
HAL Id: hal-03545078
https://hal.science/hal-03545078v1

Submitted on 18 Nov 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Kingsguard OS-level mitigation against cache
side-channel attacks using runtime detection

Maria Mushtaq, Muhammad Muneeb Yousaf, Muhammad Khurram Bhatti,
Vianney Lapotre, Gogniat Guy

To cite this version:
Maria Mushtaq, Muhammad Muneeb Yousaf, Muhammad Khurram Bhatti, Vianney Lapotre, Gog-
niat Guy. The Kingsguard OS-level mitigation against cache side-channel attacks using runtime
detection. Annals of Telecommunications - annales des télécommunications, 2022, 77, pp.731-747.
�10.1007/s12243-021-00906-3�. �hal-03545078�

https://hal.science/hal-03545078v1
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

The Kingsguard
OS-level Mitigation against Cache Side-Channel
Attacks using Runtime Detection

Maria Mushtaq · Muhammad Muneeb
Yousaf · Muhammad Khurram Bhatti ·
Vianney Lapotre · Guy Gogniat

Received: date / Accepted: date

Abstract Most of the mitigation techniques against access-driven Cache Side-
Channel Attacks (CSCAs) are not very effective. This is mainly because most
mitigation techniques usually protect against any given specific vulnerability
of the system and do not take a system-wide approach. Moreover, they either
completely remove or greatly reduce the performance benefits. Therefore, to
find a security vs performance trade-off, we argue in favor of need-based protec-
tion in this paper, which will allow the operating system to apply mitigation
only after successful detection of CSCAs. Thus, detection can serve as a first
line of defense against such attacks. In this work, we propose a novel OS-
level runtime detection-based mitigation mechanism, called the Kingsguard,
against CSCAs in general-purpose operating systems. The proposed mecha-
nism enhances the security and privacy capabilities of Linux as a proof of
concept, and it can be widely used in commodity systems without any hard-
ware modifications. We provide experimental validation by mitigating three
state-of-the-art CSCAs on two different cryptosystems running under Linux.
We have also provided results by analyzing the effect of the combination of
multiple attacks running concurrently under variable system noise. Our re-
sults show that the Kingsguard can detect and mitigate known CSCAs with
an accuracy of more than 99% & 95%, respectively.

Keywords Hardware Security, Linux, Intel x86, Side-Channel Attacks,
Cryptanalysis, Detection, Mitigation, Machine Learning, RSA, AES,
Flush+Reload, Flush+Flush, Prime+Probe.

1 Introduction

In recent years, high resolution and stealthy Side-Channel Attacks (SCAs) and
their variants such as: Flush+Reload [16], Flush+Flush [15], Prime+Probe[22],

M. Mushtaq
LTCI, Télécom Paris, Institute Polytechnique de Paris, France
E-mail: maria.mushtaq@telecom-paris.fr

2 Maria Mushtaq et al.

Spectre [19] and Meltdown [21] have completely exposed the vulnerabilities in
modern computing architectures. At the software level, modern cryptographic
algorithms are theoretically sound and require enormous computing power to
break. However, much research work has shown that cryptosystems, such as
AES, can be compromised due to the vulnerabilities of the underlying hard-
ware on which they run [36], [15]. The SCAs do not target the cryptosystem
algorithm itself. Rather, they target the underlying implementation of systems
on which these cryptosystems execute [37]. The SCAs can use a variety of phys-
ical parameters, e.g., power consumption, electromagnetic radiation, memory
accesses and timing patterns to extract secret keys/information [36], [15], [29],
[18]. The baseline idea here is that the SCAs can analyze the variations in
these parameters during the execution of cryptosystems on a particular piece
of hardware and can determine the secret information used by cryptosystems
based on the observed parameters. The Cache Side-Channel Attacks (CSCAs)
are a special type of SCAs, in which a malicious process deduces the secret
information of a victim process by observing its use of caching hardware. The
inherent features that any known CSCA exploits are the cache timing and
access patterns.

Despite valiant efforts, mitigation techniques against SCAs are not very
effective. This is mainly because mitigation techniques usually protect against
any given specific vulnerability of the system and do not take a system-wide
approach. Moreover, they either completely remove or greatly reduce the per-
formance benefits of resource sharing. In addition to this, the attacks are be-
coming sophisticated and stealthier [15], [13]. Thus, they overcome statically
applied mitigation techniques. Therefore, on the one hand, protection against
these CSCAs needs to be applied across the entire computing stack and, on
the other hand, mitigation strategies must not remove the hard-earned perfor-
mance benefits of computing systems. In this work, we advocate for the use of
need-based protection mechanisms, which are imperative to effectively mitigate
CSCAs without sacrificing the benefits of resource sharing. Our arguments are
in favor of enhancing the capability of the Operating System (OS) by using a
detection-based mitigation approach that would help the OS to apply mitiga-
tion only after successful detection of a CSCA. Thus, detection can serve as
the first line of defense against such attacks. Such a solution would incur as
little overhead as possible without significant performance or monetary cost.
Such a solution, however, becomes very challenging in the absence of an ef-
fective detection mechanism, which needs to be highly accurate, and should
incur minimum system overhead at runtime, cover a large set of attacks and
be capable of early-stage detection, i.e., before the attack is completed, at the
very least. Rather than applying static mitigation against CSCAs, which is
constantly active and thus costly in terms of performance, a detection-based
mitigation mechanism would be dynamic. It would neutralize side-channel
threat as and when it happens. The following are the major contributions of
this paper.

Title Suppressed Due to Excessive Length 3

1. We propose a novel OS-level runtime detection-based mitigation mecha-
nism, called the Kingsguard, against CSCAs, that enhances the security
and privacy capabilities in a general-purpose OS.

2. We demonstrate that the Kingsguard is capable of detecting and miti-
gating state-of-the-art CSCAs, such as: Prime+Probe, Flush+Reload and
Flush+Flush attacks on AES and RSA cryptosystems while running under
Linux. We support our claims with an extensive experimental evaluation.

3. The Kingsguard is resilient to noise generated by the system under various
loads. We provide results under realistic system load conditions. Results
demonstrate the robustness & portability of our proposed mechanism.

4. We demonstrate the effectiveness of the Kingsuard on Linux OS as a proof
of concept. However, the Kingsguard is scalable across other operating
systems and attack vectors as well.

The rest of this paper is organized as follows. Section 2 provides related
work on the detection and mitigation techniques for CSCAs. Section 3 presents
the Kingsguard mitigation mechanism. Section 4 provides experiments & re-
sults for selected case studies. Section 6 concludes this paper.

2 Related Work

We provide the state of the art on SCA detection and mitigation mechanisms
that is the most relevant to the proposed work in this paper.

2.1 State of the Art in Detection Mechanisms

In recent years, many researchers have demonstrated that known SCAs can
be detected using different approaches [3]. Some of the OS-based detection
solutions are user-level, whereas others are kernel-level. Broadly, detection
mechanisms can be divided into three categories i.e., Signature-Based Mecha-
nisms ([5], [31], [30], Anomaly-Based Mechanisms ([7], [20], [9]) and Signature-
+ Anomaly-Based Mechanisms ([39], [4], [10]).

The authors in [5] have proposed a mechanism to detect F+R targeting
AES cryptosystems while showing good accuracy under no load conditions.
Accuracy deteriorates under load conditions and the authors did not discuss
the impact of a system overhead caused by the detection technique. The au-
thors in [31] proposed a tool named SCADET to detect P+P attacks. Results
show that SCADET achieves good accuracy but it lacks a discussion section
on detection speed and system overhead caused by the proposed mechanism,
which leaves the issue of runtime adaptability.

