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We consider a mathematical model which describes the equilibrium of an elastic body in contact with a foundation. The contact is 

frictionless and is modeled with a nonsmooth interface law which involves unilateral constraints and subdifferential conditions. 
The weak formulation of the model is in the form of an elliptic hemivariational inequality governed by a number of parameters. 
We prove the unique weak solvability of the problem, then we state and prove a continuous dependence result of the 

solution with respect to the data and parameters. Next, we formulate a boundary optimal control problem for which we 

prove the existence of optimal pairs. We also study the dependence of the optimal pairs with respect to the data and 

parameters and prove a convergence result. The proofs are based on arguments of monotonicity, lower semicontinuity and Clarke 

subdifferential calculus.

1. Introduction

Contact phenomena with deformable bodies arise in a large variety of industrial settings and engineering applications.
For this reason, their modeling, analysis and numerical approximation was widely studied, both in the mathematical
and engineering literature. A brief research reveals that most of the mathematical models used to describe the contact
phenomena are expressed in terms of challenging nonlinear boundary value problems. Their weak formulations are stated
in the form of variational or hemivariational inequalities, which have been studied extensively in recent years, e.g., [1–6].

The analysis of various models of contact via the theory of variational inequalities started with the pioneering book of
Duvaut and Lions [7]. Then, it was developed in many references, including [8–16]. There, various existence, uniqueness
and convergence results have been proved, by using arguments of convexity, monotonicity, lower semicontinuity and fixed
point. In contrast, the analysis of hemivariational inequalities uses as main ingredient the properties of the subdifferential
in the sense of Clarke, defined for locally Lipschitz functions, which may be nonconvex. Hemivariational inequalities were
first introduced in early 1980s by Panagiotopoulos in the context of applications in engineering problems. Studies of
hemivariational inequalities with emphasis to mathematical modeling of contact phenomena can be found in several
comprehensive references, e.g., [3,4,17] and, more recently, [18,19].

The aim of this paper is to present results on the optimal control of a mathematical model which describes the
equilibrium of an elastic body acted upon by body forces and surface tractions in contact with an obstacle. The literature
concerning optimal control problems in the study of mathematical models of contact is quite limited. The reason is the
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strong nonlinearities which arise in the boundary conditions included in such models. Results on optimal control for
various contact problems with elastic materials can be found in [20–29] and the references therein. The mathematical
models presented in these papers were expressed in terms of variational inequalities. In contrast, the model we consider
in this current paper is new, involves a large number of parameters, and leads to a weak formulation in terms of
hemivariational inequality in which the unknown is the displacement field. This represents the first trait of originality of
the paper. The second one consists in the fact that we obtain a very general convergence result for the solution, which
shows its continuous dependence with respect to the data and parameters. This result is then used to obtain new results
on the existence and convergence of the optimal pairs for an associated optimal control problem.

The paper is structured as follows. In Section 2 we survey some preliminaries of nonsmooth analysis we need in the rest
of the paper, including an abstract existence and uniqueness result for elliptic hemivariational inequalities. In Section 3
we introduce the contact model, state its variational formulation and prove its unique weak solvability. Then, in Section 4
we prove a convergence result of the weak solution with respect to the data and parameters. In Sections 5 and 6, we
deal with a boundary optimal control problem. We present results on the existence and convergence of the optimal pairs,
respectively.

2. Preliminaries

Most of the material presented in this section is standard. Therefore, we introduce it without proofs and restrict
ourselves to mention that details on the definitions and statements below can be found in the monographs [17,19,30–33]
as well as in the papers [34,35].

Elements of nonsmooth analysis. For any normed space X we use ∥ · ∥X to denote its norm and X∗ represents its
topological dual. Moreover, we denote by ⟨·, ·⟩ the duality pairing between X∗ and X , by 0X and 0X∗ the zero element
of X and X∗, respectively, and by 2X∗

the power set of X∗. All the limits, upper and lower limits below are considered as
n → ∞, even if we do not mention it explicitly. The symbols ‘‘⇀’’ and ‘‘→’’ denote the weak and the strong convergence
in various spaces which will be specified. Nevertheless, for simplicity, we write gn → g for the convergence in R.

Definition 2.1. An operator A: X → X∗ is said to be:
(a) monotone, if for all u, v ∈ X , we have ⟨Au − Av, u − v⟩ ≥ 0;
(b) bounded, if A maps bounded sets of X into bounded sets of X∗;
(c) Lipschitz continuous, if there exists a constant LA > 0 such that

∥Au − Av∥X∗ ≤ LA∥u − v∥X for all u, v ∈ X;
(d) pseudomonotone, if it is bounded and un ⇀ u in X with

lim sup ⟨Aun, un − u⟩ ≤ 0

imply

lim inf ⟨Aun, un − v⟩ ≥ ⟨Au, u − v⟩ for all v ∈ X .

We complete these definitions with the remark that any monotone Lipschitz continuous operator is pseudomonotone.
Next, we recall the definition of the Clarke subdifferential for a locally Lipschitz function.

Definition 2.2. A function h: X → R is said to be locally Lipschitz if for every x ∈ X there exists a neighborhood of x,
denoted Ux, and a constant Lx > 0, such that |h(y) − h(z)| ≤ Lx∥y − z∥X for all y, z ∈ Ux.

We note that a convex continuous function h: X → R is locally Lipschitz. Moreover, if a function h: X → R is Lipschitz
continuous on bounded sets of X , then it is locally Lipschitz, while the converse does not hold, in general.

Definition 2.3. Let h: X → R be a locally Lipschitz function. The generalized (Clarke) directional derivative of h at the
point x ∈ X in the direction v ∈ X is defined by

h0(x; v) = lim sup
y→x, λ↓0

h(y + λv) − h(y)

λ
.

The generalized gradient (subdifferential) of h at x is a subset of the dual space X∗ given by

∂h(x) = { ζ ∈ X∗ | h0(x; v) ≥ ⟨ζ , v⟩ ∀ v ∈ X }. (2.1)

We shall use the following properties of the generalized directional derivative and the generalized gradient.

