a typical intel 3rd 

generation dual core I3 processor clocked at 3.2 GHz. 

  

 
Figure 7 Magnitude response of the feedback controller 

2) Analysis of the sensitivity functions 

The optimization problem leads to 𝛾𝑜𝑝𝑡 = 0.98. Before any 

further analysis, it is important to mention that the second 

input of the controller of Fig. 4, with the weight 𝑤4, is used 

to satisfy the optimization criterion, as only one single input 

resulted in a very high 𝛾𝑜𝑝𝑡  (almost 50), leading to a non-

respect of the specifications. Fig. 8 shows the sensitivity 

functions, remaining below their corresponding weights of 

eq. (9), satisfying the frequency domain specifications. 

 
Figure 8 Constraints vs sensitivity functions 

3) Stability margin 

The open-loop two-input two-output function is given by: 
 

OL
T G K


=  (13) 

The closed-loop transfer of this open-loop system is 

expressed by: 

 ( )
1

CL OL
T I T

−

= +  (14) 

By using the unstructured small gain theorem, the guaranteed 

minimum margin of the two loop is given by 𝛼𝑚𝑎𝑥 [20]: 
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The guaranteed margin is 𝛼𝑚𝑎𝑥 = 0.71, which can be used 

to deduce the stability margin through the following 

relations: 
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where 𝐺𝑀  denotes the gain margin and 𝜑𝑖  is for phase 

margin, which are respectively (0.6, 3.41) and ±41.4°. The 

obtained stability margins indicate that the system dynamics 

can vary up to the upper and lower limits of gain and phase 

margins before being unstable. 

B. Time domain analysis 

Time domain analysis has been achieved using the system 

described in Fig. 4. 

1) Nominal case study 

In this part, the dynamics of the system is calculated from 

eq. (4) with nominal modal parameter values, the analysis has 

been done in the frequency range of [5, 20] Hz, for a sweep 

rate of 3 oct/min. 

 

 
Figure 9 Tracking performance of a nominal plant dynamics 

For this given study case, the result of Fig. 9 shows that the 

dynamic tracking error between the reference and the 

measured acceleration amplitude (𝐻∞ control, blue) is below 

±1% . At the same time, the performance of the current 

nonlinear controller [2] for the same case (in red) shows a 

degraded performance (max. error reaches [-13%, 5%]). 

 
Figure 10 Total control effort 𝑢𝑐𝑜𝑚 

Fig. 10 illustrates the total control effort 𝑢𝑐𝑜𝑚, which is the 

sum of the feedforward and feedback actions. We find that 

the maximum amplitude near 27 sec reaches roughly ±3.73 

g, when capacity is 75g. It can also be remarked that the 

correction in lower frequencies needs higher actuation.  
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2) Robustness study 

In this section, we intend to demonstrate the robust 

performance of the proposed 𝐻∞  controller against modal 

parameter (Ω1, 𝜉1) variation. Fig. (11) shows the magnitude 

response of the set of plants with ±15%  of the mode 

frequency (Ω1 ) variations and ±25%  of the damping (𝜉1 ) 

variations. Those parameters are distributed to their limits in 

order to create the worst-case scenarios, which therefore 

validates the range of obtainable dispersion through the 

proposed control architecture. 

 

 
Figure 11 Plant dynamics with first mode dispersion 

The error amplitude in Fig. 12 evidences the robustness 

against ±15% of frequency (Ω1) shift (3 times more than the 

required specification) and ±25% of damping (𝜉1) (almost 

±8% more than the specification). The tracking error is kept 

below ±1% without any further vibrations. 

 

 
Figure 12 Robust performance of the 𝐻∞ controller 

The combination of right frequency shift and lightest 

damping factor appears as the worst case, and pushing those 

limits higher induces oscillations near 1g. 

V. CONCLUSION 

The main goal of the paper is to propose a control architecture 

of the vibration testing system, which limits dynamic 

tracking error in presence of modal parameter variation, 

while optimizing the control effort to stay below the actuator 

saturation. The proposed feedforward-feedback control 

system also gives an alternative for pole/zero cancellation 

issues of classical 𝐻∞ mixed sensitivity problems observed 

in the active vibration control systems. The control structure 

is kept to a minimal order of complexity, making it 

implementable for the vibration testing system of lightly 

damped large space structures. Ongoing work considers the 

study of several modes and as a perspective, the experimental 

validation of the controller.  
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