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a b s t r a c t

The affine combination of two adaptive filters that simultaneously adapt on the same

inputs has been actively investigated. In these structures, the filter outputs are linearly

combined to yield a performance that is better than that of either filter. Various decision

rules can be used to determine the time-varying parameter for combining the filter

outputs. A recently proposed scheme based on the ratio of error powers of the two

filters has been shown by simulation to achieve nearly optimum performance. The

purpose of this paper is to present a first analysis of the statistical behavior of this error

power scheme for white Gaussian inputs. Expressions are derived for the mean

behavior of the combination parameter and for the adaptive weight mean-square

deviation. Monte Carlo simulations show good to excellent agreement with the

theoretical predictions.

1. Introduction

The design of many adaptive filters requires a trade-off

between convergence speed and steady-state

mean-square error (MSE). In general, a faster (slower)

convergence speed yields a larger (smaller) steady-state

mean-square deviation (MSD) and MSE. This trade-off is

usually controlled by some design parameter of the

weight update, such as a step size, a regularization

parameter or a forgetting factor. Variable step-size mod-

ifications of the basic adaptive algorithms offer a possible

solution to this design problem [1–4].

Recently, a novel scheme has been proposed in [5]

which uses a convex combination of two fixed step-size

adaptive filters as shown in Fig. 1. The key to this scheme

is the selection of the scalar mixing parameter lðnÞ for

combining the two filter outputs. The mixing parameter is

defined in [6] as a sigmoid function whose free parameter

is adaptively optimized using a stochastic gradient search

which minimizes the quadratic error of the overall filter.

The performance of this adaptive scheme has been

recently studied in [7,8]. The convex combination

performed as well as the best of its components in the

MSE sense. These results indicate that a combination of

adaptive filters can lead both to fast convergence rates

and good steady-state performance, an attribute that is

usually obtained only in variable step-size algorithms.

Thus, there is great interest in learning more about the

properties of such adaptive structures.

More recently [9] the convex combination has been

generalized to an affine combination, in which lðnÞ is not

restricted to the interval (0,1). Fig. 1 was interpreted from

the viewpoint of a linear combiner where each adaptive

filter is estimating the unknown channel impulse response

using the same input data. The achievable performance
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was studied for an affine combination of two LMS adaptive

filters with a white Gaussian input. The optimal combining

parameter sequence loðnÞ was determined which mini-

mizes the weight mean-square deviation (MSD). This

optimal affine combiner is not realizable, as its design

requires the knowledge of the unknown response. Never-

theless, its performance provides an upper bound on the

performance of any realizable affine combiner. The analysis

of the affine combination of adaptive filters has been

further expanded in [10,11]. Affine and convex combina-

tions have been compared in [12–14].

Two realizable schemes for updating lðnÞ were

proposed in [9]. The first scheme is based on a stochastic

gradient approximation to loðnÞ. This scheme has been

analyzed in [11]. The second scheme is based on the

relative values of averaged estimates of the individual

error powers. Though simulation results using this

scheme have shown performances very close to the

optimum, so far there is no available analytical model

for its performance.

This paper presents1 a first analysis of the stochastic

behavior of the error power scheme proposed in [9]. The

analysis assumes a stationary environment and a white

Gaussian input signal.2 The mean behavior of lðnÞ is

studied by replacing the involved random variables by

their means resulting in expressions for E½lðnÞ� (E½�� mean-

ing statistical expectation) involving the time-varying

weight MSDs of the individual filters, the cross MSD

between filters and the background noise. Monte Carlo

simulations show excellent agreement with the theore-

tical predictions based on the analytical model.

This paper is organized as follows. Section 2 briefly

reviews the main expressions derived in [9] for the

behavior of an affine combination for a white Gaussian

input, as well as the expression for lðnÞ that characterizes
the error power scheme. Section 3 presents the derivation

of the analytical models for the behaviors of E½lðnÞ� and
the weight MSD of the combination. Section 4 presents

simulation results that verify the quality of the analytical

model. Section 5 concludes the paper.