Proposition 2.4. Assume that h: X → R is a locally Lipschitz function. Then the following hold:
(i) For every x ∈ X, the function X ∋ v ↦→ h0(x; v) ∈ R is positively homogeneous and subadditive, i.e., h0(x; λv) = λh0(x; v)

for all λ ≥ 0, v ∈ X and h0(x; v1 + v2) ≤ h0(x; v1) + h0(x; v2) for all v1, v2 ∈ X, respectively.
(ii) The function X × X ∋ (x, v) ↦→ h0(x; v) ∈ R is upper semicontinuous, i.e., for all x, v ∈ X, {xn}, {vn} ⊂ X such that

xn → x and vn → v in X, we have lim sup h0(xn; vn) ≤ h0(x; v).
(iii) For every v ∈ X, we have h0(x; v) = max { ⟨ξ, v⟩ | ξ ∈ ∂h(x) }.
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For the convergence result we state and prove in Section 5, we need the notion of Mosco convergence that we recall
in what follows.

Definition 2.5. Let X be a normed space, {Kn} a sequence of nonempty subsets of X and K a nonempty subset of X . We
say that the sequence {Kn} converges to K in the Mosco sense if the following conditions hold.

(M1)

{
For each v ∈ K there exists a sequence {vn} such that
vn ∈ Kn for each n ∈ N and vn → v in X .

(M2)

{
For each sequence {vn} such that
vn ∈ Kn for each n ∈ N and vn ⇀ v in X , we have v ∈ K .

We shall denote the convergence in the Mosco sense by Kn
M−→ K . This convergence depends on the topology of the

space X . Therefore, to avoid any ambiguity, sometimes we shall write Kn
M−→ K in X instead of Kn

M−→ K . More details
on the Mosco convergence can be found in [36].

Hemivariational inequalities. We now recall a recent result in the study of variational–hemivariational inequalities. The
problem under consideration can be formulated as follows.

Problem 1. Find an element u such that

u ∈ K , ⟨Au, v − u⟩ + j0(u; v − u) ≥ ⟨f , v − u⟩ for all v ∈ K .

In the study of this problem we consider the following hypotheses on the data.

K is a nonempty closed convex subset of X . (2.2)⎧
⎪⎨
⎪⎩

A: X → X∗ is such that
(a) it is pseudomonotone,
(b) strongly monotone, i.e., there exists mA > 0 such that

⟨Av1 − Av2, v1 − v2⟩ ≥ mA∥v1 − v2∥2
X for all v1, v2 ∈ X .

(2.3)

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

j: X → R is such that
(a) j is locally Lipschitz,
(b) ∥∂ j(v)∥X∗ ≤ c0 + c1 ∥v∥X for all v ∈ X with c0, c1 ≥ 0,
(c) there exists αj > 0 such that

j0(v1; v2 − v1) + j0(v2; v1 − v2) ≤ αj ∥v1 − v2∥2
X

for all v1, v2 ∈ X .

(2.4)

f ∈ X∗. (2.5)

We have the following existence and uniqueness result.

Theorem 2.6. Assume that X is a reflexive Banach space, (2.2)–(2.5) hold and, in addition, assume that

αj < mA. (2.6)

Then, Problem 1 has a unique solution u ∈ K.

Theorem 2.6 represents a particular case of a result proved in [19,37]. Its proof is based on arguments of surjectivity
for pseudomonotone operators and convexity, combined with the properties of the Clarke subdifferential.

Function spaces. Let d ∈ {1, 2, 3} and denote by S
d the space of second order symmetric tensors on R

d or, equivalently,
the space of symmetric matrices of order d. The zero element of the spaces R

d and S
d will be denoted by 0. The inner

product and norm on R
d and S

d are defined by

u · v = uivi , ∥v∥ = (v · v)
1
2 ∀ u = (ui), v = (vi) ∈ R

d,

σ · τ = σijτij , ∥τ∥ = (τ · τ)
1
2 ∀ σ = (σij), τ = (τij) ∈ S

d,

where the indices i, j run between 1 and d and, unless stated otherwise, the summation convention over repeated indices
is used.

Consider now a bounded domain Ω ⊂ R
d, with a Lipschitz continuous boundary Γ and let Γ1, Γ2, Γ3 be measurable

parts of Γ such that meas (Γ1) > 0. Everywhere in this paper we use the standard notation for Sobolev and Lebesgue
spaces associated to a bounded domain Ω ⊂ R

d (d = 1, 2, 3), with a Lipschitz continuous boundary Γ . In particular, we
use the spaces L2(Ω)d, L2(Γ2)

d, L2(Γ3), L
2(Γ3)

d and H1(Ω)d, endowed with their canonical inner products and associated
norms. Moreover, for an element v ∈ H1(Ω)d we usually write v for the trace γ v ∈ L2(Γ )d of v to Γ . In addition, we
consider the following spaces:

V = { v ∈ H1(Ω)d : v = 0 on Γ1 },
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Q = { σ = (σij) : σij = σji ∈ L2(Ω) }.

The spaces V and Q are real Hilbert spaces endowed with the canonical inner products given by

(u, v)V =
∫

Ω

ε(u) · ε(v) dx, (σ, τ)Q =
∫

Ω

σ · τ dx. (2.7)

Here and below ε and Div will represent the deformation and the divergence operator, respectively, i.e.,

ε(u) = (εij(u)), εij(u) =
1

2
(ui,j + uj,i), Div σ = (σij,j),

with the index that follows a comma denoting the partial derivative with respect to the corresponding component of the
spatial variable x, i.e., ui,j = ∂ui/∂xj.

The associated norms on these spaces are denoted by ∥ · ∥V and ∥ · ∥Q , respectively. Recall that the completeness of
the space V follows from the assumption meas (Γ1) > 0 which allows the use of Korn’s inequality. Below in this paper
we denote by V ∗ and ⟨·, ·⟩ the topological dual of V and the duality pairing between V ∗ and V , respectively. Let ν = (νi)
be the outward unit normal at Γ . For any element v ∈ V , we denote by vν and vτ its normal and tangential components
on Γ given by vν = v · ν and vτ = v − vνν, respectively. Also, recall that, for a regular stress function σ, the following
Green’s formula holds:∫

Ω

σ · ε(v) dx +
∫

Ω

Div σ · v dx =
∫

Γ

σν · v da for all v ∈ H1(Ω)d. (2.8)

Finally, we recall that the Sobolev trace theorem yields

∥v∥L2(Γ3)
d ≤ ∥γ ∥ ∥v∥V for all v ∈ V , (2.9)

with ∥γ ∥ being the norm of the trace operator γ : V → L2(Γ3)
d.

