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WELL-POSEDNESS OF HISTORY-DEPENDENT SWEEPING
PROCESSES

STANIS�LAW MIG ́ORSKI† , MIRCEA SOFONEA‡ , AND SHENGDA ZENG§

Abstract. This paper is devoted to the study of a class of sweeping processes with history-
dependent operators. A well-posedness result is obtained, including the existence, uniqueness, and
stability of the solution. Our approach is based on the variable time step-length discrete approx-
imation method combined with a fixed point principle for history-dependent operators. Then, a
quasi-static frictional contact problem for viscoelastic materials with unilateral constraints in veloc-
ity is considered. The abstract result is applied in the study of this problem in order to provide
its unique weak solvability as well as the continuous dependence of the solution with respect to the
initial data.
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1. Introduction. The notion of sweeping process was initially introduced by
Moreau [16, 18, 19]. A sweeping process consists of finding a trajectory function
u : [0, T ] → H such that u(t) ∈ C(t) and

{
−u′(t) ∈ NC(t)(u(t)) for a.e. t ∈ [0, T ],

u(0) = u0,
(1.1)

where H is a Hilbert space, C : [0, T ] → 2H is a set-valued mapping with closed and
convex values, NC(t) stands for the normal cone of C(t) (see Definition 8 below), and
the prime denotes the derivative with respect to the time variable t. Such problems
have been used to study various mathematical models which arise in mechanics and
engineering, such as models in unilateral contact in elasticity, perfect plasticity, shape
optimization problems, obstacles problems, rigid-body dynamics with friction and
impact, etc. References in the field include [2, 15, 17].

The applications of sweeping processes have motivated intensive study in the last
30 years, and many extensions and results have been obtained. Here we restrict our-
selves to mentioning the following works: Colombo et al. [8], who addressed a new
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class of optimal control problems governed by the dissipative and discontinuous dif-
ferential inclusion of the sweeping/Moreau process; Adly, Nacry, and Thibault [4],
who studied the well-posedness (in the sense of existence and uniqueness of the solu-
tion) of a discontinuous sweeping process involving prox-regular sets in Hilbert spaces,
in which the variation of the moving set is controlled by a positive Radon measure
and the perturbation is assumed to satisfy a Lipschitz property; Vilches [25], who
proved existence results for a class of sweeping processes in Hilbert spaces by using
the catching-up algorithm and established a full characterization of nonsmooth Lya-
punov pairs; and Tolstonogov [23], who considered a polyhedral sweeping process with
a set-valued perturbation in a separable Hilbert space. For other results in this area
the reader may consult Adly, Haddad, and Thibault [3], Adly and Le [5], Colombo
and Palladino [9], Tolstonogov [24], and the references therein.

The aim of this paper is to present existence, uniqueness, and stability results
for a new class of sweeping processes and to illustrate their applications in contact
mechanics. We adopt the following functional framework everywhere in this paper.
Let H be a real separable Hilbert space with the inner product 〈·, ·〉 and the induced
norm ‖ · ‖, let T > 0, and denote by 2H and C([0, T ];H) the set of all subsets of H
and the space of continuous functions defined on [0, T ] with values in H, respectively.
Given the operators A : H → H, B : H → H, and R : C([0, T ];H) → C([0, T ];H), a
set-valued mapping C : [0, T ] → 2H , and an element u0 ∈ H, we consider the following
abstract sweeping process: find u : [0, T ] → H such that

{
−u′(t) ∈ NC(t)

(
Au′(t) +Bu(t) + (Ru)(t)

)
for a.e. t ∈ (0, T ),

u(0) = u0.
(1.2)

Note that if Ru = 0 for all u ∈ C([0, T ];H), Az = 0 for all z ∈ H, and B = I,
where I is the identity operator of H, then problem (1.2) reduces to the classical
sweeping process (1.1). In addition, if Ru = 0 for all u ∈ C([0, T ];H), then problem
(1.2) consists of finding a function u : [0, T ] → H such that

{
−u′(t) ∈ NC(t)

(
Au′(t) +Bu(t)

)
for a.e. t ∈ (0, T ),

u(0) = u0.
(1.3)

This problem was considered recently by Adly and Haddad [1]. There, its unique
solvability was proved by using a time-discretization method.

Besides showing that problem (1.2) is more general than (1.3), our results pre-
sented in section 3 extend the results of Adly and Haddad [1, section 3] in the following
directions: (a) we remove the regularity condition Bu0 ∈ C(0); (b) we assume the
operator B is Lipschitz continuous instead of linear, nonnegative, and symmetric;
(c) we use a new variable time step-length discrete approximation instead of the uni-
form time-discretization method; and (d) we show the dependence of the solution on
the initial data, i.e., we provide a stability result, as well.

The outline of the rest of the paper is as follows. In section 2, we recall some pre-
liminary results that we use throughout. In section 3, we present our main existence,
uniqueness, and stability result. Finally, in section 4 we use this abstract result in the
study of a quasi-static frictional contact problem for viscoelastic materials with long
memory and unilateral conditions in velocity, which represents an additional novelty
of our paper.

2. Preliminaries. In this section, we recall some preliminary material which is
needed in the rest of the paper. For more details on the topic, we refer the reader to
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[2, 10, 11, 26]. Besides the notation already introduced in the previous section, we use
L(H) to represent the space of linear continuous operators from H to H. Moreover,
we recall that for a multivalued operator Λ: H → 2H , its domain D(Λ), range R(Λ),
and graph Gr(Λ) are defined by equalities

D(Λ) = {u ∈ H | Λu �= ∅}, R(Λ) =
⋃

u∈H

Λ(u),

Gr(Λ) = {(u, u∗) ∈ H ×H | u∗ ∈ Λu},

respectively. We proceed with the following definitions and basic results on multival-
ued and single-valued operators.

Definition 1. An operator Λ: H → 2H is said to be

(i) monotone if 〈u∗ − v∗, u− v〉 ≥ 0 for all (u, u∗), (v, v∗) ∈ Gr(Λ);
(ii) maximal monotone if it is monotone and maximal in the sense of inclusion

of graphs in the family of monotone operators from H to 2H .

Definition 2. An operator A : H → H is said to be

(i) monotone if 〈Au−Av, u− v〉 ≥ 0 for all u, v ∈ H;

(ii) strongly monotone with constant mA > 0 if 〈Au − Av, u − v〉 ≥ mA‖u − v‖2

for all u, v ∈ X;

(iii) pseudomonotone if it is bounded and if for every sequence {un} ⊂ H

converging weakly to u ∈ H such that lim sup 〈Aun, un − u〉 ≤ 0, we have

〈Au, u− v〉 ≤ lim inf 〈Aun, un − v〉 for all v ∈ H.

(iv) A is hemicontinuous if the function λ �→ 〈A(u+λv), w〉 is continuous on [0, 1]
for all u, v, w ∈ H.

It is obvious that A : H → H is pseudomonotone if and only if un → u weakly in
H and lim sup 〈Aun, un − u〉 ≤ 0 imply lim〈Aun, un − u〉 = 0 and Aun → Au weakly
in H∗. Furthermore, if A ∈ L(H) is nonnegative, then it is pseudomonotone.

Lemma 3 ([6, Corollary 1.1, p. 44]). Let Λ: H → 2H be a maximal monotone

operator, and let B : H → H be a hemicontinuous bounded operator. Then Λ +
B : H → 2H is maximal monotone.

Lemma 4. If Λ: D(Λ) ⊂ H → 2H is a maximal monotone operator with bounded

domain D(Λ) ⊂ H, then Λ is surjective, i.e., R(Λ) = H.

History-dependent operators will play a crucial role in our paper.

Definition 5. An operator R : C([0, T ];H) → C([0, T ];H) is called history-

dependent if there exists a constant LR > 0 such that

‖(Ru)(t)− (Rv)(t)‖ ≤ LR

∫ t

0

‖u(s)− u(s)‖ ds(2.1)

for all u, u ∈ C([0, T ];H), and t ∈ (0, T ).

An important property of history-dependent operators is provided by the following
fixed point result [21, Theorem 67].

Lemma 6. If R : C([0, T ];H) → C([0, T ];H) is a history-dependent operator,

then there exists a unique function u∗ ∈ C([0, T ];H) such that Ru∗ = u∗.

We now move to properties of the functions defined on the space H. First, we
recall that a function f : H → R is called proper, convex, and lower semicontinuous
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if it fulfills, respectively, the following conditions:

Dom(f) := {u ∈ H | f(u) < +∞} �= ∅,

f(λu+ (1− λ)v) ≤ λf(u) + (1− λ)f(v) for all λ ∈ [0, 1] and u, v ∈ H,

f(u) ≤ lim inf
n→∞

f(un) for all sequences {un} ⊂ H with un → u in H.

Note that here and below, we use the notation R := R ∪ {+∞}. The convex subdif-
ferential of a proper convex function f : H → R is defined by

∂f(u) =

{ {
ξ ∈ H | f(v)− f(u) ≥ 〈ξ, v − u〉 for all v ∈ H

}
if u ∈ Dom(f),

∅ otherwise.