Another piece of work in [30] detects F+R attacks successfully but the
authors did not report the performance overhead and detection speed of the
proposed mechanism. The authors in [7] used Gaussian Anomaly Detection to
detect P+P attacks. However, their detection technique shows good accuracy
only in isolated conditions and suffers from high false positives in realistic load
conditions. The CacheShield [9] is an unsupervised anomaly detection mech-
anism to inspect F+R, P+P and F+F attacks under load conditions. The

4 Maria Mushtaq et al.

authors report that CacheShield offers good accuracy but it is not fast enough
to detect attacks at an early stage (detects after 37% and 50% of key com-
putation). Moreover, the proposed mechanism uses only 2 HPCs for variable
attacks (running RSA, AES, ELgamal). Attacks working with slightly different
behavior may not be detected by CacheShield due to their lack of a variable set
of distinguishable and non-correlated features. The detection mechanism also
relies on threshold determination for classification decisions. Once a different
attack vector is introduced, the threshold may no longer be a sophisticated
method to classify abnormal activity. Variation in attack behavior can lead to
indistinguishable behaviors. Thus, a pre-determined threshold can vary from
a given range with the introduction of new behaviors (attacks) and does not
act as an intelligent mechanism to report multiple threats simultaneously. Fur-
thermore, the detection technique does not report on performance degradation
caused by this method. A technique called SpyDetector [20], has been proposed
for the detection of F+R, F+F and P+P attacks, but the authors did not re-
port the detection speed and overhead of SpyDetector. Therefore, it cannot be
determined whether or not SpyDetector is able to perform early-stage detection
at runtime (especially for stealthy attacks such as F+F) or the cost of Spy-
Detector in terms of performance. Another technique, called CloudRadar [39]
detects P+P and F+R with good accuracy and negligible overhead in virtual
environments at a predetermined threshold and sampling frequency. Results
show that CloudRadar detects attacks in isolated conditions and no realistic
scenario for the mechanism has been tested. Another approach, proposed in
[4], detects cache and branch predictor based SCAs. Their experimental re-
sults show good detection accuracy, but the technique does not provide details
on detection speed and the impact on performance overhead. Keeping in view
the shortcomings of earlier work on runtime detection, we proposed a detec-
tion technique, called NIGHTs-WATCH, in [26] that couples machine learning
models and HPCs to detect F+R and F+F at runtime. This research work
reports good detection accuracy, low performance overhead, negligible misclas-
sification rate and a high speed of detection. Later on, this work was extended
to successfully demonstrate the detection of P+P attacks also in [25], [27]. We
extended the work in [26] by training our machine learning models with three
attacks collectively, namely; Flush+Flush, Prime+Probe and Flush+Reload
that are running both on RSA and AES cryptosystems. We can detect and
subsequently mitigate these attacks while they are running in any temporal
order or simultaneously under realistic execution scenarios.

2.2 State of the Art in Scheduling-Based Mitigation Techniques

For most side-channel attacks, timing variation is important to learn the vic-
tim’s interests i.e., repeated cache line accesses during a cryptographic oper-
ation. Many mitigation approaches work to counter the timing channel e.g.,
[6] provided a mitigation technique to limit the information revealed through
the timing channel, [32] proposed an instruction-based scheduler to mitigate
the timing channel, [34] proposed to eliminate fine-grained timers in Xen. But
obfuscating timing information can also negatively affect other useful applica-

Title Suppressed Due to Excessive Length 5

tions and attackers can obtain the information on victims through other useful
methods such as observing the access patterns of the victim [29].
The authors in [38] proposed bystander VMs with configurable workloads to
introduce noise in the victim process and to distract the attacker process from
the victim’s activity. But this approach works for covert channels only. There
is no evidence of this solution in the case of CSCAs. Noise-based solutions
work differently for each attack (based on information on the attack principle)
and noise-based solutions are not always successful in obfuscating sensitive
information. The authors in [23] introduced Shuffler, a light-weight scheduling
defense mechanism which quantifies the negative impact a VM can have on
other VMs and effectively limits the vulnerability probability in VMs. The
Shuffler scheduler works effectively for Prime+Probe attacks with negligible
overhead. It claims that the same principle should work for Flush+Reload
attacks but no empirical evidence of its effectiveness is provided under other
stealth and high resolution CSCAs. Such defenses are effective in solving a
particular threat at a specific cache level, but none of the solutions mitigates
the threat at all cache levels and for a set of sophisticated, stealth and high-
resolution attacks under one umbrella. Moreover, such solutions introduce a
significant performance penalty. This defense mechanism is particular to one
approach (P+P) that can likely be exploited by more sophisticated attacks
such as F+F, F+R etc. Düppel [41] is a mitigation technique which includes
mitigation for time-shared caches such as L1 and L2, TLB and BTB. Düppel
modifies the guest OS Kernel and does not need to change hypervisor or cloud
providers. Unlike the noise producing techniques, Düppel repeatedly cleans
the L1 cache along with the execution of the tenant workload, which incurs
performance overhead.
In this work, we advocate in favor of need-based protection mechanisms, which
are imperative to effectively mitigate CSCAs without sacrificing the benefits
of resource sharing. Such a solution would also incur as little overhead as pos-
sible without significant performance or monetary cost. These objectives, how-
ever, become even more challenging to achieve in the absence of an accurate
need-assessment mechanism. Therefore, the challenge is to provide real-time
early-stage detection of CSCAs on the one hand, while providing mitigation
as an OS-based service on the other hand. Mitigation in this case would be
responsible for isolating cryptosystems from unwanted sharing and removing
threats at runtime, which will be fast and incur minimum overhead. Moreover,
a detailed description on the state of the art of detection and scheduling-based
mitigation can also be found in [24].

3 The Kingsguard: Detection-Based Mitigation

The Kingsguard is an OS-level runtime detection-based mitigation mechanism,
which is designed to detect, and subsequently mitigate, a large set of CSCAs. It
enhances the capability of the OS, particularly Linux general-purpose distribu-
tion, with security features against side-channel information leakage. Figure 1
illustrates that the Kingsguard mechanism works in two distinct stages carried
out by two distinct modules: the detection module and the mitigation module.

6 Maria Mushtaq et al.

In the first stage, it uses multiple machine learning models that take, as input
features, the real-time behavioral data of concurrent processes running on In-
tel’s x86 shared memory architecture through hardware performance counters.
These data are provided to the detection module, which is embedded inside
the encryption library by the Kingsguard as shown in Figure 1. The detection
module operates in the user space. We elaborate on this module and its func-
tionality in Section 3.2 in more detail. Based on these data collected through
HPCs, the Kingsguard detects if any malicious process is trying to manipulate
the encryption process in order to extract information. If no malicious activity
is reported, all processes run normally at their pre-assigned privilege levels.
However, if malicious activity is detected, then the Kingsguard mechanism
invokes the mitigation module in the kernel space and enters into the second
phase. In this phase, through a netlink socket between user and kernel spaces,
the Process IDs (PIDs) of all processes that were using the encryption library
at the time of detection are provided to the mitigation module in the kernel
space. The Kingsguard immediately suspends any ongoing encryption activity
while identifying the IDs of processes that were using the encryption library.
The mitigation module then evaluates these PIDs to separate trusted processes
(usually system processes) from untrusted processes (usually user processes),
if any. The module then initiates the procedure of removing untrusted process
from the system and resumes the execution of all trusted processes (both sys-
tem as well as user processes). The notion of trust is used in the sense that
trusted processes are the system processes and untrusted processes are only
those user processes that are trying to use an encryption service, and their ex-
ecution of the cryptographic library is classified as an attack process. On the
other hand, the processes running at root and other innocent user processes
are considered as safe processes and non-vulnerable to attack.

In the following, we first elaborate on the threat model with which the
Kingsguard mechanism deals and then provide the design details of the detec-
tion and mitigation modules.

3.1 Threat Model

We assume an advantageous scenario for the attacker to demonstrate that
the Kingsguard remains effective even under weaker assumptions. Tromer et
al. [33] have classified SCAs into synchronous and asynchronous attacks de-
pending on whether or not the attacker can trigger the processing of known
inputs (usually plain or ciphertexts). Synchronous attacks, where the attacker
can trigger and observe encryption, are generally easier to perform from the
attacker’s perspective, and thus harder to defend against, since the attack
does not need to determine the start and end of each encryption. We have
assumed strong position for the attacker because attacker has the capability
to exactly know when to start the encryption and when it will be stopped (at-
tack process is synchronized with the victim process and it arbitrarily chooses
plain texts), and therefore will consider the scenario of synchronous attacks
where the attacker can request and observe encryption of arbitrarily chosen
plain texts. Moreover, to minimize the effect of external noise for the attacker,

Title Suppressed Due to Excessive Length 7

Fig. 1: The Kingsguard – the big pic-
ture.

Fig. 2: Detection Module of the
Kingsguard Mechanism.

Fig. 3: The Kingsguard – overall design
and development flow.

Fig. 4: Run time classification, detection and
mitigation mechanism.

8 Maria Mushtaq et al.

we assume that the attacker can be a co-resident on the same machine as
the target encryption process. We also assume that the attacker can execute
user-mode code on a processor core that is shared with the target encryption
process but does not have access to the address space of the target process.
We demonstrate that the Kingsguard works for same-core attacks as well as
for cross-core attacks.

Table 1: List of selected Cache SCAs as use cases on Intel’s core i7 machine.