2. The affine combiner

The system under investigation is shown in Fig. 1. Each

individual filter uses the LMS adaptation rule but with

different step sizes mi, i¼1,2:

W iðnþ1Þ ¼W iðnÞþmieiðnÞUðnÞ, i¼ 1,2 ð1Þ

where

eiðnÞ ¼ dðnÞÿW
T
i ðnÞUðnÞ, i¼ 1,2 ð2Þ

dðnÞ ¼ eoðnÞþW
T
oUðnÞ ð3Þ

where Wo is the unknown weight vector, W iðnÞ, i¼1,2,

are the N-dimensional adaptive coefficient vectors, and

eo(n) is assumed zero-mean, i.i.d. with variance s2
o and

statistically independent of any other signal in the

system. UðnÞ ¼ ½uðnÞ, . . . ,uðnÿNþ1Þ�T is the input vector.

The input process u(n) is assumed to be white, Gaussian,

with zero-mean, variance s2
u and conditional correlation

matrix Ru ¼ E½UðnÞUT ðnÞjW1ðnÞ,W2ðnÞ�.
In the following analysis, the input vector at time n is

assumed statistically independent of the weights at time

n (independence theory). Thus, Ru ¼ E½UðnÞUT ðnÞ� ¼ s2
uI. It

is also assumed that the errors e1ðnÞ and e2ðnÞ are zero-

mean, white over time and conditionally Gaussian given

W1ðnÞ and W2ðnÞ. Finally, it will also be assumed, without

loss, that m1Zm2, so that W1ðnÞ will, in general, converge

faster than W2ðnÞ. Also, W2ðnÞ will converge to the lowest

individual steady-state weight misadjustment. The

stochastic analysis of each individual adaptive filter beha-

vior in (1) is well-known [16–18].

The outputs of the two filters are combined as shown

in Fig. 1,

yðnÞ ¼ lðnÞy1ðnÞþ½1ÿlðnÞ�y2ðnÞ ð4Þ

where yiðnÞ ¼W
T
i ðnÞUðnÞ, i¼1,2, lðnÞ can be any real

number3 and the overall system error is given by

eðnÞ ¼ dðnÞÿyðnÞ ð5Þ

The adaptive filter output combination (4) is an affine

combination, as y(n) can assume any value on the real

line. This setup generalizes the combination of adaptive

filter outputs, and can be used to study the properties of

the optimal combination.

The optimum instantaneous value loðnÞ for lðnÞ for

white inputs has been determined in [9] to satisfy

½W1ðnÞÿW2ðnÞ�T ½W1ðnÞÿW2ðnÞ�loðnÞ

¼ ½WoÿW2ðnÞ�T ½W1ðnÞÿW2ðnÞ� ð6Þ

Assuming that, in steady-state, loðnÞ is slowly varying

in comparison with other term on the l.h.s. of (6) and

Fig. 1. Adaptive combining of two transversal adaptive filters.

1 Part of this work has been presented in [15].
2 The analysis is this paper is restricted to the white input case in

order to simplify the understanding and the interpretation of the results.

It appears to us that extension to the colored input case is straightfor-

ward using the results in [11].

3 This case corresponds to an affine (as opposed to convex) combi-

nation. The output in (4) can have any real value on the line containing

y1ðnÞ and y2ðnÞ. y(n) is restricted to the points on the line between y1ðnÞ
and y2ðnÞ in the convex combination case.



taking the expectation of both sides yields

lim
n-1

Ef½W1ðnÞÿW2ðnÞ�T ½W1ðnÞÿW2ðnÞ�gE½loðnÞ�

¼ lim
n-1

Ef½WoÿW2ðnÞ�T ½W1ðnÞÿW2ðnÞ�g ð7Þ

Thus,

lim
n-1

E½loðnÞ�C lim
n-1

E½WT
2ðnÞW2ðnÞ�ÿE½WT

2ðnÞW1ðnÞ�
Ef½W1ðnÞÿW2ðnÞ�T ½W1ðnÞÿW2ðnÞ�g

ð8Þ

It has also been determined in [9] that

E½WT
i ðnþ1ÞW jðnþ1Þ� ¼ ½1ÿðmiþmjÞs2

uþðNþ2Þmimjs
4
u�

�E½WT
i ðnÞW jðnÞ�þmis

2
u½1ÿðNþ2Þmjs

2
u�W

T
oE½W jðnÞ�

þmjs
2
u½1ÿðNþ2Þmis

2
u�W

T
oE½W iðnÞ�

þmimjs
4
u N

s2
o

s2
u

� �

þðNþ2ÞWT
oWo

� �

: ð9Þ

where [16]

