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This chapter deals with the optimal control of a class of elliptic quasivariational inequalities. We start with an existence and uniqueness result for such inequalities. Then we state an optimal control problem, list the assumptions on the data and prove the existence of optimal pairs. We proceed with a perturbed control problem for which we state and prove a convergence result, under general conditions. Further, we present a relevant particular case for which these conditions are satisfied and, therefore, our convergence result works. Finally, we illustrate the use of these abstract results in the study of a mathematical model which describes the equilibrium of an elastic body in frictional contact with an obstacle, the socalled foundation. The process is static and the contact is modeled with normal compliance and unilateral constraint, associated with the Coulomb's law of dry friction. We prove the existence, uniqueness, and convergence results together with the corresponding mechanical interpretation. We illustrate these results in the study of a one-dimensional example. Finally, we end this chapter with some concluding remarks.

Introduction

Variational inequalities represent a powerful mathematical tool used in the study of various nonlinear boundary value problems with partial differential equations. They are usually formulated by using a set of constraints, a nonlinear operator, and a convex function which could be nondifferentiable. Quasivariational inequalities represent a special class of variational inequalities in which the convex function depends on the solution. The theory of variational inequalities was developed based on arguments of monotonicity and convexity, including properties of the subdifferential of a convex function. Basic references in the field are [START_REF] Baiocchi | Variational and Quasivariational Inequalities: Applications to Free-Boundary Problems[END_REF][START_REF] Brézis | Equations et inéquations non linéaires dans les espaces vectoriels en dualité[END_REF][START_REF] Glowinski | Numerical Methods for Nonlinear Variational Problems[END_REF][START_REF] Kinderlehrer | An Introduction to Variational Inequalities and their Applications[END_REF][START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF], for instance. Application of variational inequalities in mechanics could be found in the books [START_REF] Duvaut | Inequalities in Mechanics and Physics[END_REF][START_REF] Han | Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity[END_REF][START_REF] Hlaváček | Solution of Variational Inequalities in Mechanics[END_REF][START_REF] Kikuchi | Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods[END_REF][START_REF] Panagiotopoulos | Inequality Problems in Mechanics and Applications[END_REF], for instance.

The optimal control theory deals with the existence and, when possible, the uniqueness of optimal pairs and optimal control. It also deals with the derivation of necessary conditions of optimality or, better, necessary and sufficient conditions of optimality. This means to find an equation or an inequality which characterizes the optimal control. Basic references for the optimal control of systems governed by partial differential equations are the books [START_REF] Lions | Contrôle optimal des systèmes gouvernés par des équations aux dérivées partielles[END_REF][START_REF] Neitamaki | Optimal Control of Nonlinear Parabolic Systems: Theory, Algorithms and Applications[END_REF]. Application of the optimal control theory in mechanics could be found in [START_REF] Abergel | Some optimal control problems of multistate equations appearing in fluid mechanics[END_REF][START_REF] Abergel | On some control in fluid mechanics[END_REF][START_REF] Capatina | Optimal control of a non-isothermal Navier-Stokes flow[END_REF][START_REF] Migórski | A note on optimal control problem for a hemivariational inequality modeling fluid flow[END_REF], for instance. Optimal control problems for variational inequalities have been discussed in several works, including [START_REF] Barbu | Optimal Control of Variational Inequalities[END_REF][START_REF] Bonnans | Pontryagin's principle in the control of semilinear elliptic variational inequalities[END_REF][START_REF] Freidman | Optimal control for variational inequalities[END_REF][START_REF] Mignot | Contrôle dans les inéquations variationnelles elliptiques[END_REF][START_REF] Mignot | Optimal control in some variational inequalities[END_REF][START_REF] Neitaanmaki | Optimization of Elliptic Systems: Theory and Applications[END_REF][START_REF] Tiba | Lectures on the Optimal Control of Elliptic Equations[END_REF]. Due to the nonsmooth and nonconvex feature of the functional involved, the treatment of optimal control problems for variational inequalities requires the use of their approximation by smooth optimization problems. And, on this matter, establishing convergence results for the optimal pairs represents a topic of major interest.

Processes of contact between deformable bodies abound in industry and everyday life. A few simple examples are brake pads in contact with wheels, tires on roads, and pistons with skirts. Due to the complex phenomena involved, they lead to strongly nonlinear mathematical models, formulated in terms of various classes of inequalities, including variational and quasivariational inequalities. Because of the importance of contact processes in structural and mechanical systems, considerable effort has been put into their modeling, analysis, and numerical simulations and the literature in the field is extensive. It includes the books [START_REF] Duvaut | Inequalities in Mechanics and Physics[END_REF][START_REF] Eck | Unilateral Contact Problems: Variational Methods and Existence Theorems[END_REF][START_REF] Han | Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity[END_REF][START_REF] Laursen | Computational Contact and Impact Mechanics[END_REF][START_REF] Migórski | Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems[END_REF][START_REF] Panagiotopoulos | Inequality Problems in Mechanics and Applications[END_REF][START_REF] Shillor | Models and Analysis of Quasistatic Contact[END_REF][START_REF] Sofonea | Mathematical Models in Contact Mechanics[END_REF][START_REF] Sofonea | Variational-Hemivariational Inequalities with Applications[END_REF], for instance. The literature concerning optimal control problems in the study of mathematical models of contact is quite limited. The reason is the strong nonlinearities which arise in the boundary conditions included in such models. The results on optimal control for various contact problems with elastic materials can be found in [START_REF] Amassad | Optimal control of an elastic contact problem involving Tresca friction law[END_REF][START_REF] Barboteu | The control variational method for beams in contact with deformable obstacles[END_REF][START_REF] Bermudez | Optimal control of a Signorini problem[END_REF][START_REF] Capatina | Optimal control of Signorini problem[END_REF][START_REF] Capatina | Variational Inequalities Frictional Contact Problems[END_REF][START_REF] Matei | Boundary optimal control for nonlinear antiplane problems[END_REF][START_REF] Matei | Boundary optimal control for a frictional contact problem with normal compliance[END_REF][START_REF] Matei | Optimal control for antiplane frictional contact problems involving nonlinearly elastic materials of Hencky type[END_REF][START_REF] Touzaline | Optimal control of a frictional contact problem[END_REF] and the references therein.

In the current chapter we consider an optimal control problem for a general class of elliptic quasivariational inequalities. Our motivation is given by the fact that such kind of inequalities arises in the study of frictional contact models and, therefore, their optimal control is important in a large number of engineering applications. The functional framework is the following: let X and Y be real Hilbert spaces endowed with the inner products (•, •) X and (•, •) Y , respectively, K ⊂ X, A : X → X, j : X × X → R,andπ : X → Y . Then, the inequality problem we consider is the following.

Problem P.Givenf ∈ Y ,findu such that u ∈ K, (Au, vu) X + j(u,v)-j (u, u) ≥ (f, πvπu) Y ∀ v ∈ K. (13.1) Note that the function j depends on the solution u and, for this reason, we refer to (13.1) as a quasivariational inequality. We assume in what follows that for each f ∈ Y the quasivariational inequality (13.1) has a unique solution u = u(f ). Sufficient conditions on the data which guarantee this assumption will be provided in Theorem 13.2.12. The set of admissible pairs for inequality (13.1)isgivenby V ad ={(u, f ) ∈ K × Y such that (13.1) holds }.

(13.2)

Consider now a cost functional L : X × Y → R, where, here and below, X × Y represents the product of the Hilbert spaces X and Y , equipped with the canonical inner product. Then, the optimal control problem we study in this chapter is the following.

Problem Q.Find(u * ,f * ) ∈ V ad such that L(u * ,f * ) = min (u,f )∈V ad L(u, f ). (13.3) 
Our aim in this chapter is threefold. The first one is to formulate sufficient assumptions on the data which guarantee the existence of optimal pairs, i.e., elements (u * ,f * ) ∈ V ad which solve Problem Q. The answer to this question is provided by Theorem 13.3.1. The second aim is to study the dependence of the optimal pairs with respect to perturbations of the set K, the operator A,a n dt h e functional j . The answer to this question is provided by Theorem 13.3.5 which provides a convergence result, under general conditions. This result is completed by Theorem 13.3.8, which holds under specific conditions on the data. Finally, our third aim is to illustrate how these abstract results could be useful in the study of mathematical models of contact. The answer to this question is provided by Theorems 13.4.4-13.4.6 and the corresponding mechanical interpretation.

The rest of this chapter is structured in four sections, as follows: In Sect. [START_REF] Capatina | Optimal control of a non-isothermal Navier-Stokes flow[END_REF].2 we provide some preliminary results in the study of Problem P. They concern the existence, uniqueness, and convergence of the solution. Then, in Sect. 13.3 we state and prove the existence of optimal pairs to the control problem Q as well as a general convergence result. Next, we present a relevant particular case for which our convergence result holds. In Sect. 13.4 we consider a mathematical model of frictional contact with elastic materials. The process is static and the contact is described with normal compliance and unilateral constraint, associated with a version of Coulomb's law of dry friction. We apply our results in Sects. 13.2 and 13.3 in the study of this problem. Moreover, we illustrate them in the study of a one-dimensional example. Finally, we end this chapter with some concluding remarks, presented in Sect. 13.5.

Quasivariational Inequalities

In this section we provide some results in the study of Problem P that we need in the rest of this chapter. We first introduce preliminary material from functional analysis, and then we state and prove an existence and uniqueness result, Theorem 13.2.12. Finally, we study the dependence of the solution with respect to the element f and we prove a convergence result, Theorem 13.2.13.

Notation and Preliminaries

All the linear spaces considered in this chapter including abstract normed spaces, Banach spaces, Hilbert spaces, and various function spaces are assumed to be real linear spaces. For a normed space X we denote by • X its norm and by 0 X its zero element. In addition, we denote by → and ⇀ the strong and weak convergence in various normed spaces. For an inner product space X we denote by (•, •) X its inner product and by • X the associated norm. Unless stated otherwise, all the limits, upper and lower limits, below are considered as n →∞, even if we do not mention it explicitly. The results presented below in this subsection are well known and can be found in many books and survey and, for this reason, we skip their proofs. Definition 13.2.1 Let X be a normed space. A subset K ⊂ X is called: (i) (strongly) closed if the limit of each convergent sequence of elements of K belongs to K,thatis, {u n }⊂K, u n → u in X ⇒ u ∈ K. (ii) weakly closed if the limit of each weakly convergent sequence of elements of K belongs to K,thatis,

{u n }⊂K, u n ⇀uin X ⇒ u ∈ K. (iii) convex,if u, v ∈ K ⇒ (1 -t)u + tv∈ K ∀ t ∈[0, 1].
Evidently, every weakly closed subset of X is (strongly) closed, but the converse is not true, in general. An exception is provided by the class of convex subsets of a Banach space, as shown in the following result.

