
HAL Id: hal-03544538
https://hal.science/hal-03544538

Submitted on 26 Jan 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Pseudo-hydrodynamic flow of quasiparticles in
semimetal WTe2 at room temperature

Young-gwan Choi, Manh-ha Doan, Luu Ly Pham Ngoc, Junsu Lee,
Gyung-min Choi, Maxim Nikolaevich Chernodub

To cite this version:
Young-gwan Choi, Manh-ha Doan, Luu Ly Pham Ngoc, Junsu Lee, Gyung-min Choi, et al.. Pseudo-
hydrodynamic flow of quasiparticles in semimetal WTe2 at room temperature. Small, 2023, 19 (27),
�10.1002/smll.202206604�. �hal-03544538�

https://hal.science/hal-03544538
https://hal.archives-ouvertes.fr


1 

 

Pseudo-hydrodynamic flow of quasiparticles in semimetal WTe2 at room 
temperature 
Young-Gwan Choi1†, Manh-Ha Doan1,2†, Gyung-Min Choi1,3*, Maxim N. Chernodub4,5* 

 
1 Department of Energy Science, Sungkyunkwan University, Suwon 16419, Korea 
2 Department of Physics, Technical University of Denmark, Kgs. Lyngby 2800, Denmark 
3 Center for Integrated Nanostructure Physics, Institute for Basic Science, Suwon 16419, Korea 
4 Institut Denis Poisson UMR 7013, Université de Tours, 37200, France 
5 Pacific Quantum Center, Far Eastern Federal University, Sukhanova 8, Vladivostok, Russia 
 

†These authors contribute equally 
*Corresponding authors (gmchoi@skku.edu; maxim.chernodub@cnrs.fr) 
 

 
Recently, much interest has emerged in fluid-like electric charge transport in various solid-state 

systems. The hydrodynamic behavior of the electronic fluid reveals itself as a decrease of the 

electrical resistance with increasing temperature (the Gurzhi effect1,2) in narrow conducting 

channels3,4, polynomial scaling of the resistance as a function of the channel width5, substantial 

violation of the Wiedemann–Franz law6,7 supported by the emergence of the Poiseuille flow4,8-10. 

Similarly to whirlpools in flowing water, the viscous electronic flow generates vortices, resulting 

in abnormal sign-changing electrical response driven by the backflow of electrical current11. 

Experimentally, the presence of the hydrodynamic vortices was observed in low-temperature 

graphene as a negative voltage drop near the current-injecting contacts12. However, the question 

of whether the long-ranged sign-changing electrical response can be produced by a mechanism 

other than hydrodynamics has not been addressed so far. Here we use polarization-sensitive laser 

microscopy to demonstrate the emergence of visually similar abnormal sign-alternating patterns 

in charge density in multilayer tungsten ditelluride at room temperature where this material does 

not exhibit true electronic hydrodynamics13. We argue that this pseudo-hydrodynamic behavior 

appears due to a subtle interplay between the diffusive transport of electrons and holes. In 

particular, the sign-alternating charge accumulation in WTe2 is supported by the unexpected 

backflow of compressible neutral electron-hole current, which creates charge-neutral whirlpools 

in the bulk of this nearly compensated semimetal. We demonstrate that the exceptionally large 

spatial size of the charge domains is sustained by the long recombination time of electron-hole 

pairs. 
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Tungsten ditelluride (WTe2) is a remarkable representative of a family of non-magnetic layered 

transition-metal dichalcogenides, which provides a ubiquitous arena for investigation of 

diverse quantum effects including the quantum spin Hall effect14-16 in a single-layered WTe2 

and a type-II Weyl semimetal phase in thick crystals17,18. 

The electronic transport in semimetallic WTe2 at temperature 20 K demonstrates 

collective hydrodynamic behavior that appears to be in sharp contrast with the expected 

diffusive drift of a Fermi liquid13. The charge flow resembles a classical fluid when the 

momentum-conserving carrier-carrier scattering length becomes substantially shorter than the 

momentum-relaxing length governed by interactions of the charge carriers with phonons and 

impurities. Outside of a narrow temperature window (in particular, at room temperature), the 

charge transport in narrow WTe2 flakes cannot be described as a hydrodynamic flow because 

the above condition is not fulfilled liquid13. 

