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Optimal Control of Quasivariational Inequalities 

with Applications to Contact Mechanics

Mircea Sofonea

Abstract This chapter deals with the optimal control of a class of elliptic quasi-

variational inequalities. We start with an existence and uniqueness result for such

inequalities. Then we state an optimal control problem, list the assumptions on

the data and prove the existence of optimal pairs. We proceed with a perturbed

control problem for which we state and prove a convergence result, under general

conditions. Further, we present a relevant particular case for which these conditions

are satisfied and, therefore, our convergence result works. Finally, we illustrate the

use of these abstract results in the study of a mathematical model which describes

the equilibrium of an elastic body in frictional contact with an obstacle, the so-

called foundation. The process is static and the contact is modeled with normal

compliance and unilateral constraint, associated with the Coulomb’s law of dry

friction. We prove the existence, uniqueness, and convergence results together with

the corresponding mechanical interpretation. We illustrate these results in the study

of a one-dimensional example. Finally, we end this chapter with some concluding

remarks.

Keywords Quasivariational inequality · Optimal pair · Optimal control ·

Convergence results · Frictional contact · Unilateral constraint · Weak solution

13.1 Introduction

Variational inequalities represent a powerful mathematical tool used in the study

of various nonlinear boundary value problems with partial differential equations.

They are usually formulated by using a set of constraints, a nonlinear operator, and

a convex function which could be nondifferentiable. Quasivariational inequalities
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represent a special class of variational inequalities in which the convex function

depends on the solution. The theory of variational inequalities was developed based

on arguments of monotonicity and convexity, including properties of the subdiffer-

ential of a convex function. Basic references in the field are [4, 10, 17, 22, 25], for

instance. Application of variational inequalities in mechanics could be found in the

books [14, 19–21, 36], for instance.

The optimal control theory deals with the existence and, when possible, the

uniqueness of optimal pairs and optimal control. It also deals with the derivation

of necessary conditions of optimality or, better, necessary and sufficient conditions

of optimality. This means to find an equation or an inequality which characterizes

the optimal control. Basic references for the optimal control of systems governed

by partial differential equations are the books [24, 35]. Application of the optimal

control theory in mechanics could be found in [1, 2, 13, 31], for instance. Optimal

control problems for variational inequalities have been discussed in several works,

including [7, 9, 16, 29, 30, 34, 43]. Due to the nonsmooth and nonconvex feature

of the functional involved, the treatment of optimal control problems for variational

inequalities requires the use of their approximation by smooth optimization prob-

lems. And, on this matter, establishing convergence results for the optimal pairs

represents a topic of major interest.

Processes of contact between deformable bodies abound in industry and everyday

life. A few simple examples are brake pads in contact with wheels, tires on roads,

and pistons with skirts. Due to the complex phenomena involved, they lead to

strongly nonlinear mathematical models, formulated in terms of various classes of

inequalities, including variational and quasivariational inequalities. Because of the

importance of contact processes in structural and mechanical systems, considerable

effort has been put into their modeling, analysis, and numerical simulations and

the literature in the field is extensive. It includes the books [14, 15, 19, 23, 32, 36,

38, 41, 42], for instance. The literature concerning optimal control problems in the

study of mathematical models of contact is quite limited. The reason is the strong

nonlinearities which arise in the boundary conditions included in such models. The

results on optimal control for various contact problems with elastic materials can be

found in [3, 6, 8, 11, 12, 26–28, 44] and the references therein.

In the current chapter we consider an optimal control problem for a general class

of elliptic quasivariational inequalities. Our motivation is given by the fact that such

kind of inequalities arises in the study of frictional contact models and, therefore,

their optimal control is important in a large number of engineering applications. The

functional framework is the following: let X and Y be real Hilbert spaces endowed

with the inner products (·, ·)X and (·, ·)Y , respectively, K ⊂ X, A : X → X,

j : X × X → R, and π : X → Y . Then, the inequality problem we consider is the

following.

Problem P . Given f ∈ Y , find u such that

u ∈ K, (Au, v − u)X + j (u, v) − j (u, u) ≥ (f, πv − πu)Y ∀ v ∈ K.

(13.1)
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Note that the function j depends on the solution u and, for this reason, we refer

to (13.1) as a quasivariational inequality. We assume in what follows that for each

f ∈ Y the quasivariational inequality (13.1) has a unique solution u = u(f ).

Sufficient conditions on the data which guarantee this assumption will be provided

in Theorem 13.2.12. The set of admissible pairs for inequality (13.1) is given by

Vad = { (u, f ) ∈ K × Y such that (13.1) holds }. (13.2)

Consider now a cost functional L : X × Y → R, where, here and below, X × Y

represents the product of the Hilbert spaces X and Y , equipped with the canonical

inner product. Then, the optimal control problem we study in this chapter is the

following.

Problem Q. Find (u∗, f ∗) ∈ Vad such that

L(u∗, f ∗) = min
(u,f )∈Vad

L(u, f ). (13.3)

Our aim in this chapter is threefold. The first one is to formulate sufficient

assumptions on the data which guarantee the existence of optimal pairs, i.e.,

elements (u∗, f ∗) ∈ Vad which solve Problem Q. The answer to this question is

provided by Theorem 13.3.1. The second aim is to study the dependence of the

optimal pairs with respect to perturbations of the set K , the operator A, and the

functional j . The answer to this question is provided by Theorem 13.3.5 which

provides a convergence result, under general conditions. This result is completed by

Theorem 13.3.8, which holds under specific conditions on the data. Finally, our

third aim is to illustrate how these abstract results could be useful in the study

of mathematical models of contact. The answer to this question is provided by

Theorems 13.4.4–13.4.6 and the corresponding mechanical interpretation.

The rest of this chapter is structured in four sections, as follows: In Sect. 13.2

we provide some preliminary results in the study of Problem P . They concern

the existence, uniqueness, and convergence of the solution. Then, in Sect. 13.3

we state and prove the existence of optimal pairs to the control problem Q as

well as a general convergence result. Next, we present a relevant particular case

for which our convergence result holds. In Sect. 13.4 we consider a mathematical

model of frictional contact with elastic materials. The process is static and the

contact is described with normal compliance and unilateral constraint, associated

with a version of Coulomb’s law of dry friction. We apply our results in Sects. 13.2

and 13.3 in the study of this problem. Moreover, we illustrate them in the study

of a one-dimensional example. Finally, we end this chapter with some concluding

remarks, presented in Sect. 13.5.
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13.2 Quasivariational Inequalities

In this section we provide some results in the study of Problem P that we need in the

rest of this chapter. We first introduce preliminary material from functional analysis,

and then we state and prove an existence and uniqueness result, Theorem 13.2.12.

Finally, we study the dependence of the solution with respect to the element f and

we prove a convergence result, Theorem 13.2.13.

13.2.1 Notation and Preliminaries

All the linear spaces considered in this chapter including abstract normed spaces,

Banach spaces, Hilbert spaces, and various function spaces are assumed to be real

linear spaces. For a normed space X we denote by ‖ · ‖X its norm and by 0X its zero

element. In addition, we denote by → and ⇀ the strong and weak convergence in

various normed spaces. For an inner product space X we denote by (·, ·)X its inner

product and by ‖ · ‖X the associated norm. Unless stated otherwise, all the limits,

upper and lower limits, below are considered as n → ∞, even if we do not mention

it explicitly. The results presented below in this subsection are well known and can

be found in many books and survey and, for this reason, we skip their proofs.

Definition 13.2.1 Let X be a normed space. A subset K ⊂ X is called:

(i) (strongly) closed if the limit of each convergent sequence of elements of K

belongs to K , that is, {un} ⊂ K, un → u in X 
⇒ u ∈ K .

(ii) weakly closed if the limit of each weakly convergent sequence of elements of

K belongs to K , that is, {un} ⊂ K, un ⇀ u in X 
⇒ u ∈ K .

(iii) convex, if u, v ∈ K 
⇒ (1 − t) u + t v ∈ K ∀ t ∈ [0, 1].

Evidently, every weakly closed subset of X is (strongly) closed, but the converse

is not true, in general. An exception is provided by the class of convex subsets of a

Banach space, as shown in the following result.

Theorem 13.2.2 (The Mazur Theorem) A convex subset of a Banach space is

(strongly) closed if and only if it is weakly closed.

We now recall the following important property which represents a particular

case of the well-known Eberlein–Smulyan theorem.

Theorem 13.2.3 If X is a Hilbert space, then any bounded sequence in X has a

weakly convergent subsequence.

It follows that if X is a Hilbert space and the sequence {un} ⊂ X is bounded, that

is, supn ‖un‖X < ∞, then there exists a subsequence {unk } ⊂ {un} and an element

u ∈ X such that unk ⇀ u in X. Furthermore, if the limit u is independent of the

subsequence, then the whole sequence {un} converges weakly to u, as stated in the

following result.
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Theorem 13.2.4 Let X be a Hilbert space and let {un} be a bounded sequence

of elements in X such that each weakly convergent subsequence of {un} converges

weakly to the same limit u ∈ X. Then un ⇀ u in X.

We now proceed with the definition of some classes of operators.

Definition 13.2.5 Let X be an inner product space and let A : X → X be an

operator. The operator A is said to be:

(i) monotone, if (Au − Av, u − v)X ≥ 0 ∀ u, v ∈ X.

(ii) strongly monotone, if there exists a constant m > 0 such that

(Au − Av, u − v)X ≥ m ‖u − v‖2
X ∀ u, v ∈ X.

(iii) bounded, if A maps bounded sets into bounded sets.

(iv) pseudomonotone, if it is bounded and un ⇀ u in X with

lim sup
n→∞

(Aun, un − u)X ≤ 0 (13.4)

implies

lim inf
n→∞

(Aun, un − v)X ≥ (Au, u − v)X ∀ v ∈ X. (13.5)

(v) Lipschitz continuous if there exists M > 0 such that

‖Au − Av‖X ≤ M‖u − v‖X ∀ u, v ∈ X.

(vi) hemicontinuous if the real valued function

θ → (A(u + θv),w)X is continuous on R, ∀ u, v, w ∈ X.

It is easy to see that a strongly monotone operator A : X → X is monotone

and a Lipschitz continuous operator A : X → X is bounded and hemicontinuous.

Moreover, the following result holds.

Proposition 13.2.6 Let X be an inner product space and A : X → X a monotone

hemicontinuous operator. Assume that {un} is a sequence of elements in X which

converges weakly to the element u ∈ X such that (13.4) holds. Then (13.5) holds,

too.

A proof of Proposition 13.2.6 can be found in [41, p. 21]. As a consequence we

obtain the following result which will be used later in this chapter.

Corollary 13.2.7 Let X be an inner product space and A : X → X a monotone

Lipschitz continuous operator. Then A is pseudomonotone.
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Convex lower semicontinuous functions represent a crucial ingredient in the

study of variational inequalities. To introduce them, we start with the following

definitions.

Definition 13.2.8 Let X be a linear space and let K be a nonempty convex subset

of X. A function ϕ : K → R is said to be convex if

ϕ((1 − t)u + tv) ≤ (1 − t)ϕ(u) + tϕ(v) (13.6)

for all u, v ∈ K and t ∈ [0, 1]. The function ϕ is strictly convex if the inequality

in (13.6) is strict for u �= v and t ∈ (0, 1).