3. The contact model

The physical setting, already considered in many papers and surveys, can be resumed as follows. A deformable body
occupies, in its reference configuration, a bounded domain Ω ⊂ R

d (d = 1, 2, 3), with a Lipschitz continuous boundary Γ ,
divided into three measurable disjoint parts Γ1, Γ2 and Γ3, such that meas (Γ1) > 0. The body is fixed on Γ1, is acted upon
by given surface tractions on Γ2, and is in contact with an obstacle on Γ3. The equilibrium of the body in this physical
setting can be described by various mathematical models, obtained by using different mechanical assumptions. The model
we consider in this paper is based on specific constitutive laws and interface boundary conditions which will be described
below in this section. Its statement is as follows.

Problem 2. Find a displacement field u : Ω → R
d, a stress field σ : Ω → S

d and an interface function ξν : Γ3 → R such
that

σ = Aε(u) + β(ε(u) − PBε(u)) in Ω, (3.1)

Div σ + f0 = 0 in Ω, (3.2)

u = 0 on Γ1, (3.3)

σν = f2 on Γ2, (3.4)

uν ≤ g,

σν + ξν ≤ 0,
(uν − g)(σν + ξν) = 0,
ξν ∈ ω ∂ jν(uν)

⎫
⎪⎬
⎪⎭

on Γ3, (3.5)

στ = 0 on Γ3. (3.6)

Here and below, in order to simplify the notation, we do not indicate explicitly the dependence of various functions
on the spatial variable x ∈ Ω ∪Γ . Moreover, σν and στ denote the normal and tangential stress on Γ , that is σν = (σν) ·ν
and στ = σν − σνν. We now provide a short description of the equations and boundary conditions in Problem 2.

First, Eq. (3.1) represents the constitutive law in which A is the elasticity operator, assumed to be nonlinear, β is
a given elasticity coefficient which depends on the spatial variable, B ⊂ S

d represents a nonempty convex subset and
PB : Sd → B denotes the projection operator on B. Examples of operators A which satisfy the conditions presented below
in this paper can be found in our books [13,17,19]. For the set B, a typical example which can be found in the literature
is given by

B = { τ ∈ S
d : F(τ) ≤ k },

where F : Sd → R is a convex continuous function such that F(0) = 0 and k is a positive constant. It is easy to see that
in this case the set B is a nonempty convex closed subset of Sd.
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Eq. (3.2) is the equation of equilibrium that we use here since the process is assumed to be static. Conditions (3.3),
(3.4) represent the displacement and the traction boundary conditions, respectively.

We now turn on the condition (3.5) which represents the contact condition. There, g is assumed to be a positive
constant, ω and jν are given functions which will be described below and ∂ jν denotes the Clarke subdifferential of jν . This
condition models the contact with a foundation made of a rigid body covered by a deformable layer of thickness g . The
function ω represents a parameter which can be interpreted as the stiffness coefficient of the foundation.

Finally, condition (3.6) represents the frictionless contact condition. It shows that the friction force, στ , vanishes during
the process. This is an idealization of the process, since even completely lubricated surfaces generate shear resistance to
tangential motion. However, this condition is a sufficiently good approximation of the reality in some situations, especially
when the contact surfaces are lubricated.

We mention that Problem 2 was considered in [19] in the case when β ≡ 0 and ω ≡ 1. There, a unique solvability
result was proved. Considering the case when β ̸= 0 and ω ̸= 1 leads to a new and nonstandard mathematic model
which better describes the physical setting. The analysis and optimal control of this problem represent one of the traits
of novelty of this paper.

In the study of the mechanical problem (3.1)–(3.6) we assume that the elasticity operator A satisfies the following
conditions.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) A : Ω × S
d → S

d.

(b) There exists LA > 0 such that
∥A(x, ε1) − A(x, ε2)∥ ≤ LA∥ε1 − ε2∥

∀ ε1, ε2 ∈ S
d, a.e. x ∈ Ω.

(c) There exists mA > 0 such that
(A(x, ε1) − A(x, ε2)) · (ε1 − ε2) ≥ mA ∥ε1 − ε2∥2

∀ ε1, ε2 ∈ S
d, a.e. x ∈ Ω.

(d) The mapping x ↦→ A(x, ε) is measurable on Ω,

for any ε ∈ S
d.

(e) A(x, 0) = 0 a.e. x ∈ Ω.

(3.7)

We also assume that the set B, the elasticity coefficient, the densities of body forces and tractions, the stiffness
coefficient and the bound of the normal displacement are such that

B is a closed convex subset of Sd such that 0 ∈ B. (3.8)

β ∈ L∞(Ω), β(x) ≥ 0 a.e. x ∈ Ω. (3.9)

f0 ∈ L2(Ω)d. (3.10)

f2 ∈ L2(Γ2)
d. (3.11)

ω ∈ L∞(Γ3), ω(x) ≥ 0 a.e. x ∈ Γ3. (3.12)

g > 0. (3.13)

Finally, the normal compliance function jν satisfies the following condition.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

jν :Γ3 × R → R is such that
(a) jν(·, r) is measurable on Γ3 for all r ∈ R and there

exists ē ∈ L2(Γ3) such that jν(·, ē(·)) ∈ L1(Γ3).
(b) jν(x, ·) is locally Lipschitz on R for a.e. x ∈ Γ3.

(c) |∂ jν(x, r)| ≤ c̄0 + c̄1 |r| for a.e. x ∈ Γ3,

for all r ∈ R with c̄0, c̄1 ≥ 0.

(d) j0ν(x, r1; r2 − r1) + j0ν(x, r2; r1 − r2) ≤ αjν |r1 − r2|2
for a.e. x ∈ Γ3, all r1, r2 ∈ R with αjν ≥ 0.