Theorem 13.2.2 (The Mazur Theorem) A convex subset of a Banach space is (strongly) closed if and only if it is weakly closed.

We now recall the following important property which represents a particular case of the well-known Eberlein-Smulyan theorem.

Theorem 13.2.3 If X is a Hilbert space, then any bounded sequence in X has a weakly convergent subsequence.

It follows that if X is a Hilbert space and the sequence {u n }⊂X is bounded, that is, sup n u n X < ∞, then there exists a subsequence {u n k }⊂{ u n } and an element u ∈ X such that u n k ⇀uin X. Furthermore, if the limit u is independent of the subsequence, then the whole sequence {u n } converges weakly to u, as stated in the following result. Theorem 13.2.4 Let X be a Hilbert space and let {u n } be a bounded sequence of elements in X such that each weakly convergent subsequence of {u n } converges weakly to the same limit u ∈ X.Thenu n ⇀uin X.

We now proceed with the definition of some classes of operators. Definition 13.2.5 Let X be an inner product space and let A : X → X be an operator. The operator A is said to be:

(i) monotone,if (Au -Av, u -v) X ≥ 0 ∀ u, v ∈ X. (ii) strongly monotone, if there exists a constant m>0suchthat (Au -Av, u -v) X ≥ m u -v 2 X ∀ u, v ∈ X.
(iii) bounded,ifA maps bounded sets into bounded sets.

(iv) pseudomonotone, if it is bounded and u n ⇀uin X with lim sup

n→∞ (Au n ,u n -u) X ≤ 0 (13.4) implies lim inf n→∞ (Au n ,u n -v) X ≥ (Au, u -v) X ∀ v ∈ X. (13.5) 
(v) Lipschitz continuous if there exists M>0suchthat Au -Av X ≤ M u -v X ∀ u, v ∈ X.
(vi) hemicontinuous if the real valued function

θ → (A(u + θv),w) X is continuous on R, ∀ u, v, w ∈ X.
It is easy to see that a strongly monotone operator A : X → X is monotone and a Lipschitz continuous operator A : X → X is bounded and hemicontinuous. Moreover, the following result holds. Proposition 13.2.6 Let X be an inner product space and A : X → X a monotone hemicontinuous operator. Assume that {u n } is a sequence of elements in X which converges weakly to the element u ∈ X such that (13.4) holds. Then (13.5) 

holds, too.

A proof of Proposition 13.2.6 can be found in [41, p. 21]. As a consequence we obtain the following result which will be used later in this chapter.

Corollary 13.2.7 Let X be an inner product space and A : X → X a monotone Lipschitz continuous operator. Then A is pseudomonotone.

Convex lower semicontinuous functions represent a crucial ingredient in the study of variational inequalities. To introduce them, we start with the following definitions. Definition 13.2.8 Let X be a linear space and let K be a nonempty convex subset of X. A function ϕ :

K → R is said to be convex if ϕ((1 -t)u + tv) ≤ (1 -t)ϕ(u) + tϕ(v) (13.6)
for all u, v ∈ K and t ∈[ 0, 1]. The function ϕ is strictly convex if the inequality in (13.6) is strict for u = v and t ∈ (0, 1).

Definition 13.2.9 Let X be a normed space and let K be a nonempty closed convex subset of X. A function ϕ : K → R is said to be lower semicontinuous (l.s.c.) at

u ∈ K if lim inf n→∞ ϕ(u n ) ≥ ϕ(u) (13.7)
for each sequence {u n }⊂K converging to u in X. The function ϕ is l.s.c. if it is l.s.c. at every point u ∈ K. When inequality (13.7) holds for each sequence {u n }⊂K that converges weakly to u, the function ϕ is said to be weakly lower semicontinuous at u. The function ϕ is weakly l.s.c. if it is weakly l.s.c. at every point u ∈ K.

Since the strong convergence implies the weak convergence, it follows that a weakly lower semicontinuous function is lower semicontinuous. Moreover, the following results hold. Proposition 13.2.10 Let X be a Banach space, K a nonempty closed convex subset of X, and ϕ : K → R a convex function. Then ϕ is lower semicontinuous if and only if it is weakly lower semicontinuous.

The proof of this result is based on Theorem 13.2.2.

Existence and Uniqueness

Everywhere in the rest of this chapter we assume that X is a Hilbert space. Given a subset K ⊂ X, an operator A : X → X, a function j : X × X → R,a n da n element f ∈ X, we consider the following quasivariational inequality problem: find an element u such that

u ∈ K, (Au, v -u) X + j(u,v) -j (u, u) ≥ f,v-u X ∀ v ∈ K. (13.8)
Quasivariational inequalities of the form (13.8) have been studied by many authors, by using different functional methods, including fixed point and topological degree arguments. The existence and uniqueness results for such inequalities could be found in [START_REF] Capatina | Variational Inequalities Frictional Contact Problems[END_REF][START_REF] Motreanu | Quasivariational inequalities and applications in frictional contact problems with normal compliance[END_REF][START_REF] Sofonea | Variational Inequalities with Applications. A Study of Antiplane Frictional Contact Problems[END_REF][START_REF] Sofonea | Mathematical Models in Contact Mechanics[END_REF], for instance, under various assumptions on the function j .

Here, in this chapter, we consider the following assumptions:

K is a nonempty, closed, convex subset of X. (13.9)

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩
A is a strongly monotone Lipschitz continuous operator, i.e., there exist m>0andM>0suchthat

(a) (Au -Av, u -v) X ≥ m u -v 2 X ∀ u, v ∈ X, (b) Au -Av X ≤ M u -v X ∀ u, v ∈ X. (13.10) ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ (a) For all η ∈ X, j (η, •) : X → R is convex and l.s.c. (b) There exists α ≥ 0 such that j(η 1 ,v 2 ) -j(η 1 ,v 1 ) + j(η 2 ,v 1 ) -j(η 2 ,v 2 ) ≤ α η 1 -η 2 X v 1 -v 2 X ∀ η 1 ,η 2 ,v 1 ,v 2 ∈ X.
(13.11) m>α.

(13.12)

We recall the following existence and uniqueness result, which guarantees the unique solvability of Problem P. Theorem 13.2.11 Assume that (13.9)-(13.12) hold. Then, for each f ∈ X the quasivariational inequality (13.8) has a unique solution.

A proof of Theorem 13.2.11 can be found in [41, p. 49], based on the Banach fixed point argument. We now turn to the study of Problem P and, to this end, we consider the following additional assumptions: ⎧ ⎨ ⎩ π is a linear continuous operator, i.e., there exists We have the following result.

c 0 > 0suchthat πv Y ≤ c 0 v X ∀ v ∈ X. (13.13) ⎧ ⎨ ⎩ There exist β, γ ≥ 0suchthat j(η,v 1 ) -j(η,v 2 ) ≤ (β + γ η X ) v 1 -v 2 X ∀ η, v 1 ,v 2 ∈ X.
Theorem 13.2.12 Assume that (13.9)-(13.13) hold. Then, for each f ∈ Y ,t h e quasivariational inequality (13.1) has a unique solution. Moreover, if (13.14) and (13.15) hold, then the solution satisfies the inequality

u X ≤ 1 m -γ Au 0 X + c 0 f Y + γ u 0 X + β + u 0 X , (13.16 
)

for any element u 0 ∈ K.

Proof Let f ∈ Y . We use assumption (13.13) to see that the functional v → (f, πv) Y is linear and continuous on X. Therefore, using the Riesz representation theorem, there exists a unique element f ∈ X such that

( f,v) X = (f, πv) Y ∀ v ∈ X. (13.17) 
Using now Theorem 13.2.11 we deduce that there exists a unique element u such that

u ∈ K, (Au, v -u) X + j(u,v) -j (u, u) ≥ f,v-u X ∀ v ∈ K. (13.18)
The existence and uniqueness part of Theorem 13.2.12 is now a direct consequence of (13.17)and (13.18). Assume now that (13.14)a n d( 13.15) hold and consider an arbitrary element u 0 ∈ K. Then, taking v = u 0 in (13.1)wefindthat (Au, uu 0 ) X ≤ (f, πuπu 0 ) Y + j(u,u 0 )j (u, u) which implies that

(Au -Au 0 ,u-u 0 ) X ≤ (Au 0 ,u 0 -u) X + (f, πu -πu 0 ) Y + j(u,u 0 ) -j (u, u).
We now use assumptions (13.10)(a), (13.13), and (13.14) to deduce that

m u -u 0 2 X ≤ Au 0 X u -u 0 X +c 0 f Y u -u 0 X + (β + γ u X ) u -u 0 X .
Next, we use the triangle inequality u X ≤ uu 0 X + u 0 X to deduce that

(m -γ) u -u 0 X ≤ Au 0 X + c 0 f Y + γ u 0 X + β.
This inequality combined with the smallness assumption (13.15) implies the bound (13.16) and concludes the proof. ⊓ ⊔

A Convergence Result

Theorem 13.2.12 allows us to define the operator f → u(f ) which associates to each element f ∈ Y the solution u = u(f ) ∈ K of the quasivariational inequality (13.1). An important property of this operator is its weak-strong continuity, which represents a crucial ingredient in the study of the optimal control problem Q. It holds under the following additional assumptions:

⎧ ⎪ ⎨ ⎪ ⎩
For any sequences {η k }⊂X, {u k }⊂X such that η k ⇀η∈ X, u k ⇀u∈ X one has lim sup

k→∞ [j(η k ,v)-j(η k ,u k )]≤j(η,v)-j(η,u) ∀ v ∈ X. (13.19) 
For any sequence {v k }⊂X such that v k ⇀v in X one has πv k → πv in Y. (13.20) Note that assumption (13.19) implies that for all η ∈ X, j(η,•) : X → R is lower semicontinuous. Indeed, this property can be easily deduced by taking η k = η in (13.19). Moreover, assumption (13.20) shows that the operator π : X → Y is completely continuous.

Our main result in this subsection is the following.

