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Abstract— Our work focuses on improving the management
of stressful situations using virtual environments. We hypothe-
sise that learners can improve how they deal with these situa-
tions by being confronted with a wide variety of scenarios. We
want to create customised situations using different stressors,
which is why we are interested in the representation and
diagnosis of the learner ability to cope with said stressors. The
diagnosis of a stress profile is carried out using stress sensors
which provide measurements. However, these measurements are
not quite spotless and uncertainties are present. Moreover, the
situations we generate are complex and involve stressors that
can impact each learner differently. Hence, many uncertainties
also impact the diagnosis. In order to take these uncertainties
into account, we rely on the transferable belief model, and we
come up with stressors depicted in the form of a taxonomy
that can be configured by the instructor. This will allow them
to explore different levels of granularity.

I. INTRODUCTION

Training in a virtual environment allows instructors to
set up complex situations that would be difficult to re-
produce in the context of conventional training, such as
crisis situations (terrorist attack, armed conflicts, natural
disaster, health crisis). In addition, virtual reality for training
makes it possible to confront the learner with a wide variety
of situations. Crisis situations are particularly stressful for
people who have to work in similar real-life conditions.
We hypothesise that increasing the number of confrontations
with increasingly complex and/or stressful situations would
allow learners to better regulate their stress. We then place
ourselves within the framework of the constructivist current.
However, each individual is unique. A potential development
situation for one learner might turn out to be difficult to
overcome for another, consequently putting them in failure.
Likewise, people are stressed by different stimuli.

We propose a system which aims at generating a dynamic
and personalised profile for each learner. The learner profile
reflects their ability to manage stressful elements, using a
representation of Vygotsky’s zone of proximal development
in the form of n-dimensional spaces, where each dimension is
linked to a stressful element. Thus, each point from this space
represents a class of situations involving stressful elements,
and our system is able to advise next class of situations to
train in order to progressively expand the learner’s zone of
proximal development.
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The profile is generated using data from physiological
sensors. However, their measurements are not quite spotless
and uncertainties are present. In addition to the uncertainty
associated with potential measurement errors, signals used
in real time to detect an individual’s state of stress are
influenced by many factors, phenomena or actions that are
frequently found with the utilisation of a virtual reality
headset such as fatigue, movement or simulator sickness. It is
also difficult to isolate the factor at the origin of this stress as
there are multiple causes inducing it. This is why our system
is based on the theory of transferable beliefs as well as on a
knowledge model to allow semantic reasoning on uncertain
data.

In addition, there are specific needs to work at different
levels of granularity of situation for each instructor. To take
into account their different strategies to explore and work
on skills, our system offers such levels through a transfer of
belief.

This profile is used in conjunction with a dynamic planner
based on narrative theories to generate personalised training
situations. The profile is used to determine which stressors
will be played out in the virtual environment.

These scenarios must be adapted to each learner. It is
important to modulate the situations we present them during
a training session. By this mean, we intend not only to
diagnose the effects of a given situation during its execution,
but also for future sessions. Therefore, we are interested in
an adaptation of the scenario both at microscenaristic and
mesoscenaristic levels.

II. LEARNER PROFILE

Our goal is to allow learners to work on the skills they
already acquired by offering in addition stressful situations
illustrating these skills. To this end, we carry out a diagnosis
of their skills through data obtained thanks to biological
sensors. This offers them situations in line with their profile.
This profile also allows us to make predictions about their
ability to manage their stress in new situations. Our diagnosis
method is therefore both a descriptive and a predicative
model.

This description and prediction problem has been the
subject of numerous studies. We describe in this section some
existing examples of learner diagnosis and uncertainties
modelling to represent learner skills mastering state.

A. Uncertainties modelling

In order to establish our diagnosis, we must think about
the method we can use to represent the knowledge of the
learner, and to predict the state of this knowledge. Thus,
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we wish to be able to model a set of data which may turn
out to be false (see III.A Data). In other words, we need to
use a model to represent beliefs with uncertainties. We have
examined several theories in the literature to model these
beliefs: set theory; fuzzy set theory [1]; possibility theory
[2], [3]; Bayesian networks [4]; belief functions theory [5];
transferable belief model [6]. All these models allow us to
represent the imprecision in a data set.