(3.14)

Consider the set U defined by

U = { v ∈ V : vν ≤ g a.e. on Γ3 }. (3.15)

Then, using standard arguments, we obtain the following variational formulation of Problem 2.

Problem 3. Find a displacement field u ∈ U such that
∫

Ω

Aε(u) · (ε(v) − ε(u)) dx +
∫

Ω

β (ε(u) − PBε(u)) · (ε(v) − ε(u)) dx

+
∫

Γ3

ω j0ν(uν; vν − uν) da ≥
∫

Ω

f0 · (v − u) dx +
∫

Γ2

f2 · (v − u) da

for all v ∈ U . (3.16)
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In the study of Problem 3 we have the following existence and uniqueness result.

Theorem 3.1. Assume that (3.7)–(3.14) hold and, in addition, assume the smallness condition

αjν ∥ω∥L∞(Γ3)∥γ ∥2 < mA. (3.17)

Then Problem 3 has a unique solution u ∈ U.

Proof. The proof of Theorem 3.1 is carried out in three steps, based on arguments similar to those used in [19,37]. For
this reason, in order to avoid repetitions, we restrict ourselves to sketch the main steps of the proof.

(i) An intermediate hemivariational inequality. We consider the operator A: V → V ∗, the function j : V → R and the
element f ∈ V ∗ defined by

⟨Au, v⟩ =
∫

Ω

Aε(u) · ε(v) dx +
∫

Ω

β (ε(u) − PBε(u)) · ε(v) dx, (3.18)

j(v) =
∫

Γ3

ω jν(vν) da, (3.19)

⟨f , v⟩ =
∫

Ω

f0 · v dx +
∫

Γ2

f2 · v da, (3.20)

for all u, v ∈ V . Then, we consider the problem of finding an element u such that

u ∈ U, ⟨Au, v − u⟩ + j0(u; v − u) ≥ ⟨f , v − u⟩ for all v ∈ U . (3.21)

We claim that the hemivariational inequality (3.21) has a unique solution. To this end we apply Theorem 2.6 with
X = V and K = U . First, we use the definition (3.15) and assumption (3.13) to see that U is a closed convex subset of
V such that 0V ∈ U and, therefore, condition (2.2) is satisfied. Next, we use the definition (3.18), assumptions (3.7)–(3.9)
and the properties of the projection operator to see that

(Au − Av, u − v)V ≥ mA ∥u − v∥2
V ∀ u, v ∈ V , (3.22)

∥Au − Av∥V∗ ≤ (LA + 2 ∥β∥L∞(Ω))∥u − v∥V ∀ u, v ∈ V . (3.23)

We conclude from here that A is a strongly monotone Lipschitz continuous operator on the space V and, therefore, it
satisfies condition (2.3).

Next, using definition (3.19), assumptions (3.14), (3.12) and Lemma 8 in [19, p. 126] we deduce that j is a locally
Lipschitz function on V , satisfies condition (2.4) with c0 =

√
2meas(Γ3) c̄0∥ω∥L∞(Γ3)∥γ ∥, c1 =

√
2 c̄1∥ω∥L∞(Γ3)∥γ ∥2 and

αj = αjν ∥ω∥L∞(Γ3)∥γ ∥2 and, moreover,

j0(u; v) ≤
∫

Γ3

ω j0ν(uν; vν) da for all u, v ∈ V . (3.24)

In addition, assumptions (3.10) and (3.11) imply (2.5) for f . Finally, assumption (3.17) implies the smallness condi-
tion (2.6). Therefore, we are in a position to use Theorem 2.6. In this way we deduce that there exists a unique element
u which solves (3.21), as claimed.

(ii) Existence. We combine now (3.21) with inequality (3.24) and notation (3.18), (3.20) to see that the solution u of
(3.21) satisfies (3.16), which proves the existence part of the theorem.

(iii) Uniqueness. Let u1, u2 ∈ U be solutions to inequality (3.16). Then, using notation (3.18)–(3.20) we deduce that

⟨Au1, v − u1⟩ +
∫

Γ3

ω j0ν(u1ν; vν − u1ν) da ≥ ⟨f , v − u1⟩,

⟨Au2, v − u2⟩ +
∫

Γ3

ω j0ν(u2ν; vν − u2ν) da ≥ ⟨f , v − u1⟩

for all v ∈ U . We take v = u2 in the first inequality and v = u1 in the second one, and add the resulting inequalities.
Then, by using the strong monotonicity of the operator A, (3.22), hypotheses (3.14), (3.12) and the trace inequality (2.9)
we obtain that

(mA − αjν ∥ω∥L∞(Γ3)∥γ ∥2) ∥u1 − u2∥2
V ≤ 0.

Finally, we use the smallness condition (3.17) to deduce that u1 = u2, which concludes the proof. □

4. A convergence result

In this section we state and prove a convergence result which shows the continuous dependence of the weak solution
of Problem 2 with respect to the data and parameters. To this end, we assume in what follows that (3.7)–(3.14) and (3.17)
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hold. Therefore, using Theorem 3.1 we deduce that Problem 3 has a unique solution u ∈ U . The solution depends on the
data and, therefore, we shall denote it by u = u(β, f0, f2, ω, g). The proof of Theorem 3.1 also shows that the solution
satisfies the variational–hemivariational inequality (3.21).

Next, for each n ∈ N, consider a perturbation βn, f0n, f2n, ωn, gn of β , f0, f2, ω and g , respectively, such that

βn ∈ L∞(Ω), βn(x) ≥ 0 a.e. x ∈ Ω. (4.1)

f0n ∈ L2(Ω)d. (4.2)

f2n ∈ L2(Γ2)
d. (4.3)

ωn ∈ L∞(Γ3), ωn(x) ≥ 0 a.e. x ∈ Γ3. (4.4)

gn > 0. (4.5){
There exists m0 > 0 such that
αjν ∥ωn∥L∞(Γ3)∥γ ∥2 < mA − m0 ∀ n ∈ N.

(4.6)

Let

Un = { v ∈ V : vν ≤ gn a.e. on Γ3 }. (4.7)

With these data we consider the following perturbed version of Problem 3.