Obviously, if f is Gâteaux differentiable at a point u ∈ H, then we have ∂f(u) =
{Df(u)}, where Df(u) is the Gâteaux derivative of f at u.

For any proper function f : H → R (not necessarily convex), the Legendre–Fenchel
conjugate of f is defined as follows:

f∗ : H → R, f∗(v) = sup
u∈H

{
〈u, v〉 − f(u)

}
for v ∈ H.

It is well known that f∗ is always convex and lower semicontinuous. Moreover, by the
definition, we obtain the following well-known Fenchel–Young inequality:

〈u∗, u〉 ≤ f(u) + f∗(u∗) for all u, u∗ ∈ H.

Lemma 7. Let f : H → R be a proper, convex, and lower semicontinuous func-

tion. Then the following statements are equivalent for any u, u∗ ∈ H:

(i) 〈u∗, u〉 = f(u) + f∗(u∗).
(ii) u∗ ∈ ∂f(u).
(iii) u ∈ ∂f∗(u∗).

We now recall some definitions and properties related to convex subsets of a
Hilbert space.

Definition 8. Let K and C be nonempty, closed, and convex subsets of H.

(i) The metric projection of H onto K is defined by

PK : H → H, PK(u) = argmin
v∈K

‖u− v‖ for all u ∈ H.

(ii) The indicator function of K is defined by

IK : H → R, IK(u) =

{
0 if u ∈ K,

+∞ otherwise.

(iii) The support function of K is defined by

σK : H → R, σK(u∗) = sup
u∈K

〈u∗, u〉.

(iv) The normal cone of K is defined by

NK(u) =

{
{u∗ ∈ H | 〈u∗, v − u〉 ≤ 0 for all v ∈ K} if u ∈ K,

∅ otherwise.
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(v) The distance from a point u ∈ H to K is defined by

dK(u) = inf
v∈K

‖u− v‖.

(vi) The Hausdorff distance between the sets K and C is defined by

H(K,C) = max

{
sup
u∈K

dC(u), sup
u∈C

dK(u)

}
.

Remark 9. It is obvious that the support function σK of K coincides with the
Legendre–Fenchel conjugate of the indicator function of K, that is, σK = (IK)∗.

Definition 10. A set-valued mapping C : [0, T ] → 2H is called absolutely con-

tinuous if there exist a nondecreasing absolutely continuous function η : [0, T ] → R+

with η(0) = 0 and a constant c0 > 0 such that

H(C(t), C(s)) ≤ c0 |η(t)− η(s)| for all t, s ∈ [0, T ].

Below, given u ∈ H and s > 0, we denote by O(u, s) (or O(u, s)) the open ball
(or closed ball) centered at u with radius s > 0. The following result will be used to
prove the unique solvability of the sweeping process, problem (1.2).

Lemma 11 ([1, Lemma 2.3]). Let C : [0, T ] → 2H be a set-valued absolutely

continuous mapping such that C(t) is a nonempty, closed, and convex subset of H for

all t ∈ [0, T ]. Then, there exists n0 ∈ N such that

Cn(t) := C(t) ∩O(0, n) �= ∅ for all n ≥ n0, t ∈ [0, T ],

and

H(Cn(t), Cn(s)) ≤ c0 H(C(t), C(s)) ≤ c0 |η(t)− η(s)| for all s, t ∈ [0, T ],

where c0 is the positive constant in Definition 10.

3. A well-posedness result. In this section, we state and prove our main
results in the study of the abstract sweeping process (1.2). They concern the existence,
uniqueness, and continuous dependence of the solution with respect to the initial data.
Our approach is based on a variable time step-length discrete approximation algorithm
combined with a fixed point theorem for history-dependent operators. To introduce
the algorithm, we consider the following hypotheses on its data.

H(A): A : H → H is linear, bounded, symmetric, and coercive with constant
α > 0, i.e.,

〈Au, u〉 ≥ α‖u‖2 for all u ∈ H.

H(B): B : H → H is a Lipschitz continuous operator; that is, there exists a
constant LB > 0 such that

‖Bu−Bv‖ ≤ LB‖u− v‖ for all u, v ∈ H.

H(R): R : C([0, T ];H) → C([0, T ];H) is a history-dependent operator, i.e., it
satisfies inequality (2.1).

H(C): The set-valued mapping C : [0, T ] → 2H is such that C(t) is nonempty,
closed, and convex for all t ∈ [0, T ], and the function t �→ C(t) is absolutely continuous.
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Everywhere below, we use the standard notation for the Bochner Lebesgue spaces
Lp(0;T ;H) as well as the Sobolev spaces W k,p(0, T ;H). Recall that W 1,1(0, T ;H)
coincides with the space of absolutely continuous functions defined on [0, T ] with
values in H, and W 1,∞(0, T ;H) coincides with the space of Lipschitz continuous
functions defined on [0, T ] with values in H. The space W 1,∞(0, T ;H) is a Banach
space endowed with the norm

(3.1) ‖u‖W 1,∞(0,T ;H) = ‖u‖L∞(0,T ;H) + ‖u′‖L∞(0,T ;H).

Our main result in this section is the following.

Theorem 12. Assume that H(A), H(B), H(R), and H(C) hold. Then, for any

initial data u0 ∈ H, there exists a unique solution u = u(u0) ∈ W 1,∞(0, T ;H) of

the sweeping process (1.2). Moreover, the map u0 �→ u(u0) : H → W 1,∞(0, T ;H) is

Lipschitz continuous.

To prove the theorem, everywhere in the rest of this section we assume that H(A),
H(B), H(R), and H(C) hold. We start by introducing the following intermediate
problem: given w ∈ C([0, T ];H), find a function u : [0, T ] → H such that

{
−u′(t) ∈ NC(t)

(
Au′(t) +Bw(t) + (Rw)(t)

)
for a.e. t ∈ (0, T ),

u(0) = u0.
(3.2)

To solve this problem we introduce a variable time step-length grid indexed by
n ∈ N,

Tn =
{
0 = t0n < t1n < · · · < tnn = T

}
.

Moreover, let τkn = tkn − tk−1
n for k ∈ {1, 2, . . . , n} denote

τmax
n = max

k=1,2,...,n
τkn and τmin

n = min
k=1,2,...,n

τkn ,

and consider the following assumption.
H(t): The sequence of time grids satisfies
(i) limn→∞ τmax

n = 0,
(ii) there exists a constant M0 > 0 such that τmax

n ≤ M0 τ
min
n for all n ∈ N.

Next, we introduce the operator π2,H
n : L2(0, T ;H) → L2(0, T ;H) defined by

(
π2,H
n (v)

)
(t) =

1

τkn

∫ tkn

tk−1
n

v(s) ds for all t ∈ (tk−1
n , tkn], v ∈ L2(0, T ;H).

Remark 13. We mention that a sequence of time grids that satisfies H(t) is called
regular; see [7]. Moreover, by invoking [7, Lemma 3.3], we can see that if the regularity
condition H(t) is satisfied, then

π2,H
n (v) → v strongly in L2(0, T ;H) as n → ∞

for every v ∈ L2(0, T ;H).

In what follows, we define the auxiliary quantities

Rk
n =

1

τkn

∫ tkn

tk−1
n

(Rw)(s) ds and Bk
n =

1

τkn

∫ tkn

tk−1
n

Bw(s) ds
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for k = 1, 2, . . . , n. In addition, we consider the following variable time step-length
discrete problem corresponding to the sweeping process (3.2):

(3.3) − vk+1
n ∈ NCn(t

k+1
n )

(
Avk+1

n + Bk+1
n +Rk+1

n

)

for k = 0, . . . , n−1, where Cn(t) is defined by Cn(t) := C(t)∩O(0, n) for all t ∈ [0, T ],
and

vk+1
n =

uk+1
n − uk

n

τk+1
n

with u0
n = u0.

The following lemma shows that problem (3.3) has a unique solution.

Lemma 14. There exists N0 ∈ N large enough such that problem (3.3) has a

unique solution for all n ≥ N0.

Proof. First, Lemma 11 ensures that there exists N0 ∈ N such that

Cn(t) = C(t) ∩O(0, n) �= ∅ for all t ∈ [0, T ]

and for all n ≥ N0. Next, we will use induction with respect to k to show the existence
of solutions to problem (3.3).

Let k = 0. Our goal is to find an element v1n such that

(3.4) − v1n ∈ NCn(t1n)

(
Av1n + B1

n +R1
n

)
.

Recall assumption H(A) which, in particular, shows that the operator A : H → H

is symmetric and coercive, and thus it is strongly monotone with constant α > 0.
This implies that its inverse A−1 : H → H is coercive and Lipschitz continuous with
Lipschitz constant 1

α . Obviously, the above inclusion can be rewritten, equivalently,
as follows:

A−1
(
B1
n +R1

n

)
∈
(
A−1 +NCn(t1n)

)
◦
(
Av1n + B1

n +R1
n

)
.