So as to position our work, we have also studied several
examples of methods for generating a learner profile in the
literature.

B. Existing learner profiles

We compared three existing methods: an ontology-based
profile [7], a Bayesian network based profile [8] and a
transferable belief based profile. [9].

1) Ontology-based profile: Ontologies are used to de-
scribe numerous elements in development of learner profile.
For example, ON-SMMILE [7] uses ontologies to describe
learning objectives, knowledge object as well as learner
performance during lessons.

Ontologies offer powerful representing and reasoning
tools. ON-SMMILE uses ontology reasoning as a diagnostic
system to create learner profile. This approach is easily
adaptable to different learning environments, and offers an
easily understandable system for instructors.

However, uncertainties in learner profile are not taken into
account innately.

2) Bayesian network based profile: Bayesian networks are
used to represent conditional independence among variables
of interest, like learner skills mastering rate. Uncertainties
can be described using both static Bayesian networks or
dynamic Bayesian networks. Probabilistic inferences are
possible using this theory. The structure can also be based on
knowledge or data, making Bayesian networks greatly adapt-
able to correspond to most of the needs in representation.

However, Bayesian networks are hardly adaptable to
multiple learning environments. Another drawback is the
difficulty of reliably defining the conditional probabilities,
and defining other system parameters for the instructor.

3) Transferable belief based profile: TAILOR [9] uses
transferable belief theory to describe currently mastered
skills and skills that are close to be mastered through a graph-
ical representation of most of the encounterable situations in
the learning environment.

This system can also be used to represent skills that have
no hierarchical relationship.

However, the representation used by TAILOR can become
complex to understand, involving n-dimensional spaces. In
addition, since each skill must first be defined in the system,
it can be complex to define a representation that can be used
in several learning environments.

Although it can be hard for instructors to update the
model by themselves, as in a Bayesian network based profile,
TAILOR proposes a modelling method that can be adapted
to our goal: the stress management skills representation.

C. Positioning

We studied both uncertainties modelling theories and some
methods for generating a learner profile. This helped us to
choose the theory which may suit our needs, as well as ideas
for creating our own learner stress profile.

We finally chose the theory of transferable beliefs. This
theory encompasses all of the other theories that we have
listed, and also allows us to represent conflicts between
information sources, as well as lack of knowledge. This
formal framework also offers tools for merging information
from several sources, as well as tools for making inferences
about the values of a variable presenting a lack of knowledge
(see III.C Profile).

III. CONTRIBUTION

We propose a system allowing to dynamically generate
a profile of the stress of a learner, i.e. all the stressful
situations involving skills the learner has mastered, with
the aim of being used in stress management training. This
profile is established from physiological data from sensors
and constructed according to a taxonomy of skills that can
be edited by instructors.

A. Data

To establish the profile, the system needs a source of
information on the user physical reactions when the user
is under a stressor. We also analyse how the learner handles
proposed situations to create new beliefs on the state of their
skills.

There are many analysable signals. However, the system
must meet strong constraints in terms of execution speed,
and must operate all of its actions in less than a second,
a value named the interactive time. We must also exclude
sensors that would be difficult to use with a virtual reality
headset.

Two sensors satisfy our criteria, giving us the capacity
to obtain information on electrodermal activity (EDA) and
electrical activity of the heart (ECG) respectively [10], both
varying on exposure to a stressor and governed by the
sympathetic nervous system. The analysis of the variation
of the electrical potential, of the electrical resistance as well
as of the variability of the heart rate allows us to quantify for
an individual the way their body will respond to a stressful
element. We consider that the less important the response to
the stimulus is, the more successfully the learner has coped
with the stressful situation.