Definition 13.2.9 Let X be a normed space and let K be a nonempty closed convex

subset of X. A function ϕ : K → R is said to be lower semicontinuous (l.s.c.) at

u ∈ K if

lim inf
n→∞

ϕ(un) ≥ ϕ(u) (13.7)

for each sequence {un} ⊂ K converging to u in X. The function ϕ is l.s.c. if it is l.s.c.

at every point u ∈ K . When inequality (13.7) holds for each sequence {un} ⊂ K

that converges weakly to u, the function ϕ is said to be weakly lower semicontinuous

at u. The function ϕ is weakly l.s.c. if it is weakly l.s.c. at every point u ∈ K .

Since the strong convergence implies the weak convergence, it follows that

a weakly lower semicontinuous function is lower semicontinuous. Moreover, the

following results hold.

Proposition 13.2.10 Let X be a Banach space, K a nonempty closed convex subset

of X, and ϕ : K → R a convex function. Then ϕ is lower semicontinuous if and

only if it is weakly lower semicontinuous.

The proof of this result is based on Theorem 13.2.2.

13.2.2 Existence and Uniqueness

Everywhere in the rest of this chapter we assume that X is a Hilbert space. Given

a subset K ⊂ X, an operator A : X → X, a function j : X × X → R, and an

element f̃ ∈ X, we consider the following quasivariational inequality problem: find

an element u such that

u ∈ K, (Au, v − u)X + j (u, v) − j (u, u) ≥
(
f̃ , v − u

)
X

∀ v ∈ K. (13.8)

Quasivariational inequalities of the form (13.8) have been studied by many authors,

by using different functional methods, including fixed point and topological degree

arguments. The existence and uniqueness results for such inequalities could be
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found in [12, 33, 40, 41], for instance, under various assumptions on the function j .

Here, in this chapter, we consider the following assumptions:

K is a nonempty, closed, convex subset of X. (13.9)

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A is a strongly monotone Lipschitz continuous operator, i.e.,

there exist m > 0 and M > 0 such that

(a) (Au − Av, u − v)X ≥ m‖u − v‖2
X ∀ u, v ∈ X,

(b) ‖Au − Av‖X ≤ M ‖u − v‖X ∀ u, v ∈ X.

(13.10)

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(a) For all η ∈ X, j (η, ·) : X → R is convex and l.s.c.

(b) There exists α ≥ 0 such that

j (η1, v2) − j (η1, v1) + j (η2, v1) − j (η2, v2)

≤ α ‖η1 − η2‖X‖v1 − v2‖X ∀ η1, η2, v1, v2 ∈ X.

(13.11)

m > α. (13.12)

We recall the following existence and uniqueness result, which guarantees the

unique solvability of Problem P .

Theorem 13.2.11 Assume that (13.9)–(13.12) hold. Then, for each f̃ ∈ X the

quasivariational inequality (13.8) has a unique solution.

A proof of Theorem 13.2.11 can be found in [41, p. 49], based on the Banach

fixed point argument. We now turn to the study of Problem P and, to this end, we

consider the following additional assumptions:

⎧
⎨
⎩

π is a linear continuous operator, i.e.,

there exists c0 > 0 such that

‖πv‖Y ≤ c0 ‖v‖X ∀ v ∈ X.

(13.13)

⎧
⎨
⎩

There exist β, γ ≥ 0 such that

j (η, v1) − j (η, v2) ≤ (β + γ ‖η‖X) ‖v1 − v2‖X

∀ η, v1, v2 ∈ X.

(13.14)

m > γ. (13.15)

We have the following result.

Theorem 13.2.12 Assume that (13.9)–(13.13) hold. Then, for each f ∈ Y , the

quasivariational inequality (13.1) has a unique solution. Moreover, if (13.14)
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and (13.15) hold, then the solution satisfies the inequality

‖u‖X ≤
1

m − γ

(
‖Au0‖X + c0‖f ‖Y + γ ‖u0‖X + β

)
+ ‖u0‖X, (13.16)

for any element u0 ∈ K .

Proof Let f ∈ Y . We use assumption (13.13) to see that the functional v →
(f, πv)Y is linear and continuous on X. Therefore, using the Riesz representation

theorem, there exists a unique element f̃ ∈ X such that

(f̃ , v)X = (f, πv)Y ∀ v ∈ X. (13.17)

Using now Theorem 13.2.11 we deduce that there exists a unique element u such

that

u ∈ K, (Au, v − u)X + j (u, v) − j (u, u) ≥
(
f̃ , v − u

)
X

∀ v ∈ K.

(13.18)

The existence and uniqueness part of Theorem 13.2.12 is now a direct consequence

of (13.17) and (13.18).

Assume now that (13.14) and (13.15) hold and consider an arbitrary element

u0 ∈ K . Then, taking v = u0 in (13.1) we find that

(Au, u − u0)X ≤ (f, πu − πu0)Y + j (u, u0) − j (u, u)

which implies that

(Au − Au0, u − u0)X ≤ (Au0, u0 − u)X + (f, πu − πu0)Y + j (u, u0) − j (u, u).

We now use assumptions (13.10)(a), (13.13), and (13.14) to deduce that

m ‖u − u0‖2
X ≤ ‖Au0‖X‖u − u0‖X

+c0‖f ‖Y ‖u − u0‖X + (β + γ ‖u‖X)‖u − u0‖X.

Next, we use the triangle inequality ‖u‖X ≤ ‖u − u0‖X + ‖u0‖X to deduce that

(m − γ ) ‖u − u0‖X ≤ ‖Au0‖X + c0‖f ‖Y + γ ‖u0‖X + β.

This inequality combined with the smallness assumption (13.15) implies the

bound (13.16) and concludes the proof. ⊓⊔
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13.2.3 A Convergence Result

Theorem 13.2.12 allows us to define the operator f → u(f ) which associates to

each element f ∈ Y the solution u = u(f ) ∈ K of the quasivariational inequal-

ity (13.1). An important property of this operator is its weak–strong continuity,

which represents a crucial ingredient in the study of the optimal control problem

Q. It holds under the following additional assumptions:

⎧
⎪⎨
⎪⎩

For any sequences {ηk} ⊂ X, {uk} ⊂ X such that

ηk ⇀ η ∈ X, uk ⇀ u ∈ X one has

lim sup
k→∞

[j (ηk, v) − j (ηk, uk)] ≤ j (η, v) − j (η, u) ∀ v ∈ X.
(13.19)

{
For any sequence {vk} ⊂ X such that

vk ⇀ v in X one has πvk → πv in Y.
(13.20)

Note that assumption (13.19) implies that for all η ∈ X, j (η, ·) : X → R is

lower semicontinuous. Indeed, this property can be easily deduced by taking ηk = η

in (13.19). Moreover, assumption (13.20) shows that the operator π : X → Y is

completely continuous.

Our main result in this subsection is the following.

Theorem 13.2.13 Assume that (13.9)–(13.15), (13.19), and (13.20) hold. Then,

fn ⇀ f in Y 
⇒ u(fn) → u(f ) in X, as n → ∞. (13.21)

Proof The proof of Theorem 13.2.13 will be carried out in several steps that we

present in what follows.

(i) Weak convergence of a subsequence. Assume that {fn} is a sequence of

elements in Y such that

fn ⇀ f in Y as n → ∞ (13.22)

and, for simplicity, denote u(fn) = un and u(f ) = u. Then, it fol-

lows from (13.22) that {fn} is a bounded sequence in Y and, therefore,

inequality (13.16) implies that {un} is a bounded sequence in X. Using

now Theorem 13.2.3 we deduce that there exists an element ũ ∈ X and a

subsequence of {un}, again denoted {un}, such that

un ⇀ ũ in X as n → ∞. (13.23)

On the other hand, we recall that K is a closed convex subset of the space X

and {un} ⊂ K . Then, Theorem 13.2.2 and (13.23) imply that

ũ ∈ K. (13.24)
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(ii) Weak convergence of the whole subsequence. Let n ∈ N. We write (13.1) for

f = fn to obtain

(Aun, un − v)X ≤ j (un, v) − j (un, un) + (fn, πun − πv)Y ∀ v ∈ K,

(13.25)

then we take v = ũ ∈ K to find that

(Aun, un − ũ)X ≤ j (un, ũ) − j (un, un) + (fn, πun − πũ)Y .

We now pass to the upper limit and use the convergences (13.22), (13.23) and

assumptions (13.19), (13.20). As a result we deduce that

lim
n→∞

sup (Aun, un − ũ)X ≤ 0.

Therefore, using assumption (13.10), Corollary 13.2.7, and Defini-

tion 13.2.5(iv) we deduce that

lim inf
n→∞

(Aun, un − v)X ≥ (Aũ, ũ − v)X ∀ v ∈ X. (13.26)

On the other hand, passing to the upper limit in inequality (13.25) and using

the convergences (13.22), (13.23) and assumptions (13.19), (13.20) yields

lim sup
n→∞

(Aun, un − ũ)X ≤ j (̃u, v) − j (̃u, ũ) + (f, πũ − πv)Y ∀ v ∈ K.

(13.27)

We now combine the inequalities (13.26) and (13.27) to see that

(Aũ, v − ũ)X + j (̃u, v) − j (̃u, ũ) ≥ (f, πv − πũ)Y ∀ v ∈ K.

(13.28)

Next, it follows from (13.24) and (13.28) that ũ is a solution of inequality (13.1)

and, by the uniqueness of the solution of this inequality, guaranteed by

Theorem 13.2.12, we obtain that

ũ = u. (13.29)

A careful analysis, based on the arguments above, reveals that u is the weak

limit of any weakly convergent subsequence of the sequence {un}. Therefore,

using Theorem 13.2.4 we deduce that the whole sequence {un} converges

weakly in X to u as n → ∞, i.e.,

un ⇀ u in X as n → ∞. (13.30)
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(iii) Strong convergence. Let n ∈ N be given. We take v = u in inequality (13.25)

to see that

(Aun, un − u)X ≤ j (un, u) − j (un, un) + (fn, πun − πu)Y . (13.31)

Next, we use (13.31) and assumption (13.10)(a) to find that

m ‖un − u‖2
X ≤ (Aun − Au, un − u)X

= (Aun, un − u)X − (Au, un − u)X

≤ j (un, u) − j (un, un) + (fn, πun − πu)Y − (Au, un − u)X.

We now pass to the upper limit in this inequality and use the conver-

gences (13.22), (13.30) and assumptions (13.19), (13.20) to deduce that

‖un − u‖X → 0 as n → ∞.

This convergence concludes the proof since, recall, un = u(fn) and u = u(f ).

⊓⊔

13.3 Optimal Control of Quasivariational Inequalities

We now move to the study of the optimal control problem Q. We start with

an existence result for the optimal pairs, Theorem 13.3.1. We proceed with a

convergence result, Theorem 13.3.5. Finally, we consider a relevant particular case

for which this convergence result holds, Theorem 13.3.8.

13.3.1 Existence of Optimal Pairs

In the study of Problem Q we assume that

L(u, f ) = g(u) + h(f ) ∀ u ∈ X, f ∈ Y, (13.32)

where g and h are functions which satisfy the following conditions:

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

g : X → R is continuous, positive, and bounded, i.e.,

(a) vn → v in X 
⇒ g(vn) → g(v).