So, to prove that there exists an element v1n such that (3.4) holds, it is enough to verify
that the mappings A−1+NCn(t1n)

: H → 2H and v �→ Av+B1
n+R1

n : H → H are both
surjective. Using the continuity and boundedness of operator A−1 and the maximal
monotonicity of operator NCn(t1n)

, by applying Lemma 3, we get that operator

A−1 +NCn(t1n)
: D

(
A−1 +NCn(t1n)

)
→ R

(
A−1 +NCn(t1n)

)

is maximal monotone, too. Furthermore, since D(A−1 + NCn(t1n)
) = Cn(t

1
n) and the

set Cn(t
1
n) is bounded, one can apply the surjectivity result in Lemma 4 to conclude

that there exists an element z ∈ Cn(t
1
n) such that

A−1
(
B1
n +R1

n

)
∈
(
A−1 +NCn(t1n)

)
(z).

On the other hand, assumption H(A) implies that A is a pseudomonotone operator.
Combining this with the coercivity of A, and applying [13, Theorem 3.74, p. 88], we
can find an element v1n ∈ H such that

Av1n = z − B1
n −R1

n.

7



 
 

 

 
 
 
 
 
 
 

 

 
 

 

 
 

 
 
 
 
 
 

 
 

 

 
 
 
 
 

 

 

 
 

We conclude that v1n is also a solution to problem (3.4).
Next, we assume that u0

n, v
1
n, v

2
n, . . . , v

k
n have been obtained. Then, from the

equality vln =
ul
n−ul−1

n

τ l
n

for all 1 ≤ l ≤ n, we can directly calculate u1
n, u

2
n, . . . , u

k
n. We

further reformulate (3.3) to obtain

A−1(Bk+1
n +Rk+1

n ) ∈
(
A−1 +NCn(t

k+1
n )

)
◦
(
Avk+1

n + Buk+1
n +Rk+1

n

)
.

Note that the mapping A−1+NCn(t
k+1
n ) : D(A−1+NCn(t

k+1
n )) → R(A−1+NCn(t

k+1
n )) is

surjective since it is maximal monotone with bounded domain Cn(t
k+1
n ); see Lemma 4.

Therefore, we are able to find z ∈ Cn(t
k+1
n ) such that

A−1(Bk+1
n +Rk+1

n ) ∈
(
A−1 +NCn(t

k+1
n )

)
(z).

In the meantime, there is also vk+1
n ∈ H such that

Avk+1
n = z − Bk+1

n −Rk+1
n

since A is onto. Clearly, vk+1
n ∈ H is a solution to problem (3.3).

Finally, we will prove the uniqueness of solution to problem (3.3). Let ̂vk+1
n , ˜vk+1

n

be two solutions to problem (3.3), namely,

〈̂vk+1
n , v −Âvk+1

n − Bk+1
n −Rk+1

n 〉 ≥ 0 for all v ∈ Cn(t
k+1
n )

and

〈˜vk+1
n , v −A˜vk+1

n − Bk+1
n −Rk+1

n 〉 ≥ 0 for all v ∈ Cn(t
k+1
n ).

Bearing in mind that both Âvk+1
n + Bk+1

n +Rk+1
n and A˜vk+1

n + Bk+1
n +Rk+1

n belong

to Cn(t
k+1
n ), we now insert v = A˜vk+1

n + Bk+1
n + Rk+1

n into the first inequality and

v = Âvk+1
n +Bk+1

n +Rk+1
n into the second, and then we sum the resulting inequalities

to find that

α‖˜vk+1
n − ̂vk+1

n ‖2 ≤ 〈˜vk+1
n − ̂vk+1

n , A˜vk+1
n −Âvk+1

n 〉 ≤ 0.

This implies that ˜vk+1
n = ̂vk+1

n , which completes the proof of the lemma.

The next result provides an a priori estimate for solution to problem (3.3).

Lemma 15. There exists a constant L > 0, which is independent of n, such that

(3.5) max
1≤k≤n

‖vkn‖ ≤ L.

Proof. For any k ∈ {0, 1, 2, . . . , n−1} fixed, we can reformulate the inclusion (3.3)
as follows:

(3.6) 〈Avk+1
n + Bk+1

n +Rk+1
n − v, vk+1

n 〉 ≤ 0

for all v ∈ Cn(t
k+1
n ). From the coercivity of A and the above inequality, we deduce
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that

α‖vk+1
n ‖2 ≤ 〈Avk+1

n , vk+1
n 〉

= 〈Avk+1
n + Bk+1

n +Rk+1
n − v, vk+1

n 〉+ 〈v − Bk+1
n −Rk+1

n , vk+1
n 〉

≤ 〈v − Bk+1
n −Rk+1

n , vk+1
n 〉

≤ ‖v − Bk+1
n −Rk+1

n ‖‖vk+1
n ‖ for all v ∈ Cn(t

k+1
n ).(3.7)

Now, for any v0 ∈ C(0) fixed, we have

(3.8) ‖v − Bk+1
n −Rk+1

n ‖ ≤ ‖v − v0‖+ ‖v0‖+ ‖Bk+1
n ‖+ ‖Rk+1

n ‖.

Therefore, inserting (3.8) into (3.7) yields

(3.9) α‖vk+1
n ‖ ≤ ‖v − v0‖+ ‖v0‖+ ‖Bk+1

n ‖+ ‖Rk+1
n ‖.

Next, since v ∈ Cn(t
k+1
n ) and v0 ∈ C(0), using Lemma 11 it follows that for n large

enough we have v0 ∈ Cn(0) and

inf
v∈Cn(t

k+1
n )

‖v − v0‖ = d(v0, Cn(t
k+1
n )) ≤ H(Cn(0), Cn(t

k+1
n ))

≤ c0 H(C(0), C(tk+1
n )) ≤ c0 (η(t

k+1
n )− η(0)) = c0 η(t

k+1
n ) ≤ c0η(T ).

Taking into account the above inequality and (3.9) we obtain that

‖vk+1
n ‖ ≤

1

α

(
c0η(T ) + ‖v0‖+ ‖Bk+1

n ‖+ ‖Rk+1
n ‖

)
.

Recall that w, Rw ∈ C([0, T ];H). This implies that

‖Rk+1
n ‖ =

∥∥∥∥
1

τk+1
n

∫ tk+1
n

tkn

(Rw)(s) ds

∥∥∥∥ ≤ Mw,

‖Bk+1
n ‖ =

∥∥∥∥
1

τk+1
n

∫ tk+1
n

tkn

Bw(s) ds

∥∥∥∥ ≤ Mw,

where Mw > 0 is given by equality

Mw = max

{
max
t∈[0,T ]

‖Bw(t)‖, max
t∈[0,T ]

‖(Rw)(t)‖

}
.

Therefore, one has

‖vk+1
n ‖ ≤

1

α

(
c0 η(T ) + 2Mw + ‖v0‖

)
.

Consequently, there exists a constant L := 1
α

(
c0η(T ) + 2Mw + ‖v0‖

)
, which is inde-

pendent of n and k, such that

‖vkn‖ ≤ L

for all k ∈ {1, 2, . . . , n}. In conclusion, inequality (3.5) holds, which completes the
proof of the lemma.
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Subsequently, for given n ∈ N, we define the piecewise affine function un and the
piecewise constant interpolant functions un, Bn, and Rn by

un(t) =

⎧
⎪⎨
⎪⎩

u0
n if t = 0,

uk
n +

t− tkn
τkn

(uk
n − uk−1

n ) if t ∈ (tk−1
n , tkn],

un(t) =

{
u0
n if t = 0,

uk−1
n if (tk−1

n , tkn],

Bn(t) =

{
Bk
n if t ∈ (tk−1

n , tkn],

0 if t = 0,

Rn(t) =

{
Rk

n if t ∈ (tk−1
n , tkn],

0 if t = 0.

Then, problem (3.3) can be equivalently rewritten as

(3.10) − u′
n(t) ∈ NCn(δn(t))

(
Au′

n(t) + Bn(t) +Rn(t)
)
for all t ∈ [0, T ],

where the function δn is defined by

δn(t) =

{
0 if t = 0,

tkn if t ∈ (tk−1
n , tkn].

We are now in position to explore the convergence of the sequences {un} and
{un}.

Lemma 16. There exist a Lipschitz continuous function u : [0, T ] → H and two

subsequences of the sequences {un} and {un}, still denoted by {un} and {un}, respec-
tively, such that

un → u weakly in L2(0, T ;H),(3.11)

{
un → u weakly in L2(0, T ;H),

un(t) → u(t) weakly in H for all t ∈ [0, T ],
(3.12)

u′
n → u′ weakly in L2(0, T ;H).(3.13)

Proof. The estimate (3.5) and equality ui
n = u0

n +
∑i

j=1 τ
j
nv

j
n for 1 ≤ i ≤ n

indicate that

‖ui
n‖ ≤ ‖u0

n‖+
i∑

j=1

τ jn‖v
j
n‖ ≤ ‖u0‖+

n∑

j=1

τ jnL ≤ ‖u0‖+ LT

and

‖un‖
2
L2(0,T ;H) =

∫ T

0

‖un(s)‖
2 ds =

n∑

i=1

∫ tin

ti−1
n

‖ui−1
n ‖2 ds =

n∑

i=1

τ in‖u
i−1
n ‖2

≤
n∑

i=1

τ in
(
‖u0‖+ LT

)2
=

(
‖u0‖+ LT

)2
T.
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This implies that the sequence {un} is bounded in L2(0, T ;H). Therefore, without
loss of generality, we may assume that there exists a function u ∈ L2(0, T ;H) such
that the convergence (3.11) holds.

