
HAL Id: hal-03544789
https://hal.science/hal-03544789

Submitted on 26 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fetal heart rate estimation by non-invasive single
abdominal electrocardiography in real clinical conditions
Nafissa Dia, Julie Fontecave-Jallon, Mariel Resendiz, Marie-Caroline Faisant,

Veronique Equy, Didier Riethmuller, Pierre-Yves Gumery, Bertrand Rivet

To cite this version:
Nafissa Dia, Julie Fontecave-Jallon, Mariel Resendiz, Marie-Caroline Faisant, Veronique Equy, et
al.. Fetal heart rate estimation by non-invasive single abdominal electrocardiography in real clini-
cal conditions. Biomedical Signal Processing and Control, 2022, 71, part 2 (January), pp.103187.
�10.1016/j.bspc.2021.103187�. �hal-03544789�

https://hal.science/hal-03544789
https://hal.archives-ouvertes.fr


Fetal heart rate estimation by non-invasive single
abdominal electrocardiography in real clinical conditions

Nafissa Diaa,b, Julie Fontecave-Jallonb,∗, Mariel Resendiza,b, Marie-Caroline Faisantc,
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Abstract

Fetal heart rate (FHR) is the main feature for monitoring fetal well-being as recom-
mended by the International Federation of Gynecology and Obstetrics (FIGO). The
ultrasound based cardiotocography (CTG) is nowadays the world-wide non-invasive
clinical reference technique for intrapartum FHR monitoring, as stated by FIGO. How-
ever, some limitations of CTG have justified the interest for alternative solutions, based
on abdominal electrocardiography (ECG). Their aim is to extract a fetal ECG signal
(fECG), from which R peaks are detected to deduce FHR. Nevertheless, most pub-
lished methods require a large number of abdominal sensors, which is not suitable for
an expected use in real clinics.
A novel methodology using a single abdominal ECG derivation is then investigated
for FHR estimation in real clinical conditions. After maternal ECG attenuation, a
source-filter model is considered to characterize the resulting fetal signal. Based on
a non-negative matrix factorization of its spectrogram, the fundamental frequency of
the source part is estimated, corresponding to FHR. Validation of the proposed FHR
estimation is carried out on a real clinical database.
Compared to a selection of other FHR estimation methodologies, our proposition presents
the best performance in terms of reliability and similarity to the reference CTG. Eval-
uated for 8 subjects, corresponding to a total of 167 minutes of recordings, the mean
ratio of outliers is lower than 25%. These good results in real clinical conditions makes
the proposed methodology a promising solution for use in routine practice by hospital
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1. Introduction

Analyzing the fetal heart rate (FHR) and its variability allows to follow the fetal
well-being during labor and birth in clinical setting. Indeed, FHR monitoring brings
important information about possible fetal sufferings [1] and is essential in the preven-
tion from serious neonatal abnormalities thanks to quick cares [2]. The non-invasive
reference tool in clinical routine is nowadays the cardiotocography (CTG) technique, as
required by the International Federation of Gynecology and Obstetrics (usually referred
as FIGO) [2]. CTG is based on Doppler ultrasounds and measures simultaneously the
FHR and the uterine activity motions. It has been used since the sixties and by 1989
was present at 99% of the pregnancies in France [1]. According to FIGO [2], the CTG
external FHR monitoring is the recommended initial method for routine intrapartum
monitoring. Although CTG is currently the world-wide reference technique, it has been
shown that using this latter contributed to the rise of the number of cesareans and in-
strumental deliveries [3, 4], especially because it presents frequent confusions between
the maternal and the fetal heart rates during labor and maternal pushing efforts [5]. An
alternative to external FHR monitoring with CTG is the internal one using scalp elec-
trocardiography (scalp ECG). It consists of screwing an electrode on the fetal scalp to
assess the fetal ECG. Scalp ECG is considered to provide an accurate FHR estimation
for fetal well-being monitoring [6]. However this method has important drawbacks: it
requires water breaking and ruptured membranes, it is highly invasive, carrying possi-
ble maternal or fetal infections and it has many established contraindications [2]. All
these considerations have then lead to investigate new techniques for FHR estimation
combining the non-invasive property of CTG and the reliability and accuracy of scalp
ECG. In particular, some studies have shown the interest of substituting CTG by ab-
dominal ECG (aECG) for FHR monitoring [7].