Problem 4. Find a displacement field un ∈ Un such that
∫

Ω

Aε(un) · (ε(v) − ε(un)) dx +
∫

Ω

βn (ε(un) − PBε(un)) · (ε(v) − ε(un)) dx

+
∫

Γ3

ωn j
0
ν(unν; vν − unν) da ≥

∫

Ω

f0n · (v − un) dx +
∫

Γ2

f2n · (v − un) da

for all v ∈ Un. (4.8)

Using Theorem 3.1 we deduce that Problem 4 has a unique solution un ∈ Un. The solution depends on the perturbed
data and, therefore, sometimes we shall write un = u(βn, f0n, f2n, ωn, gn). The proof of Theorem 3.1 also shows that the
solution satisfies the variational–hemivariational inequality

un ∈ Un, ⟨Anun, v − un⟩ + j0n(un; v − un) ≥ ⟨fn, v − un⟩, ∀ v ∈ Un, (4.9)

where, here and below, the operator An: V → V ∗, the function jn : V → R and the element fn ∈ V ∗ are defined by

⟨Anu, v⟩ =
∫

Ω

Aε(u) · ε(v) dx +
∫

Ω

βn (ε(u) − PBε(u)) · ε(v) dx, (4.10)

jn(v) =
∫

Γ3

ωn jν(vν) da, (4.11)

⟨fn, v⟩ =
∫

Ω

f0n · v dx +
∫

Γ2

f2n · v da (4.12)

for all u, v ∈ V . Our main result in this section is as follows.

Theorem 4.1. Assume that (3.7)–(3.14), (3.17), (4.1)–(4.6) hold. Moreover, assume that

βn → β in L∞(Ω), (4.13)

f0n ⇀ f0 in L2(Ω)d, (4.14)

f2n ⇀ f2 in L2(Γ2)
d, (4.15)

ωn → ω in L∞(Γ3), (4.16)

gn → g. (4.17)

Then, the solution un of Problem 4 converges to the solution u of Problem 3, i.e.,

un → u in V . (4.18)

In order to present the proof of Theorem 4.1 we need the following intermediate result which will be used in several
places below.

Lemma 4.2. Under the assumptions of Theorem 4.1, for any sequences {un}, {vn} ⊂ V such that un ⇀ u in V , vn → v in V ,
the statements below hold.

Anun − Aun → 0V∗ in V ∗, (4.19)
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lim sup j0n(un; vn − un) ≤
∫

Γ3

ω j0ν(uν; vν − uν) da, (4.20)

⟨fn, un − vn⟩ → ⟨f , u − v⟩. (4.21)

Proof. Let n ∈ N and let v ∈ V . We use definition (3.18), assumption (3.8) and the property of the projection operator
to see that

⟨Anun − Aun, v⟩ =
∫

Ω

(βn − β) (ε(un) − PBε(un)) · ε(v) dx

≤ ∥βn − β∥L∞(Ω)∥ε(un) − PBε(un)∥Q∥ε(v)∥Q

≤ 2 ∥βn − β∥L∞(Ω)∥un∥V∥v∥V ,

which implies that

∥Anu − Aun∥V∗ ≤ 2 ∥βn − β∥L∞(Ω)∥un∥V .

The convergence (4.19) is now a consequence of assumption (4.13), since the sequence {un} is bounded in V due to its
weak convergence.

Next, we use inequality (3.24) to see that

j0n(un; vn − un) ≤
∫

Γ3

ωn j
0
ν(unν; vnν − unν) da ∀ n ∈ N.

We now use assumption (4.16), the compactness of the trace operator and the upper semicontinuity of j0ν , guaranteed by
Proposition 2.4(ii), to see that (4.20) holds.

Finally, the convergence (4.21) follows from assumptions (4.14), (4.15), the compactness of the embedding V ⊂ L2(Ω)d

and the compactness of the trace operator. □

We now have all the ingredients to provide the proof of Theorem 4.1 which is structured in several steps.

Proof. (i) A uniform bound. We claim that the sequence {un} ⊂ V is bounded. To prove this claim we fix n ∈ N. Since
0V ∈ Un we may take v = 0V in (4.9) to see that

⟨Aun, un⟩ ≤ j0n(un; −un) + ⟨fn, un⟩. (4.22)

Moreover, note that assumptions (3.7)(e) and (3.8) imply that A0 = 0V∗ and, therefore inequality (3.22) yields

mA∥un∥2
V ≤ ⟨Aun, un⟩. (4.23)

In addition, using arguments similar to those used in the proof of Theorem 3.1 it follows that jn satisfies condition
(2.4) on the space V with the constants c0 =

√
2meas(Γ3) c̄0∥ωn∥L∞(Γ3)∥γ ∥, c1 =

√
2 c̄1∥ωn∥L∞(Γ3)∥γ ∥2 and αj =

αjν ∥ωn∥L∞(Γ3)∥γ ∥2. Therefore,

j0n(un; −un) ≤ αjν ∥ωn∥L∞(Γ3)∥γ ∥2∥un∥2
V − j0n(0V ; un) (4.24)

and, using Proposition 2.4(iii) we have

− j0n(0V ; un) ≤ |j0n(0V ; un)| ≤ c0∥un∥V . (4.25)

In addition

⟨fn, un⟩ ≤ (∥f0n∥L2(Ω)d + ∥f2n∥L2(Γ2)
d∥γ ∥)∥un∥V . (4.26)

We now combine inequalities (4.22)–(4.26) to see that

(mA − αjν ∥ωn∥L∞(Γ3)∥γ ∥2)∥un∥V ≤ (c0 + ∥f0n∥L2(Ω)d + ∥f2n∥L2(Γ2)
d∥γ ∥),

then we use assumption (4.6) to deduce that

∥un∥V ≤
1

m0

(c0 + ∥f0n∥L2(Ω)d + ∥f2n∥L2(Γ2)
d ). (4.27)

We now use the convergences (4.14) and (4.15) to see that the sequences {f0n} and {f2n} are bounded in L2(Ω)d and
L2(Γ2)

d, respectively. Therefore, inequality (4.27) shows that there exists a constant C > 0, which does not depend on n,
such that ∥un∥V ≤ C , which concludes the proof of the claim.