Further, using equality un(t) = u0
n +

∫ t

0
u′
n(s) ds and the bound ‖u′

n(t)‖ ≤ L for
a.e. t ∈ [0, T ], we have

‖un(t)− un(s)‖ ≤

∥∥∥∥
∫ t

s

u′
n(r) dr

∥∥∥∥ ≤ L|t− s| for all s, t ∈ [0, T ].

Moreover, for any division 0 = b0 < b1 < · · · < bN = T of interval [0, T ], one has

N∑

i=1

‖un(bi)− un(bi−1)‖ ≤ L

N∑

i=1

(bi − bi−1) = LT,

which implies that the variation of un on [0, T ], denoted var(un, [0, T ]), satisfies the
inequality

var(un, [0, T ]) ≤ LT.

It follows from above that the sequence {un} is uniformly bounded in norm and
variation. This property, combined with the inequality ‖u′

n(t)‖ ≤ L for a.e. t ∈ [0, T ]
and [14, Theorem 2.1, p. 10], allows us to deduce that there exist a subsequence of
{un}, still denoted {un}, and a bounded variation function ũ : [0, T ] → H such that

{
un → ũ weakly in L2(0, T ;H),

un(t) → ũ(t) weakly in H for all t ∈ [0, T ].

On the other hand, from the estimates

‖un(t)− un(t)‖ =

∥∥∥∥u
k
n − uk−1

n +
t− tkn
τkn

(uk
n − uk−1

n )

∥∥∥∥

≤ τkn

∥∥∥∥
uk
n − uk−1

n

τkn

∥∥∥∥+ (tkn − t)

∥∥∥∥
uk
n − uk−1

n

τkn

∥∥∥∥

≤ 2Lτkn for all t ∈ (tk−1
n , tkn],

it follows that

‖un − un‖
2
L2(0,T ;H) =

∫ T

0

‖un(t)− un(t)‖
2 dt

=
n∑

k=1

∫ tkn

tk−1
n

‖un(t)− un(t)‖
2 dt ≤

n∑

k=1

4L2(τkn)
3 ≤ 4L2T (τmax

n )2.

The regularity condition H(t)(i) shows that un − un → 0 strongly in L2(0, T ;H), as
n → ∞, and therefore (3.11) ensures that u = ũ. Hence, the convergences (3.12) hold.

We now show that u : [0, T ] → H is a Lipschitz continuous function. Indeed, for
any t, s ∈ [0, T ], using the weak convergences un(t) → u(t), un(s) → u(s), both in H,
and the weak lower semicontinuity of the norm, we find that

‖u(t)− u(s)‖ ≤ lim inf
n→∞

‖un(t)− un(s)‖ = lim inf
n→∞

∥∥∥∥
∫ t

s

u′
n(r) dr

∥∥∥∥ ≤ L|t− s|.

11



 
 

 

 
 
 
 
 
 
 

 

 
 

 

 
 

 
 
 
 
 
 

 
 

 

 
 
 
 
 

 

 

 
 

So, u is Lipschitz continuous, i.e., u ∈ W 1,∞(0, T ;H) and, moreover,

u(t) = u0 +

∫ t

0

u′(s) ds for all t ∈ [0, T ].

It remains to verify convergence (3.13). To this end, since {u′
n} is bounded in

L2(0, T ;H), by reflexivity of L2(0, T ;H), passing to a relabeled subsequence, we may
assume that

(3.14) u′
n → u∗ weakly in L2(0, T ;H)

for some u∗ ∈ L2(0, T ;H). Moreover, for any z ∈ H, we have

〈z, un(t)〉 =

〈
z, u0

n +

∫ t

0

u′
n(s) ds

〉
= 〈z, u0

n〉+

∫ t

0

〈z, u′
n(s)〉 ds

= 〈z, u0
n〉+

∫ T

0

〈zχ[0,t], u
′
n(s)〉 ds for all t ∈ [0, T ].

Now, using the convergence un(t) → u(t) weakly in H for all t ∈ [0, T ] and (3.14),
one has

⎧
⎪⎪⎨
⎪⎪⎩

〈z, un(t)〉 → 〈z, u(t)〉 =

〈
z, u0 +

∫ t

0

u′(s) ds

〉
,

〈z, u0
n〉+

∫ T

0

〈zχ[0,t], u
′
n(s)〉 ds → 〈z, u0〉+

∫ T

0

〈zχ[0,t], u
∗(s)〉 ds.

Hence, it easily follows that

〈z, u0〉+

∫ t

0

〈z, u∗(s)〉 ds = 〈z, u(t)〉 = 〈z, u0〉+

∫ t

0

〈z, u′(s)〉 ds

for all z ∈ H and t ∈ [0, T ], that is,

∫ t

0

u∗(s) ds =

∫ t

0

u′(s) ds for all t ∈ [0, T ].

This equality implies that u∗ = u′ a.e. t ∈ [0, T ]. So, the convergence (3.13) holds,
which completes the proof of the lemma.

In what follows, we use the above results, Lemmas 14–16, to show that the func-
tion u obtained in Lemma 16 is the unique solution to problem (3.2).

Lemma 17. For any u0 ∈ H, there exists a unique solution u ∈ W 1,∞(0, T ;H) to
problem (3.2).

Proof. First, we claim that

Au′(t) +Bw(t) + (Rw)(t) ∈ D
(
NC(t)

)
for a.e. t ∈ [0, T ]

or, equivalently,

Au′(t) +Bw(t) + (Rw)(t) ∈ C(t) for a.e. t ∈ [0, T ].(3.15)
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To prove this inclusion, let t ∈ [0, T ] and z ∈ H. Note that relations

〈Au′(t) +Bw(t) + (Rw)(t), z〉 = 〈Au′
n(t) + Bn(t) +Rn(t), z〉

+ 〈Au′(t) +Bw(t) + (Rw)(t)−Au′
n(t)− Bn(t)−Rn(t), z〉,

Au′
n(t) + Bn(t) +Rn(t) ∈ Cn(δn(t)) ⊂ C(δn(t)),

imply that

〈Au′(t) +Bw(t) + (Rw)(t), z〉 ≤ sup
y∈C(δn(t))

〈y, z〉

+ 〈Au′(t) +Bw(t) + (Rw)(t)−Au′
n(t)− Bn(t)−Rn(t), z〉 = σC(δn(t))(z)

+ 〈Au′(t) +Bw(t) + (Rw)(t)−Au′
n(t)− Bn(t)−Rn(t), z〉.(3.16)

On the other hand, by [1, Lemma 2.1], we have

σC(δn(t))(z) ≤ σC(t)(z) + ‖z‖ |η(δn(t))− η(t)|.

So, we can reformulate (3.16) as follows:

〈Au′(t) +Bw(t) + (Rw)(t), z〉 ≤ σC(t)(z) + ‖z‖ |η(δn(t))− η(t)|

+〈Au′(t)−Au′
n(t), z〉+ 〈Bw(t)− Bn(t), z〉+ 〈(Rw)(t)−Rn(t), z〉.

Next, given ε > 0, we integrate the above inequality on [t− ε, t+ ε] to obtain
∫ t+ε

t−ε

〈Au′(s) +Bw(s) + (Rw)(s), z〉 ds ≤

∫ t+ε

t−ε

σC(s)(z) ds

+ ‖z‖

∫ t+ε

t−ε

|η(δn(s))− η(s)| ds+

∫ t+ε

t−ε

〈Au′(s)−Au′
n(s), z〉 ds

+

∫ t+ε

t−ε

〈Bw(s)− Bn(s), z〉 ds+

∫ t+ε

t−ε

〈(Rw)(s)−Rn(s), z〉 ds.(3.17)

Since η is absolutely continuous and δn(s) → s as n → ∞, using Lebesgue’s dominated
convergence theorem, we find that

∫ t+ε

t−ε

|η(δn(s))− η(s)| ds ≤

∫ T

0

|η(δn(s))− η(s)| ds → 0 as n → ∞.(3.18)

Further, the convergence (3.13) and hypotheses H(A) imply that
∫ t+ε

t−ε

〈Au′(s)−Au′
n(s), z〉 ds =

∫ T

0

〈Au′(s)−Au′
n(s), zχ[t−ε,t+ε](s)〉 ds

=

∫ T

0

〈u′(s)− u′
n(s), Azχ[t−ε,t+ε](s)〉 ds → 0 as n → ∞.(3.19)

Finally, Remark 13 guarantees that
∫ t+ε

t−ε

〈Bw(s)− Bn(s), z〉 ds ≤ ‖z‖

∫ t+ε

t−ε

‖Bw(s)− Bn(s)‖ ds

≤ ‖z‖

∫ T

0

‖Bw(s)− Bn(s)‖ ds ≤ ‖z‖T
1
2 ‖Bw − Bn‖L2(0,T ;H) → 0(3.20)
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and

∫ t+ε

t−ε

〈(Rw)(s)−Rn(s), z〉 ds ≤ ‖z‖

∫ t+ε

t−ε

‖(Rw)(s)−Rn(s)‖ ds

≤ ‖z‖

∫ T

0

‖(Rw)(s)−Rn(s)‖ ds ≤ ‖z‖T
1
2 ‖(Rw)−Rn‖L2(0,T ;H) → 0(3.21)

as n → ∞. Therefore, from inequality (3.17), letting n tend to infinity and then
taking into account (3.18)–(3.21) yields

∫ t+ε

t−ε

〈Au′(s) +Bw(s) + (Rw)(s), z〉 ds ≤

∫ t+ε

t−ε

σC(s)(z) ds for all z ∈ H.