Since the beginning of the 20th century, extraction of fetal information from aECG
is possible [8] and in particular, numerous signal processing methodologies of FHR
estimation from aECG signals have then been proposed ([9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19] among others). Generally, they first need to extract the fetal ECG (fECG)
from aECG signals before detecting the R peaks to estimate FHR.
The fECG extraction step is not always easy due to the low power of fetal cardiac beats
compared to the maternal ones. To this end, blind source separation [11, 12] is an in-
teresting and effective tool for fECG extraction but this technique most often requires
the use of a high number of sensors (typically at least 5 or 6 placed on the thorax and
the abdomen). Regarding ergonomic concerns for the mother and the clinicians during
labour and delivery, this is therefore not suitable for clinical practice, limiting thus its
potential use in real situations. Consequently, usable devices and related algorithms
have to minimize the number of abdominal leads for an expected use in real clinics. In
this aim, other methodologies that use less sensors have been proposed (e.g. [16, 14]).
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For example time-scale analysis as wavelets transform [16] focuses on the ECG re-
markable points detection in order to distinguish maternal and fetal ones. Wavelets are
then used to reconstruct the fECG from its singular features. In [14], an other approach
based on Kalman filtering was proposed to monitor the FHR in a mobile way at home
from a single-channel abdominal ECG. A robust version of the extended Kalman filter,
namely strong extended Kalman filter, is used for the tracking of the maternal ECG.
This tracking allows to remove the maternal component from the aECG and to enhance
the fetal QRS complexes. The FHR is finally estimated classically by detecting the R
peaks. Although results show the effectiveness of the algorithm, its validation has been
carried out on controlled data or over short duration (≈ 10s).
For FHR estimation from fECG signals, several methods have been proposed [17, 18,
19], mainly based on temporal events detection, usually R peaks which are more promi-
nent than other ECG waves. The well-known Pan & Tompkins algorithm [20], origi-
nally implemented for R peaks detection from thoracic ECG signals in adults, has been
adapted for fetus [17]. This algorithm consists in first enhancing the R peaks by using
classical filters (band-pass, derivative, ...) and then in detecting them using decision
rules. In [19], authors proposed to robustly detect the QRS complexes on the derivative
signal using the Hilbert transform. Wavelets transform has been considered in [18]
since it has the interesting advantage to well highlight specific features; this allows to
detect the specific points of the fECG and then to discriminate the QRS complexes from
the other waves.
Finally, if many literature approaches have shown satisfactory results, their evaluations
were, in most cases, limited on either synthetic data or controlled realistic signals (e.g.,
with high signal-to-noise ratio (SNR) over short durations). However, in real clinical
conditions, signals are highly interfered by different types of noise as drifts, mother
motions or electromyogram (EMG) leading then to a difficult detection of characteris-
tic points, such as fetal R peaks, even visually.

Regarding the limitations of existing methodologies detailed before and to ensure a
clinical use, a new FHR estimation methodology is thus proposed in this paper. Firstly,
in relation to the clinical ergonomic constraints, a single ECG signal is considered on
the abdomen to ensure a good ergonomics for the mother and the clinicians. It is asso-
ciated to a thoracic ECG signal, already often used in clinics for maternal monitoring.
Second, to avoid fetal R peaks detection, the proposed algorithm is based on the non-
negative matrix decomposition (NMF) well adapted to extract specific features from
the spectrogram of physiological signals. Finally, to overcome the limitations of pub-
licly available data, the evaluation is performed on new signals recorded in real clinical
conditions.

The paper is organized as follows. First, the signals database considered in the
study is described. Then the various steps of the proposed algorithm are explained, as
well as the evaluation methodology. Finally, results are presented and discussed.

2. Fetal heart rate estimation methodology

2.1. Signal acquisitions
A clinical protocol was established and a prospective open label study started in

May 2019 in the University Hospital of Grenoble (study No RCB : 2018-A03182-53).
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Figure 1: Block diagram of the proposed methodology for FHR estimation

Pregnant women older than 18 years old with a single pregnancy were included among
the 9th month, provided none maternal or fetal complication. Data acquisitions were
carried out in the obstetrics ward of the university hospital of Grenoble. After signature
of informed consent, the volunteer was laying on her back, in a comfortable position,
in order to minimize movements and electrical interference.
Signal acquisitions were carried out using a PowerLab data acquisition system (ADIn-
struments), with sampling frequency at 1 kHz. Each acquisition session consisted in the
recording of one thoracic ECG and one abdominal ECG (BioAmp, ADInstruments).
For thoracic ECG, bipolar electrodes were placed across the mother heart axis. For ab-
dominal ECG, first the location of the fetal heart was defined by obstetrical ultrasound,
and then two abdominal bipolar electrodes were laid on the mother’s abdomen, each
side of the fetal heart following the fetus’ spine.

One reference electrode was also placed on the woman wrist. A simultaneous ref-
erence CTG monitoring (Avalon F20/F30, Philips) was recorded, allowing the acqui-
sition of a reference fetal heart rate. Once the sensors were placed, every monitoring
session lasted about 30 minutes. Eight volunteer women, between 37(+6) and 40(+4)
weeks(+days) of gestation, participated for now in the study, with a mean duration of
gestation of 38(+6) weeks and a standard deviation of 1(+0) week.

As said in Section 1, FHR estimation from abdominal ECG is usually carried out
according to two main parts: the attenuation of mother ECG (Section 2.2), followed
by the step of FHR estimation (Section 2.3). Fig.1 presents the block diagram of the
proposed methodology. Each step is detailed in the following subsections.

2.2. Maternal ECG attenuation

This first step consists in denoising the abdominal ECG signal (aECG(t)) so as to
reduce the contribution of maternal ECG and to estimate a fetal signal, which allows
us to estimate the fetal heart rate. Even if our primary aim is not to estimate the fetal
ECG signal and to analyze its morphology, by sake of simplicity, this denoised signal
will be denoted f ECG(t). A pre-processing step of the raw abdominal ECG consists of
(i) the baseline removal using a 10 Hz high-pass filter (Finite Impulse Response filter
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of order 100), (ii) the 50 Hz and its harmonics removal using a notch filter at 50 Hz
(Infinite Impulse Response filter of order 2) and a 80 Hz low-pass filter (FIR of order
100). To enhance the fetal cardiac beats, a non-linear kernel adaptive filter [21] is then
applied on the obtained abdominal ECG, aECG(t), taking as reference the thoracic
ECG (tECG(t)). The resulting signal is considered as an estimation of fetal ECG and
denoted f ECG(t). This filter is a non-linear extension of the classic linear adaptive
filter, as in [9], using the non-linear square exponential kernel (length scale λ = 240)
to map the reference to the observed signals

k(u(t),u(t ′)) = e

(
− ∥u(t)−u(t′)∥2

F
2λ2

)
, (1)

where u(t) = [tECG(t −M + 1), . . . , tECG(t)]T is a time-moving window of length
M = 900 samples.

