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Robust Dynamic Tracking Control of a Modal Parameter Varying Spacecraft avoiding Vibration
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The vibration testing system of a large structure spacecraft presents inaccurate precision tracking and high oscillations in the neighborhood of its vibrational modes, particularly at higher frequencies. In the presence of varying modal parameters of a spacecraft such as the mode frequency and corresponding damping ratio, the performance of the controlled system degrades. Robust high precision tracking control of such systems with varying modal parameters is rarely addressed in the literature. A new closed-loop system architecture is proposed in this paper, based on a feedforwardfeedback tracking control strategy involving an H controller. Simulation results show that the new architecture allows precise tracking of a sine sweep acceleration reference signal avoiding vibrations when sweeping through modes. Furthermore, it appears to be highly robust against varying parameters, model uncertainties, as well as the presence of sensor noise. The proposed controller also limits the control effort to avoid the actuator saturation. A minimal order controller is derived which makes it tractable for further industrial implementation.

I. INTRODUCTION

Vibration testing system is an essential part of the mechanical qualification of large space structures, as it has to survive severe vibratory conditions at the very beginning phase of the rocket launch [START_REF]Spacecraft mechanical loads analysis handbook[END_REF]. Traditionally, in the coupled load analysis (CLA), the combined dynamical model of the spacecraft and the launcher are used to verify the absence of any coupling of vibrational modes between these two structures. This analysis requires a precise model of the spacecraft [START_REF]Spacecraft mechanical loads analysis handbook[END_REF], which is identified through the vibration testing system. Current control architecture of the vibration testing system presents overshoot, high oscillations while the reference signal sweeps through the spacecraft's lightly damped mode frequencies [START_REF] Arefin | Sine sweep tracking control of lightly-damped spacecraft[END_REF][4] [START_REF] Bettacchioli | Beating Phenomena in spacecraft sine test[END_REF]. This current strategy is based on a first-order sliding mode control [START_REF] Bettacchioli | Simulation of satellite vibration test[END_REF], inducing the famous "chattering" phenomena, which is basically the non-smoothness of the command associated to the nonlinearities of the control law [START_REF] Liu | Advanced Sliding Mode Control for Mechanical Systems[END_REF] [START_REF] Bandyyopadhyay | Advances in Sliding Mode Control[END_REF]. In this paper, the development of control strategies is considered to improve the tracking performance of the current vibration analysis system, while reducing the time of the vibration testing procedure by ensuring stability and robustness features.

In the literature of active vibration control, classical root locus-based controls are widely used [START_REF] Preumont | Vibration control of active structures: an introduction[END_REF] [START_REF] Gawronski | Advanced Structural Dynamics and Active Control of Structures[END_REF], which need a profound knowledge of control systems engineering, but also lack robustness against any modal parameter variation because of the pole-zero flip-flop phenomena [START_REF] Preumont | Vibration control of active structures: an introduction[END_REF] [START_REF] Gawronski | Advanced Structural Dynamics and Active Control of Structures[END_REF]. On the other hand, there are some studies demonstrating very promising performances of active vibration control while using LQ, LQG, 𝐻 ∞ control laws [START_REF] Bettacchioli | Feasibility study of the beating cancellation during the satellite vibration test[END_REF] [START_REF] Gawronski | Advanced Structural Dynamics and Active Control of Structures[END_REF] [START_REF] Balas | Robust control of flexible structures: theory and experiments[END_REF]. Although the studied systems show quite good performance, most of the studied cases are regulation problems [START_REF] Gawronski | Advanced Structural Dynamics and Active Control of Structures[END_REF] [START_REF] Balas | Robust control of flexible structures: theory and experiments[END_REF]. In the study case, the frequency of the reference varies continuously and the system always remains in a transient state, never reaching a steady-state behavior [START_REF] Bettacchioli | Common issues in S/C sine vibration testing[END_REF]. We are therefore dealing with dynamic tracking error.