E½WkðnÞ� ¼ ð1ÿmks
2
uÞnE½Wkð0Þ�þ½1ÿð1ÿmks

2
uÞn�Wo ð10Þ

for k¼1,2, i¼1,2 and j¼1,2,

lim
n-1

E½WT
2ðnÞW1ðnÞ� ¼W

T
oWoþ

m1m2Ns
2
o

ðm1þm2Þÿm1m2ðNþ2Þs2
u

ð11Þ

and

lim
n-1

E½WT
i ðnÞW iðnÞ� ¼W

T
oWoþ

miNs
2
o

2ÿmiðNþ2Þs2
u

, i¼ 1,2

ð12Þ

Rewriting (8) as a function of (11) and (12) yields

lim
n-1

E½loðnÞ�C lim
n-1

1

1þE½WT
1ðnÞW1ðnÞ�ÿE½WT

2ðnÞW1ðnÞ�
E½WT

2ðnÞW2ðnÞ�ÿE½WT
2ðnÞW1ðnÞ�

ð13Þ

It has been shown in [11] that (13) can be approximated

by

lim
n-1

E½loðnÞ�C
dð2ÿm1Ns

2
uÞ

2ðdÿ1Þ ð14Þ

where d¼ ðm2=m1Þo1.

3. Error power based mixing parameter updating

scheme

A function of time averaged error powers has been

shown in [9] to be a good candidate for an estimator of

the optimum lðnÞ for each n. The individual adaptive error

powers are good indicators of the contribution of each

adaptive output to the quality of the present estimation of

d(n). These errors are readily available and do not need an

estimate of the additive noise power.

Consider a uniform sliding time average of the instan-

taneous errors

ê
2
1ðnÞ ¼

1

K

X

n

m ¼ nÿKþ1

e21ðmÞ ð15Þ

ê
2
2ðnÞ ¼

1

K

X

n

m ¼ nÿKþ1

e22ðmÞ ð16Þ

where K is the averaging window length. Then, the

instantaneous value of lðnÞ is determined as

lðnÞ ¼ 1ÿkg½xðnÞ�, xðnÞ ¼ ê
2
1ðnÞ

ê
2
2ðnÞ

ð17Þ

where g½xðnÞ� is a nonlinear function that tends to one as

xðnÞ tends to infinity and to a value much less than one as

xðnÞ tends to zero. Thus, y(n) tends to y1ðnÞ when

e21ðnÞ5e22ðnÞ and to y2ðnÞ when e22ðnÞ5e21ðnÞ, which is the

desired combined adaptive behavior when m14m2 in

Fig. 1 [9].

This paper generalizes the error power ratio scheme

proposed in [9] and analyzed in [15] to a generic non-

linearity g½xðnÞ�. Examples of functions g½xðnÞ� with the

desirable properties described above are the hyperbolic

tangent function

g1½xðnÞ� ¼ tanh
xðnÞ
2

� �

ð18Þ

and the erf function,

g2½xðnÞ� ¼ erf ½xðnÞ� ¼ 2
ffiffiffiffi

p
p

Z xðnÞ

0
eÿt2 dt ð19Þ

Eqs. (17) and either (18) or (19) allow lðnÞ to vary

smoothly over ð1ÿk,1Þ as required.

3.1. The value of k

The value of k in (17) controls the value of lðnÞ as

n-1. Ideally, it should be selected so that

lim
n-1

E½lðnÞ�C lim
n-1

E½loðnÞ� ð20Þ

Taking expectations of both sides of (17) and approximat-

ing the random variables by their means, a first order

approximation of E½lðnÞ� is obtained as

E½lðnÞ�C1ÿkg E½ê21ðnÞ�
E½ê22ðnÞ�

( )