Although the predominance of the maternal component in aECG(t), the proposed
methodology does not need to perfectly remove the maternal ECG for an effective FHR
extraction, contrary to many classical methodologies based on R peaks detection, as it
will be presented in Section 4.
In Fig.2, examples of signals are presented across the different steps of maternal ECG
attenuation over 10 s of recording.

2.3. NMF-based algorithm of FHR estimation
2.3.1. Temporal modeling of ECG signal and spectrogram

As many physiological signals, ECG signals are non-stationary but quasi-periodic.
They can be described as a succession of cardiac beats, each of them corresponding
to several cardiac waves, namely P, Q, R, S and T. Therefore one ECG signal can be
seen as a time-varying shape of the cardiac beat repeated quasi-periodically. This can
be modeled as a source-(time-varying) filter model defined by

x(t) = ∑
i

δ (t − τi)∗ si(t), (2)

where δ (t) is the Dirac delta fucntion, τi are the cardiac beats instants and si(t) mate-
rializes the ith cardiac beat pattern that can differ one from others. The filter input is
e(t) = ∑i δ (t − τi) and the time-dependent impulse response of the filter is si(t).
This temporal modeling of ECG signal is also valid for fetal ECG. Note that a similar
type of excitation-filter modeling has also been investigated [22, 23] for phonocardio-
graphic (PCG) signals, that share the same temporal properties with ECG.
Commonly applied to physiological signals for their analysis, the spectrogram, (i.e.
the time-frequency representation based on the short-time Fourier transform (STFT))
allows to stand out specific features with a certain spectral content. Its application to
the temporal model defined in (2) leads to

∀( f , t), X( f , t) = X (e)( f , t)X (ϕ)( f , t), (3)

where X (e)( f , t) (resp. X (ϕ)( f , t)) is the modulus of the STFT of the excitation (resp.
the filter). This can be rewritten as

X = X(e)⊙X(ϕ), (4)
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Figure 2: Temporal ECG signals for two different volunteers. From top to bottom : raw abdominal
ECG, aECG(t), abdominal ECG after pre-processing, aECG(t), and estimated fetal ECG after non-linear
adaptive filtering, f ECG(t).

where the ( f , t)-th entry of X is X( f , t), X ∈ RF×N
+ , X(e) ∈ RF×N

+ and X(ϕ) ∈ RF×N
+ ,

with F the number of frequency bins and N the number of time windows. ⊙ is the
Hadamard product (i.e. the element-wise multiplication) and R+ is the non-negative
real numbers set.

Examples of estimated fetal ECG spectrograms from two volunteers are shown in
Fig.3 using a 4s STFT window size to gather several heart beats. The harmonic struc-
ture is noticed as predicted, due to quasi-periodicity of cardiac signals. A fluctuated
fundamental frequency, around 140 bpm for Fig.3a) and 155 bpm for Fig.3b), and its
harmonics are well highlighted. Even when the signal is disturbed by noise (obviously
between 6 and 12 min for Fig.3a)), the trend of the fetal rhythm remains visible.

2.3.2. Harmonic estimation using NMF
The aim is to estimate the excitation component X(e) [22, 23] which contains the

harmonic structure of the fECG spectrogram as the STFT of ∑i δ (t−τi). The NMF [24,
25] is a matrix decomposition methodology allowing to factorize a positive matrix A
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Figure 3: Spectrogram of estimated fetal ECG, f ECG(t) (Fs = 1kHz, window = 4s, shift = 32ms, zero-
padding ratio = 4) for two different volunteers.

into a product of positive matrices W and H of lower rank than A so that A ≃ WH.
When NMF is applied to X from (4), the following expression is obtained

X ≃ V =
(
W(e)H(e))⊙ (

W(ϕ)H(ϕ)
)
, (5)

where W(e) and W(ϕ) are the frequency patterns of respectively the source and the
filter, H(e) and H(ϕ) are their related temporal amplitudes.

Matrices H(e), W(ϕ) and H(ϕ) are estimated by minimizing the criterion

C
(
H(e),W(ϕ),H(ϕ)

)
=

1
2
∥ X−V ∥2

F +γlL
(
W(ϕ),H(e),W(ϕ)

)
, (6)

where ∥ · ∥F is the Frobenius norm and

L
(
W(ϕ),H(e),H(ϕ)

)
= ∑

ke,kϕ ,n

(
H(e)

ke,n

)2(H(ϕ)
kϕ ,n

)2
F

∑
f=2

(
W(ϕ)

f ,kϕ
−W(ϕ)

( f−2),kϕ

)2

is a smoothness penalization term added to avoid some ambiguities, as detailed in [22].
To this end, multiplicative updates based on a majoration-minimization (MM) al-

gorithm [26] is used [22]. It is worth noting that, in our proposition, the frequency
dictionary W(e) is chosen fixed and is modeled as a set of Dirac combs. It contains a
large range of cardiac frequencies from 30 to 240 bpm (beats per minute) with 1 bpm
of precision, covering the possible fetal heart frequencies. Therefore, the matrix H(e)

has the role to consistently select the right cardiac frequency in W(e) at each instant
making the matrix H(e) to contain the temporal evolution of FHR estimation. The filter
part W(ϕ)H(ϕ) corresponds to the modulated envelop. Matrix H(e) is initialized with
strictly positive values near 0, and matrices W(ϕ) and H(ϕ) are initialized around 1.

