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Abstract: Datasets of the same geographic space at different scales and temporalities are
increasingly abundant, paving the way for new scientific research. These datasets require
data integration, which implies linking homologous entities in a process called data match-
ing that remains a challenging task, despite a quite substantial literature, because of data
imperfections and heterogeneities. In this paper, we present an approach for matching spa-
tial networks based on a hidden Markov model (HMM) that takes full benefit of the under-
lying topology of networks. The approach is assessed using four heterogeneous datasets
(streets, roads, railway, and hydrographic networks), showing that the HMM algorithm is
robust in regards to data heterogeneities and imperfections (geometric discrepancies and
differences in level of details) and adaptable to match any type of spatial networks. It also
has the advantage of requiring no mandatory parameters, as proven by a sensitivity ex-
ploration, except a distance threshold that filters potential matching candidates in order to
speed-up the process. Finally, a comparison with a commonly cited approach highlights
good matching accuracy and completeness.

Keywords: spatial networks, data matching, data integration, topology, hidden Markov
model, HMM

1 Introduction

The increasing development of geographical information systems (GIS), especially thanks
to the growth of web technologies and collaborative tools, combined with the growing
interest of disciplines connected to GIS such as archaeology, history, and urbanism, make
it possible to easily access many heterogeneous datasets of the same geographic space, at
different scales, temporalities, or spatial and semantic granularities. The integration of
such various data is required by many research studies and applications, for instance, to
design a representation of space and its changes over time in order to study its evolution,
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58 COSTES AND PERRET

whether social, administrative, or topographical. Whether based on data conflation [12,28,
50] or on multiple representation databases [11,43], it requires linking homologous entities
from the different datasets, which is a challenging task because of data imperfections and
inhomogeneities.

Linear objects representing spatial networks such as street, railway, electrical, or hydro-
graphic networks are frequently encountered among the geographical entities usually used
in GIS, and are commonly the subject of many studies in geography, urbanism, sociology,
or history. This article is concerned with the issue of matching linear features from spatial
networks.

An extensive literature deals with matching network datasets. To find multiple match-
ing links in networks of similar spatial granularity, Walter and Fritsch [46] proposed a ge-
ometric approach based on statistical filtering and information theory to combine criteria.
The candidate pair with the highest score is kept, and matching links are automatically
assessed. To match datasets with different levels of details, Zhang et al. [51] proposed a
purely geometric approach based on a growing buffer whose size is iteratively and auto-
matically determined. Using a pre-matching of nodes and edges of the networks leading
up to the final matching, Lüscher et al. [29], and then Mustière and Devogele [30] proposed
to use adjacency relationships and calculated closest path. The former method also uses
semantic information and user interventions may be needed, whereas the latter is fully
automatic. Samal et al. [36] presented one of the first methods to match multiple datasets
with different levels of detail at once, using multiple criteria and graph theory tools, such
as maximum clique problem, as a decision process.

Multi-criteria methods have also been introduced. In order to combine multiple mea-
sures, Olteanu and Mustière [32] used evidence theory [38] that models lack of knowledge,
data imperfections, and ignorance. The theory of belief functions was also used by Du-
menieu [13] to discover filiation relationships in several geohistorical datasets, using simu-
lated annealing, whereas Tong et al. [41] chose a probabilistic approach to compute a total
matching score. Optimization methods were also considered by Li and Goodchild [26, 27].
Mainly geometrical, their approach treats data matching as an assignment problem. They
use combinatorial optimization to simultaneously match pairs of objects. Later, Tong et
al. [40] presented an improved linear features matching using optimization and iterative lo-
gistic regression matching, which can detect incorrect and missed matches. More recently,
Fan et al. [15] introduced an original polygon-based method that first matches urban blocks
then uses relations between blocks and their surrounding streets.

All those approaches can generally be characterized according to four issues. The first
characteristic of a matching approach is its ability to deal with data imperfections [20, 23].
Many works have been achieved to model such imperfections, and the commonly used ty-
pology distinguishes data uncertainty, accuracy, and completeness [5]. Several taxonomies
of the causes of data imperfections have been proposed, for classical geographic data [17]
considered as timeless [21], or geohistorical data such as archaeological data [10]. In the
context of matching such data, the two main issues induced by data imperfection are deal-
ing with geometric discrepancies between homologous entities, mostly due to spatial accu-
racy of datasets, and dealing with matching links with multiple cardinalities. The cardinal-
ity of matching links indicate whether or not the process is able to manage multiple rela-
tionships between features. Given two datasets A and B, a 1:1 matching link is established
when one feature in A is matched with one feature in B. However, 1:1 links are mostly
insufficient to deal with databases with different scales and different levels of detail, or
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A HIDDEN MARKOV MODEL FOR MATCHING SPATIAL NETWORKS 59

databases at distant times depicting a world that has changed. For more complex datasets,
1:M, N:1, or N:M links may occur when one or more features in A are matched with one or
more features in B. The second difficult issue is to determine whether or not two features
look alike. For this purpose, multiple criteria can be used based on data imperfections, and
for each one of them various similarity measures are available such as Hausdorff or Fréchet
distances [1], Hamming [22] or Levenshtein [25], and Wu and Palmer [48] for geometric,
semantic, and attribute criteria, respectively. The third issue is about the decision making
process. Are matching links identified sequentially [2, 45, 46] or simultaneously [27, 40]?
How are the criteria previously chosen combined? Does the approach use comparison
with thresholds to detect correct or incorrect matches? Finally, the last property concerns
the number of parameters needed to set up the algorithm. The more the number of param-
eters to consider grows, the more complicated the algorithm is to calibrate (hypothetically
leading to very different results considering different sets of parameters).

Among the large amount of existing matching algorithms, the overwhelming ma-
jority focus on road or street networks and have shown very good results with that
kind of dataset. Nevertheless, only a few other approaches are tested with other types
of networks, such as in [7] where a hierarchical process is proposed to match imper-
fect hydrographic networks. Only some of those papers consider networks with differ-
ent level of detail [2, 29, 30, 32, 36, 40] or are adapted to manage geometric discrepan-
cies [27, 32, 36, 40, 46]. Furthermore, most of the algorithms use thresholds in the deci-
sion making processes [2, 15, 26, 45, 51], or numerous parameters [13, 30, 32], and a mi-
nority can detect N:M relationships [2, 13, 30, 40, 46]. At last, the algorithms presented
above are mainly geometrical. Only few topological properties are at times considered like
adjacency relationships (nodes degrees, neighborhood, connections, incoming/outgoing
edges [30, 32, 36, 45, 46], or calculated shortest or closest paths [29, 30].

In this paper, we propose a topology-driven approach based on a Hidden Markov
Model for matching linear features. Our proposal is mostly based on topological consider-
ations, and only few geometrical criterion are used. It requires no mandatory parameters
for filtering matching pairs of candidates during the calculation of look-alike criteria or
for the decision making process, except a distance threshold that filters potential matching
candidates in order to speedup the process. The algorithm is empirically tested on several
different types of spatial networks and appears to be robust to geometric discrepancies and
differences in level of detail.

2 Network matching as a HMM: methodological back-
ground

Graph theory is a mathematical framework for modeling all types of networks and one
can find a substantial state of the art devoted to the analysis of their structure and their
morphological characteristics [4, 18, 47]. Basically, a graph G = (V,E) consists of a set of
vertices (or nodes) V and a set of edges E ∈ V × V connecting pairs of vertices.

In this paper, we focus on spatial networks such as infrastructures networks (streets,
railway) or hydrographic networks, whose nodes and edges are embedded in space and
thus associated with coordinates and geometries. Let us note that planarity is not a manda-
tory property for spatial networks. For instance, two subway lines might intersect in a 2D
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60 COSTES AND PERRET

representation of the transportation network but not in a 3D space, thereby implying no
intersection node.