Signals from EDA and ECG analyses may be affected
by stimuli other than stressors. For example, the physical
activity of the body leads to an increase in both cardiac
and electrodermal activity. In addition, both cognitive over-
load and simulator sickness, a disorder manifesting itself
in a situation presenting a mismatch between the vestibular
system and visual perception, can also act on the signals
we analyse. These problems, which are very common when
using a virtual reality device, create uncertainty in our
measurements. Moreover, sensors can produce measurement
errors, depending on an error rate that we have to take into
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account. This is why we use multi-sensor data fusion to
improve the reliability of our data.

Other problems can arise when diagnosing the learner over
time and the various training sessions in which they take part.
In particular, it is possible that data analyses are contradictory
among several workouts. It is also possible that the data
analyses are different between two workouts within the same
scenario. The interactive time measurement of stress is still
a research problem to this day. Each individual has different
physiological signals, there is no universal threshold to define
the state of stress. The duration of response to a stimulus
is also variable among individuals, and the time to regain
a basal level in the signals we analyse can be quite long.
All of these constraints bring additional uncertainty to our
measurements.

Finally, it is difficult to imagine that a learner can carry
out training on each situation that can be trained to. We must
therefore also take into account this lack of information on
situations that will never be explored through our diagnosis.

To acknowledge these problems during our diagnosis, we
must use a mathematical model characterising the knowledge
resulting from the analysis of the data coming from several
sources of information, while allowing to materialise uncer-
tainties as well as contradictions and lack of information.
This method is similar to the resolution of problem and to
the acknowledgement of the result of this resolution.

B. Stressors representation

Dougall and Baum [11] propose a model allowing a
categorisation of stressors, which can be represented in the
form of an ontology, or a taxonomy. According to this
categorisation, these stressors can be organisational (specific
to a setting or an activity) or acute (ephemeral and sudden
and may not be linked to the individual undergoing the
stressor).

Our objective being to confront the learner with stressors
similar to those they can cope with according to our system,
we use this taxonomy to define semantic distances between
stressors. The handling and modification of a taxonomy
being easy, we put the expert or the instructor at the heart
of the development of the hierarchy.

We propose an ordering between the stressors. We might
intuitively think that it is more complex to deal with certain
stressors. However, we consider that it is impossible to find
a universal ordering of stressors because of the uniqueness
of each learner.

For example, we might think that an adult cries are less
stressful than a child cries. But depending on the context,
this assumption may be altered. The cries of an adult could,
for a particular learner, remind them of a traumatic episode,
causing them greater stress.

To link the concepts of taxonomy together, we introduce
a measure of semantic similarity between two nodes. We
rely on the measure of semantic similarity of Wu and
Palmer [12], which has the advantage of relying only on
the distance between the nodes without taking into account
the information related to the nodes. We denote by h(X) the

| AllyfAlly | | Child/Ally | | Ally/Friend |

f T T
stressor

Stressors

| Tempest | | Rain |

[
4 i i

| Snowstorm | | Sandstorm | | Storm

Fig. 1. Taxonomic representation of acute and job stressors

distance separating node X from the root of the taxonomy
(h(root) = 1).

Let N and M be two nodes of the taxonomy. We denote
by P the first parent node common to N and M (N # M).
We denote by sim the semantic similarity between N and
M such that:

2 X h(P)

A O R

The greater the semantic similarity (i.s. closer to 1) is, the
deeper the nodes are in the taxonomy. Thus, the structure of
the taxonomy is of great importance from its development,
and must be created taking the calculation to be performed
into account. This semantic similarity is used in the prop-
agation of belief within the dynamic profile of the learner
(see III.C Profile).

C. Profile

We are interested in job skill training through stressful
situations. One of our goals is to provide personalised
training scenarios in which the training situations involve
skills under stressful conditions. As the ability to manage
stress is unique to each learner, our second objective is
to gradually expand the development area of each learner
profile, which are generated by our system.

We can therefore equate our objectives with the represen-
tation and expansion of the zone of proximal development
from Vygotsky.

The Zone of Proximal Development (ZPD) refers to the
“distance between current level of development (ZDA), as
could be determined by the child abilities to solve problems
on their own, and the level of potential development, as could
be determined through this child problem-solving, when it is
helped by adults or collaborates with initiated peers.”, [13].