The hydrodynamic flow of electrons can lead to a nonlocal macroscopic signature of 

viscosity18-20. In graphene, a localized injection of the electronic current creates whirlpools in 

the electron flow thus resembling a classical fluid11. The whirlpools drive the electric current 

against the applied electric field, resulting in a negative nonlocal voltage near narrow 

electrodes. The sign-flipping voltage pattern is an experimentally detectable signature of the 

electronic viscous behavior12.  

We experimentally observe visually similar sign-alternating patterns of charge 

accumulation close to the injection electrodes in a film of semimetallic WTe2 with a thickness 

of about 70 nm at room temperature (see Methods and SM S1, S2). The observed structures in 

electronic charge density possess exceptionally long relaxation profiles of the micrometer 

length scale exceeding by three orders of magnitude the electrostatic screening length. Despite 

the bulk WTe2 does not exhibit true electronic hydrodynamics at room temperature13, we argue 

that the observed long-range patterns appear due to the formation of fluid-like whirlpools of a 

neutral quasiparticle current. 

We induce charge accumulation on WTe2 by applying an electrical bias. To visualize 

charge distribution, we use the optical microscopy technique (see Methods and SM S3). Charge 

accumulation affects the optical refractive index via the electro-optic effect21,22. A change of 

the refractive index in an anisotropic crystal leads to a rotation in the polarization (Δ") of the 

reflected light, which can be detected with a high precession of 10-7 radian (SM S4). To 

ascertain the sensitivity of the optical measurement of the accumulated charge, we induce a 

charge density in the capacitor structure of Si/SiO2/ WTe2 by applying a back-gate bias as 
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shown in Fig. 1a. The optical penetration depth in WTe2 is about 30 nm (ref. 23) so that the 

probe beam can detect charge accumulation near the WTe2/SiO2 interface. A homogeneous Δ" 

is observed on the whole surface of the WTe2 (Fig. 1b). The dependence of the polarization 

rotation Δ"	on	the	incident	angle ", shown in	Fig.	1c,	exhibits	a	sin 2" behavior without any 

offset thus showing that charge accumulation modulates the diagonal part of the dielectric 

tensor, Δ6!! (SM S5). Charge accumulation changes the Fermi level of WTe2, which, in turn, 

modifies the interband transition rate, and, consequently, modulates the diagonal part of the 

dielectric tensor, Δ6!! (SM S5). Thereby, we establish a linear relationship between the Δ" and 

the charge accumulation, Δ" ∝ Δ6!! ∝Δ8, where n is the charge density21,22. 

An entirely different distribution of charge emerges when electrical current is injected 

at the edges of the WTe2 device through two long metal electrodes (Fig. 1d). We clearly observe 

the Δ" signals near the longitudinal boundaries of the devices, i.e., near the Au/WTe2 interface 

with an opposite sign at an opposite boundary (Fig. 1e). It is worth noticing that the charge 

accumulation possesses exceptionally long spatial profiles with a characteristic length of 9" =

1.4	<m along the a-axis (Fig. 1f and SM S6). The magnitude of Δ" is linearly proportional to 

current density (J) with the same 9" (inset of Fig. 1f). A similar measurement along the b-axis 

produces a slightly different value 9# = 0.7	<m highlighting the anisotropic nature of WTe2 

(SM S7). These lengths are anomalously long given the fact that the WTe2 semimetal has a 

high carrier concentration, ~1020 cm-3 (ref. 24), which leads to a short screening length smaller 

than 1 nm (ref. 25). We argue that the charge accumulation is driven by the flow of 

quasiparticles (both electrons and holes). The size of the charge accumulation region is 

determined by the recombination length, ~1 μm, of the electrons and holes. We argue below 

that the quasiparticle flow is responsible for both the long-range charge accumulation and the 

pseudo-hydrodynamic behavior. 