(b) g(v) ≥ 0 ∀ v ∈ X.

(c) g maps bounded sets in X into bounded sets in R.

(13.33)

11



⎧
⎪⎪⎨
⎪⎪⎩

h : Y → R is weakly lower semicontinuous and coercive, i.e.,

(a) fn ⇀ f in Y 
⇒ lim inf
n→∞

h(fn) ≥ h(f ).

(b) ‖fn‖Y → ∞ 
⇒ h(fn) → ∞.

(13.34)

Our first result in this section is the following.

Theorem 13.3.1 Assume that (13.9)–(13.15), (13.19), (13.20), and (13.32)–(13.34)

hold. Then, there exists at least one solution (u∗, f ∗) ∈ Vad of Problem Q.

Proof Let

θ = inf
(u,f )∈Vad

L(u, f ) ∈ R (13.35)

and let {(un, fn)} ⊂ Vad be a minimizing sequence for the functional L, i.e.,

lim
n→∞

L(un, fn) = θ. (13.36)

We claim that the sequence {fn} is bounded in Y . Arguing by contradiction, assume

that {fn} is not bounded in Y . Then, passing to a subsequence still denoted {fn}, we

have

‖fn‖Y → +∞ as n → +∞. (13.37)

We now use equality (13.32) and assumption (13.33)(b) to see that

L(un, fn) ≥ h(fn).

Therefore, passing to the limit as n → +∞ and using (13.37) combined with

assumption (13.34)(b) we deduce that

lim
n→+∞

L(un, fn) = +∞. (13.38)

Equalities (13.36) and (13.38) imply that θ = +∞ which is in contradiction

with (13.35).

We conclude from above that the sequence {fn} is bounded in Y . Therefore,

using Theorem 13.2.3 we deduce that there exists f ∗ ∈ Y such that, passing to a

subsequence still denoted {fn}, we have

fn ⇀ f ∗ in Y as n → +∞. (13.39)

Let u∗ be the solution of the quasivariational inequality (13.1) for f = f ∗, i.e.,

u∗ = u(f ∗). Recall that the existence and uniqueness of this solution is guaranteed

12



by Theorem 13.2.12. Then, by the definition (13.2) of the set Vad we have

(u∗, f ∗) ∈ Vad . (13.40)

Moreover, using (13.39) and (13.21) it follows that

un → u∗ in X as n → +∞. (13.41)

We now use the convergences (13.39), (13.41) and the weakly lower semicontinuity

of the functional L, guaranteed by assumptions (13.33)(a) and (13.34)(a), to deduce

that

lim inf
n→+∞

L(un, fn) ≥ L(u∗, f ∗). (13.42)

It follows from (13.36) and (13.42) that

θ ≥ L(u∗, f ∗). (13.43)

In addition, (13.40) and (13.35) yield

θ ≤ L(u∗, f ∗). (13.44)

We now combine inequalities (13.43) and (13.44) to see that (13.3) holds, which

concludes the proof. ⊓⊔

Remark 13.3.2 Assume now that U ⊂ Y is a nonempty weakly closed subset, i.e.,

it satisfies the following property:

for any sequence {fn} ⊂ U such that fn ⇀ f ∈ Y one has f ∈ U. (13.45)

Then, careful analysis of the previous proof reveals the fact that the statement of

Theorem 13.3.1 still remains valid if we replace the definition (13.2) of admissible

pairs for inequality (13.1) with the following one:

Vad = { (u, f ) ∈ K × U such that (13.1) holds }. (13.46)

Considering the set (13.46) instead of (13.2) leads to a version of Theorem 13.3.1

which could be useful in various applications, when the control f is assumed to

satisfy some constraints.

13



13.3.2 Convergence of Optimal Pairs

In this subsection we focus on the dependence of the solution of the optimal control

Q with respect to the set K , the operator A, and the function j . To this end, we

assume in what follows that the hypothesis of Theorem 13.3.1 holds. Moreover, for

each n ∈ N we consider a perturbation Kn, An, and jn of K , A, and j , respectively,

which satisfy the following conditions:

Kn is a nonempty, closed, convex subset of X. (13.47)

⎧
⎨
⎩

An is a strongly monotone Lipschitz continuous operator,

i.e., it satisfies condition (13.10) with mn > 0 and Mn > 0.

(13.48)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) For all η ∈ X, jn(η, ·) : X → R is convex.

(b) There exists αn ≥ 0 such that

jn(η1, v2) − jn(η1, v1) + jn(η2, v1) − jn(η2, v2)

≤ αn ‖η1 − η2‖X‖v1 − v2‖X ∀ η1, η2, v1, v2 ∈ X.

(c) There exist βn, γn ≥ 0 such that

jn(η, v1) − jn(η, v2) ≤ (βn + γn‖η‖X) ‖v1 − v2‖X

∀ η, v1, v2 ∈ X.

(d) For any sequences {ηk} ⊂ X, {uk} ⊂ X such that

ηk ⇀ η ∈ X, uk ⇀ u ∈ X one has

lim sup
k

[jn(ηk, v) − jn(ηk, uk)] ≤ jn(η, v) − jn(η, u) ∀ v ∈ X.

(13.49)

mn > αn. (13.50)

mn > γn. (13.51)

We consider the following perturbation of Problem P .

Problem Pn. Given fn ∈ Y , find un such that

un ∈ Kn, (Anun, v − un)X + jn(un, v) − jn(un, un) (13.52)

≥ (fn, πv − πun)Y ∀ v ∈ Kn.

It follows from Theorem 13.2.12 that for each fn ∈ Y there exists a unique

solution un = un(fn) to the quasivariational inequality (13.52). Moreover, the

14



solution satisfies

‖un‖X ≤
1

mn − γn

(
‖Anu0n‖X+c0‖fn‖Y +γn‖u0n‖X+βn

)
+‖u0n‖X, (13.53)

where u0n denotes an arbitrary element of Kn. We define the set of admissible pairs

for inequality (13.52) by

V
n
ad = { (un, fn) ∈ Kn × Y such that (13.52) holds }. (13.54)

Then, the optimal control problem associated with Problem Pn is the following.

Problem Qn. Find (u∗
n, f

∗
n ) ∈ Vn

ad such that

L(u∗
n, f

∗
n ) = min

(un,fn)∈Vn
ad

L(un, fn). (13.55)

Using Theorem 13.3.1 it follows that for each n ∈ N there exists at least

one solution (u∗
n, f

∗
n ) ∈ Vn

ad of Problem Qn. We now consider the following

assumptions:

fn ⇀ f in Y 
⇒ un(fn) → u(f ) in X, as n → ∞. (13.56)

{
There exists f 0 ∈ Y such that

the sequence {un(f
0)} is bounded in X.

(13.57)

Concerning assumptions (13.56) and (13.57) we have the following remarks.

Remark 13.3.3 Assumptions (13.56) and (13.57) are not formulated in terms of

the data Kn, An, and jn. They are formulated in terms of the solutions un and u

which are unknown and, therefore, they represent implicit assumptions. We consider

these assumptions for their generality. In the next section we shall provide explicit

assumptions on Kn, An, and jn which guarantee that conditions (13.56) and (13.57)

hold. Considering such explicit assumptions will lead us to introduce a relevant

particular case in which Theorem 13.3.5 holds.

Remark 13.3.4 Condition (13.56) represents a continuous dependence condition of

the solution of (13.1) with respect to the set K , the operator A, the function j , and

the element f ∈ Y .

The second result in this section is a convergence result for the set of solution of

Problem Q. Its statement is as follows.

Theorem 13.3.5 Assume that (13.9)–(13.15), (13.19), (13.20), and (13.32)–(13.34)

hold and, for any n ∈ N, assume that (13.47)–(13.51) hold, too. Moreover, assume

that conditions (13.56)–(13.57) are satisfied and let {(u∗
n, f

∗
n )} be a sequence

of solutions of Problem Qn. Then, there exists a subsequence of the sequence
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{(u∗
n, f

∗
n )}, again denoted {(u∗

n, f
∗
n )}, and an element (u∗, f ∗) ∈ X × Y such that

f ∗
n ⇀ f ∗ in Y as n → ∞, (13.58)

u∗
n → u∗ in X as n → ∞, (13.59)

(u∗, f ∗) is a solution of Problem Q. (13.60)

Proof We claim that the sequence {f ∗
n } is bounded in Y . Arguing by contradiction,

assume that {f ∗
n } is not bounded in Y . Then, passing to a subsequence still denoted

{f ∗
n }, we have

∥∥f ∗
n

∥∥
Y

→ +∞ as n → +∞. (13.61)

We use equality (13.32) and assumption (13.33)(b) to see that

L
(
u∗

n, f
∗
n

)
≥ h

(
f ∗

n

)
.

Therefore, passing to the limit as n → ∞ in this inequality and using (13.61)

combined with assumption (13.34)(b) we deduce that

lim
n→∞

L
(
u∗

n, f
∗
n

)
= +∞. (13.62)

On the other hand, since
(
u∗

n, f
∗
n

)
represents a solution to Problem Qn, for each

n ∈ N we have

L
(
u∗

n, f
∗
n

)
≤ L(un, fn) ∀ (un, fn) ∈ Vn

ad . (13.63)

We now use assumption (13.57) and denote by u0
n the solution of Problem Pn

for fn = f 0, i.e., u0
n = un

(
f 0

)
. Then

(
u0

n, f
0
)

∈ Vn
ad and, therefore, (13.63)

and (13.32) imply that

L
(
u∗

n, f
∗
n

)
≤ g

(
u0

n

)
+ h

(
f 0

)
. (13.64)

Then, since (13.57) guarantees that
{
u0

n

}
is a bounded sequence in X, assump-

tion (13.33)(c) on the function g implies that there exists D > 0 which does not

depend on n such that

g
(
u0

n

)
+ h

(
f 0

)
≤ D ∀ n ∈ N. (13.65)

Relations (13.62), (13.64), and (13.65) lead to a contradiction, which concludes the

claim.
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Next, since the sequence {f ∗
n } is bounded in Y we can find a subsequence again

denoted {f ∗
n } and an element f ∗ ∈ Y such that (13.58) holds. Denote by u∗ the

solution of Problem P for f = f ∗, i.e., u∗ = u(f ∗). Then, we have

(u∗, f ∗) ∈ Vad (13.66)

and, moreover, assumption (13.56) implies that (13.59) holds, too.

We now prove that (u∗, f ∗) is a solution to the optimal control problem

Q. To this end we use the convergences (13.58), (13.59) and the weakly lower

semicontinuity of the functional L, guaranteed by (13.32)–(13.34), to see that

L(u∗, f ∗) ≤ lim inf
n→∞

L(u∗
n, f

∗
n ). (13.67)

Next, we fix a solution
(
u∗

0, f
∗
0

)
of Problem Q and, in addition, for each n ∈ N we

denote by ũ0
n the solution of Problem Pn for fn = f ∗

0 . It follows from here that(
ũ0

n, f
∗
0

)
∈ Vn

ad and, by the optimality of the pair
(
u∗

n, f
∗
n

)
, we have that

L
(
u∗

n, f
∗
n

)
≤ L

(
ũ0

n, f
∗
0

)
∀ n ∈ N.

