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Abstract— To detect cardiovascular diseases (CVD), 
electrocardiogram (ECG) of a patient must be recorded and 
analyzed for a long period. For an effective diagnosis, the ECG 
recording system must automatically adapt to new patients. This 
paper presents a low-complexity artificial neural network that 
exclusively uses the consecutive slopes of ECG signal as inputs. 
These features are extracted using a level-crossing ADC and a 
simple TDC-based event-driven processing chain. The proposed 
clockless system can detect arrhythmias in ECG with 98.4% 
accuracy and reduce the ANN hardware complexity by more 
than half compared to recent literature. It is perfectly adapted 
to integrated wearable monitoring systems and shows good 
adaptability to new patients.  

Keywords—Artificial neural network (ANN), 
electrocardiogram (ECG), cardiac arrhythmia classification 
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I. INTRODUCTION  

Cardiovascular diseases (CVD) are one of the major 
causes of deaths in the world [1]. Electrocardiogram (ECG) 
is used for early CVD diagnosis; and wearable at-home 
monitoring systems can avoid patient examinations at the 
hospital. To enable wearable health monitoring systems with 
a long battery life, their power consumption must be greatly 
reduced. The near-sensor computing paradigm suggests that 
processing data in the sensor reduces the total amount of data 
to send to a data center for further analysis. It enables the 
early detection of abnormality using low-power feature 
extraction and classification subsystems.  

Besides, ECG signals do not hold uniformly distributed 
information in time. Event-driven sampling, which relies on 
generating a sample,  when a certain amplitude level is 
crossed, is best suited for signals such as ECG signals that 
have large changes in short periods and small changes over 
longer periods, compared to Nyquist sampling. It is 
demonstrated in [2] that level-crossing ADCs (LC-ADCs) 
offer two main advantages, compared to traditional uniform 
sampling, for low-to-medium resolution applications (< 8 
bits). Fewer samples are generated, which leads to less 
energy-hungry processing, and the majority of these samples 
are located at timings of interest, i.e. around the R-peaks, 
which are more relevant to process. 

Solutions exist in the literature to classify ECG signals 
using non-uniform sampling. In [3], an event-driven wake-up 
circuit detects abnormal signals that do not fit a learned 
pattern, but the classification is not robust and results in an 
accuracy below 75%. Moreover, no information is given on 
the data used for training and validation. In [4], low-

complexity 96-bit features are extracted and the classification 
is performed with a patient-specific Artificial Neural 
Network (ANN). Although the reported accuracy is higher 
than 99%, the architecture requires a global timer to calculate 
the precise time between two R-peaks of the ECG signal and 
digitally encode it as the main feature. This increases the 
power consumption of the system and counteracts the 
clockless nature of the event-driven system. 

In this work, we want to combine the higher accuracy and 
adaptability of ANNs for classification with the simplicity 
and adaptability in the event-driven feature extraction stage. 
To that end, the slopes between two consecutive non-uniform 
samples are used as input features for the ANN, since the 
slopes hold information of both time and amplitude between 
samples. We demonstrate in this paper that the event-driven 
extraction of slope is extremely simple and that the simulated 
classification results in the case of premature ventricular 
contraction (PVC) promise accuracies up to 98.3%. 

This article is organized as follows. In Section II, the 
global architecture of the slope-based event-driven system is 
presented and the slope extraction, quantization, and 
heartbeat classification blocks are detailed. The results of 
arrhythmia classification is presented in Section III. 
Conclusions are finally drawn on the efficiency of the 
method. 

 

II. SLOPE-BASED EVENT-DRIVEN FEATURE EXTRACTION 

The input ECG signal used for testing and evaluation is 
extracted from the MIT-BIH arrhythmia database. The 
records from this database is sampled at 360 Hz. The 
database is oversampled to 10 kHz to increase the time 
resolution between two non-uniform consecutive samples. 
Figure 1 depicts an overview of the different functions 
implemented to perform the classification. First, it is 
composed of a 7-bit LC-ADC to perform the non-uniform 
sampling of the ECG signal. Then, a 7-state Time-to-Digital 
Converter (TDC) extracts the quantized values of the slopes. 
The framing and R-peak detection blocks select a sequence 
of N consecutive slopes centered around the R-peak of the 
heartbeat, before feeding them in a feed-forward fully 
connected ANN. It outputs either a “normal beat” or 
“abnormal beat” class. 