To clarify the origin of the long-relaxing charge distribution, we fabricate a device that 

has four narrow electrodes a width of 2.5	<m attached to the edges of a WTe2 flake. The 

electrodes are aligned along a- and b-axis as shown in Fig. 2a and d, respectively. Surprisingly, 

our optical measurements indicate the emergence of unexpected negative-positive-negative 

patterns of charge accumulation in the proximity of the electrodes. A visually similar nonlocal 

sign-changing voltage pattern reflects the hydrodynamic behavior of electrons caused by a 

backflow of emergent electronic whirlpools in graphene11. In this material, the hydrodynamic 

response was experimentally observed as a negative voltage drop in the vicinity of the 

contacts12. We argue that the observed sign-alternating charge pattern in the room-temperature 
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WTe2 is caused by similar whirlpools of an electrically neutral quasiparticle current of 

electrons and holes, associated with a pseudo-hydrodynamic behavior in this two-carrier 

material. 

WTe2 is a nearly compensated semimetal that hosts both types of charge carriers, 

electrons, and holes. In the disorder-dominated regime, the two-carrier models admit simple 

kinetic descriptions with deep consequences for transport properties in confined geometries26-

28. The electronic (A = e) and hole (A = h) currents B$, and the corresponding charge densities, 

8$(D) = 8%,$ + G8$(D), obey, in the background of the electric field H = −JK, the steady-

state transport relations (SI 8),  

L$JG8$ − sign(M$)N$H = −B$,   (1) 

where L$ and N$ are the diffusion constants and the normalized conductivities, respectively. 

The electron and hole currents are not separately conserved due to the e-h recombination 

process characterized by relatively long recombination time O'.  

The charge density G8 = G8( − G8)	satisfies the following fourth-order differential 

equation (SI 9): 

(Δ − 9*
+,)(Δ − 9,

+,)G8(P) = 0, (2) 

where Δ = Q-, + Q., is the two-dimensional Laplacian appropriate for a thin-film geometry. In 

a near-neutrality regime, the length parameters in Eq. (2) are related, respectively, to the short 

Thomas-Fermi length 9* ≈ 9/0 ≈ 1 nm and much longer electron-hole recombination length 

9, ≈ 91 ≈ 1	<m.	 

One notices that charge-density structures characterized by a length scale shorter than 

the recombination length  9', Eq. (2) acquires a formal mathematical resemblance with the 

hydrodynamic relation11, 

ΔSΔ −
*
2!"
TU = 0, (3) 

imposed on the stream function ψ in a real electronic fluid system. The stream function 

describes the electronic velocity V = WX × JU of a two-dimensional incompressible electric 

current Z = −MV in a one-component conductor (here WX is a unit out-of-plane vector). Equation 

(3) can be derived from the linearized Navier-Stokes equation which describes, for example, 

the non-Ohmic electron flow Z = −MV	in graphene11: 

S
3#
4 T JK([) − L5

,ΔV(\) + V([) = 0,  (4) 

with conductivity  N%. The quantity L5 ∝ ]^ plays a role of a diffusion constant expressed via 

the electronic shear viscosity ^. At zero viscosity, ^ = 0, the diffusion constant vanishes, L5 =
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0, and the Navier-Stokes equation (4) reduces to the usual Ohmic flow Z = N%H. The non-

harmonicity of the charge accumulation (2) in the two-component diffusive system (1) 

resembles non-harmonic behavior (3) of the viscous non-Ohmic electric flow (4) in the one-

carrier viscous electronic system such as graphene11-12. 

An unexpected analogy of the diffusive two-component system (1) with hydrodynamics 

can also be established in the opposite limit of large distances where the geometric features of 

charge accumulation domains are set by the recombination length 9' . In this regime, the 

pseudoparticle current, V ≡ ` = a( + a) , is described by the suggestive linearized Navier-

Stokes equation (SM S9): 

−^̅ΔV − Sc̅ +
67
8T J(J ∙ V) = e̅ −

*
9$%

V +⋯	.  (5) 

Here the ellipsis denotes the higher-derivative (Burnett-like29) terms that are irrelevant in the 

long-distance limit, g ≫ 9', but important to maintain the potential nature of the non-conserved, 

compressible flow P. If the quasiparticle current P were conserved, then the lowest-derivate 

terms in (5) would acquire the hydrodynamic form (4). As we show below, at these large 

distances, the system (1) supports the formation of whirlpools and backflow of the neutral 

quasiparticle current, hence we call this regime “pseudo-hydrodynamics”. 