(ii) Weak convergence. We now claim that the sequence {un} converges weakly to u, i.e.,

un ⇀ u in V . (4.28)
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To this end we note that step (i) and the reflexivity of the space V imply that there exist a subsequence, denoted again
by {un}, and an element ũ ∈ V such that

un ⇀ ũ in V . (4.29)

This convergence combined with (4.17) implies that g

gn
un ⇀ ũ in V and, since g

gn
un ∈ U we find that

ũ ∈ U . (4.30)

Let n ∈ N, and denote vn = gn
g
ũ. Then

vn → ũ in V . (4.31)

Moreover, vn ∈ Un and, using (4.9) we obtain that

⟨Anun, un − vn⟩ ≤ j0n(un; vn − un) + ⟨fn, un − vn⟩. (4.32)

Therefore,

⟨Aun, un − ũ⟩ ≤ ⟨Aun, vn − ũ⟩ (4.33)

+⟨Aun − Anun, un − vn⟩ + j0n(un; vn − un) + ⟨fn, un − vn⟩.

We now use the boundedness of the operator A and the strong convergence (4.31) to see that

⟨Aun, vn − ũ⟩ → 0. (4.34)

Moreover, the convergences (4.29) and (4.31), Lemma 4.2, and Proposition 2.4(ii) imply that

⟨Aun − Anun, un − vn⟩ → 0, (4.35)

lim sup j0n(un; vn − un) ≤ 0, (4.36)

⟨fn, un − vn⟩ → 0. (4.37)

We now pass to the upper limit in (4.33) and use (4.34)–(4.37) to deduce that

lim sup ⟨Aun, un − ũ⟩ ≤ 0. (4.38)

Therefore, using the pseudomonotonicity of the operator A we deduce that

⟨Ãu, ũ − v⟩ ≤ lim inf ⟨Aun, un − v⟩ for all v ∈ V . (4.39)

Let n ∈ N and v ∈ U . We let vn = gn
g
v in (4.9), then we use the convergence vn → v in V , Lemma 4.2 and arguments

similar as above to obtain that

lim sup ⟨Aun, un − v⟩ ≤
∫

Γ3

ω j0ν (̃uν; vν − ũν) da + ⟨f , ũ − v⟩. (4.40)

Inequalities (4.39) and (4.40) imply that

⟨Ãu, ũ − v⟩ ≤
∫

Γ3

ω j0ν (̃uν; vν − ũν) da + ⟨f , ũ − v⟩. (4.41)

This inequality shows that ũ is a solution of Problem 3 and, by the uniqueness of its solution, guaranteed by Theorem 3.1,
we obtain that ũ = u. This implies that the whole sequence {un} converges weakly to u as n → ∞, which concludes the
proof of the claim.

(iii) Strong convergence. Let n ∈ N and ũn = gn
g
u. Since u ∈ U it follows that ũn ∈ Un and, moreover, (4.17) implies

that

ũn → u in V . (4.42)

We now write inequality (4.9) with v = ũn to deduce that

− ⟨Anun, ũn − un⟩ ≤ j0n(un; ũn − un) + ⟨fn, un − ũn⟩. (4.43)

Next, using the strong monotonicity of the operator An we find that

mA∥̃un − un∥2
V ≤ ⟨Anũn − Anun, ũn − un⟩

= ⟨Anũn, ũn − un⟩ − ⟨Anun, ũn − un⟩
= ⟨Anũn − Ãun, ũn − un⟩ + ⟨Ãun − Anun, ũn − un⟩ (4.44)
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and, therefore, (4.43) implies that

mA∥̃un − un∥2
V ≤ ⟨Anũn − Ãun, ũn − un⟩ + ⟨Ãun, ũn − un⟩

+j0n(un; ũn − un) + ⟨fn, un − ũn⟩. (4.45)

We now use the convergences (4.28), (4.42) and the continuity of the operator A to find that

lim ⟨Ãun, ũn − un⟩ → 0. (4.46)

Moreover, the convergences (4.28), (4.42) combined with the statements (4.19)–(4.21) in Lemma 4.2 and Proposi-
tion 2.4(iii) imply that

⟨Anũn − Ãun, ũn − un⟩ → 0, (4.47)

lim sup j0n(un; ũn − un) ≤ 0, (4.48)

⟨fn, un − ũn⟩ → 0. (4.49)

Therefore, passing to the upper limit in (4.45) and using (4.46)–(4.49) we deduce that

∥un − ũn∥V → 0. (4.50)

Finally, we write

0 ≤ ∥un − u∥V ≤ ∥un − ũn∥V + ∥̃un − u∥V

and use the convergences (4.42), (4.50) to see that un → u in V which concludes the proof. □

We end this section with the remark that Theorem 4.1 shows the convergence of the solution of Problem 2 with respect
to the data and parameters. Indeed, recall that un = u(βn, f0n, f2n, ωn, gn) and u = u(β, f0, f2, ω, g). Then (4.18) shows
that

u(βn, f0n, f2n, ωn, gn) → u(β, f0, f2, ω, g) in V , (4.51)

provided that (4.13)–(4.17) hold. In addition to the mathematical interest in this convergence result it is important from
mechanical point of view, since it shows that the weak solution of the contact Problem 2 depends continuously on the
elasticity coefficient, the densities of body forces and tractions, the stiffness coefficient and the thickness of the deformable
layer.

5. An optimal control problem

In this section we study a boundary control problem associated to Problem 3. Everywhere below we use the notation
V ×L2(Γ2)

d for the product of the Hilbert spaces V and L2(Γ2)
d, equipped with the canonical topology product. Also, U×W

will represent the Cartesian product of the sets U and W .
Let W ⊂ L2(Γ3)

d and let β , f0, ω, and g be given. We define the set of admissible pairs for Problem 3 by equality

Vad = { (u, f2) ∈ U × W : u = u(β, f0, f2, ω, g) }. (5.1)

In other words, a pair (u, f2) belongs to Vad if and only if f2 ∈ W and, moreover, u is the solution of Problem 3 or,
equivalently, of the variational–hemivariational inequality (3.21). Consider also a cost functional L : V × L2(Γ3)

d → R.
Then, the optimal control problem we are interested in is as follows.