 

A. Non-uniform sampling 

The input data is non-uniformly sampled with an LC-
ADC acting as an asynchronous delta encoder [5]. The LC-



 

 

ADC outputs two signals REQ and DIR. REQ triggers a pulse 
each time a level is crossed, DIR indicates the direction of the 
crossed level. Using a 7-bit LC-ADC, the resulting number 
of samples is lower than in the uniform sampling case, with 
an average compression ratio of 3.2 for the database records 
with PVCs. The LC-ADC uses a floating window, avoiding 
the generation of samples created by the noise around an 
amplitude level and guaranteeing a minimal slope between 
two consecutive samples. 

B. Time-to-digital conversion 

The non-uniform samples are converted to slopes that are 
quantized using a TDC. For each record, the slopes between 
consecutive event-driven samples are calculated. These 
slopes are approximated from the oversampled data as we 
cannot have the exact duration between two samples of the 
MIT-BIH database. As an example, the distribution of all the 
calculated slopes for record 119 is plotted as a histogram in 
Fig. 2. The quantization thresholds are set according to the 
vertical lines shown in this Figure. They divide interesting 
and meaningful portions of the histogram (for positive slopes) 
and are symmetrical around 0 to be able to use the same 
hardware for positive and negative slopes. For record 119, 
thresholds are set to -100 mV/s, -30 mV/s, -4 mV/S, 4 mV/s, 
30 mV/S, and 100 mV/s for a total of 7 quantized slope 

values. Each distribution of slopes is patient-specific, but the 
histogram can always be divided as illustrated with record 
119, providing 7 quantized slopes (Q.S.). In the architecture, 
the slope thresholds will be defined with respective delays 
used in the 7-state TDC. The 7 states can then be digitally 
coded with 3 bits, 1 for the sign of the slope and 2 for the 
magnitude (MAGN.), as shown in Fig. 1. 

The architecture of the TDC is presented in Fig. 3. The 
block converts the REQ and DIR signals into a 3-bit non-
uniformly sampled data stream at the output. The time 
interval between two samples, following the REQ signal, is 
quantized using 3 delays, corresponding to the thresholds 
defined previously, giving four possible quantized time 
ranges: t < T1, T1 < t < T2, T2 < t < T3, and T3 < t.  

The integrated digital delays are usually realized with 
thyristor-like architectures, controlled either by discharge 
currents [6] or by digitally-controlled capacitor arrays [7]. 
The delays should be configurable to adapt the slope 
quantization thresholds for each patient. 

 
 

Fig.  1. Proposed event-driven architecture for the feature extraction and classification of ECG signals 
 

 
 

 
 

Fig.  3. Architecture and Chronogram of the TDC 
 

 
Fig. 2. Slope distribution of record 119. The vertical lines represent the 

slope thresholds chosen for the quantization in the TDC. 
 



 

 

The time interval between two rising edges of the REQ 
signal is thermometrically coded on 3 bits (D1, D2, and D3 
in Fig. 3) and converted to a 2-bit binary word to constitute 
the magnitude (MAGN.) bits of Q.S., ‘11’ for the highest 
magnitude and ‘00’ for the lowest. The SIGN bit is directly 
derived from the DIR signal of the LC-ADC, 1 for a positive 
slope and 0 for a negative one. A second flip-flop is inserted 
in the SIGN path for synchronization. 

It is to note that for slowly-varying signals, when T3 < t, 
the direction of the change signal is not relevant, thus not 
considered and the resulting states (‘000’ and ‘100’) are 
aggregated into a unique state (‘000’). 

C. Data framing 

The data fed to the ANN is a vector of N consecutive 3-
bit slopes. The framing block is thus implemented by a 3-bit 
shift register of length N. The center of the frame is 
positioned around the R-peak position, as indicated in Fig. 1, 
and is provided by an R-peak detection block. As a reference, 
R-peak detection can be performed by simple QRS detection 
blocks as presented in [8] or [9] with more than 97% detection 
rate, or by detecting the maximum of the signal reconstituted 
by the extracted slopes. It is to note that this latter method 
would be ultra-low-power but would give a reduced 
accuracy. In the scope of this paper, ideally placed R-peaks 
are considered for further classification. 

D. Heartbeat classification 

The ANN is a feed-forward fully connected neural 
network with an input layer with N_input = 8 neurons, a 
hidden layer with N_hidden = 4 neurons, and two output 
classes (normal or arrhythmic), as shown in Fig. 1. These 
dimensions have been found optimal considering the trade-
off between the accuracy of the classification and the 

complexity of the network. The activation functions for each 
layer are symmetric linear functions with saturation. The 
output layer uses a soft maximum. Since the normal and 
arrhythmic classes from the ECG records are imbalanced, a 
conditional grouping scheme like [4] is used. Once balanced, 
70% of the data is used for training, 15% for validating, and 
15% for testing. The ANN is trained for each specific record 
independently. 