ð21Þ

However,

E½ê2i ðnÞ� ¼
1

K

X

n

m ¼ nÿKþ1

E½e2i ðmÞ�

¼ s2
oþ

s2
u

K

X

n

m ¼ nÿKþ1

MSDiðmÞ, i¼ 1,2 ð22Þ

where

MSDiðmÞ ¼ Ef½WoÿW iðmÞ�T ½WoÿW iðmÞ�g
¼W

T
oWoÿ2WT

oE½W iðmÞ�þE½WT
i ðmÞW iðmÞ�, i¼ 1,2

ð23Þ

Using (22) in (21) and taking the limit as n-1 yields

lim
n-1

E½lðnÞ�C1ÿkg s2
oþs2

u MSD1ð1Þ
s2
oþs2

u MSD2ð1Þ

� �

ð24Þ

Finally, equating (24) to (14) and solving for k yields

k¼ 1ÿdð2ÿm1Ns
2
uÞ

2ðdÿ1Þ

� �

g
s2
oþs2

u MSD1ð1Þ
s2
oþs2

u MSD2ð1Þ

� �� �ÿ1

ð25Þ

where MSD1ð1Þ and MSD2ð1Þ can be obtained from (9)

and (10) for a given s2
o , s

2
u, m1 and m2.



3.2. Mean behavior of lðnÞ

An analytical model for the mean behavior of (17) is

derived by approximating the expected value of g½xðnÞ� by
a second order expansion. Defining

ZðnÞ ¼ E½xðnÞ� and s2
xðnÞ ¼ E½x2ðnÞ�ÿZ2ðnÞ ð26Þ

a second order approximation of Efg½xðnÞ�g is [19, p. 113,

Eq. (5.55)]

Efg½xðnÞ�gCg½ZðnÞ�þ
s2
xðnÞ
2

g00½ZðnÞ� ð27Þ

Thus,

E½lðnÞ�C1ÿk g½ZðnÞ�þ
s2
xðnÞ
2

g00½ZðnÞ�
( )

ð28Þ

Now, writing

ê
2
i ðnÞ ¼ E½ê2i ðnÞ�þeiðnÞ ¼miðnÞþeiðnÞ, i¼ 1,2 ð29Þ

the mean ZðnÞ is approximated as

ZðnÞ ¼ E
m1ðnÞþe1ðnÞ
m2ðnÞþe2ðnÞ

� �

C

m1ðnÞ
m2ðnÞ

¼ E½ê21ðnÞ�
E½ê22ðnÞ�

ð30Þ

where the fluctuations of ê
2
i , i¼1,2 have been neglected.

This is because these quantities are closely approximated

by their mean values for sufficiently large K. The numera-

tor and denominator of (30) are given by (22) for i¼1 and

2, respectively.

Using the same reasoning as above, the variance s2
xðnÞ

is approximated as follows:

s2
xðnÞ ¼ E

ê
2
1ðnÞ

ê
2
2ðnÞ

 !2
8

<

:

9

=

;

ÿZ2ðnÞ

C

Ef½ê21ðnÞ�2g
Ef½ê22ðnÞ�2g

ÿ E½ê21ðnÞ�
E½ê22ðnÞ�

( )2

ð31Þ

Using (29), (31) can be written as

s2
xðnÞC

m2
2ðnÞE½e21ðnÞ�ÿm2

1ðnÞE½e22ðnÞ�
fm2

2ðnÞþE½e22ðnÞ�gm2
2ðnÞ

ð32Þ

Under the assumption that e1ðnÞ and e2ðnÞ are zero-mean,

white over time, and conditionally Gaussian given W1ðnÞ
and W2ðnÞ,

E½e2i ðnÞ� ¼
2

K2

X

n

m ¼ nÿKþ1

E½e2i ðmÞ�2

¼ 2

K2

X

n

m ¼ nÿKþ1

½s2
oþs2

u MSDiðmÞ�2, i¼ 1,2: ð33Þ

Using (22) and (33) in (32) for s2
xðnÞ, (22) in (30) for ZðnÞ,

and finally (25), (30) and (32) in (28) yields the analytical

model for E½lðnÞ�. Evaluation of the final expression for

each nonlinear function g½xðnÞ� requires the evaluation of

g½ZðnÞ� and g00½ZðnÞ�.