Cache SCAs OpenSSL Version Cryptosystem
1 Flush+Reload 0.9.7l RSA
2 Flush+Flush 0.9.7l/1.0.1f AES
3 Prime+Probe 0.9.7l/1.0.1f AES

We assume that attacks are persistent in nature, i.e., the attacker process
can repeat the same attack a reasonably large number of times. We also assume
that any legitimate benign process can potentially be an attacker, thus the OS
does not have prior knowledge or any specific privilege level associated with the
attacker. Lastly, we assume that our threat model comprises multiple attacks,
which can execute in any temporal order, thus the mitigation must protect
the target encryption process under all possible execution scenarios. We have
considered 3 state-of-the-art CSCAs targeting 2 different cryptosystems as
use cases, i.e., Flush+Reload on RSA and Flush+Flush and Prime+Probe
on AES. Table 1 provides details on these use cases along with the OpenSSL
versions being used and the time to recover the key by each of these attacks on
an Intel’s core i7-4770 CPU machine. These are well-established attacks and
more details on them can be found in [15], [29], [40].

3.2 Runtime Detection Module

One of the distinguishing features of the Kingsguard mechanism is that it
is designed to work at runtime, i.e., when the attack is actually happening.
The challenge of designing a runtime detection module for CSCAs is three-
pronged. Firstly, a detection module would cause a slowdown in the encryption
time and thus it could lead to significant performance overhead while trying
to achieve higher detection accuracy. Secondly, accurate but late detection
is useless for runtime detection. Theoretically, 50% completion of an attack
is considered as sufficient for success [29]. Thus, detection speed is equally
important for runtime adaptation. And thirdly, a detection mechanism must
be highly accurate and should not lead to a higher number of False Positives
(FPs) and False Negatives (FNs) at runtime. We considered all these aspects
while designing the detection module for the Kingsguard.

The detection module of the Kingsguard has two major components: 1) Se-
lection of appropriate hardware events that will reveal, at runtime, an insight
into the cache behavior while under attack and 2) selection of appropriate ma-
chine learning models that could perform binary classification of Attack vs No
Attack scenarios with high accuracy, high speed and minimum performance

Title Suppressed Due to Excessive Length 9

overhead. One of the key features of the Kingsguard is that it operates un-
der realistic system load conditions on commodity hardware. Therefore, we
emulate the load conditions by running memory-intensive SPEC and CPU-
intensive STREAM benchmarks simultaneously on the system, as independent
background load. The load conditions are defined such that a No Load (NL)
condition involves only a Victim and an Attacker process running, an Average
Load (AL) involves Victim, Attacker and any two benchmarks running and a
Full Load (FL) condition involves Victim, Attacker and any four benchmark
processes running in the background. In order to maintain consistency in our
results, we have used SPEC benchmarks in the training phase for the ML
models, while using both SPEC and STREAM benchmarks during the testing
phase. Doing so eliminates any bias of the ML models towards background
system load conditions. It is important to mention that the state-of-the-art
attacks [15], [29], [35], [2] have been demonstrated as running in isolated con-
ditions, i.e., attacker and victim being the only load on the system. Therefore,
assuming realistic load conditions helps in validating the actual threat level
these attacks pose on the one hand, while making it possible to assess the
effectiveness of mitigation techniques on the other hand. Figure 2 illustrates
an abstract view of the detection module and Figure 4 illustrates the complete
flow chart of the Kingsguard.

3.2.1 Methodology

The methodology that the Kingsguard uses in its detection module is inspired
by that proposed in [28]. It consists of three distinct phases, namely; 1) Run-
time profiling, 2) Training of machine learning models and 3) Classification &
detection as illustrated in Figure 3. In the following, we describe these phases
in detail. During the runtime profiling phase, samples from selected hardware
events are collected using HPCs under variable load conditions (NL, AL &
FL). Once collected, these runtime profiles of the victim process are used for
training and cross validation of the machine learning models in the next phase.
We have collected labelled training data for roughly 1 million samples from all
possible execution scenarios for victim process. Our training data is unbiased,
i.e., it contains an equal number of samples for both attack and no-attack sce-
narios. Our models have not been overtrained becuase data is balanced as we
collected equal number of attacks and no attacks samples. Further k-fold vali-
dation of the data samples is performed. Moreover, even if model is overtrained
then at the test time we get data from hardware in real time, and offline data
does not have any effect on the online data. Training is a one-time process
in our proposed technique. In the last phase, trained classifiers use runtime
data coming from hardware events for binary classification, i.e., Attack or No
Attack.

3.2.2 Selection of Hardware Events

There are many hardware events that provide valuable information regarding
normal vs abnormal behavior of running processes. We have performed exten-
sive experimentation with all 12 hardware events with different scopes (L1-L3

10 Maria Mushtaq et al.

cache level and system-wide events) as presented in Table 2. The selection of
events is strictly based on the following factors: 1) the relevance of events with
the attack behavior, 2) the high precision and distinctiveness of information
on normal/abnormal behavior, 3) the selection of diversity and minimum cor-
relation, 4) the minimum number of events to avoid performance overhead and
multiplexing as counters can be non-deterministic if multiplexed.

Since we target access driven CSCAs, we only consider hardware events
that are most affected by these attacks. We performed experimentation on a
larger set of hardware events and selected the 12 most significant events as
shown in Table 2.

Thus, we selected L1-Data Cache Misses (L1-DCM), L3-Total Cache Ac-
cesses (L3-TCA), L3-Total Cache Misses (L3-TCM) and Total CPU Cycles
(TOT-CYC) as the most suitable minimum number of hardware events that
are used by the Kingsguard detection module for the selected use case attacks.

Table 2: Selected events related to CSCAs

Scope of Event Hardware Event as Feature Feature ID

L1 Caches
Data Cache Misses L1-DCM
Instruction Cache Misses L1-ICM
Total Cache Misses L1-TCM

L2 Caches

Instruction Cache Accesses L2-ICA
Instruction Cache Misses L2-ICM
Total Cache Accesses L2-TCA
Total Cache Misses L2-TCM

L3-Caches
Instruction Cache Accesses L3-ICA
Total Cache Accesses L3-TCA
Total Cache Misses L3-TCM

System-wide
Total CPU Cycles TOT CYC
Branch Mispredictions BR MSP

Table 3: Detection results using LDA, LR and SVM models for Flush+Reload
attack on RSA Cryptosystem

Model Load Accuracy(%) Speed(%) FP(%) FN(%) Overhead(%)

LDA
NL 99.51 0.98 0.488 0.001

0.94AL 99.50 0.98 0.492 0.008
FL 99.44 0.98 0.491 0.068

LR
NL 99.51 0.98 0.489 0

1.63AL 99.50 0.98 0.494 0.006
FL 99.47 0.98 0.489 0.040

SVM
NL 98.82 0.98 0.397 0.782

1.29AL 90.01 0.98 0.169 9.82
FL 95.79 0.98 3.211 0.998

3.2.3 Selection of Machine Learning Models

In this section, we discuss the rationale for selecting machine learning models
for the Kingsguard. The difference between attack and no attack scenarios is
quite significant under NL conditions, which could be easily separated using a
threshold. However, under a more realistic load condition (average and full),
this situation worsens. Due to increased interference with caches, it becomes

Title Suppressed Due to Excessive Length 11

hard to separate an attack scenario from a no attack scenario with simple
threshold-based approaches. Adding to the problem, in practice, a system can
be exposed to multiple CSCAs simultaneously or in any temporal order, which
would further increase the difficulty in distinguishing an attack scenario using
data from hardware events.

For such a system, machine learning models can be helpful in appropri-
ately learning the behavior of each CSCA using HPC data, which has also
been reported in past research as we explained in Section 2.1. Any selected
ML model is supposed to deal with such a data mix in order to separate an
attack from a no attack scenario. Our experiments show that not all ML mod-
els yield acceptable results and it is important to understand the diversity of
data affecting the caches in attack/no attack scenarios for the selection of ML
models. Since the Kingsguard uses runtime CSCA detection, we have applied
stringent criteria for the selection of ML Models that best suit our design
constraints, i.e., classification accuracy, implementation feasibility for runtime
detection, minimum performance overhead, distribution of errors (false posi-
tives and false negatives) and detection speed. Detection accuracy is the single
most important parameter for the module. Therefore, we have tested the de-
tection accuracy for at least 12 ML models with a training data set collected
for all 3 attacks running on the system. We then compare these models with
the rest of the design constraints. For instance, Figures 5 and 6 illustrate the
detection accuracy of all 12 models that are tested against F+R and F+F
attacks, respectively, with variable load conditions, i.e., NL, AL and FL con-
ditions. Many models perform well on detection accuracy but we argument
in favor of two design challenges; 1) models should be easy to embed inside
our detection module 2) models should have less implementation complexity
(thus lesser computational complexity) so that the performance overhead is
not excessive.