In Eq.(5), the kinematic shear viscosity ^̅ ≡ 9:, /O'  is expressed via the length 

parameter	9: = ](L( + L()/(8kM(N( + N))) which also enters the kinematic bulk viscosity 

c̅ ≡ (L( + L()/2 − 9:, /(3O'). The electron-hole recombination time O' is identified with the 

momentum-relaxation time O;< ≡ O' related to disorder scattering while the force acting on 

the neutral quasiparticles is e̅ ≡
3&+3'
9(

H.  

The whirlpools in the electrically neutral quasiparticle current P cannot be detected 

experimentally in a direct way. However, outside of the neutrality point, the quasiparticle flow 

is known to lead27,28 to accumulation of local electric charge density G8(\) at the boundaries  

(SM S10) which can detectable experimentally. Our optical data allows us to reconstruct the 

quasiparticle current via theoretical analysis. 

In Figs. 2c,f, we show the theoretical results for the charge distribution corresponding 

to the experimentally realized geometry of Figs. 2a and d, respectively, with the two pairs of 

electrodes attached at the opposite edges of the sample. We obtain the charge density 

accumulation by solving the continuity and Maxwell equations supplemented by the transport 

relations (1), with appropriate boundary conditions (the method is described in detail in 

Supplementary Materials S12). We took the width of the electrodes m = 2.5	<m and set the 
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distance between the electrodes n = 15	<m. The difference in the recombination lengths in the 

a and b axes of the crystal has no qualitative effect on the charge accumulation except for a 

global re-scaling. 

The almost symmetric charge accumulation pattern (Fig. 2a,b), generated by the current 

injection to the vertical electrodes, with the zoom-in of the experimental data given in Fig. 2b, 

agrees very well with the prediction coming from the theoretical model with symmetrically 

positioned electrodes (Fig. 2c). The theoretical model excellently describes all seven regions 

of the charge-alternating pattern including three sign-changing regions close to each of the 

electrodes and the vanishing charge in the central region of the sample.  

The asymmetric charge accumulation pattern (Fig. 2d,e), generated by the current 

injection to the horizontal electrodes, can be reproduced theoretically by introducing a vertical 

mismatch in 3	<m  between the electrode centers (Fig. 2f). The two-carrier theory shows that 

the experimentally observed picture arises at any non-negligible shift between the electrodes. 

Contrary to the seven disentangled regions produced in the symmetric arrangement of the 

electrodes, Fig. 2a, the mismatch reduces the number of the same-sign charge regions to four, 

Fig. 2d. The upper and lower accumulation regions are separated by the wiggling boundary 

curve which stretches in the predominantly horizontal direction between the electrodes. In the 

experiment, this curve has a smaller amplitude compared to the theoretical prediction, 

presumably due to imperfections in the electrode positions. The electric charge accumulation 

shown in Figs. 2a and 2d is the experimentally detectable part of a more complicated picture 

emerging in imbalanced two-carrier (semi)metals: the neutral particle current necessarily leads 

to a neutral charge accumulation at the boundaries which generates, in turn, the large domains 

of nonvanishing electric charge density (SM 10-13).  