3.3. Mean-square deviation

Using (4) and (5) with yiðnÞ ¼W
T
i UðnÞ, i¼1,2 and

rearranging terms yields

eðnÞ ¼ eoðnÞþflðnÞ½WoÿW1ðnÞ�
þ½1ÿlðnÞ�½WoÿW2ðnÞ�gTUðnÞ ð34Þ

Neglecting the statistical dependence between lðnÞ and

the adaptive weights,4 squaring and averaging (34) yields

an approximation for the MSD of the adaptive filter

combination:

MSDcðnÞ ¼ E½e2ðnÞ�ÿs2
o

Cs2
ufE½l

2ðnÞ�MSD1ðnÞ
þf1ÿ2E½lðnÞ�þE½l2ðnÞ�gMSD2ðnÞ
þ2fE½lðnÞ�ÿE½l2ðnÞ�gMSD21ðnÞg ð35Þ

where

MSD21ðnÞ ¼ Ef½WoÿW2ðnÞ�T ½WoÿW1ðnÞ�g
¼W

T
oWoÿW

T
oE½W1ðnÞ�ÿW

T
oE½W2ðnÞ�þE½WT

2ðnÞW1ðnÞ�:
ð36Þ

Thus, an approximation for E½l2ðnÞ� is necessary. From

(17),

E½l2ðnÞ� ¼ 1ÿ2k EfgðxðnÞ�gþk2Efg2½xðnÞ�g ð37Þ

Efg½xðnÞ�g has already been evaluated in Section 3.2 above.

Again, using a second degree approximation for Efg2½xðnÞ�g
and defining

q½xðnÞ� ¼ g2½xðnÞ� ð38Þ

yields

Efq½xðnÞ�gCq½ZðnÞ�þ
s2
x

2
q00½ZðnÞ� ð39Þ

which completes the model, except for the evaluations of

g00½ZðnÞ� and q00½ZðnÞ� for the specific nonlinearity.

3.4. Models using different nonlinear functions

The complete analytical model for different nonlinear

functions g½xðnÞ� only requires the evaluation of g00½xðnÞ�
and q00½xðnÞ�. Table 1 shows these expressions for g1½xðnÞ�
and g2½xðnÞ� in (18) and (19). Extension to other nonlinear

functions is straightforward.

4. Simulation results

This section presents simulation results to verify the

accuracy of the models derived for the mean behavior of

lðnÞ (Eq. (28)) and for the MSDcðnÞ (Eq. (35)).
Consider a system identification setup in which d(n) is

the system’s output and the system’s impulse response

Wo ¼ ½wo1 , . . . ,woN �T is given by the raised-cosine function

[20] whose k-th coefficient is

wok ¼
sin½2pfoðkÿDÞ�
2pfoðkÿDÞ

cos½2prf oðkÿDÞ�
1ÿ4rf oðkÿDÞ

, k¼ 1, . . . ,N ð40Þ

4 This assumption is reasonable given the small fluctuations of lðnÞ,
as shown later on in the simulation examples.



In (40), N is the number of coefficients, D is the right shift

delay relative to the even function case, r is the roll-off

factor (0rrr1) and fo ¼ 3a=N where a is the expansion

factor.

In all the following simulations, N¼32, K¼100, s2
u ¼ 1

and the value of k was obtained from (25). The expected

values were estimated from 50 Monte Carlo runs.

4.1. Example 1

The unknown response Wo was obtained from (40)

with D¼ 10, r¼0.2 and a¼ 1:2. The response is shown in

Fig. 2. The nonlinearity g2½xðnÞ� was used in (17). Fig. 3(a)

shows the mean behaviors of loðnÞ (Eq. (6)) and lðnÞ
(Eq. (17)), and the theoretical prediction from (28) for

s2
o ¼ 10ÿ4, m1 ¼ 1=34 and step-size ratio d¼ 0:1 (m2 ¼

0:0029). Note that (17) and (25) result in a mean behavior

quite close to that of E½loðnÞ�. Also, the theoretical model

very accurately predicts the behavior of E½lðnÞ�. Fig. 3(b)
shows that (1) the actual system performance is very close

to optimal and (2) the theoretical model (35) is accurate.