We pass to the upper limit in this inequality to see that

lim sup
n→∞

L
(
u∗

n, f
∗
n

)
≤ lim sup

n→∞
L

(
ũ0

n, f
∗
0

)
. (13.68)

Now, remember that u∗
0 is the solution of the inequality (13.1) for f = f ∗

0 and

ũ0
n is the solution of the inequality (13.52) for fn = f ∗

0 , i.e., ũ0
n = un

(
f ∗

0

)
and

ũn = un

(
f ∗

0

)
. Therefore, assumption (13.56) implies that

ũ0
n → u∗

0 in X as n → ∞

and, using the continuity of the functional u → L
(
u, f ∗

0

)
: X → R yields

lim
n→∞

L

(
ũ0

n, f
∗
0

)
= L

(
u∗

0, f
∗
0

)
. (13.69)

We now use (13.67)–(13.69) to see that

L
(
u∗, f ∗) ≤ L(u∗

0, f
∗
0 ). (13.70)

On the other hand, since (u∗
0, f

∗
0 ) is a solution of Problem Q, we have

L
(
u∗

0, f
∗
0

)
= min

(u,f )∈Vad

L(u, f ), (13.71)
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and, therefore, inclusion (13.66) implies that

L
(
u∗

0, f
∗
0

)
≤ L

(
u∗, f ∗) . (13.72)

We now combine the inequalities (13.70) and (13.72) to see that

L
(
u∗, f ∗) = L

(
u∗

0, f
∗
0

)
. (13.73)

Finally, relations (13.66), (13.73), and (13.71) imply that (13.60) holds, which

concludes the proof. ⊓⊔

We end this subsection with the following remarks.

Remark 13.3.6 If Problem Q has a unique solution (u∗, f ∗) then, under the

assumption of Theorem 13.3.5 the convergences (13.58) and (13.59) are valid

for the whole sequence
{(

u∗
n, f

∗
n

)}
. Indeed, a careful analysis of the proof of

Theorem 13.2 reveals that the sequence
{
f ∗

n

}
is bounded in Y and, moreover, each

weakly convergent subsequence of
{
f ∗

n

}
converges weakly to f ∗. We now use

Theorem 13.2.4 to deduce that the whole sequence satisfies (13.58). Finally, using

Theorem 13.2.13 it follows that (13.59) holds, too.

Remark 13.3.7 The statement of Theorem 13.3.5 still remains valid if we replace

the definition (13.2) with (13.46) and the definition (13.54) with

V
n
ad = { (un, fn) ∈ Kn × U such that (13.52) holds }, (13.74)

U being a nonempty weakly closed subset of Y . The proof of this statement is based

on the property (13.45) of the set U .

13.3.3 A Relevant Particular Case

Our aim in this subsection is to present explicit conditions on the family of sets

Kn, operators An, and functionals jn which guarantee that assumptions (13.56)

and (13.57) hold. We conclude from here that, under these conditions, the abstract

result in Theorem 13.3.5 holds.

Everywhere in this subsection we assume that (13.9)–(13.15), (13.19), and

(13.20) hold and, for each f ∈ Y , we denote by u = u(f ) the solution of

inequality (13.1), guaranteed by Theorem 13.2.12. Moreover, for each n ∈ N

we consider the set Kn ⊂ X, the operator An : X → X, and the functional

jn : X × X → R such that the followings hold:

Kn = cnK with cn > 0. (13.75)
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⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(a) An = A + Tn.

(b) A : X → X satisfies condition (13.10) with

m > 0 and M > 0.

(c) Tn : X → X is a monotone Lipschitz continuous operator.

(13.76)

{
jn satisfies condition (13.49) with αn ≥ 0, βn ≥ 0, γn ≥ 0

such that m > αn, m > γn.
(13.77)

With this choice we consider Problem Pn. It is easy to see that for each

n ∈ N the set Kn ⊂ X satisfies condition (13.47). Moreover, the operator An

satisfies condition (13.48) with mn = m and Mn = M + LTn , LTn being the

Lipschitz constant of the operator Tn. We now use assumption (13.77) to see that

conditions (13.49)–(13.51) are also satisfied. Therefore, using Theorem 13.2.12 we

deduce that for each fn ∈ Y there exists a unique solution un = un(fn) to the

quasivariational inequality (13.52).

On the other hand, if (13.32)–(13.34) hold, then Theorem 13.3.1 guarantees the

existence of at least one solution (u∗, f ∗) of Problem Q and, for each n ∈ N, the

existence of at least one solution (u∗
n, f

∗
n ) to Problem Qn.

We now consider the following additional assumptions:

lim
n→∞

cn = 1. (13.78)

j (u, λv) = λj (u, v) ∀ λ ≥ 0, u, v ∈ X. (13.79)

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

For any n ∈ N there exists Fn ≥ 0 and δn ≥ 0 such that

(a) ‖Tnv‖X ≤ Fn(‖v‖X + δn) ∀ v ∈ X.

(b) lim
n→∞

Fn = 0.

(c) The sequence {δn} ⊂ R is bounded.

(13.80)

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

For any n ∈ N there exists Gn ≥ 0 and Hn ≥ 0 such that

(a) jn(v1, v2) − jn(v1, v1) + j (v2, v1) − j (v2, v2)

≤ Gn + Hn‖v1 − v2‖X + α ‖v1 − v2‖2
X

∀ v1, v2 ∈ X.

(b) lim
n→∞

Gn = lim
n→∞

Hn = 0.

(13.81)

Moreover, we reinforce assumption (13.77) by assuming that there exist two

constants β0 and γ0 such that

βn ≤ β0, γn ≤ γ0 < m, ∀ n ∈ N. (13.82)
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We have the following result.

Theorem 13.3.8 Assume that (13.9)–(13.15), (13.19), (13.20), and (13.32)–(13.34)

hold and, for any n ∈ N, assume that (13.75)–(13.77) hold, too. Assume moreover

that conditions (13.78)–(13.82) are satisfied and let
{(

u∗
n, f

∗
n

)}
be a sequence

of solutions of Problem Qn. Then, there exists a subsequence of the sequence{(
u∗

n, f
∗
n

)}
, again denoted

{(
u∗

n, f
∗
n

)}
, and an element (u∗, f ∗) ∈ X × Y such

that (13.58)–(13.60) hold.

The proof is carried out in several steps, based on the abstract result provided by

Theorem 13.3.5. The first step of the proof is the following.

Lemma 13.3.9 Under the assumption of Theorem 13.3.8, if the sequence {fn} is

bounded in Y , then the sequence {un(fn)} is bounded in X.

Proof Let u0 be a given element of K and let n ∈ N. Condition (13.75) guarantees

that cnu0 ∈ Kn and, therefore, using inequality (13.53) with u0n = cnu0 yields

‖un‖X ≤
1

mn − γn

(
‖An(cnu0)‖X + c0‖fn‖Y + γn‖cnu0‖X + βn

)
+ ‖cnu0‖X .

We now use assumption (13.82) and equality mn = m which, recall, follows from

assumption (13.76). In this way we deduce that

‖un‖X ≤
1

m − γ0

(
‖An(cnu0)‖X + c0‖fn‖Y + γ0cn‖u0‖X + β0

)
+ cn‖u0‖X.

(13.83)

Recall that An(cnu0) = A(cnu0) + Tn(cnu0) and, therefore,

‖An(cnu0)‖X ≤ ‖A(cnu0)‖X + ‖Tn(cnu0)‖X. (13.84)

We now write

‖A(cnu0)‖X ≤ ‖A(cnu0) − Au0‖X + ‖Au0‖X,

then we use assumption (13.10)(b) to deduce that

‖A(cnu0)‖X ≤ (M|cn − 1| ‖u0‖X + ‖Au0‖X). (13.85)

Moreover, using (13.80) we have that

‖Tn(cnu0)‖X ≤ Fn(cn ‖u0‖X + δn). (13.86)
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Next, we combine inequalities (13.83)–(13.86) to find that

‖un‖X (13.87)

≤
1

m − γ0

(
M|cn − 1| ‖u0‖X + ‖Au0‖X + Fn(cn ‖u0‖X + δn)

+
1

m − γ0

(
c0‖fn‖Y + γ0cn‖u0‖X + β0

)
+ cn‖u0‖X .

Lemma 13.3.9 is now a direct consequence of inequality (13.87) and assump-

tions (13.78), (13.80)(b). ⊓⊔

We proceed with the following result.

Lemma 13.3.10 Under the assumption of Theorem 13.3.8, condition (13.56) holds.

Proof Let {fn} ⊂ Y , f ∈ Y such that

fn ⇀ f in Y as n → ∞. (13.88)

Let n ∈ N. Besides Problems P and Pn we consider the intermediate problems of

finding two elements ūn and ũn such that

ūn ∈ K, (Aūn, v − ūn)X + j (ūn, v) − j (ūn, ūn) (13.89)

≥ (fn, πv − πūn)Y ∀ v ∈ K.

ũn ∈ Kn, (Aũn, vn − ũn)X + j (̃un, vn) − j (̃un, ũn) (13.90)

≥ (fn, πvn − πũn)Y ∀ vn ∈ Kn.

Note that Theorem 13.2.12 guarantees the existence of a unique solution ūn and

ũn to the quasivariational inequalities (13.89) and (13.90), respectively. Our aim in

what follows is to establish estimates for the norms ‖un − ũn‖X and ‖ũn − ūn‖X.

Let n ∈ N. We take vn = un in (13.90), vn = ũn in (13.52), then we add the

resulting inequalities to obtain that

(Anun − Aũn, un − ũn)X ≤ jn (un, ũn) − jn(un, un) + j (̃un, un) − j (̃un, ũn) .

We use now assumption (13.76)(a) to see that Anun = Aun + Tnun and, therefore,

we deduce that

(Aun − Aũn, un − ũn)X ≤ (Tnun, ũn − un)X

+jn (un, ũn) − jn(un, un) + j (̃un, un) − j (̃un, ũn) .
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Next, we use conditions (13.10)(a), (13.80)(a), and (13.81)(a) to find that

m ‖un − ũn‖2
X ≤ Fn(‖un‖X + δn) ‖un − ũn‖X (13.91)

+Gn + Hn ‖un − ũn‖X + α ‖un − ũn‖2
X .

On the other hand, assumption (13.88) and Lemma 13.3.9 imply that there exists

E > 0 which does not depend on n such that ‖un‖X ≤ E. Therefore, since m > α,

inequality (13.91) yields

‖un − ũn‖2
X ≤

(
Hn

m − α
+

(E + δn)Fn

m − α

)
‖un − ũn‖X +

Gn

m − α
.

Next, the elementary inequality

x2 ≤ ax + b 
⇒ x ≤ a +
√

b ∀ x, a, b ≥ 0

combined with assumptions (13.80)(b),(c) and (13.81)(b) implies that

‖un − ũn‖X → 0 as n → 0. (13.92)

On the other hand, condition (13.75) allows us to test in (13.90) with vn =
cnūn ∈ Kn. As a result we deduce that

(Aũn, cnūn − ũn)X + j (̃un, cnūn) − j (̃un, ũn) ≥ (fn, cnπūn − πũn)Y .