In this section, we highlight the theoretical and generic model of the HMM matching.
For the rest of this paper, let G1 and G2 be the graph representations of the two spatial
networks to match.

2.1 Background of the approach

We aim at finding 1:1, 1:N, or N:M correspondences between homologous edges of G1

and G2. Our matching method takes full advantages of the geometrical and topological
characteristics of the networks without consideration for semantics or any other properties
(or attributes) carried by the edges. The insight of the method is as follows.

One travels randomly through G1 from edge to edge, generating a random path, whilst
trying to find out the corresponding sequence of adjacent edges on G2. Several possible se-
quences may coexist over G2. However, the longer the travel on G1, the stronger the inter-
nal structure or topology of G2 will exclude potential corresponding paths on G2. Hidden
Markov models, or HMM, are appropriate for this situation because they explicitly model
the connectivity of the edges, thus the topology of the network. They can also consider
many different path hypotheses simultaneously.

A Markov model represents a process that randomly changes its state and owns the
Markov property assuming that the future state only depends on the current state but not
on the states the model was in before it. The state sequence is directly observable and the
transition probabilities, that is to say the probabilities of transitioning from one state to
another in a single step, are the only parameters. Hidden Markov models [3] generalize
Markov models using two sequences of random variables: one hidden, the other observ-
able. The consecutive states of the model are not directly visible, but each state is likely to
emit a symbol, also named observation, with a given probability (see Figure 1).

Figure 1: Probabilities of a hidden Markov model.

To sum up, one observer cannot directly access the states of the model but only the
generated sequence of observations, and as each state has a probability distribution over
the possible output symbols, the sequence of observations also gives information about
the sequence of (hidden) states. Therefore, one use of the HMM is to find the most likely
sequence of hidden states that led to the generation of a given sequence of observations.

HMM are commonly used in map-matching problems to match GPS measurements
with roads, i.e., to find which roads a vehicle was on based on its successive (geographic)
locations [19, 31]. Using a map-matching algorithm, which is about matching points (GPS
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location) with a road network, in order to directly match linear features with other linear
features, would imply to either consider only the coordinates of the edges as location to be
matched, or to sample points along the edges, then deduce the matching of the edges. Such
an approach would be sensitive to the initial sampling of the networks or to the sampling
threshold used to sample points along the strokes. Therefore, our challenge is to use HMM
to match a spatial network directly with another spatial network.

The pipeline of our method is depicted in Figure 2. The matching section is based on a
HMM and driven by geometrical and topological criteria. Then, a decision making process
is used to filter potential candidates and establish the final matching links.

Figure 2: Pipeline of the proposed HMM matching process.

2.2 States, observations, and paths

A path p over a graph G is defined as a sequence p = (e1, e2, . . . , el) of continuous distinct
edges of G, i.e. ∀1 ≤ i < l, ei and ei+1 share an extremity. Let p = (o1, o2, o3) be an
example of a path of continuous edges of G1. Each edge oi of the path is possibly matched
with edges of G2, as shown in Figure 3 where the edge o1 has several matching candidates
in G2 (s1 and s2). Each candidate matching link is associated with a score or probability
calculated independently of other possible matching links, using geometrical criteria, for
instance. Let’s assume that o1 is matched with s1. Then, it seems very unlikely, given the
topology of the network, that o2 is matched with s3 because the path between s1 and s2
is disconnected. Therefore, topological information highly constrains possible matchings,
and the probability that o2 is matched with a given edge of G2 depends on the previous
state of the model, that is to say the matching of o1 with s1, s2, or both.

JOSIS, Number 18 (2019), pp. 57–89



62 COSTES AND PERRET

(a) (b)

Figure 3: (a): A path (o1, o2, o3) of G1 in red, with possible matching links depicted with
dotted lines for each edge oi. (b): The corresponding situation translated in a HMM repre-
sentation.

Formally, in our matching algorithm, the observations are the edges of the first network
G1 we want to match. The states are the edges of the second network G2. Thus, a path is a
cluster of observations and represents a walk in the graphG1. Each state si has a probability
to emit an observation oj representing how likely the matching of edge si with edge oj
is. The goal of the HMM matching algorithm, given a sequence of observations, namely
a path of consecutive edges of G1, is to find the sequence of states associated with the
observations, and therefore the edges of G2 matched with the edges of the path observed
in G1.

Figure 4 depicts how the HMM works. Solid blue lines represent network G2 and dot-
ted red ones represents a path in network G1. As observations (edges of G1) are itera-
tively processed, feasible sequence of candidate edges for matching are considered in G2

(dashed black arrows). In the third step, three observations (edges of G1) have been pro-
cessed resulting in three possible corresponding sequences of hidden states. In the last
step, sequence number 1 has been dismissed because of a topological break. Finally, se-
quence number 2 will be chosen because it has the maximum state sequence probability
(less bends, less length difference, etc.). Associated matched edges of G2 are depicted in
thick green lines in Figure 4.

We specify that we do not generate path forG2, thus the algorithm’s goal is not to match
clusters of edges ofG1 with clusters of edges ofG2 which is a more an alternate result of the
algorithm, but rather to find matching links between individual edges of the two networks.

2.3 Path generation

We previously defined a path as a sequence of consecutive edges of G1. A path is no more
than a cluster of observations and represents a walk in the graph such as each observation
is topologically linked with the previous and the next observation in the cluster. The first
step of our algorithm is to generate paths over G1. A path generation strategy is a way to
decompose the set of edges of G1 into cluster of observations such as the whole graph is
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Figure 4: Philosophy of the HMM matching, from left to right. As the algorithm runs, feasi-
ble paths on the second graph are successively considered. Finally, thanks to the topology
of the networks, the most feasible path is found and individual matching links between
homologous edges are built. Matching links are not drawn for clarity reasons as well as
over path solutions that might be feasible.

covered, meaning that each observation belongs to at least one cluster. We do not impose
here that the path generation should lead to a set of disjoint clusters and thus a partition of
the set of edges. Then each edge may well belong to more than one path. In this context,
the HMM algorithm could lead to cases where one observation could be associated with
more than one hidden state. We use a post-process strategy, called the decision making
process, to filter such particular cases.

Several path generation strategies might be considered, such as random paths or short-
est paths between random vertices. The choice of a strategy is not relevant is this method-
ological section as the only hypothesis we need to describe the HMM algorithm is that
the whole network is covered such as each edge of G1 belongs to at least one cluster of
observations.

2.4 Probabilities of the model

Three probability distributions are considered: 1) the probabilities associated with the tran-
sitions between edges (transition probabilities), 2) the probabilities governing matching
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candidates (emission probabilities), which both constitute a trade-off between feasibility of
the paths and matching scores and features likeness, and 3) the initial state probabilities.

2.4.1 Emission probabilities

Given an observation oi and a state sj , we model the probability that oi was emitted by
sj with the probability pemit(oi → sj). Emission probability represents the likelihood
of matching link between one edge of G1 and one edge of G2 based on how they look
alike: the more similar the two features, the higher the probability and the more likely
the matching. This probability can be calculated regarding several criteria such as ge-
ometrical distances (Haussdorf or Fréchet distances, for instance) or semantics compar-
isons. For instance in Figure 5, if we consider only shape similarity, we expect to have
pemit(o1 → s1) > pemit(o2 → s1).