Theorem 13.2.13 Assume that (13.9)- (13.15), (13.19), and (13.20) hold. Then, 

f n ⇀f in Y ⇒ u(f n ) → u(f ) in X,
(Au n ,u n -v) X ≤ j(u n ,v)-j(u n ,u n ) + (f n ,πu n -πv) Y ∀ v ∈ K, (13.25) 
then we take v = u ∈ K to find that

(Au n ,u n -u) X ≤ j (u n , u) -j(u n ,u n ) + (f n ,πu n -π u) Y .
We now pass to the upper limit and use the convergences (13.22), (13.23)and assumptions (13.19), (13.20). As a result we deduce that

lim n→∞ sup (Au n ,u n -u) X ≤ 0.
Therefore, using assumption (13.10), Corollary 13.2.7,a n dD e fi n ition 13.2.5(iv) we deduce that

lim inf n→∞ (Au n ,u n -v) X ≥ (A u, u -v) X ∀ v ∈ X. (13.26) 
On the other hand, passing to the upper limit in inequality (13.25) and using the convergences (13.22), (13.23) and assumptions (13.19), (13.20) 

yields lim sup n→∞ (Au n ,u n -u) X ≤ j ( u, v) -j ( u, u) + (f, π u -πv) Y ∀ v ∈ K.
(13.27)

We now combine the inequalities (13.26)and(13.27) to see that

(A u, v -u) X + j ( u, v) -j ( u, u) ≥ (f, πv -π u) Y ∀ v ∈ K. (13.28) 
Next, it follows from (13.24)and(13.28)that u is a solution of inequality (13.1) and, by the uniqueness of the solution of this inequality, guaranteed by Theorem 13.2.12, we obtain that

u = u. (13.29) 
A careful analysis, based on the arguments above, reveals that u is the weak limit of any weakly convergent subsequence of the sequence {u n }. Therefore, using Theorem 13.2.4 we deduce that the whole sequence {u n } converges weakly in X to u as n →∞, i.e., u n ⇀u in X as n →∞.

(13.30) (iii) Strong convergence. Let n ∈ N be given. We take v = u in inequality (13.25) to see that

(Au n ,u n -u) X ≤ j(u n ,u)-j(u n ,u n ) + (f n ,πu n -πu) Y . (13.31)
Next, we use (13.31) and assumption (13.10)(a) to find that

m u n -u 2 X ≤ (Au n -Au, u n -u) X = (Au n ,u n -u) X -(Au, u n -u) X ≤ j(u n ,u)-j(u n ,u n ) + (f n ,πu n -πu) Y -(Au, u n -u) X .
We now pass to the upper limit in this inequality and use the convergences (13.22), (13.30) and assumptions (13.19), (13.20) to deduce that

u n -u X → 0a s n →∞.
This convergence concludes the proof since, recall,

u n = u(f n ) and u = u(f ). ⊓ ⊔

Optimal Control of Quasivariational Inequalities

We now move to the study of the optimal control problem Q. We start with an existence result for the optimal pairs, Theorem 13.3.1. We proceed with a convergence result, Theorem 13.3.5. Finally, we consider a relevant particular case for which this convergence result holds, Theorem 13.3.8.

Existence of Optimal Pairs

In the study of Problem Q we assume that

L(u, f ) = g(u) + h(f ) ∀ u ∈ X, f ∈ Y, (13.32) 
where g and h are functions which satisfy the following conditions:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ g : X → R is continuous, positive, and bounded, i.e., (a) v n → v in X ⇒ g(v n ) → g(v). (b) g(v) ≥ 0 ∀ v ∈ X.
(c) g maps bounded sets in X into bounded sets in R.

(13.33)

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ h : Y → R is weakly lower semicontinuous and coercive, i.e., (a) f n ⇀f in Y ⇒ lim inf n→∞ h(f n ) ≥ h(f ). (b) f n Y →∞ ⇒ h(f n ) →∞.
(13.34)

Our first result in this section is the following.

Theorem 13.3.1 Assume that (13.9)- (13.15), (13.19), (13.20), and (13.32)- (13.34) hold. Then, there exists at least one solution

(u * ,f * ) ∈ V ad of Problem Q. Proof Let θ = inf (u,f )∈V ad L(u, f ) ∈ R (13.35)
and let {(u n ,f n )}⊂V ad be a minimizing sequence for the functional L,i.e.,

lim n→∞ L(u n ,f n ) = θ. (13.36)
We claim that the sequence {f n } is bounded in Y . Arguing by contradiction, assume that {f n } is not bounded in Y . Then, passing to a subsequence still denoted {f n },we have

f n Y →+∞ as n →+∞. (13.37) 
We now use equality (13.32) and assumption (13.33)(b) to see that

L(u n ,f n ) ≥ h(f n ).
Therefore, passing to the limit as n →+ ∞and using (13.37) combined with assumption (13.34)(b) we deduce that

lim n→+∞ L(u n ,f n ) =+∞. (13.38) 
Equalities (13.36)a n d( 13.38) imply that θ =+ ∞which is in contradiction with (13.35). We conclude from above that the sequence {f n } is bounded in Y . Therefore, using Theorem 13.2.3 we deduce that there exists f * ∈ Y such that, passing to a subsequence still denoted {f n },wehave

f n ⇀f * in Y as n →+∞.
(13.39)

Let u * be the solution of the quasivariational inequality (13.1)forf = f * ,i.e., u * = u(f * ). Recall that the existence and uniqueness of this solution is guaranteed by Theorem 13.2.12. Then, by the definition (13.2)ofthesetV ad we have

(u * ,f * ) ∈ V ad .
(13.40)

Moreover, using (13.39)and(13.21) it follows that

u n → u * in X as n →+∞. (13.41) 
We now use the convergences (13.39), (13.41) and the weakly lower semicontinuity of the functional L, guaranteed by assumptions (13.33)(a) and (13.34)(a), to deduce that Then, careful analysis of the previous proof reveals the fact that the statement of Theorem 13.3.1 still remains valid if we replace the definition (13.2)ofadmissible pairs for inequality (13.1) with the following one:

lim inf n→+∞ L(u n ,f n ) ≥ L(u * ,f * ). ( 13 
V ad ={(u, f ) ∈ K × U such that (13.1) holds }. (13.46)
Considering the set (13.46) instead of (13.2) leads to a version of Theorem 13.3.1 which could be useful in various applications, when the control f is assumed to satisfy some constraints.

Convergence of Optimal Pairs

In this subsection we focus on the dependence of the solution of the optimal control Q with respect to the set K, the operator A, and the function j . To this end, we assume in what follows that the hypothesis of Theorem 13.3.1 holds. Moreover, for each n ∈ N we consider a perturbation K n , A n ,andj n of K, A,andj , respectively, which satisfy the following conditions:

K n is a nonempty, closed, convex subset of X. (13.47) ⎧ ⎨ ⎩
A n is a strongly monotone Lipschitz continuous operator, i.e., it satisfies condition (13.10) with m n > 0andM n > 0.

(13.48)

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ (a) For all η ∈ X, j n (η, •) : X → R is convex. (b) There exists α n ≥ 0 such that j n (η 1 ,v 2 ) -j n (η 1 ,v 1 ) + j n (η 2 ,v 1 ) -j n (η 2 ,v 2 ) ≤ α n η 1 -η 2 X v 1 -v 2 X ∀ η 1 ,η 2 ,v 1 ,v 2 ∈ X. (c) There exist β n ,γ n ≥ 0suchthat j n (η, v 1 ) -j n (η, v 2 ) ≤ (β n + γ n η X ) v 1 -v 2 X ∀ η, v 1 ,v 2 ∈ X.
(d) For any sequences {η k }⊂X, {u k }⊂X such that η k ⇀η∈ X, u k ⇀u∈ X one has lim sup We consider the following perturbation of Problem P.

k [j n (η k ,v)-j n (η k ,u k )]≤j n (η, v) -j n (η, u) ∀ v ∈ X.
Problem P n .Givenf n ∈ Y ,findu n such that u n ∈ K n ,( A n u n ,v -u n ) X + j n (u n ,v)-j n (u n ,u n ) (13.52) ≥ (f n ,πv -πu n ) Y ∀ v ∈ K n .
It follows from Theorem 13.2.12 that for each f n ∈ Y there exists a unique solution u n = u n (f n ) to the quasivariational inequality (13.52). Moreover, the solution satisfies

u n X ≤ 1 m n -γ n A n u 0n X +c 0 f n Y +γ n u 0n X +β n + u 0n X , (13.53) 
where u 0n denotes an arbitrary element of K n . We define the set of admissible pairs for inequality (13.52)by

V n ad ={(u n ,f n ) ∈ K n × Y such that (13.52) holds }. (13.54)
Then, the optimal control problem associated with Problem P n is the following. 

Problem Q n .Find(u * n ,f * n ) ∈ V n ad such that L(u * n ,f * n ) = min (u n ,f n )∈V n ad L(u n ,f n ). ( 13 
,f * n ) ∈ V n ad of Problem Q n .
We now consider the following assumptions:

f n ⇀f in Y ⇒ u n (f n ) → u(f ) in X, as n →∞. (13.56)
There exists f 0 ∈ Y such that the sequence {u n (f 0 )} is bounded in X.

(13.57)

Concerning assumptions (13.56)and(13.57) we have the following remarks.

Remark 13.3.3 Assumptions (13.56)a n d( 13.57) are not formulated in terms of the data K n , A n ,a n dj n . They are formulated in terms of the solutions u n and u which are unknown and, therefore, they represent implicit assumptions. We consider these assumptions for their generality. In the next section we shall provide explicit assumptions on K n , A n ,andj n which guarantee that conditions (13.56)and(13.57) hold. Considering such explicit assumptions will lead us to introduce a relevant particular case in which Theorem 13.3.5 holds.

Remark 13.3.4 Condition (13.56) represents a continuous dependence condition of the solution of (13.1) with respect to the set K, the operator A, the function j ,and the element f ∈ Y .

The second result in this section is a convergence result for the set of solution of Problem Q. Its statement is as follows.