(13.93)

We now use condition (13.75), again, to test in (13.89) with v = 1
cn

ũn ∈ K . Then,

we multiply the resulting inequality with cn > 0 and use assumption (13.79) on j

to find that

(Aūn, ũn − cnūn)X + j (ūn, ũn) − j (ūn, cnūn) ≥ (fn, πũn − cnπūn)Y .

(13.94)

We now add inequalities (13.93) and (13.94) to deduce that

(Aũn − Aūn, ũn − cnūn)X

≤ j (̃un, cnūn) − j (̃un, ũn) + j (ūn, ũn) − j (ūn, cnūn) ,

then we use assumption (13.11)(b) to obtain that

(Aũn − Aūn, ũn − cnūn)X ≤ α ‖ũn − ūn‖X ‖ũn − cnūn‖X . (13.95)
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Next, we write

ũn − cnūn = ũn − ūn + (1 − cn)ūn,

then we substitute this equality in (13.95) and use condition (13.10)(a) to find that

m‖ũn − ūn‖2
X ≤ (Aũn − Aūn, (cn − 1)ūn)X

+α‖ũn − ūn‖2
X + α|1 − cn| ‖ũn − ūn‖X ‖ūn‖X.

We now use assumption (13.10)(b) and the smallness assumption (13.12) to see that

‖ũn − ūn‖X ≤
M + α

m − α
|1 − cn| ‖ūn‖X . (13.96)

Next, consider an element u0 ∈ K . Condition (13.75) guarantees that cnu0 ∈ Kn

and, therefore, using inequality (13.16) for the variational inequality (13.90) yields

‖ūn‖X ≤
1

m − γ

(
‖A(cnu0)‖X + c0‖fn‖Y + γ ‖cnu0‖X + β

)
+ ‖cnu0‖X.

We use assumption (13.10) and convergences (13.78), (13.88) to deduce that the

sequence {ūn} is bounded in X, i.e., there exists E > 0 such that

‖ūn‖X ≤ E ∀ n ∈ N. (13.97)

We now combine inequalities (13.96) and (13.97), then we use assumption (13.78)

to deduce that

‖ũn − ūn‖X → 0 as n → ∞. (13.98)

Finally, assumption (13.88) and Theorem 13.2.13 yield

‖ūn − u‖X → 0 as n → ∞. (13.99)

We now write

‖un − u‖X ≤ ‖un − ũn‖X + ‖ũn − ūn‖X + ‖ūn − u‖X ,

then we use the convergences (13.92), (13.98), and (13.99) to see that

‖un − u‖X → 0 as n → ∞.

It follows from here that condition (13.56) is satisfied, which concludes the proof.

⊓⊔
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We now are in a position to provide the proof of Theorem 13.3.8.

Proof First, we use Lemma 13.3.10 to see that, under the assumptions of The-

orem 13.3.8, condition (13.56) holds. On the other hand, Lemma 13.3.9 shows

that the sequence
{
un(f

0)
}

is bounded in X, for any f 0 ∈ Y . Therefore,

condition (13.57) holds, too. Theorem 13.3.8 is now a direct consequence of

Theorem 13.3.5. ⊓⊔

We end this section with the following remarks.

Remark 13.3.11 In contrast to conditions (13.56) and (13.57), conditions (13.75)–

(13.82) are explicit conditions, since they are formulated in terms of the data Kn,

An, and jn. In many applications they are easy to be verified. A concrete example

which illustrates this statement will be presented in Sect. 13.4.

Remark 13.3.12 If Problem Q has a unique solution (u∗, f ∗) then, under the

assumptions of Theorem 13.3.8 the convergences (13.58) and (13.59) are valid

for the whole sequence
{
(u∗

n, f
∗
n )

}
. This statement is a direct consequence of

Remark 13.3.6.

Remark 13.3.13 The statement of Theorem 13.3.5 still remains valid if we replace

the definitions (13.2) and (13.54) with definitions (13.46) and (13.74), respectively,

U being a given nonempty weakly closed subset of Y .

13.4 A Frictional Contact Problem

In this section we use the abstract results presented in Sects. 13.2 and 13.3 in

the study of a quasivariational inequality which models the frictional contact of

an elastic body with a foundation. We start by introducing the function spaces

we need, then we describe the model of contact and prove its unique weak

solvability, Theorem 13.4.1. Next, we turn to the optimal control of the problem and

prove existence and convergence results, Theorems 13.4.4 and 13.4.6, respectively.

Finally, we exemplify our results in the study of a one-dimensional mathematical

model which describes the equilibrium of an elastic rod in unilateral contact with a

foundation, under the action of a body force.

13.4.1 Function Spaces

For the study of mathematical models of contact we need further notation and

preliminary material that we introduce in this subsection. Everywhere below we

denote by Sd the space of second order symmetric tensors on Rd or, equivalently,

the space of symmetric matrices of order d . The inner product and norm on Rd and
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Sd are defined by

u · v = uivi , ‖v‖ = (v · v)
1
2 ∀ u, v ∈ R

d ,

σ · τ = σij τij , ‖τ‖ = (τ · τ )
1
2 ∀ σ , τ ∈ S

d ,

and 0 will denote the zero element of these spaces. Let � ⊂ R
d (d = 2, 3) be a

bounded domain. We denote by Ŵ its boundary, assumed to be Lipschitz continuous

and divided into three measurable parts Ŵ1, Ŵ2, and Ŵ3 such that meas (Ŵ1) > 0.

We use the notation x = (xi) for a typical point in �∪Ŵ and we denote by ν = (νi)

the outward unit normal at Ŵ. Here and below the indices i and j run between 1 and

d and, unless stated otherwise, the summation convention over repeated indices is

used. An index that follows a comma represents the partial derivative with respect

to the corresponding component of the spatial variable x, i.e., ui,j = ∂ui/∂xj .

Moreover, ε represents the deformation operator, i.e.,

ε(v) = (εij (v)), εij (v) =
1

2
(vi,j + vj,i).

We use the standard notation for Sobolev and Lebesgue spaces associated with �

and Ŵ and, in addition, we consider the spaces

V =
{

v ∈ H 1(�)d : v = 0 on Ŵ1

}
, Y = L2(�)d × L2(Ŵ2)

d .

It is well known that V is a real Hilbert space endowed with the inner product

(u, v)V =
∫

�

ε(u) · ε(v) dx,

and the associated norm ‖ · ‖V . Completeness of the space (V , ‖ · ‖V ) follows from

the assumption meas (Ŵ1) > 0, which allows the use of Korn’s inequality. For an

element v ∈ V we still write v for the trace of v and we denote by vν and vτ the

normal and tangential components of v on Ŵ given by vν = v · ν, vτ = v − vνν. We

also recall that there exists d0 > 0 which depends on �, Ŵ1, and Ŵ3 such that

‖v‖L2(Ŵ3)d
≤ d0‖v‖V for all v ∈ V. (13.100)

Inequality (13.100) represents a consequence of the Sobolev trace theorem. The

space Y will be endowed with its canonic inner product and associated norm,

denoted by (·, ·)Y and ‖ · ‖, respectively.

For a regular function σ : � → Sd we denote by σν and σ τ the normal and

tangential stress on Ŵ, that is, σν = (σν) · ν and σ τ = σν − σνν, and we recall that

the following Green’s formula holds:

∫

�

σ ·ε(v) dx+
∫

�

Div σ ·v dx =
∫

Ŵ

σν·v da for all v ∈ H 1(�)d . (13.101)
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More details on the function spaces used in contact mechanics, including their basic

properties, can be found in the books [41, 42].

13.4.2 The Model

The physical setting is the following. An elastic body occupies, in its reference

configuration, the domain � ⊂ R
d . Its boundary Ŵ is divided into three measurable

disjoint parts Ŵ1, Ŵ2, Ŵ3 such that meas (Ŵ1) > 0, as already mentioned. The body is

fixed on Ŵ1, is acted upon by given surface tractions on Ŵ2, and is in potential contact

with an obstacle on Ŵ3. To construct a mathematical model which corresponds to the

equilibrium of the body in this physical setting above we need to prescribe specific

interface boundary condition. Here, we assume that the contact is with normal

compliance and finite penetration, associated with a version of Coulomb’s law of

dry friction. Therefore, the classical formulation of the problem is the following.

Problem P . Find a displacement field u : � → Rd and a stress field σ : � → Sd

such that

σ = Fε(u) in �, (13.102)

Div σ + f 0 = 0 in �, (13.103)

u = 0 on Ŵ1, (13.104)

σν = f 2 on Ŵ2, (13.105)

uν ≤ k, σν + p(uν) ≤ 0,

(uν − k)(σν + p(uν)) = 0

⎫
⎬
⎭ on Ŵ3, (13.106)

‖σ τ‖ ≤ μ p(uν),

−σ τ = μ p(uν)
uτ

‖uτ ‖ if uτ �= 0

⎫
⎬
⎭ on Ŵ3. (13.107)

We now provide a description of the equations and boundary conditions in

Problem P . First, Eq. (13.102) represents the elastic constitutive law of the material

in which F is assumed to be a nonlinear constitutive operator. Equation (13.103)

is the equation of equilibrium. We use it here since the contact process is assumed

to be static and, therefore, the inertial term in the equation of motion is neglected.

Conditions (13.104) and (13.105) represent the displacement and traction boundary

conditions, respectively.

Condition (13.106) represents the so-called normal compliance condition with

unilateral constraint. Here, k > 0 is a given bound which limits the normal
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displacement and p is a given positive function which will be described below.

This condition describes the contact with an obstacle made of a rigid body

covered by a layer of thickness k made of deformable material. Condition (13.107)

represents a static version of Coulomb’s law of dry friction in which μ denotes the

coefficient of friction and μp(uν) is the friction bound. The coupling of boundary

conditions (13.106) and (13.107) was considered for the first time in [5]. Later, it

was used in a number of papers, see [42] and the references therein. It describes

a contact with normal compliance, as far as the normal displacement satisfies the

condition uν < k, associated with the classical Coulomb’s law of dry friction.

When uν = k the contact is with a Signorini-type condition and is associated with

the Tresca friction law with the friction bound μp(k). It follows from here that

conditions (13.106), (13.107) describe a natural transition from the Coulomb law of

dry friction (which is valid as far as 0 ≤ uν < k) to the Tresca law (which is valid

when uν = k).

In the study of the mechanical problem (13.102)–(13.107) we assume that the

elasticity operator F and the normal compliance function p satisfy the following

conditions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) F : � × Sd → Sd .

(b) There exists LF > 0 such that

‖F(x, ε1) − F(x, ε2)‖ ≤ LF‖ε1 − ε2‖
∀ ε1, ε2 ∈ S

d , a.e. x ∈ �.

(c) The mapping x → F(x, ε) is measurable on �,

for any ε ∈ S
d .

(d) There exists mF > 0 such that

(F(x, ε1) − F(x, ε2)) · (ε1 − ε2) ≥ mF ‖ε1 − ε2‖2

∀ ε1, ε2 ∈ Sd , a.e. x ∈ �.

(e) F(x, 0) = 0.

(13.108)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) p : Ŵ3 × R → R+.

(b) There exists Lp > 0 such that

|p(x, r1) − p(x, r2)| ≤ Lp|r1 − r2|
∀ r1, r2 ∈ R, a.e. x ∈ Ŵ3.