Fig. 5: Accuracy of ML Models for
F+R (RSA)

Fig. 6: Accuracy of ML Models for
F+F (AES)

As shown in Figure 5, most of the ML models show high accuracy for
F+R attacks, except Nearest-Centroid and Dummy Classifiers. For the F+F
attack in Figure 6, most ML models exhibit low accuracy. Moreover, under
load conditions, the classification accuracy of all models degrades against an
F+F attack. This degradation is attributed to the stealthy nature of F+F at-
tacks. Unlike F+R, for F+F attacks the Nearest Centroid classifier manifests
good classification accuracy. Based on detection accuracy, the subset of ML

12 Maria Mushtaq et al.

models that can be used at runtime consists of: LDA, LR, SVM, Naive-Bayes,
KNN, Decision Tree, Random Forest and QDA. Although the most important
is detection accuracy, it is not the only parameter to consider while deploying a
high-speed runtime CSCA detection module. Another most important parame-
ter to examine while comparing ML models is their implementation feasibility.
Also, ML models should be able to quickly provide their decision while keeping
their performance overhead minimum. Under these criteria, our experiments
reveal that LDA, LR and SVM are the best performing ML models for the
Kingsguard’s detection module due to their light-weight implementation, high
detection accuracy and minimum performance overhead. Section 4 provides
detailed results.

3.3 Runtime Mitigation Module

As illustrated in Figures 1 and 4, once the trained classifiers report an attack,
the mitigation module does not suspend encryption immediately. It suspends
encryption only if same process exhibits malicious behavior on three consecu-
tive detection samples. This number is chosen arbitrarily to remove the false
positives. Once it is established that the current process is truly a malicious
process, then the mitigation module suspends the encryption and obtains the
PID of the malicious process. After acquiring the malicious PID, it is passed
to the kernel part of the mitigation module. The kernel part of the mitigation
module evaluates whether this PID is trusted or not. If it is trusted then en-
cryption is resumed again, otherwise the mitigation module kills that process
immediately. The Kingsguard considers synchronous attacks, in which an at-
tacker process triggers the encryption by using the encryption library. Thus,
the attacker itself is considered as a direct user of the encryption service.
Therefore, we assume that an attacker, like any legitimate benign process in
the system, would access the encryption library before attacking it in a syn-
chronized fashion. Implementations of CSCAs such as Flush+Flush [15], [14],
Flush+Reload [36], [8] and Prime+Probe [29], [14] are synchronous attack im-
plementations. Therefore, in our experiments, we have also used synchronous
attack implementations. Moreover, we do not consider the case where an at-
tacker process, being the parent process, spawns a child process that executes
the actual attack. We are providing a detection-based mitigation solution for
general-purpose Linux distributions, which are inherently non-deterministic
and not real-time with the assumption that Linux offers fair scheduling. As
long as the Linux general purpose distribution is fair, our solution will target a
larger set of vulnerable commodity hardware and protect it. We have proposed
a solution to improve the common-case security.

The Linux OS provides isolation to kernel space from user space processes.
Thus, in order to transfer critical information, such as PIDs, we use a Netlink
socket as shown in Figure 1. The Netlink socket is a special Inter-Process Com-
munication (IPC) primitive that is used for transferring information between
kernel and user space processes. It provides a full-duplex communication link
between the two through standard socket APIs for user-space processes, and
a special kernel API for kernel modules [17]. In our mitigation module, we

Title Suppressed Due to Excessive Length 13

use the Netlink socket instead of system calls, ioctls or the proc file

system for communication between user and kernel spaces. System call and
ioctl are complex IPCs in the sense that a session for these IPCs can only
be initiated by the user-space applications. There is no way of passing any
urgent message by the kernel module for a user-space application by directly
using these IPCs. Applications periodically need to poll the kernel to obtain
the state changes, although intensive polling is expensive. The Netlink socket
solves this problem gracefully by allowing the kernel to also initiate sessions.
Moreover, it is a non-trivial task to add system calls, ioctls or proc files for
new features; we risk polluting the kernel and damaging the stability of the
system. The Netlink socket is simple. Only the protocol type, which is a con-
stant, needs to be specified and then the kernel module and applications can
communicate using socket-style APIs immediately. Netlink is asynchronous in
nature. It provides a socket queue to smooth the burst of messages. Unlike
Netlink, system calls require synchronous message passing, which could affect
the kernel’s scheduling granularity if the time to process that message is long.

As illustrated in Figure 1, the mitigation module first evaluates whether
the received PID is from a trusted process or not. It does so because, at run-
time, it is highly likely that the set of active processes that are concurrently
using the encryption library also contain some Linux system processes, which
are considered as trusted by default. It is therefore imperative for the mitiga-
tion module to evaluate the malicious PID to separate trusted processes from
untrusted ones (i.e., the user process). Once it is established that the process
under consideration is untrusted then it is killed immediately by the mitigation
module. The Kingsguard crypto library is used as a shared library (*.so file)
by whatever process that wants to encrypt on the system. The Linux Run-
time loader maps a copy of the Kingsguard mechanism in the address space
of each process. So, when a process exhibits malicious behaviour, the related
instance of the Kingsguard reports the detection and acquires the PID of the
current process with the getpid() function. In Linux, when a process is using
any shared library, the Linux runtime loader maps the functions/part of the
shared library code into the virtual address space of the concerned process,
which allows monitoring events to point to the exact process that is executing
the shared library at the time of detection. Thus, the mitigation module only
kills the malicious process and does not incur any performance overhead other
than its own execution time overhead, which is reported in the experiments
(Section 4).

3.4 Functional Description

Algorithm 1 provides a pseudo-code representation of the working principle
of the Kingsguard mechanism. As illustrated, the detection module takes as
input the sampling granularity for hardware events (SamplingGranularity),
which can be either user-defined or automatically adjusted at runtime. By
default, the sampling granularity is user-defined (offline) and set to fine-grain
sampling. Another input is the total number of iterations for which we tested

14 Maria Mushtaq et al.

Algorithm 1: Pseudo code representation of the working principle
for the Kingsguard.

1 SamplingGranularity, MaxIterations
2 events← ∅, report← False, Victim ← NIL
3 Victim← Get Encryption Lib()
4 Set of Active Processes ← Get PIDs(Victim)
5 Embed Detection(Victim)
6 Set Hardware Events(Victim)
7 for i← 1 to MaxIterations do
8 if i mod SamplingGranularity == 0 then
9 Activate Detection()

10 events ← Read Hardware Events()
11 report ← ML Classifiers(events)
12 Sleep Detection()
13 if report == True then

/* Attack is detected */

/* attack detected for 3 consecutive samples */

/* Activate Mitigation */

14 if attack reported 3 consecutive times then
15 Suspend(Encryption)
16 Get PID(Malicious Process)
17 Untrusted Processes ← Get Untrusted PIDs(Victim)
18 Trusted Processes ← Get Trusted PIDs(Victim)
19 Kill(Untrusted Processes)
20 Resume Encryption(Trusted Process)

/* Turnoff Mitigation */

21 return 1

/* No attack detected! */

22 return 0

the module (MaxIterations). The number of iterations varies for each at-
tack as discussed in Section 4 (F+R is 1 encryption, F+F is 350-400 and
P+P is 4800 encryption attacks). Lines 1 − 6 show that a victim process (en-
cryption process) is initialized, the detection module is embedded inside the
encryption library and the hardware events are set around the victim process,
considering it as the Region of Interest (ROI). For the selected number of it-
erations, the module activates detection after a number of encryptions equal
to SamplingGranularity (lines 7 − 9). Once activated, the detection module
collects the data from hardware events (line 10) and feeds them as features to
the selected binary classifier (line 11). Based on the classification, the module
generates a report on the results. Detection is then deactivated (line 12) and
if the report is True then an attack is reported (line 13). Otherwise, the vic-
tim process continues to execute uninterrupted. In the case of an attack, the
Kingsguard immediately suspends all encryption activities in the system (line
14) and starts analyzing all processes currently using the encryption library
(lines 15− 17). It separates the untrusted processes from the trusted ones and
kills them (line 18) before resuming the encryption services.