Theorem 13.3.5 Assume that (13.9)- (13.15), (13.19), (13.20), and (13.32)- (13.34) hold and, for any n ∈ N, assume that (13.47)-( 13.51) hold, too. Moreover, assume that conditions (13.56)- (13.57) We use equality (13.32) and assumption (13.33)(b) to see that

L u * n ,f * n ≥ h f * n .
Therefore, passing to the limit as n →∞in this inequality and using (13.61) combined with assumption (13.34)(b) we deduce that

lim n→∞ L u * n ,f * n =+∞. (13.62) 
On the other hand, since u * n ,f * n represents a solution to Problem Q n , for each n ∈ N we have

L u * n ,f * n ≤ L(u n ,f n ) ∀ (u n ,f n ) ∈ V n ad .
(13.63)

We now use assumption (13.57) and denote by u 0 n the solution of Problem P n for f n = f 0 , i.e., u 0 n = u n f 0 .T h e n u 0 n ,f 0 ∈ V n ad and, therefore, (13.63) and (13.32) imply that

L u * n ,f * n ≤ g u 0 n + h f 0 . (13.64)
Then, since (13.57) guarantees that u 0 n is a bounded sequence in X, assumption (13.33)(c) on the function g implies that there exists D>0 which does not depend on n such that We now prove that (u * ,f * ) is a solution to the optimal control problem Q. To this end we use the convergences (13.58), (13.59) and the weakly lower semicontinuity of the functional L, guaranteed by (13.32)- (13.34), to see that 

g u 0 n + h f 0 ≤ D ∀ n ∈ N. ( 13 
L(u * ,f * ) ≤ lim inf n→∞ L(u * n ,f * n ). ( 13 
L u * n ,f * n ≤ L u 0 n ,f * 0 ∀ n ∈ N.
We pass to the upper limit in this inequality to see that

lim sup n→∞ L u * n ,f * n ≤ lim sup n→∞ L u 0 n ,f * 0 . (13.68) 
Now, remember that u * 0 is the solution of the inequality (13.1)forf = f * 0 and u 0 n is the solution of the inequality (13.52)f o rf n = f * 0 ,i . e . , u 0 n = u n f * 0 and u n = u n f * 0 . Therefore, assumption (13.56) implies that

u 0 n → u * 0 in X as n →∞
and, using the continuity of the functional

u → L u, f * 0 : X → R yields lim n→∞ L u 0 n ,f * 0 = L u * 0 ,f * 0 . (13.69) 
We now use (13.67)-(13.69) to see that

L u * ,f * ≤ L(u * 0 ,f * 0 ). (13.70)
On the other hand, since

(u * 0 ,f * 0 ) is a solution of Problem Q,wehave L u * 0 ,f * 0 = min (u,f )∈V ad L(u, f ), (13.71) 
and, therefore, inclusion (13.66) implies that

L u * 0 ,f * 0 ≤ L u * ,f * . (13.72)
We now combine the inequalities (13.70)and(13.72) to see that 

L u * ,f * = L u * 0 ,f * 0 . ( 13 
V n ad ={(u n ,f n ) ∈ K n × U such that (13.52) holds }, (13.74) 
U being a nonempty weakly closed subset of Y . The proof of this statement is based on the property (13.45)ofthesetU .

A Relevant Particular Case

Our aim in this subsection is to present explicit conditions on the family of sets K n , operators A n , and functionals j n which guarantee that assumptions (13.56) and (13.57) hold. We conclude from here that, under these conditions, the abstract result in Theorem 13.3.5 holds.

Everywhere in this subsection we assume that (13.9)-(13.15), (13.19), and (13.20) hold and, for each f ∈ Y , we denote by u = u(f ) the solution of inequality (13.1), guaranteed by Theorem 13.2.12. Moreover, for each n ∈ N we consider the set K n ⊂ X, the operator A n : X → X, and the functional j n : X × X → R such that the followings hold:

K n = c n K with c n > 0.
(13.75)

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ (a) A n = A + T n .
(b) A : X → X satisfies condition (13.10) with m>0andM>0.

(c) T n : X → X is a monotone Lipschitz continuous operator.

(13.76) j n satisfies condition (13.49) with α n ≥ 0,β n ≥ 0,γ n ≥ 0 such that m>α n ,m > γ n .

(13.77)

With this choice we consider Problem P n . It is easy to see that for each n ∈ N the set K n ⊂ X satisfies condition (13.47). Moreover, the operator A n satisfies condition (13.48) with m n = m and M n = M + L T n , L T n being the Lipschitz constant of the operator T n . We now use assumption (13.77) to see that conditions (13.49)-(13.51) are also satisfied. Therefore, using Theorem 13.2.12 we deduce that for each f n ∈ Y there exists a unique solution u n = u n (f n ) to the quasivariational inequality (13.52).

On the other hand, if (13.32)-(13.34) hold, then Theorem 13.3.1 guarantees the existence of at least one solution (u * ,f * ) of Problem Q and, for each n ∈ N,t he existence of at least one solution (u * n ,f * n ) to Problem Q n . We now consider the following additional assumptions:

lim n→∞ c n = 1.
(13.78)

j(u,λv) = λj (u, v ) ∀ λ ≥ 0,u ,v∈ X. (13.79) ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩
For any n ∈ N there exists

F n ≥ 0andδ n ≥ 0 such that (a) T n v X ≤ F n ( v X + δ n ) ∀ v ∈ X. (b) lim n→∞ F n = 0.
(c) The sequence {δ n }⊂R is bounded.

(13.80)

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ For any n ∈ N there exists G n ≥ 0andH n ≥ 0 such that (a) j n (v 1 ,v 2 ) -j n (v 1 ,v 1 ) + j(v 2 ,v 1 ) -j(v 2 ,v 2 ) ≤ G n + H n v 1 -v 2 X + α v 1 -v 2 2 X ∀ v 1 ,v 2 ∈ X. (b) lim n→∞ G n = lim n→∞ H n = 0.
(13.81) Moreover, we reinforce assumption (13.77) by assuming that there exist two constants β 0 and γ 0 such that 

β n ≤ β 0 ,γ n ≤ γ 0 <m, ∀ n ∈ N. ( 13 
(f n )} is bounded in X.
Proof Let u 0 be a given element of K and let n ∈ N. Condition (13.75) guarantees that c n u 0 ∈ K n and, therefore, using inequality (13.53) with u 0n = c n u 0 yields

u n X ≤ 1 m n -γ n A n (c n u 0 ) X + c 0 f n Y + γ n c n u 0 X + β n + c n u 0 X .
We now use assumption (13.82) and equality m n = m which, recall, follows from assumption (13.76). In this way we deduce that

u n X ≤ 1 m -γ 0 A n (c n u 0 ) X + c 0 f n Y + γ 0 c n u 0 X + β 0 + c n u 0 X .
(13.83)

Recall that A n (c n u 0 ) = A(c n u 0 ) + T n (c n u 0 ) and, therefore,

A n (c n u 0 ) X ≤ A(c n u 0 ) X + T n (c n u 0 ) X . (13.84) 
We now write

A(c n u 0 ) X ≤ A(c n u 0 ) -Au 0 X + Au 0 X ,
then we use assumption (13.10)(b) to deduce that

A(c n u 0 ) X ≤ (M|c n -1| u 0 X + Au 0 X ). (13.85)
Moreover, using (13.80)wehavethat 

T n (c n u 0 ) X ≤ F n (c n u 0 X + δ n ). ( 13 
≤ 1 m -γ 0 M|c n -1| u 0 X + Au 0 X + F n (c n u 0 X + δ n ) + 1 m -γ 0 c 0 f n Y + γ 0 c n u 0 X + β 0 + c n u 0 X .
Lemma 13.3.9 is now a direct consequence of inequality (13.87) and assumptions (13.78), (13.80)(b).

⊓ ⊔

We proceed with the following result. 

ūn ∈ K, (A ūn ,v -ū n ) X + j(ū n ,v)-j(ū n , ūn ) (13.89) ≥ (f n ,πv -π ūn ) Y ∀ v ∈ K. u n ∈ K n ,( A u n ,v n -u n ) X + j( u n ,v n ) -j( u n , u n ) (13.90) ≥ (f n ,πv n -π u n ) Y ∀ v n ∈ K n .
Note that Theorem 13.2.12 guarantees the existence of a unique solution ūn and u n to the quasivariational inequalities (13.89)and(13.90), respectively. Our aim in what follows is to establish estimates for the norms u nu n X and u n -ū n X .

Let n ∈ N.W et a k ev n = u n in (13.90), v n = u n in (13.52), then we add the resulting inequalities to obtain that

(A n u n -A u n ,u n -u n ) X ≤ j n (u n , u n ) -j n (u n ,u n ) + j ( u n ,u n ) -j ( u n , u n ) .
We use now assumption (13.76)(a) to see that A n u n = Au n + T n u n and, therefore, we deduce that

(Au n -A u n ,u n -u n ) X ≤ (T n u n , u n -u n ) X +j n (u n , u n ) -j n (u n ,u n ) + j ( u n ,u n ) -j ( u n , u n ) .
Next, we use conditions (13.10)(a), (13.80)(a), and (13.81)(a) to find that

m u n -u n 2 X ≤ F n ( u n X + δ n ) u n -u n X (13.91) +G n + H n u n -u n X + α u n -u n 2 X .
On the other hand, assumption (13.88) and Lemma 13.3.9 imply that there exists E>0 which does not depend on n such that u n X ≤ E. Therefore, since m>α, inequality (13.91) yields

u n -u n 2 X ≤ H n m -α + (E + δ n )F n m -α u n -u n X + G n m -α .
Next, the elementary inequality On the other hand, condition (13.75) allows us to test in (13.90) with v n = c n ūn ∈ K n . As a result we deduce that (A u n ,c n ūnu n ) X + j ( u n ,c n ūn )j ( u n , u n ) ≥ (f n ,c n π ūnπ u n ) Y .

x 2 ≤ ax + b ⇒ x ≤ a + √ b ∀ x,
(13.93)

We now use condition (13.75), again, to test in (13.89) with v = 1 c n u n ∈ K. Then, we multiply the resulting inequality with c n > 0 and use assumption (13.79)onj to find that (A ūn , u nc n ūn ) X + j ( ūn , u n )j ( ūn ,c n ūn ) ≥ (f n ,π u nc n π ūn ) Y .

(13.94)

We now add inequalities (13.93)and(13.94) to deduce that

(A u n -A ūn , u n -c n ūn ) X ≤ j ( u n ,c n ūn ) -j ( u n , u n ) + j ( ūn , u n ) -j ( ūn ,c n ūn ) ,
then we use assumption (13.11)(b) to obtain that

(A u n -A ūn , u n -c n ūn ) X ≤ α u n -ū n X u n -c n ūn X . (13.95) 
Next, we write

u n -c n ūn = u n -ū n + (1 -c n ) ūn ,
then we substitute this equality in (13.95) and use condition (13.10)(a) to find that

m u n -ū n 2 X ≤ (A u n -A ūn ,(c n -1) ūn ) X +α u n -ū n 2 X + α|1 -c n | u n -ū n X ūn X .
We now use assumption (13.10)(b) and the smallness assumption (13.12) to see that

u n -ū n X ≤ M + α m -α |1 -c n | ūn X . (13.96) 
Next, consider an element u 0 ∈ K. Condition (13.75) guarantees that c n u 0 ∈ K n and, therefore, using inequality (13.16) for the variational inequality (13.90) yields

ūn X ≤ 1 m -γ A(c n u 0 ) X + c 0 f n Y + γ c n u 0 X + β + c n u 0 X .
We use assumption (13.10) and convergences (13.78), (13.88) to deduce that the sequence {ū n } is bounded in X, i.e., there exists E>0suchthat We now write

ūn X ≤ E ∀ n ∈ N. ( 13 
u n -u X ≤ u n -u n X + u n -ū n X + ūn -u X ,
then we use the convergences (13.92), (13.98), and (13.99) to see that

u n -u X → 0a sn →∞.
It follows from here that condition (13.56) is satisfied, which concludes the proof.