We want to be able to account for the present level of
development of capacities of a learner to cope with stressors
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through the dynamic stress profile. We also want to be able to
represent their level of potential development and be able to
advise the instructor on new stressors to work on. In addition,
we want to give the instructor some control over the training
settings, as well as the visualisation of the learner profile.

We hypothesise it is possible to train skills without ini-
tiated peers thanks to a system based on Vygotsky’s ZPD.
Moreover, this system can help learners come over situations
they have trouble handling.

Carpentier has propose a representation of the ZPD called
zpd-space, based on the model of transferable beliefs [9] (see
Figure 2). We propose to extend this model to diagnose the
evolution of the learner at different hierarchical skill levels in
parallel. This diagnosis will be based on physiological data
from our sensors.

B 1 n
o5
=
3
Bt
& f -y
i
g f
=
Eaf L0
g
L
0 L L L L L |
@ 2 1 4 ] [
climal de confiance
Fig. 2. ZPD representation in [9]

1) Zpd-space by stressor: The learning domain is repre-
sented through the use of classes of situations. A class of
situations is an “abstract representation of a set of situations
presenting common properties called descriptors. A descrip-
tor is an element used to describe a variant”. We associate
the vector o to the class of situations S, such that:

o= (01,02,...,0p)

with ¢; the value corresponding to the descriptor i.

These descriptors let us differentiate the classes of situa-
tions from one another.

In our representation of the ZPD in the form of zpd-space,
an axis (or dimension) can represent:

o A job skill. Descriptors correspond to didactic variables

or skills.

o A stressor taxonomy leaf, i.e. a stressor. Descriptors of
this kind of axis are the three possible levels of intensity
of a stressor : low, medium and hard. They are arranged
arbitrarily.

o A node of the taxonomy which is not a leaf, i.e. a set
of stressors. Descriptors of this kind of axis are the
children of the node. They are not arranged.

We generate a zpd-space for each node of our taxonomy.
Each zpd-space contains n dimensions (n € N*). A di-
mension represents either a job skill, a stressor, or a set of
stressors.

Manage the priorities of the Manage the priorities of the
wounded wounded
crivcnia | [l 1l cricrie | [l BN N
Ally/Child Ally/Child B
AllylAlly AllyAly B
Friend/Ally FriendiAlly B
Tempest Sandstorm
= oz £ z E =
=4 =] = =
= = 17} = o}
w @ £ 4 2 I
Fig. 3. Example of two-dimensional zpd-space generated from a
leaf (Sandstorm) or non-leaf node (Tempest) of the taxonomy

By formalising the theory of belief functions, we as-
sociate to each class of situations a belief mass distribu-
tion (a(S;),d(S;), c(S;),i(S;)) according to a discernment
framework ) representing the set of assumptions that are
based on the state of the learner’s skills such as, for a
hypothesis B:

mS) ;298D — [0, 1]
B+ mf5)(B)

checking:

2¢2(5i) contains all possible subsets formed by hypotheses
and unions of hypotheses of Q(S;) with:

O(S;) = {Ability(S;), Disability(S;)}

Ability is the hypothesis according to which the learner is
able to manage a situation belonging to a class of situations
S;, while Disability is the hypothesis according to which the
learner is incapable of handling a situation falling within a
class of situations S;.

By applying the belief mass distribution function to its
() discernment framework, we associate with each class of
situations a n-tuple made up of four belief masses such as:

o m5) ({Ability}) is the belief mass according to
which the learner is able to cope with a situation falling
within the class S;, named a(S;).

o m@%) ({Disability}) is the belief mass according to
which the learner isn’t able to cope with a situation
falling within the class S;, named d(.S;).

o m®(%) ({ Ability, Disability}) is the belief mass ac-
cording to which the system can’t determine the learner
ability or inability to cope with a situation falling within
the class S;, named i(S;).

o m25)({P}) is the belief mass reflecting the conflict
created when two sources of information conflict about
the learner ability or inability to cope with a situation
falling within the class S;, named ¢(.S;).