Title Suppressed Due to Excessive Length 15

Since algorithmic complexity is a measure of how long an algorithm would
take to complete given an input of size n, therefore, the algorithmic complexity
for Kingsguard’s Algorithm-1 is dependent on its input “MaxIterations”. The
input MaxIterations is finite integer value and the maximum value for Max-
Iterations can be 4800 in case the Kingsguard is running for Prime+Probe
attack. Thus, the called routines would always terminate. Algorthim-1 has a
linear time complexity of the order O(n), where n is the MaxIterations as
input.

4 Experiments and Results

4.1 Evaluation Setup

We have performed experiments on Linux Ubuntu LTS 16.04 Kernel version:
4.10.0-28-generic running on Intel’s core i7 − 4770 CPU at 3.40-GHz with
64KB L1 (32KB L1d + 32KB L1i), 256KB L2, 8192KB L3 and 8GB system
memory. We have used the Performance API (PAPI) [1] library to access HPCs
on the Intel Core i7 machine. For RSA, the axtls Embedded ssl 2.1.4 library is
used with bigint options set to the squared algorithm. For AES, we have used
the openssl−0.9.7l library. We have used Netlink sockets for communication
between the kernel and user space in Linux. Since the Kingsguard has two
main modules, Detection and Mitigation, it is pertinent to mention here that
the results reported in Tables 3–7 refer to the results of the detection module.
The number of FPs generated by each model reports only the FPs of the
detection module and not of the entire mitigation framework.

4.2 Case Study 1: Flush+Reload Attack on RSA

In our first case study, we demonstrate the detection and subsequent mitigation
of F+R attacks on RSA cryptosystems.

Detection Accuracy We use percentage accuracy to show the validity of trained
machine learning models as we have used an unbiased number of no-attack
and attack samples in the training data. All three machine learning models
show very high and consistent accuracy under all load conditions in Table 3.
Even under FL conditions, the accuracy of LDA and LR remains above 99%
while SVM shows above 95% accuracy. Most of the existing state-of-the-art
detection mechanisms detect CSCAs in NL conditions. Our results demon-
strate that the Kingsguard detection mechanism achieves very high accuracy
for Flush+Reload attacks under realistic load conditions. The primary reason
behind this high accuracy of machine learning models can be explained with
the help of Figure 7, which illustrates the variation in magnitude of hard-
ware events used for detection under attack and no-attack scenarios for FL
conditions. Measurements show that all the features show clearly distinctive
behavior under FL conditions, leading to the good performance of machine
learning models.

Detection Speed Detection speed is a trade-off between how quickly an attack
can be detected and how much overhead detection would cost. Flush+Reload
is a single encryption attack [36]. For Flush+Reload, we consider detection

16 Maria Mushtaq et al.

speed as a percentage of bits that are encrypted before the attack is success-
fully detected. Various attacks [29] have demonstrated that theoretically it is
sufficient to retrieve 50% of secret key bits for a successful attack and the other
50% of secret key bits can be reverse engineered. Thus, a safe upper bound on
the detection speed would be the detection before encryption of 50% of the
secret key bits, i.e., before the encryption of 512 bits out of 1024 bits in this
case. As shown in Table 3, all machine learning models are able to detect the
attack well before this safe limit. In all cases, the detection module is able to
detect Flush+Reload attacks in the first 20 bits (0.98%) out of 1024 bits of
the RSA execution.

Fig. 7: Experimental results on selected events under FL conditions for RSA:
With & Without Flush+Reload Attack.

Table 4: Detection time taken by various ML models under different load
conditions for Flush+Flush atack on AES.

Load Type LDA (µs) LR (µs) SVM (µs)

No Load
Min: 26 Min: 52 Min: 52
Avg: 29 Avg: 55 Avg: 54
Max: 31 Max: 99 Max: 101

Av. Load
Min: 27 Min: 54 Min: 54
Avg: 29 Avg: 57 Avg: 58
Max: 38 Max: 108 Max: 123

Full Load
Min: 30 Min: 57 Min: 58
Avg: 42 Avg: 94 Avg: 95
Max: 61 Max: 150 Max: 155

Table 5: Encryption time taken by RSA and AES while under various attacks
and variable load conditions.

Load Condition RSA under F+R
Attack (µs)

AES under F+F
Attack (µs)

AES under P+P
Attack (µs)

No Load
Min: 7264 Min: 209 Min: 728
Avg: 7604 Avg: 1395 Avg: 763
Max: 26391 Max: 1680 Max: 924

Av. Load
Min: 7328 Min: 210 Min: 744
Avg: 9982 Avg: 1477 Avg: 792
Max: 22600 Max: 2004 Max: 1012

Full Load
Min: 7578 Min: 210 Min: 779
Avg: 15284 Avg: 2899 Avg: 839
Max: 28283 Max: 3121 Max: 1061

Title Suppressed Due to Excessive Length 17

Confusion Matrix Detection inaccuracies can be further divided into false
positives (cases when a no-attack condition is detected as an attack) and false
negatives (cases when an attack condition is detected as a no-attack) to analyze
detection results in detail. Table 3 shows FPs and FNs by all machine learning
models while detecting Flush+Reload on RSA. Table 3 shows that with LDA
and LR, the majority of the misclassifications belong to FPs. In the case of
SVM, the behavior is different, as SVM exhibits more FN compared to FP
under NL and FL conditions.

Performance Overhead Detection granularity and the implementation (code
footprint) of machine learning models contribute to performance overhead.
The detection granularity defines how efficiently the detection mechanism pro-
files hardware events and makes detection decisions. To this end, the detection
module used in the Kingsguard mechanism incurs a 1−2% performance degra-
dation to the victim process in terms of makespan. These results are achieved
with the highest sampling frequency, i.e., with a sample after every 10 bits
being encrypted in the case of F+R on RSA and every 10 encryptions being
performed in the case of F+F and P+P on AES. We embed ML models, after
training, inside the encryption libraries, which greatly reduces the footprint
of these models. Our experimental results, as illustrated in Table 4, show that
the selected models take a fractional amount of time in performing their bi-
nary classification compared to the total encryption time taken by both RSA
and AES cryptosystems under various load conditions as illustrated in Table
5. For instance, both LR and SVM models take roughly 55µs on average to
classify an attack scenario under a no load condition whereas, under the same
load conditions, RSA takes 7604µs while under F+R attacks, and AES takes
1395µs and 763µs while under F+F and P+P attacks, respectively. As the
load conditions vary, there is no significant change in the measured results.
Thus, the implementation of ML models does not significantly contribute to
performance overhead.

4.3 Case Study 2: Flush+Flush Attack on AES

Fig. 8: Selected hardware events under FL conditions for AES encryption:
With & Without Flush+Flush Attacks.

According to [15], it is virtually impossible to detect the attacker thread
responsible for Flush+Flush attacks due to the absence of any abnormality
in cache misses and hits generated by the attacker. However, in this work, we

18 Maria Mushtaq et al.

illustrate that this attack is detectable from the victim’s perspective as this
results in more cache misses and accesses because of high speed flushing from
the attacker.

Detection Accuracy Table 6 shows the detection accuracy of all machine learn-
ing models for Flush+Flush attacks. LDA shows very high accuracy under all
load conditions for detection of Flush+Flush attacks on AES. The high in-
accuracy of LR and SVM models under FL conditions can be explained with
the help of Figure 8, which shows the behavior of used hardware events under
attack and no-attack for FL conditions. It is evident that all the features start
to overlap under attack and no-attack scenarios as shown in Figure 8. This
behavior of overlapping features makes it harder for machine learning models
to properly discern attack scenarios from no-attack scenarios. However, it is
interesting to see that the LDA model is still able to show high accuracy in
the case of FL conditions (95.20%).