⊓ ⊔

We now are in a position to provide the proof of Theorem 13.3.8.

Proof First, we use Lemma 13.3.10 to see that, under the assumptions of Theorem 13.3.8, condition (13.56) holds. On the other hand, Lemma 13.3.9 shows that the sequence u n (f 0 ) is bounded in X,f o ra n yf 0 ∈ Y . Therefore, condition (13.57) holds, too. Theorem 13.3.8 is now a direct consequence of Theorem 13.3.5.

⊓ ⊔

We end this section with the following remarks.

Remark 13.3.11 In contrast to conditions (13.56)and(13.57), conditions (13.75)-(13.82) are explicit conditions, since they are formulated in terms of the data K n , A n ,a ndj n . In many applications they are easy to be verified. A concrete example which illustrates this statement will be presented in Sect. [START_REF] Capatina | Optimal control of a non-isothermal Navier-Stokes flow[END_REF] 

A Frictional Contact Problem

In this section we use the abstract results presented in Sects. 13.2 and 13.3 in the study of a quasivariational inequality which models the frictional contact of an elastic body with a foundation. We start by introducing the function spaces we need, then we describe the model of contact and prove its unique weak solvability, Theorem 13.4.1. Next, we turn to the optimal control of the problem and prove existence and convergence results, Theorems 13.4.4 and 13.4.6, respectively. Finally, we exemplify our results in the study of a one-dimensional mathematical model which describes the equilibrium of an elastic rod in unilateral contact with a foundation, under the action of a body force.

Function Spaces

For the study of mathematical models of contact we need further notation and preliminary material that we introduce in this subsection. Everywhere below we denote by S d the space of second order symmetric tensors on R d or, equivalently, the space of symmetric matrices of order d. The inner product and norm on R d and S d are defined by

u • v = u i v i , v =(v • v) 1 2 ∀ u, v ∈ R d , σ • τ = σ ij τ ij , τ =(τ • τ ) 1 2 ∀ σ , τ ∈ S d ,
and 0 will denote the zero element of these spaces. Let ⊂ R d (d = 2, 3) be a bounded domain. We denote by Ŵ its boundary, assumed to be Lipschitz continuous and divided into three measurable parts Ŵ 1 , Ŵ 2 ,a n dŴ 3 such that meas (Ŵ 1 )>0. We use the notation x = (x i ) for a typical point in ∪ Ŵ and we denote by ν = (ν i ) the outward unit normal at Ŵ. Here and below the indices i and j run between 1 and d and, unless stated otherwise, the summation convention over repeated indices is used. An index that follows a comma represents the partial derivative with respect to the corresponding component of the spatial variable x, i.e., u i,j = ∂u i /∂x j . Moreover, ε represents the deformation operator, i.e.,

ε(v) = (ε ij (v)), ε ij (v) = 1 2 (v i,j + v j,i ).
We use the standard notation for Sobolev and Lebesgue spaces associated with and Ŵ and, in addition, we consider the spaces

V = v ∈ H 1 ( ) d : v = 0 on Ŵ 1 ,Y = L 2 ( ) d × L 2 (Ŵ 2 ) d .
It is well known that V is a real Hilbert space endowed with the inner product

(u, v) V = ε(u) • ε(v)dx,
and the associated norm • V . Completeness of the space (V , • V ) follows from the assumption meas (Ŵ 1 )>0, which allows the use of Korn's inequality. For an element v ∈ V we still write v for the trace of v and we denote by v ν and v τ the normal and tangential components of v on Ŵ given by v ν = v • ν, v τ = vv ν ν.W e also recall that there exists d 0 > 0 which depends on , Ŵ 1 ,andŴ 3 such that

v L 2 (Ŵ 3 ) d ≤ d 0 v V for all v ∈ V. ( 13 
.100) Inequality (13.100) represents a consequence of the Sobolev trace theorem. The space Y will be endowed with its canonic inner product and associated norm, denoted by (•, •) Y and • , respectively. For a regular function σ : → S d we denote by σ ν and σ τ the normal and tangential stress on Ŵ,thatis,σ ν = (σν) • ν and σ τ = σνσ ν ν, and we recall that the following Green's formula holds:

σ •ε(v)dx+ Div σ •v dx = Ŵ σν•v da for all v ∈ H 1 ( ) d . (13.101)
More details on the function spaces used in contact mechanics, including their basic properties, can be found in the books [START_REF] Sofonea | Mathematical Models in Contact Mechanics[END_REF][START_REF] Sofonea | Variational-Hemivariational Inequalities with Applications[END_REF].

The Model

The physical setting is the following. An elastic body occupies, in its reference configuration, the domain ⊂ R d . Its boundary Ŵ is divided into three measurable disjoint parts Ŵ 1 , Ŵ 2 , Ŵ 3 such that meas (Ŵ 1 )>0, as already mentioned. The body is fixed on Ŵ 1 , is acted upon by given surface tractions on Ŵ 2 , and is in potential contact with an obstacle on Ŵ 3 . To construct a mathematical model which corresponds to the equilibrium of the body in this physical setting above we need to prescribe specific interface boundary condition. Here, we assume that the contact is with normal compliance and finite penetration, associated with a version of Coulomb's law of dry friction. Therefore, the classical formulation of the problem is the following. 

Problem P . Find a displacement field u : → R d a stress field σ : → S d such that σ = F ε(u) in , ( 13 
u ν ≤ k, σ ν + p(u ν ) ≤ 0, (u ν -k)(σ ν + p(u ν )) = 0 ⎫ ⎬ ⎭ on Ŵ 3 , (13.106) σ τ ≤μp(u ν ), -σ τ = μp(u ν ) u τ u τ if u τ = 0 ⎫ ⎬ ⎭ on Ŵ 3 . (13.107)
We now provide a description of the equations and boundary conditions in Problem P .First,Eq.(13.102) represents the elastic constitutive law of the material in which F is assumed to be a nonlinear constitutive operator. Equation (13.103) is the equation of equilibrium. We use it here since the contact process is assumed to be static and, therefore, the inertial term in the equation of motion is neglected. Conditions (13.104)and(13.105) represent the displacement and traction boundary conditions, respectively. Condition (13.106) represents the so-called normal compliance condition with unilateral constraint. Here, k>0 is a given bound which limits the normal displacement and p is a given positive function which will be described below. This condition describes the contact with an obstacle made of a rigid body covered by a layer of thickness k made of deformable material. Condition (13.107) represents a static version of Coulomb's law of dry friction in which μ denotes the coefficient of friction and μp (u ν ) is the friction bound. The coupling of boundary conditions (13.106)and(13.107) was considered for the first time in [START_REF] Barboteu | Analysis of a contact problem with unilateral constraint and slip-dependent friction[END_REF]. Later, it was used in a number of papers, see [START_REF] Sofonea | Variational-Hemivariational Inequalities with Applications[END_REF] and the references therein. It describes a contact with normal compliance, as far as the normal displacement satisfies the condition u ν <k , associated with the classical Coulomb's law of dry friction. When u ν = k the contact is with a Signorini-type condition and is associated with the Tresca friction law with the friction bound μp (k ). It follows from here that conditions (13.106), (13.107) describe a natural transition from the Coulomb law of dry friction (which is valid as far as 0 ≤ u ν <k)to the Tresca law (which is valid when u ν = k).

In the study of the mechanical problem (13.102)-( 13.107) we assume that the elasticity operator F and the normal compliance function p satisfy the following conditions:

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ (a) F : × S d → S d . (b) There exists L F > 0 such that F (x, ε 1 ) -F (x, ε 2 ) ≤ L F ε 1 -ε 2 ∀ ε 1 , ε 2 ∈ S d , a.e. x ∈ .
(c) The mapping x → F (x, ε) is measurable on , for any ε ∈ S d .

(d) There exists m F > 0suchthat

(F (x, ε 1 ) -F (x, ε 2 )) • (ε 1 -ε 2 ) ≥ m F ε 1 -ε 2 2 ∀ ε 1 , ε 2 ∈ S d , a.e. x ∈ .
(e) F (x, 0) = 0.

(13.108)

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ (a) p : Ŵ 3 × R → R + . (b) There exists L p > 0suchthat |p(x,r 1 ) -p(x,r 2 )|≤L p |r 1 -r 2 | ∀ r 1 ,r 2 ∈ R, a.e. x ∈ Ŵ 3 . (c) (p(x,r 1 ) -p(x,r 2 )) (r 1 -r 2 ) ≥ 0 ∀ r 1 ,r 2 ∈ R, a.e. x ∈ Ŵ 3 .
(d) The mapping x → p(x,r)is measurable on Ŵ 3 , for any r ∈ R.

(e) p(x,r) = 0f o r a l lr ≤ 0, a.e. x ∈ Ŵ 3 .

(f) There exists p * ∈ R such that p(x, r) ≤ p * for all r ≥ 0, a.e. x ∈ Ŵ 3 .

(13.109)

The coefficient of friction is such that

μ ∈ L ∞ (Ŵ 3 ), μ(x) ≥ 0a . e . x ∈ Ŵ 3 . (13.110) 
Moreover, we assume that

d 2 0 L p μ L ∞ (Ŵ 3 ) <m F (13.111)
where d 0 , m F ,a n dL p are the constants which appear in (13.100), (13.108)(d), and (13.109)(b), respectively. Note that inequality (13.111) could be interpreted as a smallness condition on the coefficient of friction. Such kind of conditions are often used in the variational analysis of frictional contact problems with elastic materials, as explained in [START_REF] Shillor | Models and Analysis of Quasistatic Contact[END_REF] and the references therein. Let K denote the set defined by

K ={v ∈ V : v ν ≤ k a.e. on Ŵ 3 }, (13.112) 
and assume that the densities of body forces and tractions are such that

f 0 ∈ L 2 ( ) d , f 2 ∈ L 2 (Ŵ 2 ) d .
We now derive the variational formulation of Problem P and, to this end, we assume that (u, σ ) are sufficiently regular functions which satisfy (13.102)-(13.107). Then, using (13.106)and(13.112) it follows that

u ∈ K. (13.113) 
Let v ∈ K. We use Green's formula (13.101) and equalities (13.103)-(13.105)to see that

σ • (ε(v) -ε(u)) dx = f 0 • (v -u)dx (13.114) 
+ Ŵ 2 f 2 • (v -u)da + Ŵ 3 σν • (v -u)da.
Moreover, using the boundary conditions (13.106)and(13.107) it is easy to see that

σ ν (v ν -u ν ) ≥ p(u ν )(u ν -v ν ) a.e. on Ŵ 3 , σ τ (v τ -u τ ) ≥ μp(u ν )( u τ -v τ )
a.e. on Ŵ 3 .