Through dividing by 2ε, passing to the limit as ε → 0 in the above inequality, and
using the Lebesgue differentiation theorem, we obtain

〈Au′(t) +Bw(t) + (Rw)(t), z〉 ≤ σC(t)(z) for all z ∈ H.

Since σC(t)(z) = supy∈C(t)〈y, z〉 for all z ∈ H, the latter inequality implies

Au′(t) +Bw(t) + (Rw)(t) ∈ C(t).

Hence, we conclude that (3.15) holds, which proves the claim.
Next, we verify that u solves problem (3.2). For each n ∈ N, inclusion (3.10) can

be rewritten as

〈−u′
n(t), z −Au′

n(t)− Bn(t)−Rn(t)〉 ≤ 0 for all z ∈ Cn(δn(t))

for a.e. t ∈ [0, T ]. Let z ∈ Cn(δn(t)) and v ∈ Cn(t). We use the previous inequality
to obtain that

〈−u′
n(t), v −Au′

n(t)− Bn(t)−Rn(t)〉

= 〈−u′
n(t), v − z + z −Au′

n(t)− Bn(t)−Rn(t)〉

= 〈−u′
n(t), z −Au′

n(t)− Bn(t)−Rn(t)〉+ 〈−u′
n(t), v − z〉

≤ 〈−u′
n(t), v − z〉 ≤ ‖u′

n(t)‖‖v − z‖.

Recall that ‖v − z‖ ≤ c0 |η(δn(t)) − η(t)| due to inclusion Cn(t) ⊂ Cn(δn(t)) +
c0 |η(δn(t))− η(t)|O(0, 1). Hence, by estimate (3.5), we have

(3.22) 〈−u′
n(t), v −Au′

n(t)− Bn(t)−Rn(t)〉 ≤ c0L
∣∣η(δn(t))− η(t)

∣∣

for all v ∈ Cn(t) and a.e. t ∈ [0, T ].
Let t∗ ∈ [0, T ] and v∗ ∈ C(t∗) be given. For any ε > 0, we define a function

v : [t∗ − ε, t∗ + ε] → H by

v(t) = PC(t)(v
∗) for all t ∈ [t∗ − ε, t∗ + ε],

where PC(t) denotes the projector operator on C(t). The absolute continuity of t �→
C(t) indicates that the function v is also absolutely continuous on [t∗ − ε, t∗ + ε]. On
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the other hand, the continuity of v and compactness of [t∗ − ε, t∗ + ε] imply that v is
bounded on [t∗ − ε, t∗ + ε]. This ensures that there exists N1 > 0 such that

v(t) ∈ Cn(t) for all t ∈ [t∗ − ε, t∗ + ε] and n ≥ N1.

Putting v = v(t) into (3.22) and then integrating the resulting inequality on
interval [t∗ − ε, t∗ + ε], we deduce that

∫ t∗+ε

t∗−ε

〈−u′
n(s), v(s)−Au′

n(s)− Bn(s)−Rn(s)〉 ds

≤ c0L

∫ t∗+ε

t∗−ε

∣∣η(δn(s))− η(s)
∣∣ ds

and, therefore,

∫ t∗+ε

t∗−ε

〈u′
n(s), Au

′
n(s)〉 ds+

∫ t∗+ε

t∗−ε

〈u′
n(s),Bn(s)〉 ds+

∫ t∗+ε

t∗−ε

〈u′
n(s),Rn(s)〉 ds

−

∫ t∗+ε

t∗−ε

〈u′
n(s), v(s)〉 ds ≤ c0L

∫ T

0

∣∣η(δn(s))− η(s)
∣∣ ds.(3.23)

Recall that η is absolutely continuous and δn(s) → s as n → ∞, which gives that

(3.24) c0L

∫ T

0

∣∣η(δn(s))− η(s)
∣∣ ds → 0 as n → ∞.

Moreover, due to the convergence u′
n→u′ weakly in L2(0, T ;H), one has unχ[t∗−ε,t∗+ε]→

u′χ[t∗−ε,t∗+ε] weakly in L2(0, T ;H) as n → ∞. Next, recalling that A is linear,
bounded, and coercive, we get that the function

L2(0, T ;H) ∋ u �→

∫ T

0

〈u(t), Au(t)〉 dt ∈ R

is convex on L2(0, T ;H). This entails

∫ t∗+ε

t∗−ε

〈u′(s), Au′(s)〉 ds =

∫ T

0

〈(u′χ[t∗−ε,t∗+ε])(s), A(u
′χ[t∗−ε,t∗+ε])(s)〉 ds

≤ lim inf
n→∞

∫ T

0

〈(u′
nχ[t∗−ε,t∗+ε])(s), A(u

′
nχ[t∗−ε,t∗+ε])(s)〉 ds

= lim inf
n→∞

∫ t∗+ε

t∗−ε

〈u′
n(s), Au

′
n(s)〉 ds as n → ∞.(3.25)

Moreover, Remark 13 and the convergence u′
n → u′ weakly in L2(0, T ;H), guaranteed

by Lemma 16, show that

lim
n→∞

∫ t∗+ε

t∗−ε

〈u′
n(t),Bn(s)〉 ds = lim

n→∞

∫ T

0

〈u′
n(t),Bn(s)χ[t∗−ε,t∗+ε](s)〉 ds

=

∫ T

0

〈u′(t), Bw(s)χ[t∗−ε,t∗+ε](s)〉 ds =

∫ t∗+ε

t∗−ε

〈u′(t), Bw(s)〉 ds(3.26)
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and

lim
n→∞

∫ t∗+ε

t∗−ε

〈u′
n(t),Rn(s)〉 ds = lim

n→∞

∫ T

0

〈u′
n(t),Rn(s)χ[t∗−ε,t∗+ε](s)〉 ds

=

∫ T

0

〈u′(t), (Rw)(s)χ[t∗−ε,t∗+ε](s)〉 ds =

∫ t∗+ε

t∗−ε

〈u′(t), (Rw)(s)〉 ds.(3.27)

In addition, (3.13) implies that the following convergence holds:

∫ t∗+ε

t∗−ε

〈u′
n(s), v(s)〉 ds =

∫ T

0

〈u′
n(s), (vχ[t∗−ε,t∗+ε])(s)〉 ds

→

∫ T

0

〈u′(s), (vχ[t∗−ε,t∗+ε])(s)〉 ds =

∫ t∗+ε

t∗−ε

〈u′(s), v(s)〉 ds.(3.28)

Now, taking into account (3.23)–(3.28), we obtain

∫ t∗+ε

t∗−ε

〈−u′(s), v(s)−Au′(s)−Bw(s)− (Rw)(s)〉 ds ≤ 0.

Subsequently, we divide the above inequality by 2ε to get

1

2ε

∫ t∗+ε

t∗−ε

〈−u′(s), v(s)−Au′(s)−Bw(s)− (Rw)(s)〉 ds ≤ 0.

Passing to the limit as ε → 0 in this inequality, by the Lebesgue differentiation theorem
we conclude that

〈−u′(t∗), v(t∗)−Au′(t∗)−Bw(t∗)− (Rw)(t∗)〉 ≤ 0.

On the other hand, bearing in mind that v∗ ∈ C(t∗) and v(t∗) = PC(t∗)(v
∗) = v∗, we

have
〈−u′(t∗), v∗ −Au′(t∗)−Bw(t∗)− (Rw)(t∗)〉 ≤ 0.

Now, since v∗ ∈ C(t∗) and t∗ ∈ [0, T ] are both arbitrary, the previous inequality shows
that

−u′(t∗) ∈ NC(t∗)

(
Au′(t∗) +Bw(t∗) + (Rw)(t∗)

)
for a.e. t∗ ∈ [0, T ].

Consequently, u is a solution to problem (3.2), which concludes the existence part of
the lemma.