In [START_REF] Arefin | Sine sweep tracking control of lightly-damped spacecraft[END_REF], a mixed sensitivity based 𝐻 ∞ control has been studied on a single vibrational mode system. The study shows a high level of tracking performance [START_REF] Arefin | Sine sweep tracking control of lightly-damped spacecraft[END_REF] as well as being robust against the variation of damping ratio and time delay, although it does not assess the case with varying mode frequencies [START_REF] Arefin | Sine sweep tracking control of lightly-damped spacecraft[END_REF]. Generally, the main drawback of the classical mixed sensitivity based 𝐻 ∞ control is the pole-zero cancellation phenomenon of active vibration control problems [START_REF] Bettacchioli | Feasibility study of the beating cancellation during the satellite vibration test[END_REF][12] [13] [14]. This phenomenon becomes critical when the system like spacecraft has very lightly damped modes [START_REF] Balas | Robust control of flexible structures: theory and experiments[END_REF]. In addition, the simplified second degree system does not include any anti-resonance, unlike a real satellite-vibrator model [START_REF] Arefin | Sine sweep tracking control of lightly-damped spacecraft[END_REF] [START_REF] Balas | Robust control of flexible structures: theory and experiments[END_REF]. A 𝜇 synthesis-based control can be found in [START_REF] Balas | Robust control of flexible structures: theory and experiments[END_REF] to address the active vibration control of a regulation problem, which shows better robustness against parameter variation of the plant compared to 𝐻 ∞ synthesis. Despite, the 𝜇-synthesis requires significant amount of synthesis time for a real complex dynamical system, also results in higher order controllers [START_REF] Mystkowski | An application of mu-synthesis for control of a small air vehicle[END_REF]. The complexity of 𝜇 controller makes it quite challenging to implement in a real-time context with a very high sampling rate framework [START_REF] Balas | Robust control of flexible structures: theory and experiments[END_REF].

In this paper, the proposed closed-loop architecture uses an 𝐻 ∞ based multivariable feedback control with a feedforward action. The motivation of the research is to increase the bandwidth of the controller to tackle any errors in the closed loop. Therefore, the feedforward controller is used for faster response of reference tracking [START_REF] Gernaey | 12th International Symposium on Process Systems Engineering[END_REF] and the 2 degree of freedom feedback controller is well known in the literature [START_REF] Vilanova | Reference controller design in 2-DOF control[END_REF] for providing better tracking error and properties than those of a single input-output controller.

The paper is structured as follows: Section II presents the spacecraft modeling issues. Section III introduces a systematic design procedure of the feedforward and feedback controller. Lastly, in Section IV, an analysis through different simulations illustrates the performance of the proposed control structure compared to the current nonlinear control.

II. SPACECRAFT DYNAMICAL MODEL

In this section, the identified plant model of the spacecraftinterface will be simplified for the optimal order controller design. Secondly, the modal parameters of the plant have to be identified for the systems performance assessment.

A. Dynamical model Fig. 1 illustrates the closed-loop architecture of the current vibration testing system. The technical terms related to the system can be found in [START_REF] Bettacchioli | Common issues in S/C sine vibration testing[END_REF] [START_REF] Bettacchioli | Simulation of satellite vibration test[END_REF].

Actuator Vibration Table

Sensor: Notching As shown in Fig. 1, the reference signal and the control parameters are predefined at the beginning of the test. The current control methods [START_REF] Arefin | Sine sweep tracking control of lightly-damped spacecraft[END_REF] generate the acceleration command to the amplifier, which converts the acceleration to necessary force for the actuator. The actuator is linked to the vibration table to transmit the vibration to the satellite. The control accelerometers measure the acceleration of the table, whether the notch accelerometers are placed in the satellite structure and measure the satellites acceleration. A high pass filter with a corner frequency of 0.5 Hz eliminates the DC component of the signal. The filtered value of the measurement signal is then used to estimate the maximum amplitude of each pseudo period, which is compared with the reference amplitude to deduce error and necessary control effort [START_REF] Arefin | Sine sweep tracking control of lightly-damped spacecraft[END_REF] [START_REF] Bettacchioli | Simulation of satellite vibration test[END_REF]. For an experimental test, the control input (data 1 in Fig. 1) and the output (data 2 in Fig. 1) signals are used to determine an input-output model of the composite plant.