2.4.2 Transition probabilities

Transition probability is the key concept of our topology-driven approach. Given a con-
tinuous path p = (oi)i≤l on G1, each edge oi is possibly matched with several edges of
G2, and so is oi+1. But, as we mentioned earlier, the candidates for matching with oi+1

are strongly constrained by the topology of the networks and the feasibility of the cor-
responding path in G2, and therefore by the previous states of the HMM which emitted
(o1, ..., oi). But as a HMM has the Markov property, the probability that oi+1 is matched
with a given edge of G2 only depends of the previous state of the model. Thereby, the tran-
sition probability ptrans(oi+1 → sk|oi → sj) gives the probability that oi+1 is matched with
sk knowing that oi is matched with sj . For instance in Figure 5, we expect the probability
ptrans(o2 → s2|o1 → s1) to be high because the topology of the network strongly defends
this hypothetical matching.

Figure 5: Transition probability drives the topological matching. It gives the probability
that the edge o2 is matched with s2 (black dotted link) knowing that a previous connected
edge o1 has been matched with another edge s1 (green solid link).
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2.4.3 Initial state probability distribution

As for a simple Markov model, HMMs also require an initial state distribution of proba-
bilities (πi) such that πi is the probability that si is the initial state of the model. Thus, in
our application, πi represents the probability that si is matched with the first edge o1 of
the considered path. Instead of using a uniform distribution, we rather use the emission
probability distribution associated with the first edge o1 of the first network, as done in [31].
In other words, we consider that πi = pemit(o1 → si).

2.5 Modeling multiple cardinality of matching links

In practice, 1:N, M:1, and to a lesser extent N:M matching relationships often occur like
shown in Figure 6, because of morphological evolutions of the network through time, dif-
ferences in level of detail, etc.

Figure 6: Two contemporary road networks (BDCarto from IGN in solid blue line and
OpenStreetMap in brown dashed line) with a high difference of level of detail, which in-
volves matching links of multiple cardinalities.

Formalized the way we have, transition probabilities can manage N:1 links through
the calculus of ptrans(oi+1 → sj |oi → sj) representing the possibility for oi and oi+1 to be
matched with the same edge of G2 sj .

In order to take into account 1:M and N:M matching links, we propose to add a hierar-
chical layer in our HMM. Thereby, assuming that oi in G1 is possibly matched with several
edges (s1, ..., sp) ofG2, we gather them together to create new aggregated candidates where
merging is feasible. For instance, let’s take p = 3 such as illustrated in Figure 7.a. Then,
three new wrapped candidates are considered: (s1, s2), (s2, s3), and (s1, s2, s3). The po-
tential group (s1, s3) is rejected because there is no way to geometrically merge these two
edges given that s1 and s3 are disconnected. Consequently, new states are introduced in
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66 COSTES AND PERRET

the HMM (see Figure 7.b) and thus new emission and transition probabilities need to be
calculated.

(a) (b)

Figure 7: If oi is potentially matched with s1, s2, and s3, then new candidates are consid-
ered, illustrated with hyperedge (a), by grouping those edges when merging is possible.
Thus, three new states are introduced in the HMM.

2.6 Solving the HMM

Given a sequence of observations in G1, several corresponding sequences of hidden states
in G2 are feasible. Solving the HMM consists in finding the sequence of states that maxi-
mize the product of both emission and transition probabilities, and thus constitute the best
compromise between similarity of matched edges and feasibility of the topological connec-
tions between them. We use the Viterbi algorithm [44], based on dynamic programming,
to find the most likely sequence of hidden states, and therefore inference the matched path
on G2.

2.7 Dealing with expected unmatched entities

For the same reasons that N:M matching links occur, in practice several edges of G1 or G2

may have no counterpart in the other network. The HMM finds a corresponding object for
all edges of G1 as long as emission probabilities are never null. Thereby, it is likely that
at the end of the HMM solving, some edges of G1 that should be unmatched have mutual
matches in G2 with other edges, and reciprocally, as depicted in Figure 8.

To deal with this situation, one could introduce geometric thresholds such as maximum
distance in the emission probabilities computation to filter matching links. To avoid the
use of thresholds, we explore two non-exclusive solutions.

2.7.1 Double HMM matching

Our first proposal is based on the consideration that, theoretically, the matching of G1 with
G2 should produce the same results as the matching of G2 with G1. That is to say if a first
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Figure 8: The circled matching links should not exist but are found by the HMM.

HMM finds that the observation o in G1 has been emitted by the state s in G2, the reverse
HMM should find that the observation s in G2 is emitted by the state o in G1.

We implement this principle with a double HMM matching (see Figure 9): edges of
G1 are in a first step considered as the observation sequences, then as the hidden states of
the HMM. This produces two sets of matching links and we only keep correspondences
between edges that are matched in both cases (see Figure 10).

Figure 9: Principle of the double HMM matching approach.

This solution has the advantage of keeping entities unmatched when expected. But in
practice, perfect matching never occurs, and the two HMM may produce different results in
some cases, because of data imperfections or heterogeneities, but also thanks to the gener-
ated paths, leading to unexpected unmatched entities when the double process terminates.
This approach also obviously consumes twice the computation time needed by the HMM
matching algorithm.
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(a) (b)

(c)

Figure 10: (a): Results of the matching of G1 with G2 with HMM approach. (b): Results of
the matching of G2 with G1 with HMM approach. (c): Final results, thanks to the double
HMM decision making process.

2.7.2 Assignment modeling of the decision making process

Our second solution considers the decision making process as an assignment problem with
an additional hierarchical dimension. Indeed, in its most general form, the assignment
problem aims at finding, in a weighted bipartite graph, a set of edges without common
vertices in which the sum of weights of the edges is maximum. In the context of data
matching, the vertices of the bipartite graph would be the entities we want to match, and
its edges would represent potential matching links between two objects with a weight equal
to the probability of the match. But, thus stated, the assignment problem is only suitable to
deal with 1:1 correspondences. Thereby, we model the matching problem as a hypergraph
assignment problem.

A hypergraph consists of a set of vertices and a set of hyperedges connecting vertices.
So basically, a hypergraph is a graph in which edges can connect not just two vertices but
any number. The cardinality of a hyperedge is the number of vertices it connects. A graph
is simply a hypergraph in which the cardinalities of all edges is equal to 2.

We build the bipartite hypergraph Hc = (Vc, Ec) as follows:

• The vertices Vc = E1 ∪ E2 is the union of all edges of G1 and G2 we want to match.
• A hyperedge can connect any subset of edges of G1 with any subset of edges of G2.

We build a hyperedge of cardinality 2 between each edge of G1 and G2 to model 1:1
links. In order to model N:M matching links, we also build a hyperedge when one
or several edges of G1 are matched with one or several edges of G2, connecting the
edges that have mutual candidates when the edges from the same network can be ge-
ometrically merged. For instance, let’s assume we have the following matching links
at the end of the HMM: (s1, o1, o2), (s2, o2, o3), and (s3, o1) as illustrated in Figure 11.
Then, we create five hyperedges connecting the various matched edges, which gives
(s1, o1, o2), (s2, o2, o3), (s1, s2, o1, o2), (s1, s2, o1, o2, o3), and (s3, o1). We reject the po-
tential hyperedge (s1, s3, o1, o2) because there is not way to merge s1 and s3 in this
example.
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Those hyperedges represent matching links between edges wrapped together as new geo-
metrically valid entities. It is thus possible to detect matching links with multiple cardinal-
ity by choosing a single hyperedge of Hc.

(a) (b) (c)

Figure 11: (a): Potential matching links between pair of candidates are depicted in black
dotted lines. (b): A graph representation of potential matching links between edges of G1

and edges of G2. (c): Hypergraph built from previous graph with hyperedges represented
with single colors. Hyperedge (s1, s2, o1, o2, o3) is added to the hypergraph because s1 and
s2 have mutual candidates we can geometrically merge.