(c) (p(x, r1) − p(x, r2)) (r1 − r2) ≥ 0

∀ r1, r2 ∈ R, a.e. x ∈ Ŵ3.

(d) The mapping x → p(x, r) is measurable on Ŵ3,

for any r ∈ R.

(e) p(x, r) = 0 for all r ≤ 0, a.e. x ∈ Ŵ3.

(f) There exists p∗ ∈ R such that p(x, r) ≤ p∗

for all r ≥ 0, a.e. x ∈ Ŵ3.

(13.109)
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The coefficient of friction is such that

μ ∈ L∞(Ŵ3), μ(x) ≥ 0 a.e. x ∈ Ŵ3. (13.110)

Moreover, we assume that

d2
0Lp‖μ‖L∞(Ŵ3) < mF (13.111)

where d0, mF , and Lp are the constants which appear in (13.100), (13.108)(d),

and (13.109)(b), respectively. Note that inequality (13.111) could be interpreted as

a smallness condition on the coefficient of friction. Such kind of conditions are often

used in the variational analysis of frictional contact problems with elastic materials,

as explained in [38] and the references therein.

Let K denote the set defined by

K = { v ∈ V : vν ≤ k a.e. on Ŵ3 }, (13.112)

and assume that the densities of body forces and tractions are such that f 0 ∈
L2(�)d , f 2 ∈ L2(Ŵ2)

d . We now derive the variational formulation of Problem

P and, to this end, we assume that (u, σ ) are sufficiently regular functions which

satisfy (13.102)–(13.107). Then, using (13.106) and (13.112) it follows that

u ∈ K. (13.113)

Let v ∈ K . We use Green’s formula (13.101) and equalities (13.103)–(13.105) to

see that

∫

�

σ · (ε(v) − ε(u)) dx =
∫

�

f 0 · (v − u) dx (13.114)

+
∫

Ŵ2

f 2 · (v − u) da +
∫

Ŵ3

σν · (v − u) da.

Moreover, using the boundary conditions (13.106) and (13.107) it is easy to see that

σν(vν − uν) ≥ p(uν)(uν − vν) a.e. on Ŵ3,

σ τ (vτ − uτ ) ≥ μ p(uν)(‖uτ‖ − ‖vτ‖) a.e. on Ŵ3.

Therefore, since

σν · (v − u) = σν(vν − uν) + σ τ (vτ − uτ ) a.e. on Ŵ3,
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we deduce that

∫

Ŵ3

σν · (v − u) da (13.115)

≥
∫

Ŵ3

p(uν)(uν − vν) da +
∫

Ŵ3

μ p(uν)(‖uτ‖ − ‖vτ‖) da.

Next, we combine equality (13.114) with inequality (13.115), then we use the

constitutive law (13.102) and the regularity (13.113). As a result we find the

following variational formulation of Problem P .

Problem PV . Given f = (f 0,f 2) ∈ Y , find u such that

u ∈ K,

∫

�

Fε(u) · (ε(v) − ε(u)) dx (13.116)

+
∫

Ŵ3

p(uν)(vν − uν) da +
∫

Ŵ3

μ p(uν)(‖vτ‖ − ‖uτ ‖) da

≥
∫

�

f 0 · (v − u) dx +
∫

Ŵ2

f 2 · (v − u) da ∀ v ∈ K.

Note that Problem PV is formulated in terms of the displacement field. Once

the displacement field is known, the stress field can be easily obtained by using the

constitutive law (13.102). A couple (u, σ ) which satisfies (13.102) and (13.116) is

called a weak solution to the contact problem P .

13.4.3 Weak Solvability

Our main result in this section, which represents a continuation of our previous

results in [5, 39], is the following.

Theorem 13.4.1 Assume that (13.108)–(13.111) hold. Then, for each f =
(f 0,f 2) ∈ Y there exists a unique solution u = u(f ) to the variational

inequality (13.116). Moreover, if f n = (f 0n,f 2n) ∈ Y , f = (f 0,f 2) ∈ Y ,

and f 0n ⇀ f 0 in L2(�)d , f 2n ⇀ f 2 in L2(Ŵ2)
d , as n → ∞, then

un(f n) → u(f ) in X, as n → ∞.

Note that Theorem 13.4.1 provides the existence of a unique weak solution to the

frictional contact Problem P as well as its continuous dependence with respect to

the density of body forces and tractions.

The proof of Theorem 13.4.1 will be carried out in several steps, based on the

abstract existence and convergence results in Sect. 13.2. To present it assume in what
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follows that (13.108)–(13.111) hold and we consider the operator A : V → V , t h e 

function j : V × V → R, and the operator π : V → Y defined by

(Au, v)V =
∫

�

Fε(u) · ε(v) dx +
∫

Ŵ3

p(uν)vν da ∀ u, v ∈ V, (13.117)

j (u, v) =
∫

Ŵ3

μ p(uν)‖vτ‖ da ∀ u ∈ V, v ∈ V, (13.118)

πv = (ιv, γ2v) ∀ v ∈ V. (13.119)

Here ι : V → L2(�)d is the canonic embedding and γ2 : V → L2(Ŵ2)
d is the

restriction to the trace map to Ŵ2. The first step of the proof is the following.

Lemma 13.4.2 Given f = (f 0,f 2) ∈ Y , an element u ∈ V is solution to the

variational inequality (13.116) if and only if

u ∈ K, (Au, v − u)V + j (u, v) − j (u,u) ≥ (f , πv − πu)Y ∀ v ∈ K.

(13.120)

Proof The statement of Lemma 13.4.2 is a direct consequence of the nota-

tion (13.117)–(13.119). ⊓⊔

Lemma 13.4.3 The function j defined by (13.118) satisfies conditions (13.11),

(13.14), and (13.19) on the space X = V .

Proof Condition (13.11)(a) is obviously satisfied. On the other hand, an elementary

calculation based on the definition (13.118) and assumptions (13.109), (13.110)

yields

j (u1, v2) − j (u1, v1) + j (u2, v1) − j (u2, v2)

≤ Lp‖μ‖L∞(Ŵ3)

∫

Ŵ3

‖u1 − u2‖‖v1 − v2‖ da

for all u1, u2, v1, v2 ∈ V . Therefore, the trace inequality (13.100) shows that

condition (13.11)(b) holds with α = d2
0Lp‖μ‖L∞(Ŵ3). Next, using assump-

tions (13.109)(b), (e) and (13.110) it is easy to see that

j (η, v1) − j (η, v2) ≤
∫

Ŵ3

μp(ην)‖v1 − v2‖ da

≤ Lp‖μ‖L∞(Ŵ3)

∫

Ŵ3

‖η‖‖v1 − v2‖ da

for all η, v1, v2 ∈ V . Therefore, the trace inequality (13.100) shows that condition

(13.14)(b) is satisfied with β = 0 and γ = d2
0Lp‖μ‖L∞(Ŵ3). Finally, note that
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condition (13.19) holds from assumption (13.109) and the compactness of the trace

operator, since uk ⇀ u in V implies that p(ukν) → p(uν) and ‖ukτ‖ → ‖uτ‖ in

L2(Ŵ3). ⊓⊔

We now have all the ingredients to provide the proof of Theorem 13.4.1.

Proof The set K is obviously a convex nonempty subset of V . Moreover, using the

properties of the trace map we deduce that K is closed and, therefore, (13.9) holds.

Next, we use assumptions (13.108) and (13.109) and the trace inequality (13.100)

to see that

(Au − Av,u − v)V ≥ mF‖u − v‖2
V ,

‖Au − Av‖V ≤
(
LF + d2

0Lp

)
‖u − v‖V

for all u, v ∈ V . Therefore, condition (13.10) holds with X = V and m =
mF . On the other hand, Lemma 13.4.3 guarantees that the functional (13.118)

satisfies conditions (13.11), (13.14), and (13.19) on the space X = V , with

α = d2
0Lp‖μ‖L∞(Ŵ3), β = 0, and γ = d2

0Lp‖μ‖L∞(Ŵ3). Therefore, using (13.111)

it follows that the smallness assumption (13.12) is satisfied and, moreover, (13.15)

holds, too. Finally, we note that conditions (13.13) and (13.20) are a direct

consequence of definition (13.119) combined with the properties of the operators

ι and γ2.

It follows from above that we are in a position to apply Theorem 13.2.12

on the space X = V . As a result we deduce the unique solvability of the

variational inequality (13.120), for each f = (f 0,f 2) ∈ Y . This result combined

with Lemma 13.4.2 proves the existence of a unique solution to the variational

inequality (13.116), for each f = (f 0,f 2) ∈ Y .

Assume now that f n = (f 0n,f 2n) ∈ Y , f = (f 0,f 2) ∈ Y , and f 0n ⇀

f 0 in L2(�)d , f 2n ⇀ f 2 in L2(Ŵ2)
d , as n → ∞. Then f n ⇀ f in Y , as n → ∞.

Therefore, using Theorem 13.2.13 and Lemma 13.4.2 we deduce that u(f n) →
u(f ) in V, as n → ∞, which concludes the proof. ⊓⊔

13.4.4 Optimal Control

We now associate to Problem P V the set of admissible pairs Vad and the cost

function L given by

Vad = { (u,f ) ∈ K × Y such that f = (f 0,f 2) and (13.116) holds }, (13.121)

L(u,f ) = a0

∫

�

‖f 0‖2 dx + a2

∫

Ŵ2

‖f 2‖2 da + a3

∫

Ŵ3

|uν − θ |2 da (13.122)
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for all u ∈ V , f = (f 0,f 2) ∈ Y . Here θ is a given element in L2(Ŵ3) and a0,

a2, a3 are strictly positive constants. Moreover, we consider the following optimal

control problem.

Problem QV . Find (u∗,f ∗) ∈ Vad such that

L(u∗,f ∗) = min
(u,f )∈Vad

L(u,f ). (13.123)

Our first result in this subsection is the following.

Theorem 13.4.4 Assume that (13.108)–(13.111) hold. Then, the optimal control

problem QV has at least one solution (u∗,f ∗).

Proof It is easy to see that the function L defined by (13.122) satisfy condi-

tions (13.32)–(13.34) on the spaces X = V , Y = L2(�)d × L2(Ŵ3)
d with

g(v) = a3

∫

Ŵ3

|vν − θ |2 da, h(f ) = a0

∫

�

‖f 0‖2 dx + a2

∫

Ŵ2

‖f 2‖2 da

for all v ∈ V , f = (f 0,f 2) ∈ Y . Therefore, the solvability of the optimal control

problem QV is a direct consequence of Lemma 13.4.2 and Theorem 13.3.1. ⊓⊔

Next, besides conditions (13.108)–(13.111), we assume that

B is a closed convex set of Sd such that 0 ∈ B (13.124)

and we denote by PB : Sd → B the projection operator. We also consider the

sequences {ωn}, {kn}, and {εn} such that

ωn ≥ 0, kn > 0, εn ≥ 0 ∀ n ∈ N (13.125)

and, for each n ∈ N, we define the set Kn by

Kn = { v ∈ V : vν ≤ kn a.e. on Ŵ3 }. (13.126)

With these data, we consider the following perturbation of Problem P V .