III. SIMULATION RESULTS 

A. Arrhythmia classification 

The system is modeled using Matlab software and 
includes all the described blocks for feature extraction and 
classification. The records chosen for the tests are 105, 106, 
109, 114, 119, 203, 205, 210, 215, 219, 221, 228, and 233 
from MIT-BIH since their arrhythmias mostly consist of 
PVCs. The accuracy portrays how well the beats are globally 
classified, while the sensitivity and specificity depicts how 
well the normal beats and arrhythmic beats are classified, 
respectively. Finally, the false positive rate represents the 
percentage of arrhythmic beats classified as normal beats.  

The classification results are given in Fig. 4 for two 
configurations. In the case indicated in blue, the slope 
thresholds are set at the values defined in Section II-B and 
shown in Fig. 2 for all the records. In the case indicated in 
orange, the slope thresholds are adapted to each record. For 
the different values of input frame size N, the accuracy, 
sensitivity, specificity, and false positive rate are shown. In 
all cases, using adapted slopes leads to better classification 
results, but it is interesting to highlight that, even with non-
adapted thresholds, the obtained accuracies are good enough 
to provide a low-cost embedded solution. 

 
 

Fig.  4. Average Accuracy, Sensitivity, Specificity and False Positive Rate for all the records tested, in function of the size of the ANN input frame. In 
dashed blue, the slope thresholds are the same for all records. In doted orange, the slope thresholds are adapted for each record. 

 



 

 

The maximum obtained accuracy for PVC classification  
is 98.4%. The measured accuracies increase with the size of 
the frame N. For frames larger than 32, the accuracy does not 
improve because of the possible overlap between consecutive 
heartbeats. This proves that the information contained in the 
quantized slopes is sufficient for the correct determination of 
PVC and there is no necessity to use other information from 
the neighboring beats. This is an advantage for the system as 
the slope thresholds represent values that can be memorized 
on-chip, so no information is needed on top of the samples 
created from the LC-ADC. The threshold adaptation can 
increase the classification results, provided that enough 
samples are recorded to plot a patient-specific histogram like 
the one in Fig. 2. The accuracy could be increased further 
with a more complex selection method for the threshold or by 
adapting them actively during the process, but it would 
increase the system complexity. The ANN used in this work 
implements a total of 296 MAC operations for the maximum 
value of the input frame size, i.e. 32 slopes. 

B. Comparison with state-of-the-art event-driven PVC 
classifiers 

As shown in Table I, the PVC classification in [3] is 
performed using a small 16-state finite state machine using 
the DIR signal from the LC-ADC along with counters and 
comparators. Globally, the implementation is simpler in 
computation compared to an ANN. However, the accuracy is 
25 percentage points lower compared to other state-of-the-art 
classifiers and has not been tested on a cited database. 

Although the work in [4] displays the best performance in 
terms of classification accuracy, the feature extraction 
operation uses an RR-interval parameter which needs to refer 
to the neighboring heartbeats. It can be problematic when the 
neighboring heartbeats are not normal beats and the 
classification results may be biased. Besides, to extract this 
parameter, a global timer and an 11-bit TDC are 
implemented, which is in contradiction with the event-driven 
character of the system. 

The work presented here can reach an accuracy similar to 
the system in [4] (only 1.5% lower accuracy) for the 
classification of PVC arrhythmias. It is done without the use 
of information from neighboring beats, nor the use of a global 
timer. The ANN computation requirements are reduced by 
50% in terms of MAC operations compared to [4], which also 
implements 3072 additional accumulation operations. 

IV. CONCLUSION 

In this paper, a classification method for arrhythmia 
detection is proposed specifically for wearable health 
monitoring. The low-complexity artificial neural network 
takes as input a vector of consecutive slopes extracted from 
the ECG signal. An efficient event-driven feature extraction 
architecture is derived and shows promising classification 
results, with up to 98.4% accuracy when the quantization 
thresholds are adapted to the patient. This accuracy result is 
very close to the state of the art, but the system offers a lower 
complexity, involving a classifier with less than 300 MAC 
operations and not requiring any information from the RR 
interval or neighboring beats. This work provides a promising 
architecture for ultra-low-power event-driven integrated 
health monitoring systems. 
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TABLE I.      COMPARISON OF EVENT-DRIVEN PVCS 

CLASSIFICATION SYSTEM 
 

 
 [4] [3] This work 

Classification 
Accuracy 

99.86% 74.8% 98.4% 

Classification 
operation 

ANN with 3,072 
accumulation and 592 

MAC 

16-state finite 
state machine 

ANN with 
296 MAC 

Use of RR 
interval 

Yes, coded on 11 bits No No 

 