Each hyperedge is weighted with a score computed as the emission probability of the
merging of edges coming from G1 and the merging of those coming from G2. The final de-
cision making process then consists in the selection of a set of hyperedges from Hc which
have no mutual vertices (edges of G1 and/or G2) and such as the sum of the weights of the
selected hyperdeges is maximized. As far as we know, the resolution of the hypergraph
assignment problem is still at a research state and there is no algorithm that could be eas-
ily implemented to solve it. We propose to reduce it to a constrained linear optimization
problem.

Let C be the vector of scores such as ce in C is the score of the hyperedge e in Ec. Let
δ : Ec → 0, 1 be the function indicating whether or not a hyperedge is selected in the final
solution: δ(e) = 1 if e is chosen and δ(e) = 0 otherwise. Finally, we note V (v) the set of
hyperedges that are incident to vertex v in Vc. Thus, the assignment problem consists in
the maximization of the objective function∑

e∈Ec

δ(e)ce (1)

under the following constraints: ∀v ∈ Vc,
∑
e∈V(v) δ(e) ≤ 1 (all nodes cannot be linked with

more than one selected hyperedge) and ∀e ∈ Ec, δ(e) ∈ {0, 1}. This solution can be used
with the result of only one HMM as an input, and also with the matching links from the
double algorithm introduced above.

3 Use cases and implementation

In this section, we describe the datasets used to test our approach, how we calculate emis-
sion and transition probabilities, and qualitative and quantitative matching results using
the HMM algorithm.
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Figure 12: Solution of the assignment problem associated with the hypergraph 12.c, where
hyperedges are weighted with simple distance between lines. The best choice here is to
select only one hyperedge ((s1, s2, o1, o2, o3)), thus edge s3 is unmatched.

3.1 Datasets

To validate our approach, we use four heterogeneous datasets.

Streets The first set of data consists of geohistorical street networks extracted from two to-
pographical maps of Paris, refereed as “Verniquet map” and “Jacoubet Atlas,” respectively
created at the scale of 1 : 8000 between 1783 and 1799, and at the scale of 1 : 2000 between
1825 and 1837 [13]. The main imperfections and heterogeneities of these two networks
challenging the matching process are geometrical discrepancies due to time difference and
morphological evolution of Paris, and also the accuracies of the sources and differences of
scales and levels of detail.

Roads The second dataset is contemporary road networks, one from BDCarto, a precise
and homogeneous cartographic reference map produced by the French mapping agency at
a medium scale (between 1 : 50000 and 1 : 200000), and the other from OpenStreetMap
with heterogeneous level of detail [42].

Railways The third dataset consists of railway networks from the same sources as the
second dataset.

Hydrography Finally, the last dataset is composed of hydrographic networks from BD-
Carto and BDTopo, another reference vectorial map produced by the French mapping
agency at a lower scale (between 1 : 5000 and 1 : 50000) and higher level of detail than
BDCarto.

Table 1 summarizes the characteristics of our testing datasets.

3.2 Ground truth

To evaluate our approach, we use ~7000 checked and confirmed matching links of Paris
street networks. This ground truth has been produced semi-automatically [8].

3.3 Preprocessing

Because our method is topology driven, its results strongly depend on the topological qual-
ity of the considered networks. Input datasets are preprocessed to clean up their topolo-
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Networks type Sources Main heterogeneities

Streets Verniquet Map (∼ 1790) Time difference. Level of detail and scale. Geometrical accuracyJacoubet altas (∼ 1830)

Roads BDCarto Level of detail and scale. Geometrical accuracyOSM

Railways BDCarto Level of detail and scale.OSM

Hydrography BDCarto Level of detail and scale.BDTopo

Table 1: Network types and sources used to test our approach.

gies: very close nodes are clipped and duplicate nodes and edges are removed as well as
suspicious very short edges.

3.4 HMM matching implementation

3.4.1 Path generation

In order to generate paths that cover the whole network, we arbitrarily choose a strategy
which leads to a partition of the set of edges of G1, i.e., each edge belongs exactly to one
path. For this purpose, we use the “every best fits” algorithm from [24] that relies on an-
gular criterion at junction point. The algorithm randomly chooses the first segment and
iteratively choose for the next segment the one with the smallest deflection angle. This
way generated clusters represent continuous objects based on the continuity principle of
Gestalt. In order to avoid the introduction of a threshold for path length (number of edges
in the path), we choose to keep small edges clusters. As each path can be processed inde-
pendently of others, the implementation can easily be parallelized.

3.4.2 A selection threshold to speed-up the matching process

In their approach, Tong et al. [40] consider all possible pairs of matching candidates in
order to avoid the use of selection thresholds. With complex and large datasets, such as
city street networks, a risk of combinatorial explosion arises. Moreover, there is obviously
no need to consider matching candidates that are quite distant one from the other. For that
purpose, before the calculation of emission probabilities we introduce a selection threshold
to filter distant candidates and help reducing the running time of our algorithm. This
threshold may be calibrated according to our knowledge about the geometrical accuracy of
considered datasets.

We insist that this is not a mandatory parameter, as all of the algorithm can be executed
without selection threshold. It is only used to speed up the process and filter very unlikely
matches. The trade off between better matching results and computation time is illustrated
in Figure 13 and shows that the calculation time strongly increases from selection threshold
greater than 40m, but also that F-score is not improved anymore for thresholds beyond
approximately 15m.
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Figure 13: Impact of the selection threshold on F-score and computation time (4 replications
for each selection threshold value).

3.4.3 Emission probabilities: measurement of features similarity

Recall that the emission probability pemit(oi → sj) is the probability that the observation oi
has been emitted by the hidden state sj and measures how those features look alike. Many
measures exists to quantify the similarity of linear features but we choose to adopt a purely
geometrical and topological approach.

First of all, we intuitively assign higher probabilities to close features. Haussdorf dis-
tance [1] or modified median Hausdorff distance are generally used, as presented in [40].
This approach computes distances from smallest line points to the longest line to avoid
biases due to lines much longer than others. It may induce inconsistent matches with small
orthogonal lines in dense areas like an urban center. Devogele [12] suggests to use the
Fréchet distance instead (see Figure 14.a). According to the author, the Fréchet distance is
more suitable because it also takes into account the shape of the polylines (see Figure 14.b).

Thereby, we use a discrete partial Fréchet distance δF , an approximation of the Fréchet
distance calculated in polynomial time [14]. We could directly used the value of the Fréchet
distance as emission probability, without introducing curve fitting parameters. But in order
to better take into account the geometrical characteristics of the tested spatial networks, we
rather look for a cost function more suitable than linear distribution. Figure 15 illustrates
the cumulative distribution of the Fréchet distances based on our ground truth matched
streets, and shows that it follows an exponential distribution with a R2 of approximately
97%.

Thus the probability that oi is matched with sj is given by:

pemit(oi → sj) = λe−λδF (oi,sj) (2)
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(a) (b)

Figure 14: Computation of the Fréchet distance (a) and Hausdorff (δH on the figure) versus
Fréchet (δF on the figure) distances (b) (image from http://dgtal.org).

Figure 15: Emission probability based on the Fréchet distance fits well an exponential dis-
tribution.

3.4.4 Transition probabilities: modelling topological constraints

Let’s remember that the transition probability ptrans(oi+1 → sk|oi → sj) measures the
probability that oi+1 is matched with sk knowing that its connected edge oi is matched
with sj .

We set to zero the probability of any transition (sj , sk) such as sj and sk are not con-
nected (see Figure 16 for edges sj and sp). This highlights the high constraint we impose
with regard to topological relationships. In other cases, we promote transitions whose
angle is similar to that between oi and oi+1.