To prove the uniqueness part, we assume in what follows that u1, u2 are two
Lipschitz continuous functions which solve problem (3.2). Then,

〈−u′
i(t), v −Au′

i(t)−Bw(t)− (Rw)(t)〉 ≤ 0 for all v ∈ C(t)

a.e. t ∈ [0, T ] for i = 1, 2. Note that Au′
i(t) + Bw(t) + (Rw)(t) ∈ C(t) for a.e.

t ∈ [0, T ] and i = 1, 2. We substitute v = Au′
2(t) + Bw(t) + (Rw)(t) and v =

Au′
1(t) + Bw(t) + (Rw)(t) in the above inequality for i = 1 and i = 2, respectively,

and then we sum the resulting inequalities to get

〈Au′
1(t)−Au′

2(t), u
′
1(t)− u′

2(t)〉 ≤ 0 for a.e. t ∈ [0, T ].
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Therefore,

α‖u′
1(t)− u′

2(t)‖
2 ≤ 0 for a.e. t ∈ [0, T ],

which shows that u′
1 = u′

2. Next, since ui(t) = u0 +
∫ t

0
u′
i(s) ds for all t ∈ [0, T ], we

deduce that u1(t) = u2(t) for all t ∈ [0, T ], which concludes the proof.

We now proceed with the following convergence result.

Lemma 18. The whole sequence {un} converges to u strongly in L2(0, T ;H).

Proof. It follows from Lemmas 16 and 17 that any weakly convergent subsequence
of {un} has the same limit, which is, in fact, the unique solution u of problem (3.2).
This conclusion, combined with boundedness of {un}, implies that the whole sequence
{un} converges to u weakly in L2(0, T ;H).

It remains to show that the convergence is strong. Since u is Lipschitz continuous
with Lipschitz constant L > 0, using the regularity w ∈ C([0, T ];H) and hypotheses
H(B), H(R), we can see that {Au′(t) + Bw(t) + (Rw)(t)}t∈[0,T ] is bounded in H.
Lemma 11 guarantees that there is N2 > 0 such that Au′(t)+Bw(t)+(Rw)(t) ∈ Cn(t)
for a.e. t ∈ [0, T ] for all n ≥ N2. On the other hand, since u is a solution of problem
(3.2), we also have

〈−u′(t), v −Au′(t)−Bw(t)− (Rw)(t)〉 = 〈−u′(t), v − z〉

+ 〈−u′(t), z −Au′(t)−Bw(t)− (Rw)(t)〉 ≤ 〈−u′(t), v − z〉

≤ L‖v − z‖ for all z ∈ Cn(t) ⊂ C(t), v ∈ Cn(δn(t))

and a.e. t ∈ [0, T ]. Applying the inequality ‖v − z‖ ≤ c0 |η(δn(t))− η(t)| (valid since
Cn(t) ⊂ Cn(δn(t)) + c0 |η(δn(t))− η(t)|O(0, 1)), we deduce that

〈−u′(t), v −Au′(t)−Bw(t)− (Rw)(t)〉 ≤ c0L|η(δn(t))− η(t)|

for all v ∈ Cn(δn(t)) and a.e. t ∈ [0, T ]. We now choose v = Au′
n(t)+Bn(t)+Rn(t) ∈

Cn(δn(t)) in the above inequality and v = Au′(t) + Bw(t) + (Rw)(t) ∈ Cn(t) ⊂ C(t)
in (3.22), and then we add the resulting inequalities to find that

〈u′(t)− u′
n(t), Au

′(t)−Au′
n(t)〉+ 〈u′(t)− u′

n(t), Bw(t)− Bn(t)〉

+ 〈u′(t)− u′
n(t), (Rw)(t)−Rn(t)〉 ≤ 2c0L

∣∣η(δn(t))− η(t)
∣∣

for a.e. t ∈ [0, T ]. Hence, we have

α‖u′(t)− u′
n(t)‖

2 ≤ 2c0L
∣∣η(δn(t))− η(t)

∣∣+ ‖Bw(t)− Bn(t)‖
(
‖u′(t)‖+ ‖u′

n(t)‖
)

+ ‖(Rw)(t)−Rn(t)‖
(
‖u′(t)‖+ ‖u′

n(t)‖
)
for a.e. t ∈ [0, T ].

Integrating the above inequality on [0, T ] and using the bounds ‖u′(t)‖ ≤ L, ‖u′
n(t)‖ ≤

L for a.e. t ∈ [0, T ], we infer that

‖u′
n − u′‖2L2(0,T ;H) =

∫ T

0

‖u′(t)− u′
n(t)‖

2 dt ≤
2c0
α

∫ T

0

∣∣η(δn(t))− η(t)
∣∣ dt

+
2L

α

∫ T

0

‖Bw(t)− Bn(t)‖ dt+
2L

α

∫ T

0

‖(Rw)(t)−Rn(t)‖ dt.
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Passing to the limit, as n → ∞, in the above inequality and using Remark 13, we
deduce that

‖u′
n − u′‖L2(0,T ;H) → 0,

i.e., u′
n → u′ strongly in L2(0, T ;H). Finally, by equalities u(t) = u0+

∫ t

0
u′(s) ds and

un(t) = u0 +
∫ t

0
u′
n(s) ds, valid for all t ∈ [0, T ], we deduce that un → u strongly in

L2(0, T ;H), which completes the proof.

We now have all the ingredients to provide the proof of our main existence, unique-
ness, and stability results.

Proof of Theorem 12. For any w ∈ C([0, T ];H), it follows from Lemma 17 that
there exists a unique Lipschitz continuous solution u = u(w) of problem (3.2). We
now introduce the operator S : C([0, T ];H) → W 1,∞(0, T ;H) ⊂ C([0, T ];H) defined
by

(3.29) Sw = u(w).

We claim that S has a unique fixed point. To this end, let wi ∈ C([0, T ];H), and
denote ui = u(wi) for i = 1, 2. We have

{
〈−u′

i(t), v −Au′
i(t)−Bwi(t)− (Rwi)(t)〉 ≤ 0 for all v ∈ C(t),

ui(0) = u0

for a.e. t ∈ [0, T ]. We test with v = Au′
2(t) − Bw2(t) − (Rw2)(t) and v = Au′

1(t) −
Bw1(t)− (Rw1)(t) in the above inequality for i = 1 and i = 2, respectively, and then
we add the resulting inequalities to obtain that

〈Au′
1(t)−Au′

2(t), u
′
1(t)− u′

2(t)〉 ≤ 〈Bw1(t)−Bw2(t), u
′
2(t)− u′

1(t)〉

+ 〈(Rw1)(t)− (Rw2)(t), u
′
2(t)− u′

1(t)〉

for a.e. t ∈ [0, T ]. Therefore, using hypotheses H(A) we find that

α‖u′
1(t)− u′

2(t)‖ ≤ ‖Bw1(t)−Bw2(t)‖+ ‖(Rw1)(t)− (Rw2)(t)‖

for a.e. t ∈ [0, T ]. Now using hypotheses H(B) and H(R), we have

(3.30) ‖u′
1(t)− u′

2(t)‖ ≤
LB

α
‖w1(t)− w2(t)‖+

LR

α

∫ t

0

‖w1(s)− w2(s)‖ ds

for a.e. t ∈ [0, T ]. Next, using the definition of the operator S, the initial conditions
u1(0) = u2(0) = u0, and inequality (3.30), we have that

‖(Sw1)(t)− (Sw2)(t)‖ = ‖u1(t)− u2(t)‖ ≤

∫ t

0

‖u′
1(s)− u′

2(s)‖ ds

≤
LB

α

∫ t

0

‖w1(s)− w2(s)‖ ds+
LR

α

∫ t

0

∫ s

0

‖w1(ξ)− w2(ξ)‖ dξ ds

≤
LB + TLR

α

∫ t

0

‖w1(s)− w2(s)‖ ds for all t ∈ [0, T ].

This inequality shows that S is a history-dependent operator. Now using Lemma 6,
we deduce that there exists a unique function w∗ such that w∗ = Sw∗, and since S
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takes values in the space W 1,∞(0, T ;H), we deduce that w∗ ∈ W 1,∞(0, T ;H). Then,
writing (3.2) for w = w∗ and using (3.29), it is easy to see that w∗ = Sw∗ = u(w∗) is
a solution to problem (1.2) with regularity W 1,∞(0, T ;H), which proves the existence
part in Theorem 12. The uniqueness part follows from the uniqueness of the fixed
point of operator S, guaranteed by Lemma 6.

We now turn to the dependence of the solution with respect to the initial data,
and to this end, we let u1

0, u2
0 ∈ H be arbitrary, and for i = 1, 2 denote by ui ∈

W 1,∞(0, T ;H) the solution of problem (1.2) corresponding to the initial data ui
0.

Using arguments similar to those in the proof of inequality (3.30) we deduce that

(3.31) ‖u′
1(s)− u′

2(s)‖ ≤
LB

α
‖u1(s)− u2(s)‖+

LR

α

∫ s

0

‖u1(r)− u2(r)‖ dr

for a.e. s ∈ [0, T ]. On the other hand, since ui(t) =
∫ t

0
ui(s) ds+ ui

0 for all t ∈ [0, T ],
we find that

(3.32) ‖u1(t)− u2(t)‖ ≤

∫ t

0

‖u′
1(s)− u′

2(s)‖ ds+ ‖u1
0 − u2

0‖.