Thereby:

>° mEN(B) = a($) + d(Si) + e(S) +i(Sh) = 1
BCQ(S;)
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These masses are calculated beforehand from the data of
the physiological sensors that are used. Initially, ¢(S;) = 1
because there is no information exploited, which corresponds
to ignorance.

D. Mastering new situations

The system offers a situation before each training session
to extend the learner ZDA and ZPD.

For each situation S, if a(S) > 0.85 and d(S) < 0.1,
then the situation integrates the learner ZDA: they master
the situation. If a(S) > 0.65 then the situation integrates the
learner ZPD: competence is close to being acquired, either
from training or from the propagation of beliefs from similar
situations. In the Figure 3, the ZDA is represented by the
green area, while the ZPD is represented in orange. The
colour gradient of the situation classes varies here according
to a(S).

Mastering new situations comes down to studying new
situations, or situations of the ZPD, in order to extend the
ZDA. This situation must then be the subject of one or
more training sessions. We are interested in the algorithms
allowing our system to suggest the next situation to be
implemented within a training. The objective is to maximise
the expansion of the ZPD with a minimum of training.

We must therefore use an algorithm going through all of
our classes of situations and selecting the one that is the most
suitable for training. We have studied several algorithms to
meet these needs.

1) Arbitrary selection in the ZPD: One of the solutions
to extend the ZDA would be to choose an arbitrary class of
situations located on the edge of the ZPD. The advantage of
such an algorithm is that it ensures a linear training course,
and always close to the skills already acquired by the learner.
However, such a method does not take full advantage of the
use of belief functions.

2) Greedy search algorithm: The greedy algorithm con-
sists in calculating a local optimum choice for each element
of the search space. This optimum choice is itself governed
by a function.

In our case, this function calculates the input of new sets
of information within the zpd-space. The objective is then
to extend the learner’s ZPD with a minimum of training
sessions. In this case, we take full advantage of beliefs.

The greedy route can be done on two sets:

o all the classes of situations, allowing an extension of
the learner ZDA and ZPD in several distinct zones of
the zpd-space.

« asubset of the ZPD situation classes, allowing the ZDA
and ZPD to be extended from a single zone of the zpd-
space.

3) Nearest neighbour search algorithm: In order to offer

a configurable system, we could let the instructor select a
class of situations, and suggest the other closest classes. The
instructor would then be able to restrict stress management
training to a close set of stressors, allowing them to center
the training around any situation, which may even be outside
the ZPD or the ZDA.

This problem can be translated into a search for the
nearest neighbours. For a given class of situations, the
algorithm searches for its k nearest neighbours (kK € N*),
k being determined by the instructor or by the system. This
solution is particularly suitable when the search space is
partitioned. The kd-tree structure is particularly applicable
to our taxonomy for this search, but other algorithms for
finding k& nearest neighbours are applicable.

This algorithm can also use an information input max-
imisation function. The system then performs a scheduling
in the k nearest neighbours, and returns the most efficient
neighbour to extend the ZPD.

E. Beliefs propagation

We rely on the propagation function in order to propagate
beliefs between the classes of situations, through the whole
taxonomy.

We denote ®(Sa,Sp) the propagated belief from Sa to Sg
according to a propagation function ¢ using Shafer’s simple
weakening rule [5].

m*(A) = (1—a)xm(A),YACQ
m*(Q) = (1-—a)xm(Q)+a

Thereby:

as,—Sg = (I)a(SA,SB):(l—Oz)anSA

dsA_>sB = q)d(SA,SB) = (1 — Oé)d X dSA

CSA—Sp = (I)c(SA; SB) (1 — a)d X CS,

is,s5s = Pi(Sa,88)=(1—-a)x(ig, —1)+1

with d the Manhattan distance [14] between to class of
situations S4 and Sg such that:

Z |01 _U2|

This propagation allows the system to make assumptions
about the control of a class of situations close to another
class. We hypothesise that the learner partially masters a
situation involving descriptors used in situations they are
already familiar with.