One example of H(e) estimation for one volunteer is shown in the top plot of Fig. 4,
on which the time-varying cardiac frequency is clearly visible and should be extracted,
as it will be explained in the following section.

7



50
100
150
200

fr
eq

ue
nc

y

[m
n-1

]

0.2

0.4

0.6

50
100
150
200

FH
R

[b
pm

]

2 4 6 8 10 12 14 16
time [min]

50
100
150
200

FH
R

[b
pm

]

Figure 4: FHR estimation for volunteer V2. From top to bottom : matrix H(e) estimated from the proposed
NMF-based algorithm (represented as an image, where each element of H(e) is specified by a color), ex-
tracted FHR using H(e) (7) and estimated FHR after post-processing step.

2.3.3. FHR extraction
Considering that H(e) carries all information about FHR, this latter is then estimated

by taking the maximum of amplitude in each column of H(e).

FHR(t) = ν

(
argmax

k
H(e)

k,t

)
, (7)

where H(e)
k,t is the (k, t)-th entry of H(e) and ν ∈RKe is the vector of the Ke fundamental

frequencies of each Dirac comb of W(e), i.e. cardiac frequency between 30 bpm and
240 bpm. However, detecting the maximum of amplitude of H(e) may sometimes in-
duce the detection of sub-harmonics or harmonics of the fundamental frequency, lead-
ing to wrong FHR estimations. A post-processing step is proposed to detect too large
FHR derivatives which can be associated to multiple or sub-multiple FHR estimations
as detailed in [22]. In such cases, these detected FHR estimations are replaced by their
sub-multiples or multiples, accordingly. The result of this process is shown for one
volunteer in Fig.4. The circled samples correspond to detected wrong values due to
(sub-)harmonics detection which are then corrected by the post-processing step.

3. Evaluation methodology

For the validation of the proposed NMF methodology for FHR estimation, numer-
ical assessments of FHR estimations are realized related to FHR estimated from car-
diotocography, noted FHRCT G and considered as reference. All FHR estimations are
resampled every 250 ms (i.e. sampling frequency of 4 Hz) to match the usual sampling
period of CTG devices [27].

The proposed NMF methodology is compared to previous methods of the literature
introduced in Section 3.1 based on quantitative criteria defined in Section 3.2.
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3.1. Comparative methodologies

Results of our NMF-based proposition, referred as NMF , are compared to those
obtained from three comparative methodologies [17, 18, 19], referenced as PT, Wave,
Hilb, respectively. Among the many methods proposed for FHR estimation, these three
approaches have first been selected, since they only require a single abdominal sensor,
in order to allow a fair comparison with our proposed solution. Moreover, the purpose
of this choice is also to select a panel of various algorithmic principles. Indeed, [17]
adapts the well-known Pan & Tompkins algorithm [20] for fetal ECG characteristics.
[19], based on a Hilbert transform, allows a R-peaks detection robust to motion and
noise artifacts, and baseline drift. Finally, [18] proposes a wavelet transform allowing
an accurate detection of various QRS morphologies.

These comparative methodologies are applied to the estimated fetal ECG, f ECG(t),
obtained after the pre-processing and non-linear adaptive filtering of abdominal ECG
signal, aECG(t), similarly as our proposed NMF-methodology (Fig. 1). FHR estima-
tions have then been carried out on the proposed signals database with the 4 method-
ologies and compared to FHRCT G. It is worth noting that FHRmeth refers to the FHR
estimations based on methodology meth where meth ∈ {NMF,PT,Hilb,Wave}.

3.2. Quantitative criteria

The following criteria are considered for quantitative evaluation of the proposed
NMF methodology as well as the comparative methodologies.

3.2.1. Outliers
To measure the reliability of the estimated FHR compared to the FHR provided by

the CTG reference (when available, see Section 4.2), the set O of outliers is defined as
the set of indexes of estimated FHRmeth values that differ from FHRCT G by more than
12.5 bpm. This confidence margin to define outliers has been chosen according to the
clinical fetal heart rate variability, which is judged normal when comprising peak-to-
peak between 6 and 25 bpm [6].

Ometh =
{

i
∣∣ |FHRmeth(i)−FHRCT G(i)| ≥ 12.5

}
.

One can then define the set of non-outliers Ometh as the complementary set of Ometh:

Ometh = {1, · · · ,N}\Ometh,

where N is the total number of FHR estimations given by CTG. Finally, to quantify the
number of outliers, the ratio of outlier (RO) is defined as

ROmeth =
card

(
Ometh

)
N

, (8)

where card(·) is the cardinality of the input set.
Good reliability between FHR estimation and FHR reference is characterized by a
small ratio of outliers (RO near to 0%) or by 1 − RO near to 100% as depicted in
Table 2.
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3.2.2. Median deviation with reference (MD)
It corresponds to the median of the differences between estimated FHRmeth and

reference FHRCT G

MDmeth = med
(
FHRmeth −FHRCT G

)
, (9)

where med(·) is the median. This is computed over the recording duration and ex-
pressed in bpm. A small value near to 0 bpm is expected.