Let’s note x2 ( respectively y2) the common extremity of oi and oi+1 (resp. sj and sk),
x1 (resp. y1) the penultimate point of the segmentation of the polyline that represents the
geometry of oi (resp. sj) and x3 (resp. y3) the second point of the segmentation of the
polyline that represents the geometry of oi+1 (resp. sj) (see Figure 16).
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Figure 16: As sj and sp are disconnected, we set to 0 the probability of the transi-
tion ptrans(oi+1 → sp|oi → sj). Otherwise, it is possible to calculate the angles α1 =
](x1, x2, x3) and α2 = ](y1, y2, y3).

Sometimes, because multiple cardinality is possible for matching links, it may occur
that sj = sk. In such cases, we virtually split sk into two new edges by projecting x2 on sk.
Then the new edges haven a common extremity y2 (see Figure 17).

We denote by α1 = ](x1, x2, x3) the angle of the transition between the edges oi and
oi+1, and α2 = ](y1, y2, y3) the angle of the transition between sj and sk. We refer as the
trigonometric difference the counter-clockwise gap between two angle α1 and α2, notated
δ(α1, α2). For instance, δ( π/47π/4 ) =

3π
2 . Finally, we compute the shortest difference between

α1 and α2: θ(α1, α2) = min(δ(α1, α2), δ(α2, α1)). For instance, θ(π4 ,
7π
4 ) = π

2 .

Figure 17: The computation of α1 and α2, thus the transition probability ptrans(oi+1 →
sk|oi → sj), is made possible by projecting x2 on sk.

Just like for the emission probability calculation, we choose to use a distribution who
models at best the topological specificities of spatial networks. Newson and Krumm [31]

www.josis.org

http://www.josis.org


A HIDDEN MARKOV MODEL FOR MATCHING SPATIAL NETWORKS 75

used an exponential probability distribution to fit the histogram of distance difference used
as transition probability in their map matching approach. We also used our ground truth
data to compute a histogram of angular difference between matched pair of streets (θ) as
illustrated in Figure 18. This histogram follows an exponential distribution as well with a
R2 of approximately 97%.

Figure 18: Transition probability based on angular difference fits well an exponential dis-
tribution.

Then, the transition probability ptrans(oi+1 → sk|oi → sj) representing the probability
that oi+1 is matched with sk knowing that oi is matched with sj is given by:

ptrans(oi+1 → sk|oi → sj) = βe−βθ(α1,α2) = βe−βmin(δ(α1,α2),δ(α2,α1)) (3)

3.5 Qualitative matching results for several types of networks

To run our tests, we arbitrarily used λ = β = 1 as parameters of the exponential distri-
butions used as cost functions in the calculation of emission and transition probabilities.
Qualitative analysis over a sample of matching results shows that the decision making
process powered by the hypergraph assignment problem seems to produce better results in
general, but differences are quite minimal. Figure 19 illustrates and example where the first
decision making approach (double HMM) performs better at dealing with the differences
of crossroads modelling (more detailed for Verniquet data) but also leads to false-positives
(black circle). Red solid lines illustrate matching links between homologous edges.

We examined matching links produced by our algorithm for the four datasets. Globally,
results are satisfying considering the facts that:

1. we use minimalistic, non-mandatory number of parameters to tune the algorithm:
the selection threshold to filter matching pairs of candidates in order to speed up
the process, and the type of the cost functions (exponential) for the calculation of
emission and transition probabilities; and

2. we only make geometrical and topological considerations.
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(a) (b)

Figure 19: Sample results of HMM matching of Paris streets networks using our two post-
process methods:
(a): double HMM method—black circle highlights a false-positive, and
(b): hypergraph assignment problem method.

(a) (b)

Figure 20: Other sample results of HMM matching of Paris streets networks.

Our approach succeeds at matching several kinds of spatial networks with different hetero-
geneities and imperfections. Figure 20 illustrates matching results on Paris street networks,
and shows good quality of matchings, even for roundabouts 20(b) and despite geometrical
discrepancies 20(a). Scores will be given for those datasets in the next section. Figure 21
highlights the robustness of HMM matching to deal with networks with heterogeneous lev-
els of details (roads), whether between the two networks, or within one of them: matching
is good in overall for countryside roads, and also for city roads and streets.

HMM matching also correctly deals with railways which are networks with different
scales (see Figures 22 and 21). That involves a high selection threshold to take into account
the potential large gap between candidates edges in the case of differences in the level of
details of the datasets (i.e., to consider 1:N and N:M matching links). It is relevant to note
that those networks have the specificity of not being wholly planar.

Finally, Figure 23 illustrates the good results of the algorithm for matching tree-like
networks with very sinuous geometries. Classical false-positives that can be considered
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(a) (b)

(c)

Figure 21: Sample results of HMM matching of road networks with different scales and
heterogeneous granularity:
(a): city streets,
(b): countryside road—black circle shows an example of false positive, and
(c): a larger area.

intrinsic to the approach are due to its tendency to over-match features (see Figure 21.b).
Indeed, as we do not use thresholds for each geometric criteria in the calculation of emis-
sion probabilities, all edges of G1 are possibly matched with one or several edges of G2.
Sometimes, the decision making process is not able to eliminate those false-positives.

3.6 Quantitative results and comparison with existing approach

Ground truth is used to calculate precision, recall and f-score which are measures conven-
tionally used to evaluate a matching algorithm. Precision is the ratio of true positives tp
(correctly matched edges) over the sum of true positives and false positives fp (wrongly
matched edges) i.e. the total number of matchings: precision = tp

tp+fp . Recall is the ratio
of true positives over the sum of true positives and false negatives fn (missing matchings):
recall = tp

tp+fn .
The F-score is the harmonic mean of accuracy and recall: F − score = 2∗precision∗recall

precision+recall .
Therefore, precision is a measure of how good the quality of matching links produced by an
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Figure 22: Sample results of HMM matching of railway networks with different scales and
level of detail.

algorithm is, whereas recall is a measure of completeness (to what extent does the algorithm
miss matchings?). The F-score is a compromise between precision and recall.

Table 2 illustrates precision, recall, and F-score calculated for Paris street networks us-
ing the HMM algorithm with both decision making process. The results are compared to
Opt [27] approach which is a classical and performing algorithm for matching networks.
We used optimal parameters for both algorithms, given by a calibration computed using
the OpenMOLE platform [33, 34], such that F-score is maximized (see section 3.7).

Approach Precision Recall F-Score

Double HMM 94.60% 92.90% 93.74%
HMM + optimization 93.57% 94.98% 94.27%

Opt [27] 91.97% 95.83% 93.86%

Table 2: Quantitative evaluation of HMM algorithm on Paris street networks. Selection
threshold, α and β are respectively set to 14, 50, and 23.6.

First of all, even though additional evaluation on other datasets should be achieved,
these numbers allow us to draw the following conclusions:

• The comparison with a proven approach shows that even though we use minimal-
istic parameters and criteria, our topological-driven algorithm gives similar results
(slightly better F-score).
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(a) (b)

(c)

Figure 23: Results for hydrographic tree-like networks with different scales.

• Recall and precision values are almost equal. This highlights a balanced algorithm
which tends to conciliate between two strategies: matching many objects in order to
ensure that a maximum of expected matching links are actually found (high recall)
with possibly low accuracy, and matching few objects with high accuracy even if
it implies significant number of false negatives. Our approach appears to be more
balanced than Opt [27] which is more optimistic (recall higher than precision).

• As supposed in the qualitative analysis, the decision making process based on hy-
pergraph assignment and optimization produces slightly better results (in terms of
F-score) than the double HMM.
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(a)

(b)

Figure 24: Matching results using Opt [27] (a) and HMM algorithm (b). Green, red, and
blue arrows are respectively true positives, false positives, and false negatives.