Since the paper mainly focuses on the controller design, the elaboration of the 7 th order discrete time model through an appropriate estimation procedure based on [5][17] is not detailed here. This estimated model represents the first two modes of the satellite in the range 5 to 50 Hz. In this work, a continuous time modeling of the plant and of the controller is preferred since it is easier to compare to the real plant. Thus, the discrete time model is converted into a continuous time one, using a bilinear transformation [START_REF] Astrom | Computer Controlled Systems, Theory and Design[END_REF], without losing any significant information in the range of 5 to 50 Hz. In Fig. 2, the magnitude response with respect to frequency of the discrete time and the continuous time models are compared. It can be noticed that the continuous time model only shifts 0.1 Hz to the right in the first mode and 0.2 Hz in the second mode compared to the discrete time model, without any noticeable difference in the magnitude. First, the Hankel's singular values are ranked considering their multiplicative error bound, which gives the energy of states [START_REF] Safonov | Model Reduction for Robust Control: A Schur Relative Error Method[END_REF]. The last two states seem to be less significant as they are less than 0.02 compared to other five states, higher than 0.5. They are then removed from the model, leading to a 5 th order model.

Then, the model reduction is realized via multiplicative error balanced stochastic model truncation (BST), as it appears to emphasize a specific part of the plant (5 to 50 Hz) [START_REF] Safonov | Model Reduction for Robust Control: A Schur Relative Error Method[END_REF]. Consequently, within this specific frequency range, the BST method leads to an error lower than the additive reduction. In Fig. 3, it can be noticed that the BST method (blue) gives the best approximation. In the anti-resonance frequencies, an approximate difference with the original plant is kept under 0.2 dB, while in the case of balanced method (red), the error attains approximately 1.9 dB compared to the original plant.
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where 𝑠 is the Laplace variable, 𝑎 1..5 and 𝑏 1..5 are the denominator and numerator coefficients respectively. Using the partial fraction decomposition [START_REF] Rao | Recursive techniques for obtaining the partial fraction expansion of a rational function[END_REF] of eq. ( 1) leads to: 
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(2) 𝑃 1 .. 𝑃 5 are the poles of the model, 𝑅 1 . . 𝑅 5 the numerator complex coefficients, 𝑅 6 a real gain. As the plant contains two modes, consequently, there are two pairs of conjugate poles for each mode and a real 5 th pole. In eq. ( 2), conjugate poles and numerators are gathered, which leads to:
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Eq. ( 3) is a detailed form of eq. ( 2), where the complex poles and zeros are expressed in terms of real and imaginary parts. Then eq. ( 3) can be rewritten by redefining variables to obtain modal parameters in view of a parametric design model of the plant, as follows:
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Eq. ( 4) exhibit the modal parameters such as the mode frequency and mode damping, (Ω 1 , 𝜉 1 ) for the first mode and (Ω 2 , 𝜉 2 ) for the second mode. They are obtained from Eq. (3):
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III. PROPOSED CONTROL ARCHITECTURE The proposed architecture of Fig. 4 uses an additional feedforward action, which is the inverse of the nominal plant model, to deliver an accurate anticipative command to the actuator. The multivariable two input one output feedback controller is used to compensate tracking error and noisedisturbance. This structure will facilitate the design of the robust controller, leading to an increase of the robustness of the system against modal parameter variations. In general, this strategy increases the bandwidth of the control and the gain of correction, solving the issue of pole-zero compensation of a lightly damped structure [START_REF] Gahinet | A Linear Matrix Inequality Approach to 𝐻 ∞ Control[END_REF]. The first reference input is a sinusoidal acceleration signal with variable frequency called 𝑐𝑜𝑙𝑎 [START_REF]Spacecraft mechanical loads analysis handbook[END_REF][4] and the second one is a constant value of 0 [START_REF] Zhou | Robust and Optimal Control[END_REF], that emphasizes the cancellation of the disturbance action on the output. The errors associated to the references are denoted respectively 𝑒 1 and 𝑒 2 . The control effort, 𝑢 𝑐𝑜𝑚 , is the sum of the feedforward action, denoted 𝑢 𝑓𝑓 , and the feedback action denoted 𝑢 𝑓𝑏 . 𝑦 𝑎𝑏𝑠 and 𝑦 𝑚𝑒𝑠 are the real and measured output acceleration.