We now substitute inequality (3.31) in (3.32) to obtain that

‖u1(t)− u2(t)‖ ≤
LB + TLR

α

∫ t

0

‖u1(s)− u2(s)‖ ds

+ ‖u1
0 − u2

0‖ for all t ∈ [0, T ],

and using the Gronwall argument, we find that

(3.33) ‖u1(t)− u2(t)‖ ≤ L0‖u
1
0 − u2

0‖ for all t ∈ [0, T ],

with some L0 > 0. Inequalities (3.31) and (3.33) yield

(3.34) ‖u′
1(t)− u′

2(t)‖ ≤ L1‖u
1
0 − u2

0‖ for a.e. t ∈ [0, T ],

with a constant L1 > 0. We now combine inequalities (3.33) and (3.34) and use
definition (3.1) to see that

‖u1 − u2‖W 1,∞(0,T ;H) ≤ (L0 + L1)‖u
1
0 − u2

0‖,

which completes the proof of the theorem.

We end this section with the following consequence of Theorem 12, obtained for
R ≡ 0.

Corollary 19. Assume that H(A), H(B), and H(C) hold. Then, for any u0 ∈
H, there exists a unique function u = u(u0) ∈ W 1,∞(0, T,H) such that

{
−u′(t) ∈ NC(t)(Au′(t) +Bu(t)) for a.e. t ∈ [0, T ],

u(0) = u0.

Moreover, the map u0 �→ u(u0) : H → W 1,∞(0, T ;H) is Lipschitz continuous.

Note that Corollary 19 extends Theorem 3.1 in [1] (obtained under the assumption
that B : H → H is a linear continuous positive operator) and completes it with a
continuous dependence result of the solution with respect to the initial data.
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4. Application to a history-dependent viscoelastic contact problem. In
this section we will illustrate the applicability of the results obtained in section 3
to a model of a quasi-static contact problem for viscoelastic material with unilateral
constraints in velocity.

The physical setting is as follows. A viscoelastic body occupies an open, bounded,
and connected domain Ω in Rd, d = 2, 3, with Lipschitz boundary ∂Ω = Γ. The
boundary is partitioned into four disjoint measurable parts ΓD, ΓN , ΓC1

, and ΓC2

such that meas (ΓD) > 0. The body is fixed on ΓD, is acted on by body forces on
Ω and surface traction on ΓN , and is in contact with two obstacles on ΓC1

and ΓC2
,

respectively. As a result its mechanical state evolves in the time interval [0, T ] with
T > 0. To describe its evolution, we need to introduce the following notation. For a
vector field ξ we denote by ξν and ξτ its normal and tangential components on the
boundary, i.e., ξν = ξ · ν and ξτ = ξ − ξνν, respectively, where ν = (νi) denotes
the outward unit normal at Γ. The notation σν and στ represents the normal and
tangential components of the stress field σ on the boundary, that is, σν = (σν) · ν
and στ = σν − σνν. Moreover, Sd denotes the space of symmetric d × d matrices.
On Rd and Sd we use inner products and norms defined by

ξ · η = ξiηi, ‖ξ‖Rd = (ξ · ξ)1/2 for ξ = (ξi), η = (ηi) ∈ Rd,

σ · τ = σijτij , ‖σ‖Sd = (σ · σ)1/2 for σ = (σij), τ = (τij) ∈ Sd.

The indices i, j, k, l run between 1 and d, and the summation convention over repeated
indices is applied. We also set Q = Ω × (0, T ), Σ = Γ × (0, T ), ΣD = ΓD × (0, T ),
ΣN = ΓN × (0, T ), ΣC1

= ΓC1
× (0, T ), and ΣC2

= ΓC2
× (0, T ).

With these preliminaries, the classical formulation of the mathematical model of
contact we consider in this section is the following.

Problem 20. Find a displacement field u : Q → Rd and a stress field σ : Q → Sd

such that

σ(t) = A ε(u′(t)) + Bε(u(t)) +

∫ t

0

R(t− s)ε(u(s)) ds in Q,(4.1)

Divσ(t) + f0(t) = 0 in Q,(4.2)

u(t) = 0 on ΣD,(4.3)

σ(t)ν = fN (t) on ΣN ,(4.4)

{
u′
ν(t) ≤ 0, σν(t) ≤ 0, σν(t)u

′
ν(t) = 0

στ (t) = 0
on ΣC1

,(4.5)

{
−σν(t) = F

‖στ (t)‖Sd ≤ µ|σν(t)|, −στ (t) = µ|σν(t)|
u′

τ (t)
‖u′

τ (t)‖Rd
if u′

τ (t) �= 0
on ΣC2

,

(4.6)

u(0) = u0 in Ω.
(4.7)

A brief comment on the equations and conditions in Problem 20 reads as follows.
First, (4.1) is a general constitutive law for viscoelastic materials with long memory
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in which A is the viscosity operator, B represents the elasticity operator, and R is
the relaxation tensor. We recall the strain-displacement relation

ε(u) = (εij(u)), εij(u) =
1

2
(ui,j + uj,i) in Q,

which defines the linearized strain tensor. For more details on the general viscoelastic
constitutive law with long memory of the form (4.1), we refer the reader to [13, 21]
and the references therein. Equation (4.2) is the equilibrium equation, in which f0

denotes the density of the body forces. Equation (4.3) is the displacement condition,
which describes the fact that the body is fixed on the boundary ΓD. Equation (4.4)
represents the traction boundary condition, where fN is the density of traction acting
on ΓN . Relation (4.5) describes the frictionless contact with unilateral constraints in
velocity (see, for instance, [12, 22]), and (4.6) represents a version of Coulomb’s law
of dry friction, in which the normal stress on the contact boundary is assumed to
be given (see, for instance, [20] and the references therein). Here, F is a positive
function, µ ≥ 0 denotes the coefficient of friction, and therefore µF represents the
friction bound. Finally, condition (4.7) is the initial condition in which u0 stands for
the initial displacement field.

To establish the variational formulation of the contact problem (4.1)–(4.7), we
introduce the function spaces

(4.8) H = { v ∈ H1(Ω;Rd) | v = 0 on ΓD }, V = L2(Ω; Sd).

Recall that the space V is a Hilbert space with the inner product

〈σ, τ 〉V =

∫

Ω

σij(x) τij(x) dx for σ, τ ∈ V,

and the associated norm is denoted by ‖ · ‖V . Moreover, since meas (ΓD) > 0, the
space H is a Hilbert space with the inner product given by 〈u,v〉H = 〈ε(u), ε(v)〉V
for u,v ∈ H, and the associated norm ‖ · ‖H .

Subsequently, the trace of an element v ∈ H is also denoted by v. Also, we need
the set of admissible velocity fields given by

K = {v ∈ H | vν ≤ 0 for a.e. on ΓC1
}.

It follows from the continuity of the trace operator that

‖v‖L2(ΓC ;Rd) ≤ ‖γ‖ ‖v‖H

for all v ∈ H, where ΓC = ΓC1
∪ΓC2

, and ‖γ‖ denotes the norm of the trace operator
γ : H → L2(ΓC ;R

d). In addition, we consider the space of the fourth-order tensor
fields defined by

Q∞ = { E = (Eijkl) | Eijkl = Ejikl = Eklij ∈ L∞(Ω), 1 ≤ i, j, k, l ≤ d }.

It is well known that Q∞ is a real Banach space with the usual norm

‖E‖Q∞
= max

1≤i,j,k,l≤d
‖Eijkl‖L∞(Ω) for all E ∈ Q∞.

In the study of Problem 20, we need the following assumptions on the data.
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H(A ): A ∈ Q∞ and satisfies

A ε · ε ≥ LA ‖ε‖2
Sd

for all ε ∈ Sd with some LA > 0.

H(B): B : Ω× Sd → Sd is such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

(a) there exists LB > 0 such that
‖B(x, ε1)− B(x, ε2)‖Sd ≤ LB‖ε1 − ε2‖Sd
for all ε1, ε2 ∈ Sd a.e. x ∈ Ω,

(b) the mapping x �→ B(x, ε) is measurable on Ω,

for all ε ∈ Sd,

(c) the mapping x �→ B(x,0) belongs to V.

H(R): R ∈ C([0, T ];Q∞).

H(f):

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f0 ∈ W 1,1(0, T ;L2(Ω;Rd)),

fN ∈ W 1,1(0, T ;L2(ΓN ;Rd)),

F ∈ L2(ΓC2
), F (x) ≥ 0 a.e. x ∈ ΓC2

,

µ ∈ L∞(ΓC2
), µ(x) ≥ 0 a.e. x ∈ ΓC2

.

The variational formulation of Problem 20 is obtained by standard arguments
that we present in what follows. Assume that (u,σ) is a pair of smooth functions
which satisfies (4.1)–(4.7). Let v ∈ K and t ∈ [0, T ]. We multiply the equilibrium
equation (4.2) by v − u′(t) and use the Green formula to obtain that

〈σ(t), ε(v)− ε(u′(t))〉V = 〈f0(t),v − u′(t)〉V +

∫

Γ

σ(t)ν · (v − u′(t)) dΓ.