The HMM algorithm seems to perform better for datasets with different levels of detail,
such as differences in the representation of intersections, as shown in Figure 24. Never-
theless, the Fréchet distance might be insufficient in some cases to discriminate between
several matching candidates. Figure 25.c shows the result of the HMM before the deci-
sion making process. In this case, as several matching sets are topologically possible, it
is mostly the emission probabilities that lead to the given solution. This issue could be
overcome by choosing other measures or combinations of distances for the computation of
emission probabilities. One significant strength of our approach is scalability. As each path
can be processed independently of the others, our algorithm can be easily parallelized. On
our desktop computer (Intel Core i5 @ 2.60GHz ; RAM 8Gb), the matching of Paris street
networks took 45 seconds, whereas Opt [27] matching computation needed 23 minutes
to complete, with data divided in 3 areas so that the optimization calculations could be
completed without overflowing the RAM.

3.7 Algorithm exploration

Four parameters (α, β, pathMinLength, selectionThreshold) can be considered in our imple-
mentation:

• the parameters of exponential distributions, modeling emission and transition prob-
abilities (α and β);

• in order to take full advantage of the HMM, considered paths should intuitively be
“long enough” to allow the model to correct the matching by considering many hy-
pothesis simultaneously. pathMinLength is the least number of edges in each valid
path of observations. So far, we used the “every best fits” [24] algorithm to generate
paths, which may lead to paths of length 1 (pathMinLength=1, see paragraph 3.4.1)
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(a) (b)

(c)

Figure 25: Matching results on the data sample shows that HMM might miss matching
links (a) despite topological criterion because the choice of the Fréchet distance is not dis-
criminating enough, and (b) is the result of the HMM before the assignment optimization.
In this case, Opt [27] performs better (c). Green, red, and blue arrows are respectively true
positives, false positives, and false negatives.

that do not benefit from the topology-driven approach because then matching is only
determined by emission probabilities. To our knowledge there are no studies of the
least number of steps needed before convergence of the HMM to a single solution,
that is to say, the number of transitions after which new observations do not impact
the first match anymore. Thus, this parameter is relevant to look for an optimal path
length (smaller paths involves worst results, and longer paths does not involve better
results); and

• the selection threshold, selectionThreshold.

In order to better understand the sensitivity of the parameters of the proposed algo-
rithm, we performed several explorations using the OpenMOLE platform [33, 34]. Open-
MOLE is a free and open-source platform that offers tools to run, explore, diagnose, and
optimize numerical models, taking advantage of distributed computing environments1.
OpenMOLE offers different types of so-called Tasks designed to embed models. Tasks
such as ScalaTask, RTask, and NetLogoTask are specific to a programming language whereas
CARETask and ContainerTask are designed to embed models written in other languages such
as python or C. Once a model is embedded, OpenMOLE offers algorithms to design exper-
iments. Such algorithms include sampling parameters, model calibration [37], incremental
modelling [9], diversity search [6], and sensitivity analysis [35]. Finally, the experiments

1https://openmole.org/
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designed with OpenMOLE can be delegated to a remote execution environment such as
Slurm2 [49], HTCondor3 [39], or EGI4 [16].

Figure 26: Calibration of the proposed algorithm using genetic algorithms. Color indicates
the number of replications represented by each point of the calibration.

After integrating our algorithm into OpenMOLE (using a ScalaTask), we performed a
calibration using the ground truth presented in section 3.2. The results of this calibration
(see Figure 26), using a multiple-criteria calibration with precision and recall, show that the
algorithm searches for a compromise between these criteria. (There is no solution on the
Pareto frontier where one criterion is clearly preferred over the other. In other words, the
solutions are all grouped in a single cluster.)

After the calibration was finished, we selected the best parameter set using the F-score
(see section 3.6) from the calibration results. 100 replications of this parameter set were
then computed (see Figure 27) by modifying the random seed parameter. Indeed, due to
the stochastic nature of the algorithm, different results can be obtained using different ran-
dom number generation sequences. The random seed parameter allows us to initialize
the random number generator in different ways. These results show that the variation of
the F-score due to the stochasticity of the model is acceptable (with a standard deviation
of approximately 0.15%). Finally, four calibration profiles [35] were computed in order to
estimate the impact of each parameter on the results. These results show that α, β, and
pathMinLength have no significant effect on the results of the algorithm, and thus do not
constitute parameters of the model and can be set to any random value (see Figure 28a for
the α calibration profile). The selectionThreshold parameter is the only significant parameter
and seems to have optimal values between 10m and 20m for the tested network data (see
Figure 28b).

2https://slurm.schedmd.com/
3http://htcondor.org/
4https://www.egi.eu/
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Figure 27: Replication of the best calibrated solution with 100 replications.

4 Discussion and conclusion

Matching geographic features is a major step for many processes such as data qualifica-
tion, integration, and update. More particularly, for spatial networks that sustain critical
infrastructures, matching allows to detect changes and helps with the understanding of the
transformations and evolution of entities like cities or countries.

Most of linear object matching does not properly take advantage of the underlying
topology of networks and frequently needs numerous parameters whose calibration is ei-
ther unintuitive or tricky because of data imperfections and heterogeneities. Furthermore,
published matching algorithms are mostly tested on street or road networks and never
evaluated on different sorts of data with different types of imperfections.

In this paper, we propose a topology-driven approach to match spatial networks based
on a hidden Markov model. Our algorithm has the advantage to require no mandatory
parameters except a distance threshold that filters potential matching candidates in order
to speedup the process. To our knowledge, our article is the first to propose to use road
segments as observations in HMM for network matching. Here, we willingly decide to
separate the theoretical HMM model from its implementation. The algorithm is introduced
as a generic approach which takes as an entry paths of continuous edges of one of the net-
works (the observations), computes emission probabilities (the likelihood of a matching
link based on how they look alike) and transition probabilities (the probability of a match
given a previous match based on the topology of the two networks), and finds the best cor-
responding edges of the second network (the hidden states), i.e., the best matching links
using Viterbi algorithm. As long as no threshold is used in the calculation of either emis-
sion or transition probabilities, every feature is possibly matched at the end of the process.
To deal with entities that should not be matched, we develop two solutions. The first pro-
posal is based on a double HMM matching. We match the first network with the second
and reciprocally, and then only keep correspondences between edges that are matched in
both cases. The second proposal considers the decision making process as an assignment
problem in a hypergraph of matching candidates, resolved using maximization.
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(a) α

(b) selectionThreshold

Figure 28: Selected calibration profiles for the proposed algorithm. Color indicates the
number of replications represented by each point of the calibration profile.

The HMM matching approach has been proved to perform well with the matching of
four different types of networks (hydrography, railways, roads, and streets), even non pla-
nar ones. It also correctly manages some major data heterogeneities (scale, level of detail,
morphological evolutions) and imperfections (geometric accuracies). We also compared
our results with those of Opt [27] and proved that the HMM algorithm performs slightly
better in the case of Paris street network.

The major weakness of the approach is its dependence on the topological quality of
input networks. If the topology is broken (unconnected close nodes for instance), the al-
gorithm will fail. There is nothing we can to to improve this except by preprocessing the
input data as we did with the four datasets. The second intrinsic side-effect is that we need
to filter final matching links because the algorithm is very optimistic by nature: as long as
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emission probability is positive, every edge is susceptible to be matched. Even if the double
HMM matching or the assignment optimization correctly deal with expected unmatched
objects, false positives may remain.