A. Closed-loop specification

Let first define the specification of the closed-loop system from an industrial point of view. The tracking error has to be kept less than ±1% of the amplitude of 𝑐𝑜𝑙𝑎 (can reach upto 2g) under parameter variation, resulting in a significant vibration reduction of the system. Given the actuation limit of 75g, the closed-loop system must use the minimum control effort and keep it below the saturation limit. In this paper, we limit the analysis to a single mode of the satellite, which is between 5 to 20 Hz and we emphasize the performance of the system in terms of modal parameter variations of that given mode. There are mainly two factors, which introduce parameter variations of the system. Firstly, the derivation of the continuous time synthesis model from the full order identified discrete time model accounts for almost 1.5% of uncertainties on the mode damping. Moreover, the dynamics identified from a very low-level test differs from the qualification level test by a frequency shift of -5% and 15% of damping. Lastly, an analysis is required to ensure the stability of the system.

B. 𝐻 ∞ feedback control synthesis

Firstly, the industrial specifications are transformed into frequency domain constraints in order to derive an optimization problem formulation [START_REF] Arefin | Sine sweep tracking control of lightly-damped spacecraft[END_REF] [START_REF] Gu | Robust control design with MATLAB®[END_REF]. The frequency domain constraints are imposed on the system via four weighting functions, denoted 𝑤 1 , 𝑤 2 , 𝑤 3 and 𝑤 4 .

The feedforward controller 𝐾 𝑓𝑓 (𝑠) is defined by: 1 ( ) ( )
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where 𝐺 𝑛𝑜𝑚 (𝑠) is the plant dynamics obtained from eq. ( 4) with the nominal values of (Ω 1 , 𝜉 1 ) and (Ω 2 , 𝜉 2 ).

1) Problem formulation

The controller 𝐾 ∞ (𝑠) has to satisfy performance criteria defined by frequency domain weights. The expression of 𝑃(𝑠) is given 
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𝑃 is the augmented model of Fig. [START_REF] Bettacchioli | Simulation of satellite vibration test[END_REF] and 𝐾 ∞ is the feedback controller, then the LFT between 𝑃 and 𝐾 ∞ is denoted by 𝐹(𝑃, 𝐾 ∞ ).

The definitions of the sensitivity functions are given by:

-Sensitivity: 𝑆 between 𝑒 1 and 𝑅 1 , we restrain this function to minimize the tracking error of the input 𝑐𝑜𝑙𝑎.

-Complementary sensitivity: 𝑇 between 𝑒 3 and 𝑅 1 (𝑐𝑜𝑙𝑎), is used to constrain the effect of sensor noise -𝐾𝑆 between 𝑒 4 and 𝑅 1 (𝑐𝑜𝑙𝑎) is used to limit the actuator signal By the application of the small gain theorem [START_REF] Zhou | Robust and Optimal Control[END_REF], we can obtain the design criteria, as follows:
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where 𝜎 ̅ is the upper singular value and 𝛾 > 0 . The 𝐻 ∞ feedback controller is obtained by minimizing ‖𝐹(𝑃, 𝐾 ∞ )‖ ∞ for the set of 𝐾 ∞ (𝑠) which stabilizes the internal states of the system. The minimum gain is called 𝐻 ∞ optimal gain 𝛾 𝑜𝑝𝑡 . From eq. ( 8) it comes:
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C. Weight selection for 𝐻 ∞ control