The neutral quasiparticle flow P contains, besides a featureless Ohmic part, a nontrivial 

non-Ohmic part that leads to the experimentally observable electric charge accumulation. The 

neutral flow, shown in Fig. 3, possesses several remarkable (pseudo-)hydrodynamic features 

which are usually attributable to a collective fluid-like behavior rather than to the disorder-

dominated transport. Unexpected in WTe2 at the room-temperature, the hydrodynamic-like 

behavior manifests itself via the backflow of the neutral current at the corners of both electrodes 

which leads to the appearance of the sign-alternating regions of the accumulated electric charge 

of Fig. 2c,f. The picture is strikingly similar to the viscous behavior of the electronic fluid in 

graphene, where the sign-alternating electrostatic potential near the contacts is generated by 

the fluid backflow. In WTe2, the sign-alternating charge density is generated by the 
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compressible backflow of non-conserved neutral quasiparticle currents which terminate at the 

boundaries of the sample and generate, outside of the exact particle-hole compensation regime, 

the nonvanishing electric charge density. It is worth stressing that the quantities which exhibit 

the charge-alternating patterns, the underlying mechanisms that generate these patterns, and 

the temperature regimes are different in graphene and WTe2. 

The pseudo-hydrodynamic picture of neutral currents is supported by two well-

pronounced symmetric whirlpools of the neutral quasiparticle flow, Fig. 3a. The whirlpool 

cores are localized in the regions with depleted electric charge density.  The misaligned 

electrodes also generate the whirlpools, which possess sink/source attractor-like points in their 

cores, Fig. 3b. These whirlpool structures share similarities with electronic vortices in graphene: 

they correlate with the quasiparticle backflow which generates the sign-alternating charge 

density near the contacts, Fig. 3c. 

The	whirlpool	size	 is	determined	by	the recombination length 9R~1	<m	which	 is	

typical	for	(nearly-)compensated	semimetals27.	The	very	existence	of	the	whirlpools	is 

largely insensitive to the value of the electrostatic (Thomas-Fermi) screening length 9TF 

provided 9TF	 ≪	 9R. Both our experimental data and the results of the theoretical model 

demonstrate that the sign-alternating charge patterns (Fig. 2) and the positions of the neutral 

whirlpools (Fig. 3) and can be controlled by the sizes and positions of the electrodes. 

This work opens the possibility of observing hydrodynamic-like effects of neutral 

quasiparticle currents in a wide range of two-component nearly compensated materials in 

which the true hydrodynamics regime of charge carriers cannot be realized. The comparison of 

theoretical predictions and experimental observations of accumulation patterns via 

polarization-sensitive laser microscopy allows us to uncover, at room temperature, the 

existence of the steady-state whirlpools and the backflow of the neutral currents in WTe2.  Our 

approach allows us to explore and quantify the pseudo-hydrodynamic neutral flows, suggesting 

an intriguing possibility to control and manipulate the charge accumulation patterns in 

(semi)metallic materials, which could be useful in future microelectronics.
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Methods 

Device fabrication: WTe2 multilayer with a thickness about 70 nm is exfoliated onto 

SiO2/Si substrate by using the scotch tape method inside a glove box with an argon environment 

to prevent oxidation. The sample is then coated by a PMMA layer before being taken out for 

device fabrication. The thickness and the in-plane crystal orientation (a- and b-axes) of the 

exfoliated WTe2 flake is determined by using atomic force microscopy and an angle-dependent 

polarized Raman spectroscopy, respectively (SM S1). The Cr/Au metal electrodes are 

fabricated along these two axes by the e-beam lithography and e-beam evaporation processes. 

The device is then etched by a reactive ion etching system using SF6 gas to form a well-defined 

shape and coated by a thin SiN passivation layer to prevent surface degradation of WTe2 during 

the electrical and optical measurements. The temperature dependence and crystal-axis 

dependence of the electrical resistivity manifest the metallic behavior of WTe2 (SM S2). 

Optical measurement of charge accumulation: A linearly polarized laser beam is 

incident onto WTe2 devices in a surface normal direction with a center wavelength of 780 nm. 