Several points merit further research. First, we used the Fréchet distance for the calcu-
lation of emission probabilities in the implementation of the HMM. It would be useful to
test and combine other type of distances that might perform better. Second, we used the
“every best fits” algorithm to generate paths that cover the network. It might be interesting
to compare the results of our approach using this algorithm with other path-generation
strategies, such as random paths, or shortest paths between random vertices, to each other.
In this paper, we also compared the results of the HMM algorithm with that of Opt [27]. It
would be relevant to consider other well-tested approaches, and more generally to set up
a systematic process which would compare the results of a new matching algorithm with
those of validated literature approaches. Finally, we initialized state probabilities with the
distribution of emission probabilities associated with the first edge of the path, as done
in [31]. This way, the probability for any edge si to be matched with the first edge o1 of
one path is fully given by the emission probability pemit(o1 → si). An improvement might
be to use manual matching instead, that is to say to ask the user to manually link the first
edge of the path with its equivalent in the other network. This last point leads us to study
the interest of developing an online version of the HMM matching [19] that would match
on the fly a network under acquisition with a reference network.
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HMMSpatialNetworkMatcher for the proposed algorithm and at https://github.com/
GeoHistoricalData/nm for the OpenMOLE plugin and Opt implementation. The data,
containing ground truth, used for comparison between the algorithms, is available at
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/CCESX4.

References

[1] ALT, H., AND GODAU, M. Computing the Fréchet distance between two polygonal
curves. International Journal of Computational Geometry and Applications (1995).

[2] BANG, Y., GA, C., AND YU, K. An iterative process for matching network data sets
with different level of detail. ISPRS 338, 4 (2009).

JOSIS, Number 18 (2019), pp. 57–89

https://anr.fr/Projet-ANR-18-CE38-0013
https://github.com/GeoHistoricalData/HMMSpatialNetworkMatcher
https://github.com/GeoHistoricalData/HMMSpatialNetworkMatcher
https://github.com/GeoHistoricalData/nm
https://github.com/GeoHistoricalData/nm
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/CCESX4


86 COSTES AND PERRET

[3] BAUM, L. E., AND PETRIE, T. Statistical inference for probabilistic functions of fi-
nite state markov chains. The annals of mathematical statistics 37, 6 (1966), 1554–1563.
doi:10.1214/aoms/1177699147.

[4] BERGE, C. Graphs, vol. 6. North-Holland, 1985.

[5] BOUCHON-MEUNIER, B. Aggregation and fusion of imperfect information, vol. 12. Phys-
ica, 2013. doi:10.1007/978-3-7908-1889-5.

[6] CHÉREL, G., COTTINEAU, C., AND REUILLON, R. Beyond corroboration: Strengthen-
ing model validation by looking for unexpected patterns. PLoS ONE 10, 9 (09 2015),
1–28. doi:10.1371/journal.pone.0138212.

[7] COSTES, B. Matching old hydrographic vector data from cassini’s maps. e-Perimetron
9, 2 (2014), 51–65.

[8] COSTES, B. Vers la construction d’un référentiel géographique ancien: un modèle de graphe
agrégé pour intégrer, qualifier et analyser des réseaux géohistoriques. PhD thesis, Paris Est,
2016.

[9] COTTINEAU, C., CHAPRON, P., AND REUILLON, R. Growing models from the bot-
tom up. An evaluation-based incremental modelling method (ebimm) applied to the
simulation of systems of cities. Journal of Artificial Societies and Social Simulation 18, 4
(2015), 9. doi:10.18564/jasss.2828.

[10] DE RUNZ, C., AND DESJARDIN, É. Towards a new typology of spatiotemporal im-
perfection through a study of archaeological excavation data. In Ninth International
Symposium on Spatial Accuracy Assessment in Natural Resources and Environmental Sci-
ences (Leicester, UK, July 2010).

[11] DEVOGELE, T. Processus d’intégration et d’appariement de bases de données Géographiques,
Applications à une base de données routières multi-échelles. PhD thesis, Université de Ver-
sailles, 1997.

[12] DEVOGELE, T. A new merging process for data integration based on the discrete
Fréchet distance. In Advances in spatial data handling. Springer, 2002, pp. 167–181.
doi:10.1007/978-3-642-56094-1_13.

[13] DUMENIEU, B. Un système d’information géographique pour le suivi d’objets historiques
urbains à travers l’espace et le temps. PhD thesis, Paris, EHESS, 2015.

[14] EITER, T., AND MANNILA, H. Computing discrete Fréchet distance. Tech. rep., Chris-
tian Doppler Laboratory for Expert Systems, TU Vienna, Austria, 1994. Tech. Report
CD-TR 94/64.

[15] FAN, H., YANG, B., ZIPF, A., AND ROUSELL, A. A polygon-based ap-
proach for matching OpenStreetMap road networks with regional transit authority
data. International Journal of Geographical Information Science 30, 4 (2016), 748–764.
doi:10.1080/13658816.2015.1100732.

[16] FERRARI, T., SCARDACI, D., AND ANDREOZZI, S. The Open Science Commons for the
European Research Area. Springer International Publishing, Cham, 2018, pp. 43–67.
doi:10.1007/978-3-319-65633-5_3.

www.josis.org

http://dx.doi.org/10.1214/aoms/1177699147
http://dx.doi.org/10.1007/978-3-7908-1889-5
http://dx.doi.org/10.1371/journal.pone.0138212
http://dx.doi.org/10.18564/jasss.2828
http://dx.doi.org/10.1007/978-3-642-56094-1_13
http://dx.doi.org/10.1080/13658816.2015.1100732
http://dx.doi.org/10.1007/978-3-319-65633-5_3
http://www.josis.org


A HIDDEN MARKOV MODEL FOR MATCHING SPATIAL NETWORKS 87

[17] FISHER, P. F. Models of uncertainty in spatial data. Geographical information systems 1
(1999), 191–205.

[18] GLEYZE, J.-F. Using structural approach to understand transportation networks vul-
nerability. In European Geosciences Union 2008 (2008).

[19] GOH, C. Y., DAUWELS, J., MITROVIC, N., ASIF, M., ORAN, A., AND JAILLET, P.
Online map-matching based on hidden markov model for real-time traffic sensing
applications. In Intelligent Transportation Systems (ITSC), 2012 15th International IEEE
Conference on (2012), IEEE, pp. 776–781. doi:10.1109/ITSC.2012.6338627.

[20] GOODCHILD, M. F. Sharing imperfect data. In Proceedings UNEP and IUFPRO inter-
national workshop in cooperation with FAO in developing large environmental databases for
sustainable development , (1995).

[21] GOODCHILD, M. F. Combining space and time: new potential for temporal GIS. Plac-
ing history: How maps, spatial data, and GIS are changing historical scholarship (2008),
179–198.

[22] HAMMING, R. W. Error detecting and error correcting codes. Bell System technical
journal 29, 2 (1950), 147–160. doi:10.1002/j.1538-7305.1950.tb00463.x.

[23] HUNTER, G. J. Managing uncertainty in GIS. Geographical information systems 2 (1999),
633–641.

[24] JIANG, B., ZHAO, S., AND YIN, J. Self-organized natural roads for predicting traffic
flow: A sensitivity study. Journal of Statistical Mechanics: Theory and Experiment (July
2008). doi:10.1088/1742-5468/2008/07/P07008.

[25] LEVENSHTEIN, V. Binary codes capable of correcting deletions, insertions and rever-
sals. Doklady Akademii Nauk SSSR 4(163) (1965,), 845–848.

[26] LI, L., AND GOODCHILD, M. Automatically and accurately matching objects in
geospatial datasets. In Proceedings of joint international conference on theory, data handling
and modelling in geospatial information science (2010), pp. 26–28.

[27] LI, L., AND GOODCHILD, M. F. An optimisation model for linear feature matching in
geographical data conflation. International Journal of Image and Data Fusion 2, 4 (2011),
309–328. doi:10.1080/19479832.2011.577458.