4.2. Example 2

The unknown response has parameters D¼ 5, r¼0 and

a¼ 3:8 and is shown in Fig. 4. This unknown response is

more peaky with a longer tail than in the first example. The

Table 1

Expressions of g00½xðnÞ� and q00½xðnÞ� for g½xðnÞ� ¼ g1½xðnÞ� and

g½xðnÞ� ¼ g2½xðnÞ�.

g1½xðnÞ� g001½xðnÞ� ¼ÿ 1
4 f1ÿg21 ½xðnÞ�gg1½xðnÞ�

q001½xðnÞ� ¼ 1
2 f1ÿg21 ½xðnÞ�gf1ÿ3g21 ½xðnÞ�g

g2½xðnÞ�
g002½xðnÞ� ¼ÿ4xðnÞ

ffiffiffiffi

p
p eÿx

2 ðnÞ

q002½xðnÞ� ¼
8
ffiffiffiffi

p
p eÿx

2 ðnÞ
ffiffiffiffi

p
p ÿxðnÞeÿx2 ðnÞg2½xðnÞ�

( )

eÿx
2 ðnÞ
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Fig. 2. Unknown impulse response Wo for Example 1.
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Fig. 3. Monte Carlo simulations averaged over 50 realizations for g2½xðnÞ� with s2
o ¼ 10ÿ4 , d¼ 0:1 and m1 ¼ 1=34. (a) Behavior of EflðnÞg and EfloðnÞg. Black

(top curve): EfloðnÞg (optimum). Blue (superimposed by the red curve): EflðnÞg from (17). Red (bottom curve): theory using (28). (b) Behavior of MSDcðnÞ.
Black: MSDcðnÞ for loðnÞ. Blue (bottom curve): MSDcðnÞ from simulations. Red (top curve): theory using (35). (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)
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nonlinearity g2½xðnÞ� was used in (17). The noise level was

increased to 10ÿ3, m1 ¼ 1=34 was maintained and the step-

size ratio was changed to d¼ 0:3 (m2 ¼ 0:0088). Fig. 5(a) and

(b) shows the simulation results and the theoretical predic-

tions for E½lðnÞ� and MSDcðnÞ for this case. Again, very good

agreements between the behaviors of E½loðnÞ� and E½lðnÞ�
and excellent theoretical predictions of the actual system

behavior are displayed. Note that a window of only 100

points (K¼100) corresponds to a very fast response for

changing lðnÞ, a desirable property in practical applications.

4.3. Example 3

For this example, the parameters are the same as in

Example 2 (Fig. 5), except that g1½xðnÞ� is used instead of

g2½xðnÞ� for the nonlinearity in (17). The results are shown

in Fig. 6. Comparison of Fig. 6 with Fig. 5 suggests that the

performance is relatively robust to the exact form of the

saturation nonlinearity g.

4.4. Example 4

For this example, the parameters are the same as in

Example 1 (Fig. 3), except that the step size m1 was reduced

to 1/64 and d¼ 0:2. The results are shown in Fig. 7. In this

case, the transfer from filter 1 to filter 2 starts, on average,

earlier than the ideal. This is what causes the bump in the

MSDc behavior, relative to the optimal. Convergence,

however, is achieved after about 2500 iterations and

matches the optimal performance. The analytical model
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Fig. 5. Monte Carlo simulations averaged over 50 realizations for g2½xðnÞ� with s2
o ¼ 10ÿ3 , d¼ 0:3 and m1 ¼ 1=34. (a) Behavior of EflðnÞg and EfloðnÞg. Black

(top curve): EfloðnÞg (optimum). Blue (bottom curve at n¼500): EflðnÞg from (17). Red (middle curve at n¼500): theory using (28). (b) Behavior of

MSDcðnÞ. Black (bottom curve): MSDcðnÞ for loðnÞ. Blue (middle curve): MSDcðnÞ from simulations. Red (top curve): theory using (35). (For interpretation

of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Monte Carlo simulations averaged over 50 realizations for g1½xðnÞ� with s2
o ¼ 10ÿ3 , d¼ 0:3 and m1 ¼ 1=34. (a) Behavior of EflðnÞg and EfloðnÞg. Black

(top curve): EfloðnÞg (optimum). Blue (bottom curve at n¼500): EflðnÞg from (17). Red (middle curve at n¼500): theory using (28). (b) Behavior of

MSDcðnÞ. Black (bottom curve): MSDcðnÞ for loðnÞ. Blue (middle curve): MSDcðnÞ from simulations. Red (top curve): theory using (35). (For interpretation

of the references to color in this figure legend, the reader is referred to the web version of this article.)



predicts very well the algorithm’s behavior. The premature

transfer from filter 1 to filter 2 seems to be a typical

behavior of the error power transfer scheme as the faster

filter step size reduces from the maximum speed value.