Table 6: Detection results using LDA, LR and SVM models for Flush+Flush
attacks on the AES Cryptosystem

Model Load Accuracy(%) Speed(%) FP(%) FN(%) Overhead(%)

LDA
NL 99.970 25.000 0.075 0.025

1.180AL 98.740 25.000 1.200 0.140
FL 95.200 12.500 4.600 0.230

LR
NL 91.730 12.500 0.000 9.300

1.103AL 83.100 25.000 10.900 2.000
FL 75.860 25.000 98.390 1.610

SVM
NL 97.420 12.500 0.000 100

0.790AL 70.640 12.500 94.560 5.440
FL 63.160 12.500 98.140 1.860

Table 7: Detection results for Prime+Probe attacks on AES

Model Load Accuracy(%) Speed(%) FP(%) FN(%) Overhead(%)

LDA NL 95.150 2.100 0.000 4.850 3.480
AL 97.470 2.100 0.000 2.530
FL 100.000 1.100 0.000 0.000

LR NL 99.890 2.100 0.110 0.000 3.230
AL 99.970 2.100 0.030 0.000
FL 99.920 2.100 0.080 0.000

SVM NL 100.000 2.100 0.000 0.000 5.080
AL 100.000 2.100 0.000 0.000
FL 99.990 2.100 0.000 0.010

Detection Speed On implementation of Flush+Flush on AES [15], at least
350-400 encryptions need to be performed to complete the attack. Thus, the
detection of Flush+Flush attacks would only be useful if it is performed before
the completion of 400 encryptions of AES. Therefore, for Flush+Flush attacks
on AES, the detection speed is defined in terms of the number of encryptions
needed to detect the attack taken as a percentage of 400 encryptions (upper

Title Suppressed Due to Excessive Length 19

bound). As an example, a detection speed of 12.5% would mean that detection
is achieved within the first 50 encryptions. The Kingsguard mechanism detects
Flush+Flush attacks within the first 50 encryptions in most cases.

Confusion Matrix Table 6 shows the breakdown of misclassifications of all ma-
chine learning models into FPs and FNs while detecting Flush+Flush attacks
on AES. For most of the cases, the majority of mispredictions falls into FPs.
A few cases (SVM and LR under NL), where the majority of errors falls into
the false negatives category, have very high accuracy and the actual number
of false negatives and positives for them is very low.

Performance Overhead All three machine learning models incur a small pro-
filing and detection overhead for the implementations of Flush+Flush attacks
as shown in Table 6. Results show a maximum overhead of 1.18 in the case of
LDA, which is considerably small.

4.4 Case Study 3: Prime+Probe Attacks on AES

Detection Accuracy Table 7 shows the detection accuracy of the selected ML
models while detecting P+P attacks on AES. The detection accuracy is very
high for all ML models (close to 100%) under all load conditions. The only
exception is LDA under NL and AL, where it still shows a detection accuracy
above 95%. In order to explain this high accuracy of all ML models, we can
examine Figure 9, which shows the distribution of hardware events. As shown
in this figure, all used features clearly show distinctive behavior under FL
conditions (shown in Figure 9), the used hardware events start to overlap
around two features (L3’s total cache accesses and total cache misses) but still
exhibit distinctive behavior leading to the good performance of ML models.

Fig. 9: Selected hardware events under FL condition for AES encryption: With
& Without Prime+Probe Attacks

Detection Speed In order to reliably estimate the upper 4-bits of a secret key
byte, a Prime+Probe attack needs at least 4800 AES encryptions [15]. There-
fore, the detection of Prime+Probe would be useful only if it is achieved before
completion of 4800 encryptions. Here, we define the detection speed as the
number of encryptions needed to detect the attack, taken as a percentage of
4800 encryptions (i.e., the upper bound). For instance, a detection speed of
2.1% would mean that detection is achieved within the first 100 encryptions.
Table 7 shows the runtime detection speed achieved by all ML models. Our
detection module is able to detect the attack within the first 100 encryptions,
which is well ahead of 4800 AES encryptions under all load conditions.

20 Maria Mushtaq et al.

Confusion Matrix Table 7 shows the detection inaccuracy of our ML models
under all load conditions for P+P attacks on AES. The percentage of false
positives and negatives out of the evaluated samples is very close to 0 in
almost all cases.

Performance Overhead Table 7 shows that the performance overhead for de-
tecting P+P attacks is generally low for our detection module. We sample
hardware events every 50 encryptions to make detection decisions. Since the
detection speed is already very high, the sampling frequency of counters can
be relaxed, which would lead to a further reduction in performance overhead.

Overall Performance Overhead of the Kingsguard The overall performance
cost of the Kingsguard for performing detection and subsequent mitigation as
compared to the key recovery time by potential attackers is a critical measure
to evaluate the overhead. Table 8 illustrates the overall performance overhead
incurred by the Kingsguard mechanism while performing different operations
both in user- and kernel-space. For a sample set of 1000 iterations under vari-
able load conditions, we have observed that the entire operation, from detec-
tion, collection of PIDs, evaluation of PIDs, killing untrusted Processes and
resumption of service, takes 178µs, 199µs and 206µs on average for no load,
average load and full load conditions, respectively. Compared to the time taken
by the use-case attacks to recover the secret key in Table 1, one can notice
that the entire mitigation mechanism takes only a fraction of time.

Table 8: Performance overhead at different stages for the Kingsguard mecha-
nism while detecting Flush+Reload attacks on RSA

Load
Type

Detection(µs) PID
Collection(µs)

Mitigation(µs) Total
Overhead(µs)

No Load
Min: 64 Min: 0.5 Min: 5 Min: 69.6
Avg: 72 Avg: 1 Avg: 18 Avg: 91
Max: 121 Max: 1.5 Max: 54 Max: 176

Av. Load
Min: 69 Min: 0.5 Min: 5 Min: 74.5
Avg: 103 Avg: 1 Avg: 21 Avg: 125
Max: 172 Max: 1.5 Max: 58 Max: 231

Full Load
Min: 70 Min: 1 Min: 6 Min: 77
Avg: 138 Avg: 1.7 Avg: 25 Avg: 164
Max: 208 Max: 2 Max: 108 Max: 318

Table 9: Mitigation accuracy of the Kingsguard under simultaneously occur-
ring homogeneous attacks

Attack
Type

Attacking
Processes

Detection
Time (µs)

PID Collec-
tion Time
(µs)

Mitigation
Time (µs)

Mitigation Ac-
curacy (%)

F+R
2 103 1.000 18 99.010– 99.580
3 104 0.990 19 99.660– 99.730

F+F
2 26 1.000 18 99.030– 99.950
3 28 1.000 18 97.170–99.950

P+P
2 26 0.950 18 99.950– 99.990
3 28 0.990 19 99.900–99.970

Title Suppressed Due to Excessive Length 21

Fig. 10: Performance Overhead of the Kingsguard measured for Flush+Reload
Attack running on RSA cryptosystem

Figure 10 provides clarity on the numbers presented in Table 8. For in-
stance, victim executing encryption (RSA) takes 150µs on average under iso-
lated conditions. Under no load conditions, Flush+Reload attacks on the RSA
cryptosystem would require at least 7604µs to complete, whereas the Kings-
guard mechanism can detect this attack in 72µs on average for No Load con-
ditions (Table 8). Once an attack is detected, the encryption service is im-
mediately halted by the OS, i.e., in the first 72µs in this case. In the next
step, the PIDs of all processes using an encryption service are collected in the
user space and this information is relayed to the kernel space for subsequent
mitigation which takes 88µs on average. Based on this information, the miti-
gation module is activated, it differentiates between trusted and non-trusted
processes, kills untrusted processes and resumes trusted execution, which takes
18µs on average in this case. Thus, the overall performance overhead of run-
ning the Kingsguard, from detection to mitigation, is measured at 178µs on
average. As the mitigation mechanism is performing scheduling to kill un-
trusted processes, it can be nondeterministic under different load conditions.
The mitigation mechanism should perform before 50% completion of the se-
cret key so that the attacker is not able to build the key. For this security
sensitive part, we made sure that once an attack is detected, the encryption
service is halted and is only resumed when trusted execution resumes. This
ensures that an attacker will not be able to execute an attack after 72µs. This
time, in terms of secret key computation, refers to Table 3 which shows that
the attack is detected at 9 bits out of 1024 secret key bits in this case. At 9
bits, the encryption is stopped and the threat is mitigated, which is far less
than 50% of key computation. It is impossible for the detection mechanism
to become stalled because it is working at fine granularity i.e. in the case of
Flush+Reload (RSA), the detection framework samples the events after every
10 bits, whereas, the attacker needs 1024 bits to recover the secret key. Even
if we consider that the detection was stalled for some reason, it will still de-
tect the attack in the next 10 bits, which is well before the completion of the
attack (1024 bits), because the detection works at very fine-granularity while
providing early stage detection. In the case of Flush+Flush and Prime+Probe

22 Maria Mushtaq et al.

attacks on AES, the mitigation overhead is relatively much less compared to
the attack completion time as illustrated in Tables 1 and 8. These results are
similar to the ones presented in Table 8.