Therefore, since

σν • (v -u) = σ ν (v ν -u ν ) + σ τ (v τ -u τ )
a.e. on Ŵ 3 , we deduce that

Ŵ 3 σν • (v -u)da (13.115) ≥ Ŵ 3 p(u ν )(u ν -v ν )da+ Ŵ 3 μp(u ν )( u τ -v τ )da.
Next, we combine equality (13.114) with inequality (13.115), then we use the constitutive law (13.102) and the regularity (13.113) .A sar e s u l tw efi n dt h e following variational formulation of Problem P .

Problem P V .Givenf = (f 0 , f 2 ) ∈ Y ,findu such that u ∈ K, F ε(u) • (ε(v) -ε(u)) dx (13.116) 
+ Ŵ 3 p(u ν )(v ν -u ν )da+ Ŵ 3 μp(u ν )( v τ -u τ )da ≥ f 0 • (v -u)dx + Ŵ 2 f 2 • (v -u)da ∀ v ∈ K.
Note that Problem P V is formulated in terms of the displacement field. Once the displacement field is known, the stress field can be easily obtained by using the constitutive law (13.102). A couple (u, σ ) which satisfies (13.102)and (13.116)is called a weak solution to the contact problem P .

Weak Solvability

Our main result in this section, which represents a continuation of our previous results in [START_REF] Barboteu | Analysis of a contact problem with unilateral constraint and slip-dependent friction[END_REF][START_REF] Sofonea | Primal and dual variational formulation of a frictional contact problem[END_REF], is the following. Theorem 13.4.1 Assume that (13.108)-( 13.111) hold. Then, for each f = (f 0 , f 2 ) ∈ Y there exists a unique solution u = u(f ) to the variational inequality (13.116)

. Moreover, if f n = (f 0n , f 2n ) ∈ Y , f = (f 0 , f 2 ) ∈ Y , and f 0n ⇀ f 0 in L 2 ( ) d , f 2n ⇀ f 2 in L 2 (Ŵ 2 ) d ,a sn →∞ ,t h e n u n (f n ) → u(f ) in X, as n →∞.
Note that Theorem 13.4.1 provides the existence of a unique weak solution to the frictional contact Problem P as well as its continuous dependence with respect to the density of body forces and tractions.

The proof of Theorem 13.4.1 will be carried out in several steps, based on the abstract existence and convergence results in Sect. 13.2. To present it assume in what condition (13.19) holds from assumption (13.109) and the compactness of the trace operator, since u k ⇀ u in V implies that p(u kν ) → p(u ν ) and u kτ → u τ in L 2 (Ŵ 3 ).

⊓ ⊔

We now have all the ingredients to provide the proof of Theorem 13.4.1.

Proof The set K is obviously a convex nonempty subset of V . Moreover, using the properties of the trace map we deduce that K is closed and, therefore, (13.9) holds. Next, we use assumptions (13.108)and(13.109) and the trace inequality (13.100) to see that

(Au -Av, u -v) V ≥ m F u -v 2 V , Au -Av V ≤ L F + d 2 0 L p u -v V
for all u, v ∈ V . Therefore, condition (13.10) holds with X = V and m = m F . On the other hand, Lemma 13.4.3 guarantees that the functional (13.118) satisfies conditions (13.11), (13.14), and (13.19) on the space X = V , with

α = d 2 0 L p μ L ∞ (Ŵ 3 ) , β = 0, and γ = d 2 0 L p μ L ∞ (Ŵ 3 )
. Therefore, using (13.111) it follows that the smallness assumption (13.12) is satisfied and, moreover, (13.15) holds, too. Finally, we note that conditions (13.13)a n d( 13.20) are a direct consequence of definition (13.119) combined with the properties of the operators ι and γ 2 .

It follows from above that we are in a position to apply Theorem 13.2.12 on the space X = V . As a result we deduce the unique solvability of the variational inequality (13.120), for each f = (f 0 , f 2 ) ∈ Y . This result combined with Lemma 13.4.2 proves the existence of a unique solution to the variational inequality (13.116)

, for each f = (f 0 , f 2 ) ∈ Y . Assume now that f n = (f 0n , f 2n ) ∈ Y , f = (f 0 , f 2 ) ∈ Y ,a n df 0n ⇀ f 0 in L 2 ( ) d , f 2n ⇀ f 2 in L 2 (Ŵ 2 ) d ,asn →∞.Thenf n ⇀ f in Y ,asn →∞.
Therefore, using Theorem 13.2.13 and Lemma 13.4.2 we deduce that u(f n ) → u(f ) in V, as n →∞, which concludes the proof. ⊓ ⊔

Optimal Control

We now associate to Problem P V the set of admissible pairs V ad and the cost function L given by

V ad ={(u, f ) ∈ K × Y such that f = (f 0 , f 2
) and (13.116) holds }, (13.121)

L(u, f ) = a 0 f 0 2 dx + a 2 Ŵ 2 f 2 2 da + a 3 Ŵ 3 |u ν -θ | 2 da (13.122) for all u ∈ V , f = (f 0 , f 2 ) ∈ Y .
H e r eθ is a given element in L 2 (Ŵ 3 ) and a 0 , a 2 , a 3 are strictly positive constants. Moreover, we consider the following optimal control problem. 

Problem Q V .Find(u * , f * ) ∈ V ad such that L(u * , f * ) = min (u,f )∈V ad L(u, f ). ( 13 
X = V , Y = L 2 ( ) d × L 2 (Ŵ 3 ) d with g(v) = a 3 Ŵ 3 |v ν -θ | 2 da, h(f ) = a 0 f 0 2 dx + a 2 Ŵ 2 f 2 2 da for all v ∈ V , f = (f 0 , f 2 ) ∈ Y .
Therefore, the solvability of the optimal control problem Q V is a direct consequence of Lemma 13.4.2 and Theorem 13. With these data, we consider the following perturbation of Problem P V .

Problem P V n .Givenf n = (f 0n , f 2n ) ∈ Y ,findu n ∈ V such that u n ∈ K n , F ε(u n ) • (ε(v) -ε(u n )) dx (13.127) +ω n (ε(u n ) -P B ε(u n )) • (ε(v) -ε(u n )) dx + Ŵ 3 p(u nν )(v ν -u nν )da + Ŵ 3 μp(u nν ) v τ 2 + ε 2 n - u nτ 2 + ε 2 n da ≥ f 0n • (v -u n )dx + Ŵ 2 f 2n • (v -u n )da ∀ v ∈ K n .
Note that Problem P V n represents the variational formulation of an elastic contact problem of the form (13.102)-(13.107) in which the following changes have been operated in the model:

• The elastic constitutive law (13.102) was replaced with the constitutive law σ = F ε(u)) + ω n (ε(u) -P B ε(u)). Such kind of constitutive law has been used by many authors, see [START_REF] Shillor | Models and Analysis of Quasistatic Contact[END_REF][START_REF] Sofonea | Mathematical Models in Contact Mechanics[END_REF] and the references therein. • The bound k in (13.106) was replaced by a perturbation, denoted k n .

• The Coulomb law of dry friction (13.107) was replaced with its regularization

-σ τ = μp(u ν ) u τ u τ 2 + ε 2 n .
• The densities f 0 and f 2 of body forces and tractions, respectively, were replaced by their perturbations f 0n and f 2n , respectively.

For Problem P V n we have the following existence and uniqueness result. Theorem 13.4.5 Assume (13.108)- (13.111) and, moreover, assume that (13.124)- (13.125) hold. Then, for each f n = (f 0n , f 2n ) ∈ Y there exists a unique solution u n = u n (f n ) to the variational inequality (13.127).

Proof The proof of Theorem 13.4.5 is based on arguments similar to those used in the proof of Theorem 13.4.1 and, for this reason, we skip the details. The steps of the proof are the following.

i) The quasivariational inequality. Besides the operator π defined in (13.119), for each n ∈ N we consider the operator A n : V → V and the function j n : V ×V → R given by

(A n u, v) V = F ε(u) • ε(v)dx + Ŵ 3 p(u ν )v ν da (13.128) + ω n (ε(u) -P B ε(u)) • ε(v)dx ∀ u, v ∈ V. j n (u, v) = Ŵ 3 μp(u ν ) v τ 2 + ε 2 n -ε n da ∀ u, v ∈ V. (13.129)
trace operator, since u k ⇀ u in V implies that p(u kν ) → p(u ν ) and u kτ → u τ in L 2 (Ŵ 3 ). iv) End of proof. The set K n is obviously a convex nonempty subset of V . Moreover, recall that step ii) shows that condition (13.48) holds with X = V and m = m F . On the other hand, step iii) guarantees that the functional (13.118) satisfies conditions (13.11), (13.14), and (13.19) on the space X = V , with α = γ = d 2 0 L p μ L ∞ (Ŵ 3 ) . Therefore, using (13.111) it follows that the smallness assumption (13.12) is satisfied and, moreover, (13.15) holds, too. Finally, we note that conditions (13.13)and (13.20) are a direct consequence of definition (13.119) combined with the properties of the operators ι and γ 2 .

It follows from above that we are in a position to apply Theorem 13.2.12 on the space X = V . In this way we deduce the unique solvability of the quasivariational inequality (13.130), for each f n = (f 0n , f 2n ) ∈ Y . This result, combined with step i), leads to the existence of a unique solution to the quasivariational inequality (13.127), for each

f n = (f 0n , f 2n ) ∈ Y . ⊓ ⊔
We now move to the control of Problem P V n . The set of admissible pairs for this problem is given by

V n ad ={(u n , f n ) ∈ K n × Y s. t. f n = (f 0n , f 2n ) and (13.127) holds }. (13.133) 
Moreover, the corresponding optimal control problem is the following.

Problem Q V n .Find(u * n , f * n ) ∈ V n ad such that L(u * n , f * n ) = min (u n ,f n )∈V n ad L(u n , f n ). (13.134)
Our main result in this section is the following.