3.2.3. Pearson correlation coefficient (R)
It quantifies the similarity between FHRCT G and FHRmeth after removal of outliers.

It is computed as

Rmeth =
∑i∈Ometh

F̃HRmeth(i)F̃HRCT G(i)√
∑i∈Ometh

F̃HRmeth(i)
√

∑i∈Ometh
F̃HRCT G(i)

, (10)

where F̃HR·(i) = FHR·(i)−FHR· and FHR· is the mean value of FHR· computed as

FHR· =
1

card
(
Ometh

) ∑
i∈Ometh

FHR·(i).

The nearer to 100% the R value is, the better is the similarity between FHR estima-
tions and FHR reference given by CTG.

4. Results

In the following section, qualitative illustrations are first presented to show the be-
haviour of the proposed FHR estimation. Then quantitative evaluations of the proposed
methodology are carried out, based on the CTG reference and comparative methodolo-
gies of FHR estimation.

4.1. Qualitative observations of FHR estimation
FHR estimation using NMF are first visually analyzed, starting from the algorithm

results for one volunteer. In Fig.5, the fundamental frequency is stood out and fluctu-
ated around an average frequency of 160 bpm which is in the range for a fetus. The
figure also highlights for different moments of estimation (grey rectangles) the corre-
sponding temporal fetal ECG. In the signal portion a), fetal cardiac beats are roughly
recognizable in fECG signal, however only a few values are badly estimated on FHR
estimation, in b) the signal is mostly noisy with quite impossible R peaks visualization,
leading to a higher number of false FHR estimations and in c) the fetal heart beats
are easily identifiable with a very good FHR estimation. This example allows to show
the effectiveness of our methodology when fetal cardiac beats are easily detectable but
also when the signal is hard with noise so that classical algorithms of R peaks detection
may fail. However, when the signal is flooded in noise, the proposed methodology has
difficulties to well estimate FHR.
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Figure 5: Qualitative analysis of FHR estimation for volunteer V5. FHR estimation from our proposed
algorithm (top row). Illustration of estimation quality (second row) with the corresponding temporal fECG
(third row): a) with fetal cardiac beats hardly identifiable, b) with important noise and c) with fetal cardiac
beats easily recognizable.

4.2. Quality of CTG reference

During acquisitions, CTG was recorded (at 4 Hz of sampling frequency) for FHR
reference as the non-invasive technique for clinical routine [2]. Generally, when the
signal loss ratio (SLR) is greater than 20%, the CTG is not exploitable according to the
International Federation of Gynecology and Obstetrics [28]. In Table 1 are mentioned
SLR of each CTG recording from the 8 different volunteers. SLR is null for 2 subjects
over 8, however all CTG outlines are exploitable since the SLR remains smaller than
20% and CTG can then be used for all subjects for the comparative assessments.
For each subject, the recording duration (RD) is then considered as the usable duration
of the electrocardiographic signals, once signal losses on CTG have been excluded.
The values of RD for all subjects are reported on Table 2. These are comprised between
12 and 30 minutes.

Table 1: Quality of the CTG reference. Signal loss ratio (SLR) for the 8 volunteers.
Volunteer V1 V2 V3 V4 V5 V6 V7 V8
SLR [%] 0 0 13 10 4 3 15 3

4.3. Comparison with other methodologies

4.3.1. Qualitative comparison
Fig. 6 illustrates, for one volunteer, FHR estimations from the 4 methods super-

imposed to the reference FHRCT G. FHRNMF from the algorithm proposed in this
article is visually comparable to FHRCT G for this volunteer all along the 15 minutes
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Figure 6: Comparison of FHR estimations (in blue points) from NMF-based algorithm and comparative algo-
rithms with reference FHRCT G (in grey line) for volunteer V4. From top to bottom: FHRNMF , FHRHilb [19],
FHRWave [18] and FHRPT [17].

of recording. There are some values badly estimated but these do not prevent to follow
FHR across time.

The comparative methods, as already said in Section 1, based their implementa-
tion on time events localization and detection. They were first implemented and in-
tended for adults ECG and they are not always directly applicable to fetal ECG since
some parameters have to be adjusted. Algorithms based on Hilbert and Wavelets
transforms [18, 19] are less physiologically constrained than Pan & Tompkins algo-
rithm [17]. The advantage of the Hilbert-based methodology is that the threshold is
fixed only on the current window without impacts on the remain of the signal if pres-
ence of noise and this can be seen in the second row of Fig. 6. FHRHilb is visually
comparable to FHRCT G at certain instants. FHRWave is less accurate and barely com-
parable to FHRCT G because of a threshold based on the maximum amplitude of the
whole processed signal. Pan & Tompkins algorithm proved its effectiveness on adults
ECG signals with a low SNR but it is difficult to adapt on fetal ECG extracted from
abdominal ECG although physiological values are reviewed. The main issue is that
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the algorithm is not able to adapt to strong variations in the signal despite adaptive
thresholds. This leads to a result of FHRPT unusable.

4.3.2. Quantitative evaluation of FHR estimation
Quantitative criteria, as introduced in Section 3.2, have been computed for each

volunteer and for each considered methodology, the proposed NMF solution and 3
comparative methodologies (Hilbert, Wavelets and Pan & Tompkins). All values are
depicted in Table 2.
Recordings last between 12 and 30 min, with a median value of recording duration RD
equal to 20 min and a mean value of 20.9 min. Four recordings last more than 20 min.
The total of recording duration for the eight volunteers is 167 min.