Subsequently, we use the equality

∫

Γ

σ(t)ν · v dΓ =

∫

ΓD

σ(t)ν · v dΓ +

∫

ΓN

σ(t)ν · v dΓ +

∫

ΓC

σ(t)ν · v dΓ

and the boundary conditions (4.3), (4.4) to find that

〈σ(t), ε(v)− ε(u′(t))〉V = 〈f(t),v − u′(t)〉H

+

∫

ΓC1

(σν(t)(vν − u′
ν(t)) + στ (t) · (vτ − u′

τ (t))) dΓ

+

∫

ΓC2

(σν(t)(vν − u′
ν(t)) + στ (t) · (vτ − u′

τ (t))) dΓ,(4.9)

where the element f ∈ W 1,1(0, T ;H) is defined by

(4.10) 〈f(t),v〉H = 〈f0(t),v〉L2(Ω;Rd) + 〈fN (t),v〉L2(ΓN ;Rd)

for all v ∈ H and t ∈ [0, T ]. The boundary condition (4.5) reveals that
∫

ΓC1

(σν(t)(vν − u′
ν(t)) + στ (t) · (vτ − u′

τ (t))) dΓ

=

∫

ΓC1

σν(t)(vν − u′
ν(t)) dΓ ≥ 0.(4.11)
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On the other hand, by virtue of (4.6), we have

∫

ΓC2

(σν(t)(vν − u′
ν(t)) + στ (t) · (vτ − u′

τ (t))) dΓ ≥

∫

ΓC2

F (u′
ν(t)− vν) dΓ

+

∫

ΓC2

µF‖u′
τ (t)‖Rd dΓ−

∫

ΓC2

µF‖vτ‖Rd dΓ.(4.12)

We now substitute (4.11) and (4.12) into (4.9) and combine the resulting in-
equality with the constitutive law (4.1), the initial condition (4.7), and the regularity
u(t) ∈ H,u′(t) ∈ K. As a result we obtain the following variational formulation for
Problem 20.

Problem 21. Find a displacement field u : [0, T ] → H such that

u′(t) ∈ K, 〈A ε(u′(t)) + Bε(u(t)) +

∫ t

0

R(t− s)ε(u(s)) ds, ε(v)− ε(u′(t))〉V

+

∫

ΓC2

F (vν − u′
ν(t)) dΓ +

∫

ΓC2

µF‖vτ‖Rd dΓ−

∫

ΓC2

µF‖u′
τ (t)‖Rd dΓ

≥ 〈f(t),v − u′(t)〉H for all v ∈ K and a.e. t ∈ (0, T ),

u(0) = u0 in Ω.

Our main result in the study Problem 21 reads as follows.

Theorem 22. Assume H(A ), H(B), H(R), and H(f) are fulfilled. Then, for

any initial displacement u0 ∈ H there exists a unique solution u=u(u0)∈W 1,∞(0, T ;H)
of Problem 21. Moreover, the map u0 �→ u(u0) : H → W 1,∞(0, T ;H) is Lipschitz

continuous.

Proof. The proof is based on Theorem 12 and is carried out in several steps. The
idea is to reformulate Problem 21 as a sweeping process of the form (1.2) for which
the conditions in Theorem 12 are satisfied. The steps of the proof are the following.

(i) Equivalence with an evolutionary inclusion problem. We introduce the opera-
tors A : H → H, B : H → H, and R : C([0, T ];H) → C([0, T ];H) defined by

〈Au,v〉H = 〈A (ε(u)), ε(v)〉V ,(4.13)

〈Bu,v〉H = 〈B(ε(u)), ε(v)〉V ,(4.14)

〈(Rw)(t),v〉H =

〈∫ t

0

R(t− s)ε(w(s)) ds, ε(v)

〉

V

(4.15)

for all v,u ∈ H, and w ∈ C([0, T ];H). Also, we consider the function ϕ : H → R :=
R ∪ {+∞} given by
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ϕ(v) =

⎧
⎪⎨
⎪⎩

∫

ΓC2

µF
(
vν + ‖vτ‖Rd

)
dΓ if v ∈ K,

+∞ otherwise

for all v ∈ H. Under the above notation, it is easy to see that Problem 21 is equivalent
to the problem of finding a displacement field u : [0, T ] → H such that

u′(t) ∈ K, 〈Au′(t) +Bu(t) + (Ru)(t)− f(t),v − u′(t)〉H + ϕ(v)− ϕ(u′(t)) ≥ 0

for all v ∈ H and a.e. t ∈ (0, T ),

u(0) = u0,

which, in turn, is equivalent to the following evolutionary inclusion problem: find a
displacement field u : [0, T ] → H such that

{
f(t)−Au′(t)−Bu(t)− (Ru)(t) ∈ ∂ϕ(u′(t)) for a.e. t ∈ (0, T ),

u(0) = u0.
(4.16)

(ii) Equivalence with a sweeping process. By virtue of the definitions of K and ϕ,
we can see that K is a nonempty, closed, convex cone, and ϕ is proper, convex, and
positively homogeneous of degree 1 (i.e., ϕ(λu) = λϕ(u) for all λ > 0 and u ∈ H).
Moreover, ϕ is Lipschitz continuous on K, and, in addition, ϕ(0) = 0. We now define
a closed convex subset C of H by

C := ∂ϕ(0) = { ξ ∈ H | ϕ(v) ≥ 〈ξ,v〉H for all v ∈ H }.

Using this definition and the properties of ϕ we have

ϕ(v) = sup
ξ∈C

〈ξ,v〉H = σC(v) = I∗C(v) for all v ∈ H,

where I∗C is the Legendre–Fenchel conjugate of the indicator function IC . Moreover,
since IC is proper, convex, and lower semicontinuous, it has the following properties:

{
∂ϕ(v) = ∂I∗C(v),

ϕ∗(v) = I∗∗C (v) = IC(v).

On the other hand, by the definitions of the Legendre–Fenchel conjugate and the
convex subdifferential operator, the following equivalence holds:

ξ ∈ ∂ϕ(v) ⇐⇒ v ∈ ∂ϕ∗(ξ).

From the above relations, it follows that

ξ ∈ ∂ϕ(v) ⇐⇒ v ∈ ∂IC(ξ) ⇐⇒ v ∈ NC(ξ).

Therefore, we have

f(t)−Au′(t)−Bu(t)− (Ru)(t) ∈ ∂ϕ(u′(t))

⇐⇒ u′(t) ∈ NC

(
f(t)−Au′(t)−Bu(t)− (Ru)(t)

)

⇐⇒ u′(t) ∈ NC−f (t)

(
−Au′(t)−Bu(t)− (Ru)(t)

)

⇐⇒ −u′(t) ∈ NC(t)

(
Au′(t) +Bu(t) + (Ru)(t)

)
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for a.e. t ∈ [0, T ], where C(t) := f(t)−C = f(t)−∂ϕ(0). Now using (4.16), it follows
that Problem 21 is equivalent to the following sweeping process: find u : [0, T ] → H

such that
{

−u′(t) ∈ NC(t)

(
Au′(t) +Bu(t) + (Ru)(t)

)
for a.e. t ∈ (0, T ),

u(0) = u0.

(iii) Validity of the assumptions of Theorem 12. We now verify that all conditions
in Theorem 12 are fulfilled. To this end, from hypothesesH(A ), H(B) and definitions
(4.13), (4.14) of the operators A and B, respectively, we obtain that A and B satisfy
conditions H(A) and H(B) with α = LA and LB = LB, respectively. Moreover,
since R ∈ C([0, T ];Q∞), a simple calculation based on the elementary inequality

‖Eτ‖V ≤ d ‖E‖Q∞
‖τ‖V for all E ∈ Q∞, τ ∈ V,

shows that the operator R defined by (4.15) is a history-dependent operator, i.e., it
satisfies condition H(R) with LR = d maxt∈[0,T ] ‖R(t)‖Q∞

.
Next, let s, t ∈ [0, T ] be such that s ≤ t. Using the definition of C(t), we have

H(C(t), C(s)) ≤ ‖f(t)− f(s)‖H =

∥∥∥∥
∫ t

s

f ′(θ) dθ

∥∥∥∥
H

≤

∫ t

s

‖f ′(θ)‖H dθ

=

∫ t

0

‖f ′(θ)‖H dθ −

∫ s

0

‖f ′(θ)‖H dθ = η(t)− η(s),

where η : [0, T ] → R+ is the function defined by

η(t) =

∫ t

0

‖f ′(θ)‖ dθ for all t ∈ [0, T ].

Recall that f ∈ W 1,1(0, T ;H), and therefore we conclude from the above that η is an
absolutely continuous and nondecreasing function. This implies that the multivalued
mapping t �→ C(t) : [0, T ] → 2H fulfills condition H(C).

(iv) End of proof. We are now in a position to apply Theorem 12 to conclude
that Problem 21 has a unique solution u ∈ W 1,∞(0, T ;H) which depends Lipschitz
continuously on the initial data u0 ∈ H.

A pair of functions (u,σ) such that u is a solution of the contact Problem 21
and σ is given by the constitutive law (4.1) is called a weak solution to Problem 20.
Theorem 22 states the unique weak solvability of Problem 20 as well as its continuous
dependence with respect to the initial data, i.e., its stability. Note that the weak
solution has the regularity u ∈ W 1,∞(0, T ;H) and σ ∈ L∞(0, T ;V).
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