Theorem 13.4.6 Assume (13.108)- (13.111), (13.124), and (13.125). Then the following statements hold.

i) Fo r e a ch n ∈ N the optimal control problem Q V n has at least one solution 

(u * n , f * n ). ii) If ω n → 0, k n → k,
(T n u, v) V = ω n (ε(u) -P B ε(u)) • ε(v)dx ∀ u, v ∈ V. (13.138)
On the other hand, it follows from step iii) in the proof of Theorem 13.4.5 that the function j n satisfies condition (13.77) with α n = d 2 0 L p μ L ∞ (Ŵ 3 ) , β n = 0, and

γ n = d 2 0 L p μ L ∞ (Ŵ 3 
) . In addition, recall that the function L defined by (13.122) satisfies conditions (13.32)-(13.34) on the spaces

X = V , Y = L 2 ( ) d × L 2 (Ŵ 3 ) d with g(v) = a 3 Ŵ 3 |v ν -θ | 2 da, h(f ) = a 0 f 0 2 dx + a 2 Ŵ 2 f 2 2 da.
Therefore, as already explained in page 463, we are in a position to apply Theorem 13.3.5 to deduce that the optimal control problem Q V n has at least one solution (u * n , f * n ), for each n ∈ N. ii) Assume now that ω n → 0, k n → k,a n dε n → 0, as n →∞ .I no r d e r to prove (13.135)-(13.137)weuseTheorem13.3.8 and, to this end, we start by checking that conditions (13.78)-(13.82) are satisfied.

First, since c n = k n k we deduce that condition (13.78) holds. Moreover, it is easy to see that condition (13.79) holds, too. On the other hand, assumption 0 ∈ B combined with inequality (13.131)showsthat τ -P B τ ≤2 τ for all τ ∈ S d . Therefore, definition (13.138) implies that

(T n v, w) V = ω n ε(v) -P B ε(v) ε(w) dx ≤ 2ω n v V w V for all u, v ∈ V , n ∈ N, which shows that T n v V ≤ 2ω n v V ∀ v ∈ V, n ∈ N.
We conclude from here that condition (13.80) holds with F n = 2ω n and δ n = 0. Assume now that n ∈ N is fixed and v 1 , v 2 ∈ V . We use definitions (13.129) and (13.118) to see that

j n (v 1 , v 2 ) -j n (v 1 , v 1 ) + j(v 2 , v 1 ) -j(v 2 , v 2 ) = Ŵ 3 μp(v 1ν ) v 2τ 2 + ε 2 n -ε n -v 2τ da

A One-Dimensional Example

In this subsection we illustrate our results in the study of a one-dimensional example. Thus, we consider Problem P in the particular case when = (0, 1), Ŵ 1 ={ 0}, Ŵ 2 =∅ , Ŵ 3 ={ 1}. Note that in this case the linearized strain field is given by ε = u ′ , where, here and below, the prime denotes the derivative with respect to the spatial variable x ∈[ 0, 1]. Moreover, we assume that the material is homogeneous and behaves linearly elastic. Therefore, the elasticity operator is F ε = Eε where E>0 is the Young modulus of the material. In addition, we assume that the density of the body force does not depend on the spatial variable and we denote it by f ∈ R. Then, the statement of the problem is the following. Problem P 1d . Find a displacement field u :[ 0, 1]→R a stress field σ :[ 0, 1]→R such that σ(x) = Eu ′ (x) for x ∈ (0, 1), (13.141) Note that Problem P 1d models the contact of an elastic rod of length l = 1. The rod occupies the domain [0, 1] on the Ox axis, is fixed at its end x = 0, as acted by a body force, and its extremity x = 1 is in contact with a foundation made of a deformable material of thickness k>0, which covers a rigid body. The reaction of the deformable material is described with the function p : R → R which is positive, monotone, and vanishes for a negative argument. This physical setting is depicted in Fig. 13.1.

σ ′ (x) + f = 0f o r x ∈ (0, 1), (13.142) u(0) = 0, (13.143) 
u(1) ≤ k, σ (1) 
For the analysis of Problem P 1d we use the space

V ={v ∈ H 1 (0, 1) : v(0) = 0 }
and the set of admissible displacement field defined by

K ={u ∈ V | u(1) ≤ k }.
The variational formulation of Problem P 1d , obtained using integration by parts, is the following. Then, a simple calculation allows us to solve Problem P 1d . Three cases are possible, below, together with the corresponding mechanical interpretations.

P 1d V . Find a displacement field u ∈ K such that 1 0 Eu ′ (v ′ -u ′ )dx + p(u(1))(v(1) -u(1)) ≥ 1 0 f(v-u) dx ∀ v ∈ K. ( 13 
a) The case f<0. In this case the body force acts in the opposite direction of the foundation and the solution of Problem P 1d is given by

σ(x) =-fx + f, u(x) =-f 2E x 2 + f E x ∀ x ∈[0, 1]. ( 13 
.147)

We have u(1)<0andσ(1) = 0 which shows that there is separation between the rod and the foundation and, therefore, there is no reaction on the point x = 1. This case corresponds to Fig. 13.2a. b) The case 0 ≤ f<2k(E + 1). In this case the body force pushes the rod towards the foundation and the solution of Problem P 1d is given by ⎧

⎨ ⎩ σ(x) =-fx + f(2E+1) 2(E+1) , u(x) =-f 2E x 2 + f(2E+1) 2E(E+1) x ∀ x ∈[0, 1]. ( 13 

.148)

We have 0 ≤ u(1)<kand σ(1) ≤ 0 which shows that there is penetration into the deformable layer and the reaction of the foundation is towards the rod. Nevertheless, the penetration is partial, since u(1)<k. This case corresponds to Fig. 13.2b. c) The case f ≥ 2k(E + 1). In this case the solution of Problem P 1d is given by ⎧

⎨ ⎩ σ(x) =-fx + f 2 + kE, u(x) =-f 2E x 2 + f 2E + k x ∀ x ∈[0, 1]. ( 13 
.149)

We have u(1) = k which shows that the rigid-plastic layer is completely penetrated and the point x = 1 reaches the rigid body. This case corresponds to Fig. 13.2c).

We now formulate the optimal control problem Q V in the one-dimensional case of Problem P 1d . In this particular setting Y = L 2 (0, 1) and we choose

U ={f ∈ Y : f is a constant }.
We use (13.139) to see that in this case

V ad ={(u, f ) ∈ K × U : (13.145) holds } (13.150) and L(u, f ) = a 0 |f | 2 + a 3 |u(1) -θ | 2 , (13.151) 
where θ ∈ R, a 0 > 0, a 3 > 0. Then, using (13.123) we see that the problem can be formulated as follows.

Problem Q 1d .Find(u * ,f * ) ∈ V ad such that L(u * ,f * ) = min (u,g)∈V ad L(u, f ). (13.152)

We now take E = 1. Then, it is easy to see that if 0 ≤ f<4k,then0≤ f< 2k(E + 1) and, if f ≥ 4k,thenf ≥ 2k(E + 1). Therefore, using (13.147)-(13.149) we have

u(x) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ -f 2 x 2 + fx if f<0, -f 2 x 2 + 3f 4 x if 0 ≤ f<4k -f 2 x 2 + ( f 2 + k) x if f ≥ 4k ∀ x ∈[0, 1]. (13.153) So, u(1) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ f 2 if f<0, f 4 if 0 ≤ f<4k, k if f ≥ 4k
and, using (13.151) with θ = 1, a 0 = 1, a 3 = 16, we find that (13.156)

L(u, f ) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 5f 2 -
Then, using (13.153) we find that the optimal control problem Q 1d has a unique solution (u * (k), f * (k)),givenby

u * (k) = ⎧ ⎨ ⎩ -f * (k) 2 x 2 + f * (k) 2 + k x ∀ x ∈[0, 1], if 0 ≤ k ≤ 1 2 , -f * (k) 2 x 2 + 3f * (k) 4 x ∀ x ∈[0, 1], if k> 1 2
where, recall, f * (k) is given by (13.156). It is easy to see that when k n → k,then f * (k n ) → f * (k) and, therefore, u * (k n ) → u * (k). This represents a validation of the abstract convergence result in Theorem 13.3.8.

Conclusion

In this chapter we studied an optimal control problem for elliptic quasivariational inequalities in Hilbert spaces. We provided the existence of optimal pairs and proved a convergence result. The proofs were based on arguments of monotonicity and lower semicontinuity. Then, we applied these abstract results in the study of a mathematical model which describes the equilibrium of an elastic body in frictional contact with an obstacle, the so-called foundation. We presented various mechanical interpretations of these results and we exemplified them in the particular case of an elastic rod in contact with a rigid body covered by a layer of soft material.

The study presented in this chapter gives rise to several open problems that we describe in what follows. Any progress in these directions will complete our work and will open the way for new advances and ideas.

First, it would be interesting to derive necessary optimality conditions in the study of Problem Q introduced on page 447. Due to the nonsmooth and nonconvex feature of the functional L, the treatment of this problem requires the use of its approximation by smooth optimization problems. And, in this matter, the abstract convergence results for the optimal pairs in this chapter could be a crucial tool. Next, it would be useful to establish an optimality condition for the optimal control problem Q V stated on page 476. We are convinced that such conditions could be established for a regularization of this problem, by using arguments similar to those used in [START_REF] Matei | Boundary optimal control for a frictional contact problem with normal compliance[END_REF]. There, a boundary optimal control problem for a frictional contact problem with normal compliance has been considered.

Another interesting continuation of the results presented in this chapter would be their extension to evolutionary variational inequalities. For such inequalities both the data and the unknown depend on time variable and, moreover, the time derivative of the unknown appears in the statement of the problem. In addition, an initial condition is needed. Such kind of inequalities model quasistatic process of contact for elastic, viscoelastic, and viscoplastic materials. The optimal control of a quasistatic model of contact with linearly elastic materials was studied in [START_REF] Amassad | Optimal control of an elastic contact problem involving Tresca friction law[END_REF]. There, besides the existence of the optimal pairs, necessary optimality conditions for a regularization problem have been established.

An interesting continuation of the results presented in this chapter would be their extension to variational-hemivariational inequalities. These inequalities represent a generalization of variational inequalities, in which both convex and nonconvex functions are involved. Besides arguments of convexity and monotonicity, the theory of variational-hemivariational inequalities was built based on the properties of Clarke subdifferential, defined for locally Lipschitz function. The details can be found in the books [START_REF] Migórski | Nonlinear Inclusions and Hemivariational Inequalities. Models and Analysis of Contact Problems[END_REF][START_REF] Sofonea | Variational-Hemivariational Inequalities with Applications[END_REF] and the edited volume [START_REF]Advances in Variational and Hemivariational Inequalities[END_REF]. Some preliminary results in the study of optimal control for variational-hemivariational inequalities can be found in [START_REF] Peng | Optimal control of elliptic variational-hemivariational inequalities[END_REF].