Problem 5. Find (u∗, f ∗
2 ) ∈ Vad such that

L(u∗, f ∗
2 ) = min

(u,f2)∈Vad

L(u, f2). (5.2)

To solve Problem 5 we consider the following assumptions.
{
W is a nonempty weakly closed subset of L2(Γ3)

d, i.e.,
{f2n} ⊂ W , f2n ⇀ f2 in L2(Γ3)

d H⇒ f2 ∈ W .
(5.3)

⎧
⎨
⎩
For all sequences {un} ⊂ V and {f2n} ⊂ L2(Γ3)

d such that
un → u in V , f2n ⇀ f2 in L2(Γ3)

d,we have
lim inf L(un, f2n) ≥ L(u, f2).

(5.4)

⎧
⎨
⎩

There exists h : W → R such that
(a) L(u, f2) ≥ h(f2) ∀ u ∈ V , f2 ∈ L2(Γ3)

d.

(b) ∥f2n∥L2(Γ3)
d → +∞ H⇒ h(f2n) → ∞.

(5.5)

W is a bounded subset of L2(Γ3)
d. (5.6)

Our main result in this section is as follows.
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Theorem 5.1. Assume that (3.7)–(3.10), (3.12)–(3.14), (3.17), (5.3)–(5.4) hold. Moreover, assume that either one of the
conditions (5.5) or (5.6) holds. Then, there exists at least one solution (u∗, f ∗

2 ) ∈ Vad of Problem 5.

Proof. Let

θ = inf
(u,f2)∈Vad

L(u, f2) ∈ [−∞,+∞) (5.7)

and let {(un, f2n)} ⊂ Vad be a minimizing sequence for the functional L, i.e.

lim L(un, f2n) = θ. (5.8)

We claim that the sequence {f2n} is bounded in L2(Γ3)
d. Indeed, the claim is clearly valid if (5.6) holds, i.e., if W is a

bounded subset of L2(Γ3)
d. Assume in what follows that (5.5) holds. Arguing by contradiction, assume that {f2n} is not

bounded in L2(Γ3)
d. Then, passing to a subsequence still denoted by {f2n}, we have

∥f2n∥L2(Γ3)
d → +∞ as n → +∞. (5.9)

We now use assumption (5.5)(a) to see that

L(un, f2n) ≥ h(f2n).

Therefore, passing to the limit as n → +∞, we deduce by (5.5) and (5.9)(b) that

lim L(un, f2n) = +∞. (5.10)

Equalities (5.8) and (5.10) imply that θ = +∞ which is in contradiction with (5.7).
We conclude from above that the sequence {f2n} is bounded in L2(Γ3)

d as claimed. Therefore, there exists f ∗
2 ∈ L2(Γ3)

d

such that, passing to a subsequence still denoted {f2n}, we have

f2n ⇀ f ∗
2 in L2(Γ3)

d as n → +∞. (5.11)

This convergence combined with assumption (5.3) implies that f ∗
2 ∈ W .

Let u∗ be the solution of the variational inequality (3.21) for f2 = f ∗
2 , i.e., u

∗ = u(β, f0, f
∗
2 , ω, g). Then, using the

definition (5.1) of the set Vad we have

(u∗, f ∗
2 ) ∈ Vad. (5.12)

Moreover, since un = u(β, f0, f2n, ω, g), it follows from (4.51) and (5.11) that

un → u∗ in V as n → +∞. (5.13)

We now use the convergences (5.11), (5.13) and assumptions (5.4) to deduce that

lim inf L(un, f2n) ≥ L(u∗, f ∗
2 ). (5.14)

It follows now from (5.8) and (5.14) that

θ ≥ L(u∗, f ∗
2 ). (5.15)

In addition, (5.7) and (5.12) yield

θ ≤ L(u∗, f ∗
2 ). (5.16)

We now combine (5.12) with inequalities (5.15) and (5.16) to see that (5.2) holds, which concludes the proof. □

We end this section with two examples of optimal control problems for which the result provided by Theorem 5.1
holds.

Example 5.2. Let

W = { f2 ∈ L2(Γ3)
d : f2(x) · ν(x) ≤ 0 a.e. x ∈ Γ2 },

and for all (u, f2) ∈ V × L2(Γ3)
d,

L(u, f2) = α

∫

Γ3

∥uν − φ∥2 da + δ

∫

Γ2

∥f2∥2 da, (5.17)

where α and δ are strictly positive constants and φ ∈ L2(Γ3) is given. With this choice, the mechanical interpretation
of Problem 5 is the following: we are looking for a surface pressure f2 acting on Γ2 such that the corresponding normal
displacement uν is as close as possible to the ‘‘desired displacement’’ φ. Furthermore, this choice has to fulfill a minimum
expenditure condition which is taken into account by the last term in (5.17). Note that in this case conditions (5.3)–(5.5)
are satisfied and, therefore, using Theorem 5.1 we deduce that Problem 5 has at least one solution.
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Example 5.3. Let

W = { f2 ∈ L2(Γ3)
d : ∥f2∥L2(Γ3)

d ≤ M a.e. x ∈ Γ2 },

L(u, f2) =
∫

Ω

∥ε(u)∥2 dx for all (u, f2) ∈ V × L2(Γ3)
d,

where M > 0. With this choice, the mechanical interpretation of Problem 5 is the following: we are looking for a bounded
surface pressure or traction f2 ∈ W acting on Γ2 such that the corresponding deformation in the body is as small as
possible. Note that in this case conditions (5.3)–(5.4) and (5.6) are satisfied and, therefore, Theorem 5.1 guarantees the
existence of at least one solution of the corresponding optimal control problem.