5 Discussion

This section presents limitations, open problems and future research oppor-
tunities associated with the application domain of detection-based mitigation
solutions. When we talk about CSCAs, either they are known or unknown,
they leave their imprints on the caches. These imprints can be observed by
carefully profiling the behavior of victim process without any initial knowledge
of the type of attack. To help, hardware events have played an important role
in the detection of such behaviors but it is important to note that hardware
events can prove to be imprecise, non-deterministic and limited in number
which can lead to increased inaccuracies in the results (FPs & FNs). A de-
tailed insight on the challenges, perils and pitfalls of using HPCs for security
can be found in [11]. Vulnerability assessment of system components can be
performed by using simulators such as gem5 [12] to capture the behavior of
smarter attacks and to better understand the microarchitectural components
for security reasons. Moreover, an important step can be the design of new
hardware events for security that can help in the behavioral analysis of sys-
tems under attack for known/unknown attacks.

We have provided a proof of concept as the Kingsguard which is able to cap-
ture the behaviors of multiple CSCAs and mitigate them in any temporal or-
der. In our case we have demonstrated results on Flush+Reload, Flush+Flush
and Prime+Probe attacks. It will be interesting to deploy a large repository
of CSCAs as well as multiple variants of Transient Execution Attacks i.e.,
Spectre and Meltdown which rely on cache behaviors. As pointed out in the
previous paragraph, as soon as the repository allows the detection of multi-
ple vulnerabilities at the same time, we may face issues of multiplexing for
HPCs (where multiple hardware events are scheduled on a single register). It
can lead to inaccuracy and imprecision of results. Automated vulnerability
assessment is one potential direction which involves a deep understanding of
microarchitectural components to automatically detect known and unknown
vulnerabilities in the systems.

Throughout the discussion, we elaborated that threshold-based solutions
are not efficient enough to distinguish abnormal behavior from normal behav-
ior because CSCAs are stealthy and contain a high bandwidth. Attacks can
happen in any temporal order and sophisticated methods are required to pro-
file data coming from hardware and later on classify them as attack/no-attack.
For this reason, we have experimented with 12 ML models which provide em-
pirical evidence to strengthen the belief that ML can be helpful in classifying
anomalous behaviors. Hence, ML in security can be considered as a sophisti-

Title Suppressed Due to Excessive Length 23

cated and resilient direction toward modern computing systems. Linear models
in our case have proven to be successful on known CSCAs. There is more ex-
ploration required in this domain to determine if deep learning models and
reinforcement learning can be helpful to reduce inaccuracies in the results (re-
duction of FPs & FNs). Another potential direction is to deploy hardware
detection components which rely on using the ML models in hardware. Such a
detection mechanism can be robust, precise and accurate while showing even
lower overhead with a very early stage detection. Furthermore, a future ex-
ploration of adversarial attacks to corrupt data coming from hardware events
and misclassify ML models can be an interesting direction to follow.

The Kingsguard mitigation is demonstrated in Linux, which uses the Com-
pletely Fair Scheduler (CFS) to schedule different applications. The scheduler
runs with a range of specific time periods i.e., 5-10 ms in which different appli-
cations are scheduled for different resources. Reducing the scheduler time also
introduces significant performance degradation and some applications may
also be starved of resources such as the CPU, i/o etc. Scheduler-based mitiga-
tions now have to respect this scheduling time (5-10 ms) in order to schedule.
But this time is very high from the encryption point of view. The state of
the art reports that typically 50% of the key bits are enough to reconstruct
the remaining secret key. To avoid this specific timing of the scheduler, the
Kingsguard detection and mitigation is performed on the rounds of encryp-
tion instead of the scheduler time. This is why the Kingsguard is able to detect
and subsequently mitigate rather stealthy attacks at a very early stage. Nowa-
days, we are experiencing attacks which are not even cryptosystem dependant
and we may experience attacks in the future which are even stealthier in na-
ture. Thus, scheduler-based mitigation may not remain a better fit for modern
attacks until we reduce the scheduler timings and deal with a performance
degradation caused by security issue.

6 Conclusion and Future Work

This paper proposes a novel OS-level run-time detection-based mitigation
mechanism against CSCAs, called the Kingsguard, which enhances the se-
curity and privacy capabilities in general-purpose operating systems. The
Kingsguard mechanism uses multiple machine learning models for run-time
detection and relies on the profiling of concurrent processes, which are col-
lected directly through the hardware events using HPCs in near real-time. We
demonstrate that the Kingsguard is capable of detecting and subsequently mit-
igating Prime+Probe, Flush+Reload and Flush+Flush attacks on AES and
RSA cryptosystems while running under Linux general-purpose distribution.
We also demonstrate that the proposed mechanism is resilient to noise gener-
ated by the system under various loads. Our results show that the Kingsguard
can mitigate known CSCAs with an accuracy of > 95% in most cases. To the
best of our knowledge, this is the first research work that provides a run-time
detection-based mitigation against Cache SCAs for Linux general-purpose dis-

24 Maria Mushtaq et al.

tributions. Our proof of concept is also scalable in terms of vulnerabilities and
deployability. This framework can also be used to detect other microarchitec-
tural attacks such as Transient Execution Attacks i.e., Spectre and Meltdown
because they rely on the same principle of CSCAs. The Kingsguard can be
readily deployable on a number of exsisting Linux distributions such as Debian,
Kali etc.

References

1. Performance application programming interface. In: http : //icl.cs.utk.edu/papi/ (2018)
2. Aciiçmez, O.: Yet Another MicroArchitectural Attack: Exploiting I-Cache. In: Proceed-

ings of the 2007 ACM Workshop on Computer Security Architecture, CSAW ’07, pp.
11–18. ACM, New York, NY, USA (2007). DOI 10.1145/1314466.1314469

3. Akram, A., Mushtaq, M., Bhatti, M.K., Lapotre, V., Gogniat, G.: Meet the sherlock
holmes’ of side channel leakage: A survey of cache sca detection techniques. IEEE Access
8, 70,836–70,860 (2020)

4. Alam, M., Bhattacharya, S., Mukhopadhyay, D., Bhattacharya, S.: Performance coun-
ters to rescue: A machine learning based safeguard against micro-architectural side-
channel-attacks. Cryptology ePrint Archive, Report 2017/564 (2017)

5. Allaf, Z., Adda, M., Gegov, A.: A comparison study on flush+reload and prime+probe
attacks on aes using machine learning approachess. UK Workshop on Computational
Intelligence pp. 203—-213 (2017)

6. Askarov, A., Zhang, D., Myers, A.C.: Predictive black-box mitigation of timing chan-
nels. In: Proceedings of the 17th ACM Conference on Computer and Communica-
tions Security, CCS ’10, pp. 297–307. ACM, New York, NY, USA (2010). DOI
10.1145/1866307.1866341. URL http://doi.acm.org/10.1145/1866307.1866341

7. Bazm, M.M., Sautereau, T., Lacoste, M., Sudholt, M., Menaud, J.M.: Cache-based
side-channel attacks detection through intel cache monitoring technology and hardware
performance counters. In: Fog and Mobile Edge Computing (FMEC), 2018 Third In-
ternational Conference on, pp. 7–12. IEEE (2018)

8. Berard, D.: https://github.com/polymorf/misc-cache-attacks/
9. Briongos, S., Irazoqui, G., Malagón, P., Eisenbarth, T.: Cacheshield: Detecting cache

attacks through self-observation. In: Proceedings of the Eighth ACM Conference on
Data and Application Security and Privacy, pp. 224–235. ACM (2018)

10. Chiappetta, M., Savas, E., Yilmaz, C.: Real time detection of cache-based side-channel
attacks using hardware performance counters. Appl. Soft Comput. 49(C), 1162–1174
(2016). DOI 10.1016/j.asoc.2016.09.014

11. Das, S., Werner, J., Antonakakis, M., Polychronakis, M., Monrose, F.: Sok: The chal-
lenges, pitfalls, and perils of using hardware performance counters for security. In: 2019
IEEE Symposium on Security and Privacy (SP), pp. 20–38. IEEE (2019)

12. France, L., Mushtaq, M., Bruguier, F., Novo, D., Benoit, P.: Vulnerability assessment of
the rowhammer attack using machine learning and the gem5 simulator-work in progress.
In: Proceedings of the 2021 ACM Workshop on Secure and Trustworthy Cyber-Physical
Systems, pp. 104–109 (2021)

13. Ge, Q., Yarom, Y., Cock, D., Heiser, G.: A survey of microarchitectural timing attacks
and countermeasures on contemporary hardware. Journal of Cryptographic Engineering
pp. 1–27 (2016). DOI $10.1007/s13389-016-0141-6$

14. Gruss, D.: https://github.com/iaik/flush flush
15. Gruss, D., Maurice, C., Wagner, K., Mangard, S.: Flush+Flush: A Fast and Stealthy