[28] LONGLEY, P. A., GOODCHILD, M. F., MAGUIRE, D. J., AND RHIND, D. W. Geo-
graphic information system and science. England: John Wiley & Sons, Ltd (2001).

[29] LÜSCHER, P., BURGHARDT, D., AND WEIBEL, R. Matching road data of scales with
an order of magnitude difference. In 23th International Cartographic Conference (2007).

[30] MUSTIÈRE, S., AND DEVOGELE, T. Matching networks with different levels of detail.
GeoInformatica 12 (2008), 435–453. doi:10.1007/s10707-007-0040-1.

[31] NEWSON, P., AND KRUMM, J. Hidden markov map matching through noise
and sparseness. In Proceedings of the 17th ACM SIGSPATIAL international con-
ference on advances in geographic information systems (2009), ACM, pp. 336–343.
doi:10.1145/1653771.1653818.

JOSIS, Number 18 (2019), pp. 57–89

http://dx.doi.org/10.1109/ITSC.2012.6338627
http://dx.doi.org/10.1002/j.1538-7305.1950.tb00463.x
http://dx.doi.org/10.1088/1742-5468/2008/07/P07008
http://dx.doi.org/10.1080/19479832.2011.577458
http://dx.doi.org/10.1007/s10707-007-0040-1
http://dx.doi.org/10.1145/1653771.1653818


88 COSTES AND PERRET

[32] OLTEANU RAIMOND, A.-M., AND MUSTIÈRE, S. Data matching—a matter of belief.
Headway in Spatial Data Handling (2008), 501–519.

[33] REUILLON, R., CHUFFART, F., LECLAIRE, M., FAURE, T., DUMOULIN, N., AND
HILL, D. R. Declarative task delegation in OpenMOLE. In High Performance
Computing and Simulation (HPCS), 2010 international conference on (2010), pp. 55–62.
doi:10.1109/HPCS.2010.5547155.

[34] REUILLON, R., LECLAIRE, M., AND REY-COYREHOURCQ, S. OpenMOLE, a
workflow engine specifically tailored for the distributed exploration of simula-
tion models. Future Generation Computer Systems 29, 8 (2013), 1981 – 1990.
doi:10.1016/j.future.2013.05.003.

[35] REUILLON, R., SCHMITT, C., ALDAMA, R. D., AND MOURET, J.-B. A new method to
evaluate simulation models: The calibration profile (CP) algorithm. Journal of Artificial
Societies and Social Simulation 18, 1 (2015), 12. doi:10.18564/jasss.2675.

[36] SAMAL, A., SETH, S., AND CUETO, K. A feature-based approach to conflation of
geospatial sources. In International Journal of Geographical Information Sciences (2004),
vol. 18, pp. 459–489. doi:10.1080/13658810410001658076.

[37] SCHMITT, C., REY-COYREHOURCQ, S., REUILLON, R., AND PUMAIN, D. Half a billion
simulations: Evolutionary algorithms and distributed computing for calibrating the
simpoplocal geographical model. Environment and Planning B: Planning and Design 42,
2 (2015), 300–315.

[38] SHAFER, G., ET AL. A mathematical theory of evidence, vol. 1. Princeton university press
Princeton, 1976.

[39] THAIN, D., TANNENBAUM, T., AND LIVNY, M. Distributed computing in practice:
the condor experience. Concurrency and Computation: Practice and Experience 17, 2–4
(2005), 323–356. doi:10.1002/cpe.938.

[40] TONG, X., LIANG, D., AND JIN, Y. A linear road object matching method for confla-
tion based on optimization and logistic regression. International Journal of Geographical
Information Science 28, 4 (2014), 824–846. doi:10.1080/13658816.2013.876501.

[41] TONG, X., SHI, W., AND DENG, S. A probability-based multi-measure feature match-
ing method in map conflation. International Journal of Remote Sensing 30, 20 (2009),
5453–5472. doi:10.1080/01431160903130986.

[42] TOUYA, G., AND REIMER, A. Inferring the scale of OpenStreetMap features. In Open-
StreetMap in GIScience. Springer, 2015, pp. 81–99. doi:10.1007/978-3-319-14280-7_5.

[43] VANGENOT, C., PARENT, C., AND SPACCAPIETRA, S. Multi-representations and mul-
tipleresolutions in geographic databases. Proceedings of the Advanced DatabaseSympo-
sium" 99 (ADBS 99) 99, LBD-CONF-1999-009 (1999).

[44] VITERBI, A. Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE transactions on Information Theory 13, 2 (1967), 260–269.
doi:10.1109/TIT.1967.1054010.

www.josis.org

http://dx.doi.org/10.1109/HPCS.2010.5547155
http://dx.doi.org/10.1016/j.future.2013.05.003
http://dx.doi.org/10.18564/jasss.2675
http://dx.doi.org/10.1080/13658810410001658076
http://dx.doi.org/10.1002/cpe.938
http://dx.doi.org/10.1080/13658816.2013.876501
http://dx.doi.org/10.1080/01431160903130986
http://dx.doi.org/10.1007/978-3-319-14280-7_5
http://dx.doi.org/10.1109/TIT.1967.1054010
http://www.josis.org


A HIDDEN MARKOV MODEL FOR MATCHING SPATIAL NETWORKS 89

[45] VOLTZ, S. An iterative approach for matching multiple representations of street data.
In In Proceedings of ISPRS Workshop, Multiple representation and interoperability of spatial
data (Hanovre (Allemagne), feb 2006), pp. 101–110.

[46] WALTER, V., AND FRITSCH, D. Matching spatial data sets : a statistical ap-
proach. International Journal of Geographical Information Science 13:5 (1999), 445–473.
doi:10.1080/136588199241157.

[47] WEST, D. B. Introduction to graph theory, vol. 2. Prentice hall Upper Saddle River, 2001.

[48] WU, Z., AND PALMER, M. Verb semantics and lexical selection. In In Proceedings of the
32nd Annual Meetings of the Associations for Computational Linguistics (1994), pp. 133–
138. doi:10.3115/981732.981751.

[49] YOO, A. B., JETTE, M. A., AND GRONDONA, M. SLURM: Simple Linux Utility for
Resource Management. In Job Scheduling Strategies for Parallel Processing (Berlin, Hei-
delberg, 2003), D. Feitelson, L. Rudolph, and U. Schwiegelshohn, Eds., Springer Berlin
Heidelberg, pp. 44–60. doi:10.1007/10968987_3.

[50] YUAN, S., AND TAO, C. Development of conflation components. Proceedings of Geoin-
formatics, Ann Arbor (1999), 1–13.

[51] ZHANG, M., SHI, W., AND MENG, L. A generic matching algorithm for line networks
of different resolutions. In ICA Workshop on Generalisation and Multiple Representations
(2005).

JOSIS, Number 18 (2019), pp. 57–89

http://dx.doi.org/10.1080/136588199241157
http://dx.doi.org/10.3115/981732.981751
http://dx.doi.org/10.1007/10968987_3

	Introduction
	Network matching as a HMM: methodological background
	Background of the approach
	States, observations, and paths
	Path generation
	Probabilities of the model
	Emission probabilities
	Transition probabilities
	Initial state probability distribution

	Modeling multiple cardinality of matching links
	Solving the HMM
	Dealing with expected unmatched entities
	Double HMM matching
	Assignment modeling of the decision making process


	Use cases and implementation
	Datasets
	Ground truth
	Preprocessing
	HMM matching implementation
	Path generation
	A selection threshold to speed-up the matching process
	Emission probabilities: measurement of features similarity
	Transition probabilities: modelling topological constraints

	Qualitative matching results for several types of networks
	Quantitative results and comparison with existing approach
	Algorithm exploration

	Discussion and conclusion