Problem PV
n . Given f n = (f 0n,f 2n) ∈ Y , find un ∈ V such that

un ∈ Kn,

∫

�

Fε(un) · (ε(v) − ε(un)) dx (13.127)

+ωn

∫

�

(ε(un) − PBε(un)) · (ε(v) − ε(un)) dx +
∫

Ŵ3

p(unν)(vν − unν) da
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+
∫

Ŵ3

μ p(unν)
(√

‖vτ‖2 + ε2
n −

√
‖unτ‖2 + ε2

n

)
da

≥
∫

�

f 0n · (v − un) dx +
∫

Ŵ2

f 2n · (v − un) da ∀ v ∈ Kn.

Note that Problem P V
n represents the variational formulation of an elastic contact

problem of the form (13.102)–(13.107) in which the following changes have been

operated in the model:

• The elastic constitutive law (13.102) was replaced with the constitutive law σ =
Fε(u)) + ωn(ε(u) − PBε(u)). Such kind of constitutive law has been used by

many authors, see [38, 41] and the references therein.

• The bound k in (13.106) was replaced by a perturbation, denoted kn.

• The Coulomb law of dry friction (13.107) was replaced with its regularization

−σ τ = μ p(uν)
uτ√

‖uτ‖2 + ε2
n

.

• The densities f 0 and f 2 of body forces and tractions, respectively, were replaced

by their perturbations f 0n and f 2n, respectively.

For Problem PV
n we have the following existence and uniqueness result.

Theorem 13.4.5 Assume (13.108)–(13.111) and, moreover, assume that (13.124)–

(13.125) hold. Then, for each f n = (f 0n,f 2n) ∈ Y there exists a unique solution

un = un(f n) to the variational inequality (13.127).

Proof The proof of Theorem 13.4.5 is based on arguments similar to those used in

the proof of Theorem 13.4.1 and, for this reason, we skip the details. The steps of

the proof are the following.

i) The quasivariational inequality. Besides the operator π defined in (13.119), for

each n ∈ N we consider the operator An : V → V and the function jn : V ×V → R

given by

(Anu, v)V =
∫

�

Fε(u) · ε(v) dx +
∫

Ŵ3

p(uν)vν da (13.128)

+ ωn

∫

�

(ε(u) − PBε(u)) · ε(v) dx ∀ u, v ∈ V.

jn(u, v) =
∫

Ŵ3

μ p(uν)

(√
‖vτ‖2 + ε2

n − εn

)
da ∀ u, v ∈ V. (13.129)
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Then, it is easy to see that, given f n = (f 0n,f 2n) ∈ Y , an element un ∈ V is a

solution to inequality (13.127) if and only if

un ∈ Kn, (Anun, v − un)V + jn(un, v) − jn(un,un) (13.130)

≥ (f n, πv − πun)Y ∀ v ∈ Kn.

ii) The operator An. First, we recall that the projector operator PB : Sd → B is

nonexpansive, i.e.,

‖PBτ 1 − PBτ 2‖ ≤ ‖τ 1 − τ2‖ (13.131)

for all τ 1, τ 2 ∈ Sd . This inequality implies that

(
(τ 1 − PBτ 1) − (τ 2 − PBτ 2)

)
· (τ 1 − τ 2) ≥ 0, (13.132)

for all τ 1, τ 2 ∈ Sd . Therefore, using assumptions (13.108) and (13.109), the trace

inequality (13.100), and estimates (13.131), (13.132) we deduce that

(Anu − Anv,u − v)V ≥ mF‖u − v‖2
V ,

‖Anu − Anv‖V ≤ (LF + d2
0Lp + 2ωn) ‖u − v‖V

for all u, v ∈ X. It follows from here that condition (13.48) holds with X = V ,

mn = mF , and Mn = LF + d2
0Lp + 2ωn.

iii) The function jn. We claim that the function jn defined by (13.129) satisfies

conditions (13.11), (13.14), and (13.19) on the space X = V .

First, condition (13.11)(a) is obviously satisfied. On the other hand,

an elementary calculation based on the definition (13.129) and assump-

tions (13.109), (13.110), combined with inequality

∣∣∣
√

a2 + ε2 −
√

b2 + ε2
∣∣∣ ≤ |a − b| ∀ a, b, ε > 0,

implies that

jn(u1, v2) − jn(u1, v1) + jn(u2, v1) − jn(u2, v2)

≤ Lp‖μ‖L∞(Ŵ3)

∫

Ŵ3

‖u1 − u2‖‖v1 − v2‖ da

for all u1, u2, v1, v2 ∈ V . Therefore, the trace inequality (13.100) shows that

condition (13.11)(b) holds with α = d2
0Lp‖μ‖L∞(Ŵ3). A similar argument shows

that condition (13.14) is satisfied with β = 0 and γ = d2
0Lp‖μ‖L∞(Ŵ3). Finally, note

that condition (13.19) holds from assumption (13.109) and the compactness of the
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trace operator, since uk ⇀ u in V implies that p(ukν) → p(uν) and ‖ukτ‖ → ‖uτ‖
in L2(Ŵ3).

iv) End of proof. The set Kn is obviously a convex nonempty subset of V .

Moreover, recall that step ii) shows that condition (13.48) holds with X = V

and m = mF . On the other hand, step iii) guarantees that the functional (13.118)

satisfies conditions (13.11), (13.14), and (13.19) on the space X = V , with

α = γ = d2
0Lp‖μ‖L∞(Ŵ3). Therefore, using (13.111) it follows that the smallness

assumption (13.12) is satisfied and, moreover, (13.15) holds, too. Finally, we note

that conditions (13.13) and (13.20) are a direct consequence of definition (13.119)

combined with the properties of the operators ι and γ2.

It follows from above that we are in a position to apply Theorem 13.2.12 on the

space X = V . In this way we deduce the unique solvability of the quasivariational

inequality (13.130), for each f n = (f 0n,f 2n) ∈ Y . This result, combined

with step i), leads to the existence of a unique solution to the quasivariational

inequality (13.127), for each f n = (f 0n,f 2n) ∈ Y . ⊓⊔

We now move to the control of Problem P V
n . The set of admissible pairs for this

problem is given by

Vn
ad = { (un,f n) ∈ Kn × Y s. t. f n = (f 0n,f 2n) and (13.127) holds }.

(13.133)

Moreover, the corresponding optimal control problem is the following.

Problem QV
n . Find (u∗

n,f
∗
n) ∈ Vn

ad such that

L(u∗
n,f

∗
n) = min

(un,f n)∈Vn
ad

L(un,f n). (13.134)

Our main result in this section is the following.

Theorem 13.4.6 Assume (13.108)–(13.111), (13.124), and (13.125). Then the

following statements hold.

i) For each n ∈ N the optimal control problem QV
n has at least one solution

(u∗
n,f

∗
n).

ii) If ωn → 0, kn → k, and εn → ε as n → ∞, then for any sequence {(u∗
n,f

∗
n)} of

solutions of Problem QV
n there exists a subsequence, again denoted {(u∗

n,f
∗
n)},

and an element (u∗,f ∗) ∈ X × Y , such that

f ∗
n ⇀ f ∗ in Y, as n → ∞, (13.135)

u∗
n → u∗ in X as n → ∞, (13.136)

(u∗,f ∗) is a solution of Problem QV . (13.137)
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Proof i) First, it is easy to see that condition (13.75) holds with cn = kn

k
> 0. Next,

we use (13.131), (13.132) to see that condition (13.76) is satisfied with

(Tnu, v)V = ωn

∫

�

(ε(u) − PBε(u)) · ε(v) dx ∀ u, v ∈ V. (13.138)

On the other hand, it follows from step iii) in the proof of Theorem 13.4.5 that the

function jn satisfies condition (13.77) with αn = d2
0Lp‖μ‖L∞(Ŵ3), βn = 0, and

γn = d2
0Lp‖μ‖L∞(Ŵ3). In addition, recall that the function L defined by (13.122)

satisfies conditions (13.32)–(13.34) on the spaces X = V , Y = L2(�)d × L2(Ŵ3)
d

with

g(v) = a3

∫

Ŵ3

|vν − θ |2 da, h(f ) = a0

∫

�

‖f 0‖2 dx + a2

∫

Ŵ2

‖f 2‖2 da.

Therefore, as already explained in page 463, we are in a position to apply

Theorem 13.3.5 to deduce that the optimal control problem QV
n has at least one

solution (u∗
n,f

∗
n), for each n ∈ N.

ii) Assume now that ωn → 0, kn → k, and εn → 0, as n → ∞. In order

to prove (13.135)–(13.137) we use Theorem 13.3.8 and, to this end, we start by

checking that conditions (13.78)–(13.82) are satisfied.

First, since cn = kn

k
we deduce that condition (13.78) holds. Moreover, it is

easy to see that condition (13.79) holds, too. On the other hand, assumption 0 ∈ B

combined with inequality (13.131) shows that ‖τ − PBτ‖ ≤ 2 ‖τ‖ for all τ ∈ Sd .

Therefore, definition (13.138) implies that

(Tnv,w)V = ωn

∫

�

‖ε(v) − PBε(v)‖ ‖ε(w)‖ dx ≤ 2ωn‖v‖V ‖w‖V

for all u, v ∈ V , n ∈ N, which shows that

‖Tnv‖V ≤ 2ωn‖v‖V ∀ v ∈ V, n ∈ N.

We conclude from here that condition (13.80) holds with Fn = 2ωn and δn = 0.

Assume now that n ∈ N is fixed and v1, v2 ∈ V . We use definitions (13.129)

and (13.118) to see that

jn(v1, v2) − jn(v1, v1) + j (v2, v1) − j (v2, v2)

=
∫

Ŵ3

μ p(v1ν)
(√

‖v2τ‖2 + ε2
n − εn − ‖v2τ‖

)
da
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+
∫

Ŵ3

μ p(v1ν)
(
‖v1τ‖ −

√
‖v1τ‖2 + ε2

n + εn

)
da

+
∫

Ŵ3

μ
(
p(v1ν) − p(v2ν)

)(
‖v2τ‖ − ‖v1τ‖

)
da.

Therefore, using assumptions (13.109)(b) and (13.110) combined with the

inequality

∣∣∣
√

a2 + ε2 − a − ε

∣∣∣ ≤ ε ∀ a, ε > 0,

we find that

jn(v1, v2) − jn(v1, v1) + j (v2, v1) − j (v2, v2)

≤ 2εn‖μ‖L∞(Ŵ3)

∫

Ŵ3

p(v1ν) da + Lp‖μ‖L∞(Ŵ3)

∫

Ŵ3

‖v1τ − v2τ‖2 da.

Next, we use assumption (13.109)(f) and the trace inequality (13.100) to deduce that

jn(v1, v2) − jn(v1, v1) + j (v2, v1) − j (v2, v2)

≤ 2εnp
∗‖μ‖L∞(Ŵ3)meas(Ŵ3) + d2

0Lp‖μ‖L∞(Ŵ3)‖v1 − v2‖2
V .

It follows from here that condition (13.81) holds with Gn = 2εnp
∗‖μ‖L∞(Ŵ3)

meas(Ŵ3) and Hn = 0.

Recall now that mn = mF , α = γn = d2
0Lp‖μ‖L∞(Ŵ3), and βn = 0, for each

n ∈ N. Moreover, d2
0Lp‖μ‖L∞(Ŵ3) < mF , as assumed in (13.111). We conclude

from here that condition (13.82) is satisfied.