Considering the number of FHRmeth distant more than ±12.5 bpm from FHRCT G
along RD, outliers ratio are computed and 1−RO ( 8) is displayed in Table 2. From
all volunteers, our proposed NMF methodology presents the best reliability between
FHR estimations and reference. For 6 volunteers over 8, more than 75 % of FHRmeth is
reliable. This is confirmed by the median value: 78.2% against 45.5% for Hilbert-based
methodology, 15% for the Wavelets-based algorithm and 18.5% for Pan & Tompkins
algorithm.

While considering the differences between FHRmeth and FHRCT G, the median de-
viations with reference MD (9) depicted in Table 2 also show that our proposed method-
ology allows the best FHR estimations, since MD values for NMF are lower to other
methodologies for most subjects. Indeed, MD median value for the 8 volunteers is
−1.2 bpm with our NMF approach, which is quite similar to MD from the Hilbert-
based methodology (−2.5 bpm) but smaller than MD from Pan & Tompkins algorithm
and Wavelets approach (respectively −7.1 bpm and 59.7 bpm).

Correlation coefficient R (10) between FHRNMF and FHRCT G is higher or equal
to R from other methodologies for all volunteers. R values from NMF are included
between 58 and 96 %, against 49 and 95 % for Hilbert, 35 and 95 % for Wavelets and
45 and 92 % for Pan & Tompkins. Note that R could not be computed for FHRPT for
V6 due to inoperable estimation (1−RO = 0). R median value (resp. 93.0 %, 85.5 %,
84.0 % and 77.0 %) for respectively NMF, Hilbert, Wavelets and Pan & Tompkins
are close but slightly better for NMF, highlighting a better similarity of FHRNMF with
CTG reference than other methods.

Globally, the proposed NMF algorithm for FHR estimation shows the best per-
formances in terms of reliability and similarity to the reference CTG. The results for
median deviation to the reference MD and correlation coefficient R are close and com-
parable to those brought by the Hilbert-based methodology. However, the reliability
between estimated FHR and FHRCT G is weaker for Hilbert, regarding 1− RO val-
ues, leading to a lower global performance for this comparative methodology. While
considering Wavelets-based methodology or Pan & Tompkins algorithm, the results
provided are systematically worse than the 2 previous solutions.

Figure 7 shows the results for one subject (V5) of FHR estimation FHRNMF from
our proposed algorithm, superimposed on reference FHRCT G. The outliers are clearly
visible. Indeed, they correspond to points that deviate from FHRCT G by more than
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Figure 7: FHRNMF estimations superimposed on reference FHRCT G for volunteer V5
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(a) Bland-Altman plot
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Figure 8: Overall FHR estimations from proposed NMF-methodology for the 8 volunteers. (a) Bland-Altman
plot of the whole 8 estimation sets including outliers (in grey) and without outliers (in red), the horizontal
red lines correspond to the mean value of the differences and the limits of agreement without outliers, (b)
scatter plot of FHRNMF and FHRCT G with outliers (in grey) and without outliers (in red), the dashed black
line corresponds to y = x.

12.5 bpm and this plot confirms the numerical value of outliers reported in Tab. 2. One
can find in appendix (for more visibility) similar plots for all 8 subjects.

To illustrate the overall performance of the proposed FHR estimation algorithm,
we consider pooling the results from all 8 individual subjects into one Bland-Altman
plot and one scatter plot, as shown in Fig. 8. The Bland-Altman plot [29] displays the
difference ∆FHR between the FHRNMF and the FHRCT G according to their average
value ((FHRNMF +FHRCT G)/2). Outliers are points with a large |∆FHR| correspond-
ing thus to points mainly distributed along the line with a slope equal to 2 (i.e. the
points on the diagonal line). Moreover, on this Bland-Altman plot, the mean of ∆FHR
without outliers, as well as the limits of agreement (mean difference ± 1.96 standard
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deviation of the difference) are also reported, as the horizontal straight lines. All points
without outliers (plotted in red) are contained inside the interval defined by the limits of
agreement, showing that the proposed methodology for FHR estimation is interchange-
able with CTG estimation. As reported in Tab. 2, the values of the median deviation
with reference MD are negative showing that the FHRNMF is underestimated com-
pared to the reference FHR (FHRCT G) for all volunteers except V5 and V6 for whom
MDNMF is zero. The individual Bland-Altman plots for all 8 subjects are also reported
in appendix.

Finally, Figure 8(b) shows the scatter plot between FHRNMF and FHRCT G with
(in grey) and without outliers (in red). The rectangular shape of the scatter plot with
outliers (grey points) shows (i) that the FHR estimation errors appear for the full range
of FHR values (100 to 200 bpm) and (ii) that these estimated FHR values are not cor-
related with the reference FHR as shown by the vertical orientation of the rectangular
shape. While considering the scatter plot after removal of outliers (red points), we
highlight the good behaviour of the FHR estimated by NMF compared to the reference
one (R = 0.9). The individual performance for the 8 subjects are available graphically
in appendix. Moreover Tab. 2 reports Pearson correlation coefficients without outliers
R ≥ 0.8 for all volunteers but V4. For this subject, the points on the scatter plot remain
close to the line y = x but with a small dispersion (due to a quite flat FHR along time).
One can conclude that the FHR estimation is better than suggested by the Pearson
correlation coefficient value.