6. Convergence of optimal pairs

In this section we focus on the dependence of the optimal pairs of Problem 5 with respect to the data β , f0, ω, g and
the set W . To this end, we assume in what follows that (3.7)–(3.10), (3.12)–(3.14), (3.17), (5.3)–(5.5) hold and, for each
n ∈ N, let βn, f0n, ωn, gn be a perturbation of β , f0, ω, g which satisfies (4.1), (4.2), (4.4)–(4.6). Moreover, assume that
Wn is a given set which satisfies condition (5.3). Then, we define the set of admissible pairs for inequality Problem 4 by
equality

V
n
ad = { (un, f2n) ∈ Un × Wn : un = u(βn, f0n, f2n, ωn, gn) }. (6.1)

In other words, a pair (un, f2n) belongs to V
n
ad if and only if f2n ∈ Wn and, moreover, un is the solution of Problem 4

or, equivalently, of the variational–hemivariational inequality (4.9), i.e. un = u(βn, f0n, f2n, ωn, gn). Consider also a cost
functional L : V × L2(Γ3)

d → R. Then, the optimal control problem we are interested in is as follows.

Problem 6. Find (u∗
n, f

∗
2n) ∈ V

n
ad such that

L(u∗
n, f

∗
2n) = min

(un,f2n)∈Vn
ad

L(un, f2n). (6.2)

Using Theorem 5.1 it follows that for each n ∈ N there exists at least one solution (u∗
n, f

∗
2n) ∈ V

n
ad of Problem 6. Next,

besides assumptions (5.4), (5.5) on L we assume that L : V × L2(Γ3)
d → R is continuous, i.e.,⎧

⎨
⎩
For all sequences {un} ⊂ V and {f2n} ⊂ L2(Γ3)

d such that
un → u in V , f2n → f2 in L2(Γ3)

d we have
lim L(un, f2n) = L(u, f2).

(6.3)

Moreover, we assume that

Wn
M−→ W in L2(Γ3)

d (6.4)

where notation
M−→ denotes the Mosco convergence of sets, see Definition 2.5.

Our main result in this section is as follows.

Theorem 6.1. Assume that (3.7)–(3.10), (3.12)–(3.14), (3.17), (4.1), (4.2), (4.4)–(4.6), (5.3)–(5.5) hold and let {(u∗
n, f

∗
2n)} be

a sequence of solutions of Problem 6. In addition, assume that (4.13), (4.14), (4.16)–(4.17), (6.3), (6.4) hold. Then, there exists
a subsequence of the sequence {(u∗

n, f
∗
2n)}, again denoted by {(u∗

n, f
∗
2n)}, such that

u∗
n → u∗ in V and f ∗

2n ⇀ f ∗
2 in L2(Γ3)

d. (6.5)

Moreover, (u∗, f ∗
2 ) is a solution of Problem 5.

Proof. We claim that the sequence {f ∗
2n} is bounded in L2(Γ3)

d. Arguing by contradiction, assume that {f ∗
2n} is not bounded

in L2(Γ3)
d. Then, passing to a subsequence still denoted by {f ∗

2n}, we have

∥f ∗
2n∥L2(Γ3)

d → +∞ as n → +∞. (6.6)

We use assumption (5.5) and (6.6) to see that

lim L(u∗
n, f

∗
2n) = +∞. (6.7)

Let (u, f2) ∈ Vad be given where, recall, Vad is defined by (5.1). Then f2 ∈ W and, using assumption (6.4) and property
(M1) in Definition 2.5 we deduce that there exists a sequence {f2n} such that f2n ∈ Wn ∀ n ∈ N and, moreover,

f2n → f2 in L2(Γ3)
d. (6.8)

This implies that (4.15) holds. Denote un = u(βn, f0n, f2n, ωn, gn). Then (un, f2n) ∈ V
n
ad and, in addition, convergences

(4.13)–(4.17), (4.51) imply that

un → u in V . (6.9)
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We now use convergences (6.9), (6.8) and assumption (6.3) to see that

L(un, f2n) → L(u, f2). (6.10)

On the other hand, by the optimality of the pair (u∗
n, f

∗
2n) we have that

L(u∗
n, f

∗
2n) ≤ L(un, f2n) ∀ n ∈ N.

We now pass to the limit in this inequality and use convergences (6.7), (6.10) to deduce that L(u, f2) = +∞ which
represents a contradiction.

We conclude from above that the sequence {f ∗
2n} is bounded in L2(Γ3)

d, as claimed. Therefore we can find a subsequence,
again denoted by {f ∗

2n}, and an element f ∗
2 ∈ L2(Γ3)

d such that

f ∗
2n ⇀ f ∗

2 in L2(Γ3)
d as n → ∞. (6.11)

Recall now that f2n ∈ Wn ∀ n ∈ N. Thus, using assumption (6.4) and property (M2) in Definition 2.5 we deduce that

f ∗
2 ∈ W . (6.12)

Denote u∗ = u(β, f0, f
∗
2 , ω, g) and u∗

n = u(βn, f0n, f
∗
2n, ωn, gn). Then, we have

(u∗, f ∗
2 ) ∈ Vad. (6.13)

Moreover, using (4.51) yields

u∗
n → u∗ in V as n → ∞. (6.14)

The convergences (6.11) and (6.14) show that (6.5) holds.
We now prove that (u∗, f ∗) is a solution of Problem 5. To this end we consider an arbitrary element (u, f2) ∈ Vad.

Then f2 ∈ W and, using assumption (6.4) we deduce that there exists a sequence {f2n} such that f2n ∈ Wn ∀ n ∈ N

and, moreover, (6.8) holds. This implies that (4.15) holds, too. Let un = u(βn, f0n, f2n, ωn, gn). Then (un, f2n) ∈ V
n
ad and, in

addition, convergences (4.13)–(4.17), (4.51) imply that

un → u in V . (6.15)

On the other hand, by the optimality of the pair (u∗
n, f

∗
2n) we have that

L(u∗
n, f

∗
2n) ≤ L(un, f2n) ∀ n ∈ N.

We now pass to the limit in this inequality and use the convergences (6.14), (6.11) and assumption (5.4) to see that

L(u∗, f ∗
2 ) ≤ lim infL(u∗

n, f
∗
2n) ≤ lim infL(un, f2n).

Moreover, convergences (6.15), (6.8) combined with assumption (6.3) show that

limL(un, f2n) = L(u, f2).

It follows from here that

L(u∗, f ∗
2 ) ≤ L(u, f2). (6.16)

Inclusion (6.13) and inequality (6.16) show that (u∗, f ∗
2 ) is a solution of Problem 5, which concludes the proof. □
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