Finally, note that the rest of the conditions in Theorem 13.3.8 are satisfied, as it

follows from the previous results proved in this section. Theorem 13.4.6 is now a

direct consequence of Theorem 13.3.8. ⊓⊔

Remark 13.4.7 As a consequence of Remarks 13.3.2 and 13.3.7 we deduce that

the statements of Theorems 13.4.4 and 13.4.6 still remain valid if we replace the

definition (13.121) and (13.133) with the following ones:

Vad = { (u,f ) ∈ K × U s.t. f = (f 0,f 2) and (13.116) holds }, (13.139)

Vn
ad = { (un,f n) ∈ Kn × U s.t. f = (f 0n,f 2n) and (13.127) holds }, (13.140)

U being a given nonempty weakly closed subset of Y . The proof of this statement

is based on the property (13.45) of the set U .
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13.4.5 A One-Dimensional Example

In this subsection we illustrate our results in the study of a one-dimensional

example. Thus, we consider Problem P in the particular case when � = (0, 1),

Ŵ1 = {0}, Ŵ2 = ∅, Ŵ3 = {1}. Note that in this case the linearized strain field

is given by ε = u′, where, here and below, the prime denotes the derivative with

respect to the spatial variable x ∈ [0, 1]. Moreover, we assume that the material

is homogeneous and behaves linearly elastic. Therefore, the elasticity operator is

Fε = Eε where E > 0 is the Young modulus of the material. In addition, we

assume that the density of the body force does not depend on the spatial variable

and we denote it by f ∈ R. Then, the statement of the problem is the following.

Problem P 1d . Find a displacement field u : [0, 1] → R and a stress field

σ : [0, 1] → R such that

σ(x) = E u′(x) for x ∈ (0, 1), (13.141)

σ ′(x) + f = 0 for x ∈ (0, 1), (13.142)

u(0) = 0, (13.143)

u(1) ≤ k, σ (1) + p(u(1)) ≤ 0,

(u(1) − k)(σ (1) + p(u(1))) = 0

}
. (13.144)

Note that Problem P 1d models the contact of an elastic rod of length l = 1. The

rod occupies the domain [0, 1] on the Ox axis, is fixed at its end x = 0, as acted

by a body force, and its extremity x = 1 is in contact with a foundation made of a

deformable material of thickness k > 0, which covers a rigid body. The reaction of

the deformable material is described with the function p : R → R which is positive,

monotone, and vanishes for a negative argument. This physical setting is depicted

in Fig. 13.1.

For the analysis of Problem P 1d we use the space

V = { v ∈ H 1(0, 1) : v(0) = 0 }

and the set of admissible displacement field defined by

K = { u ∈ V | u(1) ≤ k }.

The variational formulation of Problem P 1d , obtained using integration by parts, is

the following.
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Fig. 13.1 Physical setting

Problem P 1d
V . Find a displacement field u ∈ K such that

∫ 1

0

Eu′(v′ − u′) dx + p(u(1))(v(1) − u(1)) ≥
∫ 1

0

f (v − u) dx ∀ v ∈ K.

(13.145)

The existence of a unique solution to Problem P 1d
V follows from Theorem 13.4.1.

Consider now the case when

p(r) = r+ =
{

0 if r < 0,

r if r ≥ 0.
(13.146)

Then, a simple calculation allows us to solve Problem P 1d . Three cases are possible,

described below, together with the corresponding mechanical interpretations.

a) The case f < 0. In this case the body force acts in the opposite direction of the

foundation and the solution of Problem P 1d is given by

{
σ(x) = −f x + f,

u(x) = − f
2E

x2 + f
E

x
∀ x ∈ [0, 1]. (13.147)

We have u(1) < 0 and σ(1) = 0 which shows that there is separation between

the rod and the foundation and, therefore, there is no reaction on the point x = 1.

This case corresponds to Fig. 13.2a.

39



Fig. 13.2 The rod in contact with a foundation. (a) The case f < 0; (b) The case 0 ≤ f <

2k(E + 1); (c) The case f ≥ 2k(E + 1)

b) The case 0 ≤ f < 2k(E +1). In this case the body force pushes the rod towards

the foundation and the solution of Problem P 1d is given by

⎧
⎨
⎩

σ(x) = −f x + f (2E+1)
2(E+1)

,

u(x) = − f
2E

x2 + f (2E+1)
2E(E+1)

x
∀ x ∈ [0, 1]. (13.148)

We have 0 ≤ u(1) < k and σ(1) ≤ 0 which shows that there is penetration

into the deformable layer and the reaction of the foundation is towards the rod.

Nevertheless, the penetration is partial, since u(1) < k. This case corresponds to

Fig. 13.2b.

c) The case f ≥ 2k(E + 1). In this case the solution of Problem P 1d is given by

⎧
⎨
⎩

σ(x) = −f x + f
2

+ kE,

u(x) = − f
2E

x2 +
(

f
2E

+ k
)

x
∀ x ∈ [0, 1]. (13.149)
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We have u(1) = k which shows that the rigid-plastic layer is completely

penetrated and the point x = 1 reaches the rigid body. This case corresponds

to Fig. 13.2c).

We now formulate the optimal control problem QV in the one-dimensional case

of Problem P 1d . In this particular setting Y = L2(0, 1) and we choose

U = { f ∈ Y : f is a constant }.

We use (13.139) to see that in this case

Vad = { (u, f ) ∈ K × U : (13.145) holds } (13.150)

and

L(u, f ) = a0 |f |2 + a3 |u(1) − θ |2, (13.151)

where θ ∈ R, a0 > 0, a3 > 0. Then, using (13.123) we see that the problem can be

formulated as follows.

Problem Q1d . Find (u∗, f ∗) ∈ Vad such that

L(u∗, f ∗) = min
(u,g)∈Vad

L(u, f ). (13.152)

We now take E = 1. Then, it is easy to see that if 0 ≤ f < 4k, then 0 ≤ f <

2k(E + 1) and, if f ≥ 4k, then f ≥ 2k(E + 1). Therefore, using (13.147)–(13.149)

we have

u(x) =

⎧
⎪⎪⎨
⎪⎪⎩

− f
2

x2 + f x if f < 0,

− f
2

x2 + 3f
4

x if 0 ≤ f < 4k

− f
2

x2 + (
f
2

+ k) x if f ≥ 4k

∀ x ∈ [0, 1]. (13.153)

So,

u(1) =

⎧
⎪⎪⎨
⎪⎪⎩

f
2

if f < 0,

f
4

if 0 ≤ f < 4k,

k if f ≥ 4k

and, using (13.151) with θ = 1, a0 = 1, a3 = 16, we find that

L(u, f ) =

⎧
⎪⎪⎨
⎪⎪⎩

5f 2 − 16f + 16 if f < 0,

2f 2 − 8f + 16 if 0 ≤ f < 4k,

f 2 + 16 if f ≥ 4k.

(13.154)
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To conclude, problem (13.152) consists to minimize the function (13.154) when

f ∈ R, for a given k > 0. For this reason, in what follows we denote by Jk the

function defined by (13.154), i.e.,

Jk(f ) =

⎧
⎪⎪⎨
⎪⎪⎩

5f 2 − 16f + 16 if f < 0,

2f 2 − 8f + 16 if 0 ≤ f < 4k,

f 2 + 16(k − 1)2 if f ≥ 4k.

(13.155)

It is easy to see that this function is not a convex function. Nevertheless, it has a

unique point of minimum given by

f ∗(k) =
{

4k if 0 < k ≤ 1
2
,

2 if k > 1
2
.

(13.156)

Then, using (13.153) we find that the optimal control problem Q1d has a unique

solution (u∗(k), f ∗(k)), given by

u∗(k) =

⎧
⎨
⎩

− f ∗(k)
2

x2 +
(

f ∗(k)
2

+ k
)

x ∀ x ∈ [0, 1], if 0 ≤ k ≤ 1
2
,

− f ∗(k)
2

x2 + 3f ∗(k)
4

x ∀ x ∈ [0, 1], if k > 1
2

where, recall, f ∗(k) is given by (13.156). It is easy to see that when kn → k, then

f ∗(kn) → f ∗(k) and, therefore, u∗(kn) → u∗(k). This represents a validation of

the abstract convergence result in Theorem 13.3.8.

13.5 Conclusion

In this chapter we studied an optimal control problem for elliptic quasivariational

inequalities in Hilbert spaces. We provided the existence of optimal pairs and proved

a convergence result. The proofs were based on arguments of monotonicity and

lower semicontinuity. Then, we applied these abstract results in the study of a

mathematical model which describes the equilibrium of an elastic body in frictional

contact with an obstacle, the so-called foundation. We presented various mechanical

interpretations of these results and we exemplified them in the particular case of an

elastic rod in contact with a rigid body covered by a layer of soft material.

The study presented in this chapter gives rise to several open problems that we

describe in what follows. Any progress in these directions will complete our work

and will open the way for new advances and ideas.
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First, it would be interesting to derive necessary optimality conditions in the

study of Problem Q introduced on page 447. Due to the nonsmooth and nonconvex

feature of the functional L, the treatment of this problem requires the use of its

approximation by smooth optimization problems. And, in this matter, the abstract

convergence results for the optimal pairs in this chapter could be a crucial tool.

Next, it would be useful to establish an optimality condition for the optimal control

problem QV stated on page 476. We are convinced that such conditions could be

established for a regularization of this problem, by using arguments similar to those

used in [27]. There, a boundary optimal control problem for a frictional contact

problem with normal compliance has been considered.

Another interesting continuation of the results presented in this chapter would

be their extension to evolutionary variational inequalities. For such inequalities

both the data and the unknown depend on time variable and, moreover, the time

derivative of the unknown appears in the statement of the problem. In addition, an

initial condition is needed. Such kind of inequalities model quasistatic process of

contact for elastic, viscoelastic, and viscoplastic materials. The optimal control of

a quasistatic model of contact with linearly elastic materials was studied in [3].

There, besides the existence of the optimal pairs, necessary optimality conditions

for a regularization problem have been established.

An interesting continuation of the results presented in this chapter would be their

extension to variational–hemivariational inequalities. These inequalities represent

a generalization of variational inequalities, in which both convex and nonconvex

functions are involved. Besides arguments of convexity and monotonicity, the theory

of variational–hemivariational inequalities was built based on the properties of

Clarke subdifferential, defined for locally Lipschitz function. The details can be

found in the books [32, 42] and the edited volume [18]. Some preliminary results

in the study of optimal control for variational–hemivariational inequalities can be

found in [37].

We end this section by recalling that the control of mathematical models of

contact, as well as their optimal shape design, deserves to make the object of

important studies in the future. These topics are of considerable theoretical and

applied interest. Indeed, in most applications this is the main interest of the design

engineer and any result in this direction will illustrate the cross fertilization between

models and applications, in one hand, and the nonlinear functional analysis, on

the other hand. The related issues are the observability properties of the models

and parameter identification. Using reliable parameter identification procedures will

help in establishing the validity of various mathematical models of contact with

deformable bodies. This, in turn, will help in the construction of effective and

efficient numerical algorithms for the problems with established convergence. As

better models for specific applications are obtained, improved mathematical models

and numerical simulations will be possible.
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