Nevertheless, the best performance is obtained from the

LMS affine combination when filter 1 is designed for

maximum convergence speed and filter 2 is designed for

the required steady-state performance. A practical design

methodology will be illustrated in the following example.

4.5. Example 5

This example is presented in order to compare the

performance of the error power scheme to the Z-PN-LMS

and Z-SR-LMS algorithms described in [11]. The unknown

response has parameters D¼ 15, r¼0 and a¼ 2:8 and the

noise floor is s2
o ¼ 10ÿ4. The nonlinearity g2½xðnÞ� was used

in (17). The steady-state MSE for the combined filters is

xcð1Þ ¼ E½e2ð1Þ� ¼ s2
o ðnÞþs2

uMSDcð1Þ

Step size m2 ¼ 0:0106 was chosen so that s2
u MSD2ð1Þ �

s2
u MSDcð1Þ � 2� 10ÿ5 has a negligible effect on xcð1Þ.

Smaller values for m2 slow overall convergence without

significant reduction in xcð1Þ.
Now, the fastest convergence step size for filter 1

would be m1o
¼ 1=Ns2

u ¼ 0:0312 for this case. Using m1 ¼
1=ðNþ2Þ ¼ 0:0294 (for stability reasons), yields d¼
0:3590.
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Fig. 7. Monte Carlo simulations averaged over 50 realizations for g2½xðnÞ� with s2
o ¼ 10ÿ4 , d¼ 0:2 and m1 ¼ 1=64. (a) Behavior of EflðnÞg and EfloðnÞg. Black

(top curve): EfloðnÞg (optimum). Blue (superimposed by the red curve): EflðnÞg from (17). Red (bottom curve): theory using (28). (b) Behavior of MSDcðnÞ.
Black: MSDcðnÞ for loðnÞ. Blue (bottom curve): MSDcðnÞ from simulations. Red (top curve): theory using (35). (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)
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Fig. 8. Comparison the results obtained using the error power scheme with those obtained using Z-PN-LMS and Z-SR-LMS algorithms in [11] g2½xðnÞ�. (a)
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Z-PN-LMS algorithm in [11]. Green: MSDcðnÞ for the Z-PN-LMS algorithm in [11]. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)



Good step-size parameters for the l adjustment in [11]

(obtained after some optimization by trial and error) are
~mZ � 0:09 and mZs � 0:75 for this case.5

Fig. 8(a) and (b) shows the Monte Carlo simulation

results for the new design parameters. Fig. 8(a) shows

that lðnÞ evaluated using the error power scheme is much

closer to loðnÞ in the transition region than lðnÞ for either
of the two schemes in [11]. This difference is seen clearly

in Fig. 8(b). Increasing the l-adjustment step sizes to

increase the speed in the transition region has led to

larger steady-state fluctuations in lðnÞ, resulting in larger

steady-state MSD. It can also be verified that lðnÞ obtained
using all three schemes deviates significantly from

loðnÞ � 1 during the initial phase (this property is also

discussed in [11]). After the initial and before the transi-

tion phase, lðnÞ provided by either of the two schemes in

[11] approaches lðnÞ ¼ 1 faster than the error power

scheme.6 The different behaviors, however, do not appear

to have a significant impact on the behavior of MSDcðnÞ
before the transition phase.

5. Conclusions

This paper has studied the stochastic behavior of the

error power scheme proposed in [9] for an affine combi-

nation of two LMS adaptive filters. A new design equation

for k improves the steady-state match between the out-

put combination parameter lðnÞ and the optimum para-

meter loðnÞ. Analytic models have been derived for the

mean behavior of lðnÞ and for the combined adaptive

weights mean-square deviation. Linear and quadratic

model approximations have been used. The resulting

model was shown to be simple to implement and accu-

rate in predicting the affine combination behavior.

Comparison with gradient type schemes [11] indicate a

better performance of the studied scheme in the transition

region. Possible future works include the analysis of the

error power scheme performance for colored input signals.
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