However, the Manhattan distance used by Carpentier is not
applicable in our context, as we want to be able to extend
beliefs between different levels of hierarchy, i.e. between
different subsets. The semantic similarity being calculated
thanks to the distance in the taxonomy between two nodes,
we modify the formula, with « = 1 — sim(A, B), such as:

d(Sa,SB)

as,—»Sg = (I)a(SA,SB) = szm( ) X as,
dSAﬁSB = (I)d(SA,SB) = sim(A B) X dSA
CSp =S = (I)C(SA,SB) = sim( ) X €5,
1S,—Sp = (I)i(SA,SB) = Sim(A,B) (iSA — 1) +1

If two belief masses characterise the same class of situa-
tions after propagation, the system then proceeds to a fusion
of these belief masses by applying Shafer’s conjunctive
combination rule. The fusion of two belief mass distributions
my and mo forms a new belief mass distribution mpg such
that:
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ar = a1 Xas+1i; Xas~+i9 X ap
drp = dy Xdo+i1 Xdy+isXdy
iR = 7:1 Xig
Cr = lfaRde*Z'R

IV. EXAMPLE

We place ourselves in the case of the training proposed in
the framework of VICTEAMS [15], a virtual environment
for non-technical skills training for medical team leaders in
crisis situations.

In this example, the trainer wishes to train the learner in
stressful situations involving casualty sorting in the presence
of various stressors, according to the reduced taxonomy
presented in Figure 2. The current profile of the learner is as
illustrated in Figure 3. We place ourselves in a simple case
where the profile does not contain any conflicts.

For the next training session, the system determines the
situation that most effectively extends the learner’s ZDA. The
algorithms determine that the ideal candidate is the class of
situations corresponding to a sorting between an ally and
a friend (noted F/A) in the context of an intense (noted I)
sandstorm (noted S). This storm is characterised by a reduced
field of vision in the virtual environment, increased noise and
the inability to request an emergency evacuation.

At the end of the training session, the system collects and
analyses the data from the sensors, as well as the observables
indicating the success or failure of the task. It determines a
belief mass reflecting the outcome of the session which is
propagated to the rest of the situation classes.

Manage the priorities of the
wounded

A
Manage the priorities of the
wounded

r h
W EE </HEN

~ Il [ ~ |l H N

~ Il H 1 « Il H 0

el N N | 28l NN |
and » Tempest

L M H Sa Sn Th

E .
Manage the priorities of the Manage the priorities of the
wounded wounded

/MMM o[l EH
AC [ | AC B
AIA [ | AIA B
2 [ Fa |
L " a Sand oa a0 ™ Tempest

Fig. 4. Zpd-space generated at the end of the session

o the training is a success (case A). The situation class,
as well as the close classes, integrate the ZDA, thanks
to the propagation of beliefs.

« the training is a failure (case B). The belief mass of the
situation class is updated (in red), and its propagation
generates conflict (in purple) with the already existing

masses. This conflict must therefore be removed by new
training. The ZDA is affected by this conflict.

V. CONCLUSIONS

We have presented an approach allowing to generate a
dynamic profile of the stress of a learner, based on phys-
iological data and using the Transferable Beliefs model in
order to make assumptions about the control of various
stressful situations. Our approach has the advantage of being
configurable and adaptable by the instructor.

This system is coupled with a planner, which is not the
subject of this article, in order to generate personalised
training scenarios according to each stress profile.

Our work has been strongly impacted by the current global
health crisis. The experiments we have planned require the
presence of people, as well as wearing a set of sensors and
wearing a virtual reality headset. This equipment normally
requires a heavy and strict sanitary protocol, and is now
very complex to set up. Thus our system was only tested
with simulated data. Our contribution will be evaluated to
demonstrate the quality of the evolution of the profile. We
also want to assess the capacity of our system to infer correct
beliefs about the learner abilities and to propose an optimal
path to extend the learner ZPD in as few training sessions
as possible.
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