Cache Attack. In: Proceedings of the 13th International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment - Volume 9721, DIMVA 2016,
pp. 279–299. Springer-Verlag New York, Inc., NY, USA (2016)

16. Gülmezoğlu, B., İnci, M.S., Irazoqui, G., Eisenbarth, T., Sunar, B.: A faster and more
realistic flush+reload attack on aes. In: Revised Selected Papers of the 6th International
Workshop on Constructive Side-Channel Analysis and Secure Design - Volume 9064,

http://doi.acm.org/10.1145/1866307.1866341

Title Suppressed Due to Excessive Length 25

COSADE 2015, pp. 111–126. Springer-Verlag New York, Inc., New York, NY, USA
(2015). DOI 10.1007/978-3-319-21476-4 8. URL http://dx.doi.org/10.1007/978-3-

319-21476-4_8

17. He, K.K.: Kernel korner. why and how to use netlink socket. https :
//www.linuxjournal.com/article/7356 (2005)

18. Irazoqui, G., Inci, M.S., Eisenbarth, T., Sunar, B.: Wait a minute! A fast, Cross-VM
attack on AES. In: International Workshop on Recent Advances in Intrusion Detection,
pp. 299–319. Springer (2014)

19. Kocher, P., Genkin, D., Gruss, D., Haas, W., Hamburg, M., Lipp, M., Mangard, S.,
Prescher, T., Schwarz, M., Yarom, Y.: Spectre attacks: Exploiting speculative execution.
CoRR abs/1801.01203 (2018)

20. Kulah, Y., Dincer, B., Yilmaz, C., Savas, E.: Spydetector: An approach for detecting
side-channel attacks at runtime (2018)

21. Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Mangard, S., Kocher, P.,
Genkin, D., Yarom, Y., Hamburg, M.: Meltdown. CoRR abs/1801.01207 (2018)

22. Liu, F., Yarom, Y., Ge, Q., Heiser, G., Lee, R.B.: Last-level cache side-channel attacks
are practical. In: Proceedings of the 2015 IEEE Symposium on Security and Privacy,
SP ’15, pp. 605–622. IEEE Computer Society, Washington, DC, USA (2015). DOI
10.1109/SP.2015.43. URL http://dx.doi.org/10.1109/SP.2015.43

23. Liu, L., Wang, A., Zang, W., Yu, M., Xiao, M., Chen, S.: Shuffler: Mitigate Cross-
VM Side-Channel Attacks via Hypervisor Scheduling. In: International Conference on
Security and Privacy in Communication Systems, pp. 491–511. Springer (2018)

24. Mushtaq, M.: Software-based Detection and Mitigation of Microarchitectural Attacks
on Intel’s x86 Architecture. Theses, Université de Bretagne Sud (2019). URL https:

//hal-univ-ubs.archives-ouvertes.fr/tel-03105715

25. Mushtaq, M., Akram, A., Bhatti, M., Rao, N.B.R., Lapotre, V., Gogniat, G.: Run-time
detection of Prime+ Probe side-channel attack on AES encryption algorithm. In: Global
Information Infrastructure and Networking Symposium (2018)

26. Mushtaq, M., Akram, A., Bhatti, M.K., Chaudhry, M., Lapotre, V., Gogniat, G.: Nights-
watch: a cache-based side-channel intrusion detector using hardware performance coun-
ters. In: Proceedings of the 7th International Workshop on Hardware and Architectural
Support for Security and Privacy, p. 1. ACM (2018)

27. Mushtaq, M., Akram, A., Bhatti, M.K., Chaudhry, M., Yousaf, M., Farooq, U., Lapotre,
V., Gogniat, G.: Machine Learning For Security: The Case of Side-Channel Attack
Detection at Run-time. In: 25th IEEE International Conference on Electronics Circuits
and Systems, Bordeaux, FRANCE (2018)

28. Mushtaq, M., Bricq, J., Bhatti, M.K., Akram, A., Lapotre, V., Gogniat, G., Benoit,
P.: Whisper: A tool for run-time detection of side-channel attacks. IEEE Access 8,
83,871–83,900 (2020). DOI 10.1109/ACCESS.2020.2988370

29. Osvik, D.A., Shamir, A., Tromer, E.: Cache Attacks and Countermeasures: The Case
of AES, pp. 1 − −20. Springer Berlin Heidelberg, Berlin, Heidelberg (2006). DOI
$10.1007/11605805\ 1$. URL $http://dx.doi.org/10.1007/11605805_1$

30. PENG, S.h., ZHOU, Q.f., ZHAO, J.l.: Detection of cache-based side channel attack
based on performance counters. DEStech Trans. on Computer Science and Engg. (2017)

31. Sabbagh, M., Fei, Y., Wahl, T., Ding, A.A.: SCADET: a side-channel attack detection
tool for tracking Prime+ Probe. In: ICCAD (2018)

32. Stefan, D., Buiras, P., Yang, E.Z., Levy, A., Terei, D., Russo, A., Mazières, D.: Elim-
inating cache-based timing attacks with instruction-based scheduling. In: European
Symposium on Research in Computer Security, pp. 718–735. Springer (2013)

33. Tromer, E., Osvik, D.A., Shamir, A.: Efficient Cache Attacks on AES, and Counter-
measures. Journal of Cryptology 23(1), 37–71 (2010). DOI 10.1007/s00145-009-9049-y.
URL http://dx.doi.org/10.1007/s00145-009-9049-y

34. Vattikonda, B.C., Das, S., Shacham, H.: Eliminating Fine Grained Timers in Xen. In:
Proceedings of the 3rd ACM Workshop on Cloud Computing Security Workshop, CCSW
’11, pp. 41–46. ACM, New York, NY, USA (2011). DOI $10.1145/2046660.2046671$.
URL $http://doi.acm.org/10.1145/2046660.2046671$

35. Yarom, Y., Benger, N.: Recovering OpenSSL ECDSA Nonces Using the
FLUSH+RELOAD Cache Side-channel Attack

http://dx.doi.org/10.1007/978-3-319-21476-4_8
http://dx.doi.org/10.1007/978-3-319-21476-4_8
http://dx.doi.org/10.1109/SP.2015.43
https://hal-univ-ubs.archives-ouvertes.fr/tel-03105715
https://hal-univ-ubs.archives-ouvertes.fr/tel-03105715
$http://dx.doi.org/10.1007/11605805_1$
http://dx.doi.org/10.1007/s00145-009-9049-y
$http://doi.acm.org/10.1145/2046660.2046671$

26 Maria Mushtaq et al.

36. Yarom, Y., Falkner, K.: FLUSH+RELOAD: A High Resolution, Low Noise, L3 Cache
Side-channel Attack. In: Proceedings of the 23rd USENIX Conference on Security
Symposium, SEC’14, pp. 719–732. USENIX Association, Berkeley, CA, USA (2014).
URL http://dl.acm.org/citation.cfm?id=2671225.2671271

37. Yarom, Y., Genkin, D., Heninger, N.: CacheBleed: A Timing Attack on OpenSSL Con-
stant Time RSA, pp. 346−−367. Springer Berlin Heidelberg, Berlin, Heidelberg (2016).
DOI $10.1007/978-3-662-53140-2 17$

38. Zhang, R., Su, X., Wang, J., Wang, C., Liu, W., Lau, R.W.H.: On mitigating the
risk of cross-vm covert channels in a public cloud. IEEE Transactions on Parallel and
Distributed Systems 26(8), 2327–2339 (2015). DOI $10.1109/TPDS.2014.2346504$

39. Zhang, T., Zhang, Y., Lee, R.B.: Cloudradar: A real-time side-channel attack detection
system in clouds. In: International Symposium on Research in Attacks, Intrusions, and
Defenses, pp. 118–140. Springer (2016)

40. Zhang, Y., Juels, A., Reiter, M.K., Ristenpart, T.: Cross-vm side channels and their
use to extract private keys. In: Proceedings of the 2012 ACM Conference on Computer
and Communications Security, CCS ’12 (2012)

41. Zhang, Y., Reiter, M.K.: Düppel: Retrofitting commodity operating systems to mitigate
cache side channels in the cloud. In: Proceedings of the 2013 ACM SIGSAC Conference
on Computer & Communications Security, CCS ’13, pp. 827–838 (2013)

http://dl.acm.org/citation.cfm?id=2671225.2671271

	Introduction
	Related Work
	The Kingsguard: Detection-Based Mitigation
	Experiments and Results
	Discussion
	Conclusion and Future Work