We end this section by recalling that the control of mathematical models of contact, as well as their optimal shape design, deserves to make the object of important studies in the future. These topics are of considerable theoretical and applied interest. Indeed, in most applications this is the main interest of the design engineer and any result in this direction will illustrate the cross fertilization between models and applications, in one hand, and the nonlinear functional analysis, on the other hand. The related issues are the observability properties of the models and parameter identification. Using reliable parameter identification procedures will help in establishing the validity of various mathematical models of contact with deformable bodies. This, in turn, will help in the construction of effective and efficient numerical algorithms for the problems with established convergence. As better models for specific applications are obtained, improved mathematical models and numerical simulations will be possible.

(

  13.49) m n >α n . (13.50) m n >γ n . (13.51)

  a, b ≥ 0 combined with assumptions (13.80)(b),(c) and (13.81)(b) implies that u nu n X → 0a sn → 0. (13.92)

  .102) Div σ + f 0 = 0 in ,(13.103)u = 0 on Ŵ 1 , (13.104) σν = f 2 on Ŵ 2 ,(13.105)

  conditions (13.108)-(13.111), we assume thatB is a closed convex set of S d such that 0 ∈ B (13.124)and we denote by P B : S d → B the projection operator. We also consider the sequences {ω n }, {k n },and{ε n } such thatω n ≥ 0,k n > 0,ε n ≥ 0 ∀ n ∈ N(13.125)and, for each n ∈ N,wedefinethesetK n by K n ={v ∈ V : v ν ≤ k n a.e. on Ŵ 3 }.(13.126) 

  + p(u(1)) ≤ 0, (u(1)k)(σ (1) + p(u(1))) = 0 . (13.144) 
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  .145) The existence of a unique solution to Problem P 1d V follows from Theorem 13.4.1. Consider now the case when p(r) = r + = 0i f r<0, r if r ≥ 0. (13.146)
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  Weak convergence of the whole subsequence. Let n ∈ N. We write (13.1)for f = f n to obtain

	(ii)	
	as n →∞.	(13.21)
	Proof The proof of Theorem 13.2.13 will be carried out in several steps that we
	present in what follows.	
	(i) Weak convergence of a subsequence. Assume that {f n } is a sequence of elements in Y such that
	f n ⇀f in Y as n →∞	(13.22)
	and, for simplicity, denote u(f n ) = u n and u(f ) = u. Then, it fol-lows from (13.22)t h a t{f n } is a bounded sequence in Y and, therefore, inequality (13.16) implies that {u n } is a bounded sequence in X.U s i n g now Theorem 13.2.3 we deduce that there exists an element u ∈ X and a subsequence of {u n }, again denoted {u n }, such that
	u n ⇀ u in X as n →∞.	(13.23)
	On the other hand, we recall that K is a closed convex subset of the space X
	and {u n }⊂K. Then, Theorem 13.2.2 and (13.23) imply that	
	u ∈ K.	(13.24)

  Next, since the sequence {f * n } is bounded in Y we can find a subsequence again denoted {f * n } a n da ne l e m e n tf * ∈ Y such that (13.58) holds. Denote by u * the solution of Problem P for f = f * , i.e., u * = u(f * ). Then, we have(u * ,f * ) ∈ V ad

	(13.66)
	and, moreover, assumption (13.56) implies that (13.59) holds, too.

.65) Relations (13.62), (13.64), and (13.65) lead to a contradiction, which concludes the claim.

  If Problem Q has a unique solution (u * ,f * ) then, under the assumption of Theorem 13.3.5 the convergences (13.58)a n d( 13.59) are valid for the whole sequence u * n ,f * n . Indeed, a careful analysis of the proof of Theorem 13.2 reveals that the sequence f * n is bounded in Y and, moreover, each weakly convergent subsequence of f * n converges weakly to f * .W en o wu s e Theorem 13.2.4 to deduce that the whole sequence satisfies (13.58). Finally, using Theorem 13.2.13 it follows that (13.59) holds, too.Remark13.3.7 The statement of Theorem 13.3.5 still remains valid if we replace the definition (13.2) with(13.46) and the definition (13.54) with

		.73)
	Finally, relations (13.66), (13.73), and (13.71) imply that (13.60) holds, which
	concludes the proof.	⊓ ⊔
	We end this subsection with the following remarks.	
	Remark 13.3.6	

  .82)We have the following result. Assume that (13.9)-(13.15),(13.19),(13.20), and(13.32)-(13.34) hold and, for any n ∈ N, assume that (13.75)-(13.77) hold, too. Assume moreover that conditions (13.78)-(13.82) are satisfied and let u * n ,f * The proof is carried out in several steps, based on the abstract result provided by Theorem 13.3.5. The first step of the proof is the following. Under the assumption of Theorem 13.3.8, if the sequence {f n } is bounded in Y , then the sequence {u n

	Theorem 13.3.8 n	be a sequence
	of solutions of Problem Q n . Then, there exists a subsequence of the sequence
	u * n ,f * n , again denoted u * n ,f * n , and an element (u * ,f * ) ∈ X × Y such that (13.58)-(13.60) hold.
	Lemma 13.3.9	

  .4.Remark13.3.13 The statement of Theorem 13.3.5 still remains valid if we replace the definitions (13.2)and(13.54) with definitions (13.46)and(13.74), respectively, U being a given nonempty weakly closed subset of Y .

	Remark 13.3.12 If Problem Q has a unique solution (u * ,f * ) then, under the
	assumptions of Theorem 13.3.8 the convergences (13.58)a n d( 13.59) are valid
	for the whole sequence (u * n ,f * n ) . This statement is a direct consequence of
	Remark 13.3.6.

  Assume that(13.108)-(13.111) hold. Then, the optimal control problem Q V has at least one solution (u * , f * ).

	.123)
	Our first result in this subsection is the following.
	Theorem 13.4.4 Proof It is easy to see that the function L defined by (13.122) satisfy condi-
	tions (13.32)-(13.34) on the spaces

  and ε n → ε as n →∞, then for any sequence {(u * Proof i) First, it is easy to see that condition (13.75) holds with c n = k n k > 0. Next, we use (13.131),(13.132) to see that condition (13.76) is satisfied with

	n , f * n )} of n there exists a subsequence, again denoted {(u * solutions of Problem Q V n , f * n )}, and an element (u * , f * ) ∈ X × Y , such that
	f * n ⇀ f * in Y, as n →∞,	(13.135)
	u * n → u * in X as n →∞,	(13.136)
	(u	

* , f * ) is a solution of Problem Q V .

(13.137) 

  To conclude, problem(13.152) consists to minimize the function (13.154)when f ∈ R,f o rag i v e nk>0. For this reason, in what follows we denote by J k the function defined by (13.154), i.e., It is easy to see that this function is not a convex function. Nevertheless, it has a unique point of minimum given by

		⎧ ⎪ ⎪ ⎨	5f 2 -16f + 16	if f<0,
	J k (f ) =	⎪ ⎪ ⎩	f 2 + 16(k -1) 2 2f 2 -8f + 16	if f ≥ 4k. if 0 ≤ f<4k,	(13.155)
			f * (k) =	4k 2i f k> 1 if 0 <k≤ 1 2 , 2 .
			16f + 16	if f<0,
			2f 2 -8f + 16	if 0 ≤ f<4k,	(13.154)
			f 2 + 16		if f ≥ 4k.

follows that (13.108)- (13.111) hold and we consider the operator A : V → V ,the function j : V × V → R, and the operator π : V → Y defined by (13.117)

)

Here ι : V → L 2 ( ) d is the canonic embedding and γ 2 : V → L 2 (Ŵ 2 ) d is the restriction to the trace map to Ŵ 2 . The first step of the proof is the following.

Lemma 13.4.2 Given f = (f 0 , f 2 ) ∈ Y ,a ne l e m e n tu ∈ V is solution to the variational inequality (13.116) if and only if

Proof The statement of Lemma 13.4.2 is a direct consequence of the notation (13.117)- (13.119). ⊓ ⊔ Lemma 13.4. [START_REF] Amassad | Optimal control of an elastic contact problem involving Tresca friction law[END_REF] The function j defined by (13.118) satisfies conditions (13.11), (13.14), and (13.19) on the space X = V .

Proof Condition (13.11)(a) is obviously satisfied. On the other hand, an elementary calculation based on the definition (13.118) and assumptions (13.109), (13.110) yields

Therefore, the trace inequality (13.100)s h o w st h a t condition (13.11

. Next, using assumptions (13.109)(b), (e) and (13.110) it is easy to see that

for all η, v 1 , v 2 ∈ V . Therefore, the trace inequality (13.100) shows that condition (13.14

Then, it is easy to see that, given f n = (f 0n , f 2n ) ∈ Y ,anelementu n ∈ V is a solution to inequality (13.127) if and only if

ii) The operator A n . First, we recall that the projector operator P B : S d → B is nonexpansive, i.e.,

for all τ 1 , τ 2 ∈ S d . This inequality implies that

for all τ 1 , τ 2 ∈ S d . Therefore, using assumptions (13.108)and(13.109), the trace inequality (13.100), and estimates (13.131), (13.132) we deduce that

for all u, v ∈ X. It follows from here that condition (13.48) holds with

iii) The function j n . We claim that the function j n defined by (13.129) satisfies conditions (13.11), (13.14), and (13.19) on the space X = V .

First, condition (13.11)(a) is obviously satisfied. On the other hand, an elementary calculation based on the definition (13.129) and assumptions (13.109), (13.110), combined with inequality

Therefore, the trace inequality (13.100)s h o w st h a t condition (13.11)(b) holds with α = d 2 0 L p μ L ∞ (Ŵ 3 ) . A similar argument shows that condition (13.14) 

. Finally, note that condition (13.19) holds from assumption (13.109) and the compactness of the

Therefore, using assumptions (13.109)(b) and (13.110) combined with the inequality

we find that

Next, we use assumption (13.109)(f) and the trace inequality (13.100) to deduce that

It follows from here that condition (13.81) holds with G n = 2ε n p * μ L ∞ (Ŵ 3 ) meas(Ŵ 3 ) and H n = 0. Recall now that m n = m F , α = γ n = d 2 0 L p μ L ∞ (Ŵ 3 ) ,a ndβ n = 0, for each n ∈ N. Moreover, d 2 0 L p μ L ∞ (Ŵ 3 ) <m F , as assumed in (13.111). We conclude from here that condition (13.82) is satisfied.

Finally, note that the rest of the conditions in Theorem 13.3.8 are satisfied, as it follows from the previous results proved in this section. Theorem