5. Discussion and conclusion

The proposed methodology based on NMF from abdominal ECG for FHR estima-
tion outperforms the comparative methods as shown in the results section. Indeed, the
NMF-based algorithm estimates directly the FHR contrary to more classical methods
that are based on R peaks detection. This difference is fundamental since it can be
difficult to detect accurately the fetal R peaks due to the very low SNR in clinical con-
ditions (long recording, large artifacts, variations of the baseline, etc).

The proposed method has also the great advantage to require a single abdominal
ECG sensor, compared to many methods of literature using several abdominal sen-
sors. Indeed, from clinical perspectives, it is very important to limit the number of
abdominal sensors during the labor and the delivery, since the abdomen should be
free to allow surgery if necessary. In the proposed solution, an extra thoracic ECG
sensor is considered to attenuate the maternal ECG contribution on abdominal ECG
signal. But, one can imagine getting rid of this additional sensor, by considering other
ways of maternal ECG attenuation than adaptive filtering. A first attempt of a simple
template subtraction [30] on abdominal ECG has provided very similar performance
results. Indeed,the comparison for the eight volunteers between the template subtrac-
tion and the non-linear adaptive filtering respectively leads to 1−RO = 81± 6% and
to 1−RO = 79±5%, highlighting no significant difference. However, adding an extra
thoracic ECG sensor is not a clinical limitation at all, since maternal heart rate moni-
toring is already done in delivery rooms.
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Figure 9: Consistency of FHR estimation from NMF-proposed methodology applied on the five samples
of“Abdominal and Direct Fetal ECG Database” [31, 32]. For each sample, 1−RO is computed for FHR
separately estimated from each of the 4 abdominal ECG signals.

In addition to the reported results obtained from the recorded database, the pro-
posed method for estimating the FHR was also applied to the publicly available database
“Abdominal and Direct Fetal ECG Database” (also known as Silesia database) [31, 32]
for comparison purposes. This database consists of 5 segments of 5 minutes composed
of 4 abdominal recordings. A spiral electrode attached to the fetal head provides a refer-
ence of the fECG, that is used to extract the reference FHR based on R peaks detection
(instants publicly available on Silesia database). Our proposed FHR estimation method
was applied separately on each of the 4 abdominal signals, i.e. no spatial filtering as
independent component analysis was applied as pre-processing to follow the proposed
methodology. The maternal ECG attenuation was performed by a simple template sub-
traction as discussed in the previous paragraph. The FHR quality estimation is reported
on Figure 9 by the ratio of outliers (RO): for each of the 5 database samples, at least
one of the abdominal signal leads to more than 95% of good FHR estimations, for
which the median deviations with reference (MD) are -0.05,-0.06,-0.02,-0.04 and -0.02
and the correlation coefficients 99%,99%,98%,99% and 99%, highlighting the effec-
tiveness of the proposed methodology. Among the publicly available database, this is
the only one that comes close to the clinical conditions: long enough for allowing a
clinical diagnostic, avoiding too short signals (about 1 minute of signal). Indeed, as al-
ready mentioned and as reported in the FIGO guidelines [2], a duration longer than 10
minutes is necessary for FHR recordings interpretation, since most clinical criteria def-
initions are based on 10 minutes time periods (FHR baseline, tachycardia, bradycardia,
accelerations, deceleration...). Similar to the reported results obtained on our database,
the Bland-Almtan plot and the scatter plot have been computed on the overall data of
the Silesia database (all 4 channels of the 5 subjects taken together). These are shown
on Fig. 10(a) and Fig. 10(b). For both Bland-Altman and scatter plots, behaviors are
similar to those obtained for our database as presented on Fig. 8. It is worth noting that
the available time instants of the fetal R-peaks of the scalp ECG signals in the Silesia
database present a few errors of detection, shown in Fig. 10(b) as the two sets of hori-
zontal points around 125 and 145 bpm of the FHRNMF . This result highlights that our
methodology is reproducible on other databases and is thus not specific to our signals.
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Figure 10: Overall FHR estimations from proposed NMF-methodology for the 5 volunteers of the Silesia
database. (a) Bland-Altman plot of the whole estimations from the 4 channels including outliers (in grey)
and without outliers (in red), the horizontal red lines correspond to the mean value of the differences and the
limits of agreement without outliers, (b) scatter plot of FHRNMF and FHRre f (from R-peaks instants of the
reference scalp ECG) with outliers (in grey) and without outliers (in red), the dashed black line corresponds
to y = x.

Some remarks should also be made on CTG as the reference technology to mea-
sure FHR. As recommended by the International Federation of Gynecology and Ob-
stetrics, CTG is nowadays the world-wide reference for intrapartum FHR monitoring.
Therefore, it makes sense to compare results of new FHR monitoring methodologi-
cal propositions to CTG reference. However, in our case, it has to be noticed that the
two technologies (ECG and CTG) do not measure the same physiological phenomena:
the ECG measures directly the electrical cardiac activity whereas the CTG provides,
according to ultrasounds, an indirect measure of FHR. As indicated in [2], the CTG
process results in an approximation of the true FHR, considered sufficiently accurate
for analysis. So, when comparing estimations from these 2 technologies, even if the
FHR trends are similar, i.e. the same kind of variations can be seen regarding the FHR
baseline and acceleration/deceleration (Fig. A.11 and A.12, first row), fine variations
of the FHR, i.e. FHR variability, will not be necessary the same. This can explain the
lower R coefficient of V4 (Fig. A.11, last row) but a quite good fitting between FHRNMF
and FHRCT G (Fig. A.11, first row). Moreover, it has to be noted that FHRNMF values
are often lower than FHRCT G ones, especially for high FHR values: this is noticeable
on V2 and V3. This also allows to explain the value of MD = −6.0 for V3 in Table 2,
who has the highest average FHR. To investigate the differences between FHRNMF
and FHRCT G, a manual detection of well identifiable R peaks in signal portions has
been carried out. This leads to a related FHR estimation closer to FHRNMF than to
FHRCT G, which suggests an overestimation of FHR by the considered CTG device.
As a consequence, the comparison values of FHR from the considered fECG-based
methodologies, FHRmeth, are impacted by these overestimated FHRCT G values.