In this section, we introduce a systematic way to transform the industrial specifications of the closed loop vibration testing system to frequency domain weights 𝑤 1 , 𝑤 2 and 𝑤 3 . The tracking error is constrained via the weight 1 𝑤 1 [START_REF] Gu | Robust control design with MATLAB®[END_REF]. As previously mentioned, considering the dynamic tracking, time domain verification is needed to quantify the tracking error of the closed-loop system. As we intend to evaluate up to 20 Hz including the first mode, 𝑤 1 is chosen to constrain the magnitude near 20 Hz at approximately -20 dB and the bandwidth of this weight is 147 Hz. This value is chosen as small as possible, since a higher corner frequency of 
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The specification is to limit the bandwidth of the complementary sensitivity function as low as possible to filter as much as possible sensor noises. At the same time, we cannot lower this value arbitrarily as we need a minimum bandwidth to keep the tracking error within the tolerance. So the bandwidth of this weight has been fixed at a minimum value, which is 443 Hz, and its magnitude crosses 0 dB at 254 Hz to satisfy the 𝐻 ∞ optimization criteria. is given by: solving an optimization problem, using the robust control toolbox of MATLAB [START_REF] Glover | State-space formulae for all stabilizing controllers that satisfy an 𝐻 ∞ norm bound and relations to risk sensitivity[END_REF].

IV. SIMULATION RESULTS

A. Frequency domain analysis 1) Analysis of the synthesized controller

The designed controller satisfying the constraints of eq. ( 9) is illustrated in Fig. 7. As the order of this synthetized controller is the sum of the orders of the different dynamics, (5 th order for each of plant and feedforward controller, a single order for each of the three weights), totaling a 13 th order controller, which remains acceptable in the real time simulation using a typical intel 3 rd generation dual core I3 processor clocked at 3.2 GHz. 

2) Analysis of the sensitivity functions

The optimization problem leads to 𝛾 𝑜𝑝𝑡 = 0.98. Before any further analysis, it is important to mention that the second input of the controller of Fig. 4, with the weight 𝑤 4 , is used to satisfy the optimization criterion, as only one single input resulted in a very high 𝛾 𝑜𝑝𝑡 (almost 50), leading to a nonrespect of the specifications. Fig. 8 shows the sensitivity functions, remaining below their corresponding weights of eq. ( 9), satisfying the frequency domain specifications. 

By using the unstructured small gain theorem, the guaranteed minimum margin of the two loop is given by 𝛼 𝑚𝑎𝑥 [START_REF] Zhou | Robust and Optimal Control[END_REF]:

1 max s ) 1 up ( CL w T   - = (15) 
The guaranteed margin is 𝛼 𝑚𝑎𝑥 = 0.71, which can be used to deduce the stability margin through the following relations: [START_REF] Naisse | Simulation des essais en vibrations de satellites a partir de l'analyse modale dune reponse bas niveau[END_REF] where 𝐺𝑀 denotes the gain margin and 𝜑 𝑖 is for phase margin, which are respectively (0.6, 3.41) and ±41.4°. The obtained stability margins indicate that the system dynamics can vary up to the upper and lower limits of gain and phase margins before being unstable.
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B. Time domain analysis

Time domain analysis has been achieved using the system described in Fig. 4.

1) Nominal case study In this part, the dynamics of the system is calculated from eq. ( 4) with nominal modal parameter values, the analysis has been done in the frequency range of [START_REF] Bettacchioli | Simulation of satellite vibration test[END_REF][START_REF] Zhou | Robust and Optimal Control[END_REF] Hz, for a sweep rate of 3 oct/min. For this given study case, the result of Fig. 9 shows that the dynamic tracking error between the reference and the measured acceleration amplitude (𝐻 ∞ control, blue) is below ±1% . At the same time, the performance of the current nonlinear controller [START_REF] Arefin | Sine sweep tracking control of lightly-damped spacecraft[END_REF] for the same case (in red) shows a degraded performance (max. error reaches [-13%, 5%]). 10 illustrates the total control effort 𝑢 𝑐𝑜𝑚 , which is the sum of the feedforward and feedback actions. We find that the maximum amplitude near 27 sec reaches roughly ±3.73 g, when capacity is 75g. It can also be remarked that the correction in lower frequencies needs higher actuation.
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2) Robustness study In this section, we intend to demonstrate the robust performance of the proposed 𝐻 ∞ controller against modal parameter (Ω 1 , 𝜉 1 ) variation. Fig. [START_REF] Gawronski | Advanced Structural Dynamics and Active Control of Structures[END_REF] shows the magnitude response of the set of plants with ±15% of the mode frequency ( Ω 1 ) variations and ±25% of the damping ( 𝜉 1 ) variations. Those parameters are distributed to their limits in order to create the worst-case scenarios, which therefore validates the range of obtainable dispersion through the proposed control architecture. The error amplitude in Fig. 12 evidences the robustness against ±15% of frequency (Ω 1 ) shift (3 times more than the required specification) and ±25% of damping (𝜉 1 ) (almost ±8% more than the specification). The tracking error is kept below ±1% without any further vibrations. The combination of right frequency shift and lightest damping factor appears as the worst case, and pushing those limits higher induces oscillations near 1g.