As already mentioned, FHR provided by CTG and ECG have the same trends, but
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different FHR variabilities. A point-by-point comparison is therefore unfair, without
a confidence margin. Instead of a classical relative threshold, expressed in percent-
age of the instantaneous FHR, we prefer absolute tolerance, independent of the FHR
values. As already said, the clinical variability is judged normal when comprising
peak-to-peak between 6 and 25 bpm [6]. This justifies our choice of 12.5 bpm for
the confidence margin used for the computation of RO. Moreover, 12.5 bpm is about
10% of the classical FHR values range (120−160 bpm). In perspectives of this, it may
be of interest to propose relevant clinical criteria in relation with the baseline rhythm,
accelerations/decelerations and variability, in addition to the quantitative criteria pro-
posed in this paper. Moreover, a concurrent indexation by clinicians of FHRCT G and
FHRNMF outlines from a large signals database would be useful to compare the ability
of the two technologies to reliably identify the clinical FHR variability, as the main
feature for fetal well-being monitoring.

Finally, although our NMF-based proposition shows in the whole the best results
compared to the state-of-art methodologies [17, 18, 19], some improvements should be
investigated. Indeed the post-processing step, which allows to correct the bad funda-
mental frequencies detection as mentioned in Section 2.3.3, can be included directly in
the NMF algorithm. Moreover, the excitation-filter model used in Section 2.3 to model
the fECG contains only one harmonic part supposed to be the cardiac beat events. How-
ever, as already noticed, in clinical situations, some artifacts interfere with the fECG.
Such specific components could be added in the model to improve the accuracy of the
NMF. In addition, our proposition should be able to detect when the fECG signal is not
available. For example, FHRNMF of V1 depicted in first row of Fig.A.11 shows bad
FHR estimations between 5 and 10 min probably due to loss of fECG, maybe because
of fetal motions. At such instants, the method must not estimate FHR values, and thus
does not display any FHR value as the CTG does in such situations: according to the
International Federation of Gynecology and Obstetrics [28], a FHR outline (by CTG)
remains exploitable with a signal loss ratio lower than 20%.

To conclude, a novel approach of FHR estimation from a single-channel abdominal
ECG for an expected use in clinics has been investigated in this paper. Unlike most
methods to estimate the FHR, the proposed one does not need neither to detect the
R-peaks nor to train parameters. Evaluation of FHR estimations from ECG has been
qualitatively and quantitatively carried out on a real signals database of 8 volunteers,
related to the CTG clinical reference and comparative methodologies. The average
duration of signals is of 21 min near of what is done in clinics (30 min is the classical
monitoring duration during pregnancy). The results highlight robust performance of
the proposed methodology, which may be considered as a promising solution for FHR
estimation in clinical situations and a potential alternative to CTG in the future.

Appendix A. Individual results

Figure A.11 and Figure A.12 illustrate the FHR estimation performance for each
subject (i) by superimposing the FHRNMF on reference FHRCT G (first row), (ii) by
displaying the Bland-Altman plots [29] of all the estimations with and without outliers
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(second row) and (iii) by plotting the FHRNMF according to the FHRCT G after removal
of outliers (third row).
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Figure A.11: FHR estimation results from proposed NMF-methodology for volunteers V1 to V4. From
top to bottom: (i) FHRNMF estimations superimposed on reference FHRCT G, (ii) Bland-Altman plots of
the whole recording including outliers (in blue) and without outliers (in red), the lines correspond to the
mean value of the differences and the limits of agreement without outliers, (iii) correlations of FHRNMF and
FHRCT G after removal of outliers, the line corresponds to y = x.
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Figure A.12: FHR estimation results from proposed NMF-methodology for volunteers V5 to V8. From
top to bottom: (i) FHRNMF estimations superimposed on reference FHRCT G, (ii) Bland-Altman plots of
the whole recording including outliers (in blue) and without outliers (in red), the lines correspond to the
mean value of the differences and the limits of agreement without outliers, (iii) correlations of FHRNMF and
FHRCT G after removal of outliers, the line corresponds to y = x.
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Table 2: Quantitative evaluation between estimated FHRmeth and reference FHRCT G. Recording duration
(RD), consistency of the estimation 1−RO ( 8), median deviation from the reference MD ( 9) and Pearson
correlation coefficient R ( 10). Values are depicted for the 8 volunteers and the 4 compared methodologies
NMF, Hilbert, Wavelets and Pan & Tompkins. Values in bold cases highlight which method performs best in
terms of either 1−RO, MD and R. For each methodology, the outliers are FHR estimations that differ from
CTG by more than 12.5 bpm. Note that R is computed after outliers’ removal.
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