V. CONCLUSION

The main goal of the paper is to propose a control architecture of the vibration testing system, which limits dynamic tracking error in presence of modal parameter variation, while optimizing the control effort to stay below the actuator saturation. The proposed feedforward-feedback control system also gives an alternative for pole/zero cancellation issues of classical 𝐻 ∞ mixed sensitivity problems observed in the active vibration control systems. The control structure is kept to a minimal order of complexity, making it implementable for the vibration testing system of lightly damped large space structures. Ongoing work considers the study of several modes and as a perspective, the experimental validation of the controller.
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 2 Figure 2 Magnitude response of the full order model B. Model reduction In a second step, the obtained continuous time model is reduced in order to decrease the complexity. The order reduction is performed by considering the Hankel's singular values of the full-order model by following a classical approach detailed in the sequel.
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 3 Figure 3 Comparison of error between BST and balanced reduction C. Modal parameter identificationIn the last step of modeling, modal parameters of the plant are determined, obtained from the fifth order model derived above. This model will be used for control design and robustness analysis. The general form of a fifth order transfer function can be written as follows: 5 4 3 2 5 4 3 2 1 0 5 4 3 2 1 2 3 4 5

Figure 4

 4 Figure 4 Proposed closed-loop system architecture
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 545 Figure 5 𝐻 ∞ synthesis architecture
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 6 Figure 6 LFT model In Fig. 6, 𝑅 = [𝑅 1 𝑅 2 ] 𝑇 = [𝑐𝑜𝑙𝑎 0] 𝑇 is the reference input, 𝑒 = [𝑒 1 𝑒 2 ] 𝑇 the tracking error and 𝑍 = [𝑧 1 𝑧 2 𝑧 3 𝑧 4 ] 𝑇 the exogenous output. The LFT associated to Fig. 6 can be written as:

  controller with bad noise filtering properties at lower frequencies. The chosen weighting function is:

  amplitude has been set at the maximum value of acceleration (75 g) delivered by the vibrator. It reaches 0 dB at the maximum operative frequency (1700 Hz) of the vibrator. The expression of 1 w 2

𝑤 4

 4 is further chosen equal to 1, see section IV.A.2. The 𝐻 ∞ controller is determined for these weighting functions by 978-1-6654-0782-3/21/$31.00 ©2021 IEEE
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 7 Figure 7 Magnitude response of the feedback controller
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 8 Figure 8 Constraints vs sensitivity functions 3) Stability margin The open-loop two-input two-output function is given by: OL T G K  =
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 9 Figure 9 Tracking performance of a nominal plant dynamics
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 10 Figure 10 Total control effort 𝑢 𝑐𝑜𝑚 Fig.10illustrates the total control effort 𝑢 𝑐𝑜𝑚 , which is the sum of the feedforward and feedback actions. We find that the maximum amplitude near 27 sec reaches roughly ±3.73 g, when capacity is 75g. It can also be remarked that the correction in lower frequencies needs higher actuation.
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 11 Figure 11 Plant dynamics with first mode dispersion
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 12 Figure 12 Robust performance of the 𝐻 ∞ controller
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