After passing through a 50x objective, the beam radius is about 1.4	<m, and the input power 

density is about 1	mW/<m,. The charge accumulation on WTe2 rotates the polarization of the 

reflected light. The polarization angle of the incident laser beam was controlled by using a 

motorized rotational stage and a half-wave plate. The reflected laser beam is passing through a 

quarter-wave plate, half-wave plate, and Wollaston prism successively, and its polarization 

rotation is detected by a balanced detector. With the initial polarization along the azimuthal 

angle of "  to the a-axis of WTe2 (the inset in Fig. 1c), we measure the current-induced 

polarization rotation of the reflected light,	Δ" = "(|) − "(| = 0) (SM S3). To enhance the 

signal-to-noise ratio, a lock-in detection technique is implemented by applying an alternating 

current to WTe2 devices at a modulation frequency of 3 kHz. The 2D spatial mapping of the 

optical signals is conducted by using a 2-axes motorized stage.  

Methods for theoretical calculations are described in Supplementary Information 

(Sections 8-13). 
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Fig. 1 | Optical detection of long-range charge accumulation. a, Measurement setup and b, 
the spatial mapping of the polarization rotation (∆θ) with a capacitor structure of p-
Si/SiO2/WTe2. An electric bias of 3 V induces charge accumulation at the WTe2/SiO2 interface. 
The charge accumulation rotates the polarization of the probe light (red arrow). The red/blue 
color in (b) shows the sign and the magnitude of the polarization rotation angle ∆θ. c, A 
sinusoidal dependence of ∆θ on the azimuthal angle (θ) between the light polarization and a-
axis of WTe2. The inset shows a top-view (a-b plane) of the crystal structure of WTe2. d, 
Measurement setup and e, the spatial mapping of ∆θ with a lateral structure of Au/WTe2/Au. 
An electric current of 2 mA flows along the a-axis of WTe2, and the charge accumulates at the 
Au/WTe2 boundary. The black bar in (b) and (e) indicates the length scale 5 <m. The black 
arrows point to the direction of the current flow. f, The profile of Δ" along the channel position, 
green dashed line in (e). The inset of (f) is ∆θ at the channel edge as a function of current 
density. The ∆θ is linear with the current density, and it is reversed when the charge current is 
reversed.  
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Fig. 2 | Sign-alternating charge accumulation in 2D devices with narrow electrodes. a, The 
spatial mapping of the polarization rotation (∆θ) with the electric current of 2 mA along the a-
axis of WTe2. The red and blue colors indicate the sign and magnitude of ∆θ. b, Enlarged 
mapping image of green dashed line in (a). c, Theoretical simulation of the charge 
accumulation, which corresponds to experimental data of (a). d,e, The spatial mapping of ∆θ 
and f, theoretical simulation of the charge accumulation with the electrical current along the b-
axis. The black horizontal bars in (a) and (d) indicate the length scale 5 μm. The theoretical 
simulations match closely the experimental data in a wide range of recombination lengths 9R 
≃ (0.5 – 2.0) <m depending on the boundary conditions (SM S13). 
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Fig. 3 | Streamlines of the non-Ohmic component of the neutral quasiparticle flow P.  
a, The streamlines of theoretically calculated neutral current generated by the voltage 
difference between perfectly aligned electrodes. This figure corresponds to the accumulated 
electric charge density of Fig. 2c which matches, in turn, the experimental data of Fig. 2a. The 
color represents the magnitude of the quasiparticle current (shown in arbitrary units). b, Same 
as in (a) but for mismatched electrodes, corresponding to the charge accumulation of Fig. 2f 
which matches, in turn, the experimental data of Fig. 2d. c, the zoom-in region close to the 
rightmost contact (with colors enhanced to reveal more details). The positions of the electrodes 
are denoted by the solid rectangles.  
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Supplementary Material (Experiment) 

S1. Characterization of the thickness and crystal orientation of WTe2 

To measure the thickness of the WTe2 flakes, the atomic force microscopy (AFM) 

technique is used. It shows that the thickness of the WTe2 device is about 70 nm (Fig. S1a,b). 

We observe that the a-axis is always oriented along the well-defined edge as shown in Fig. 

S1c, which is naturally formed after exfoliation processes as reported previously1, 2. To exactly 

determine the crystalline axis, polarization-dependent Raman spectroscopy is used. The polar 

Raman measurements were conducted with a confocal micro-Raman system at room 

temperature. The excitation source is the 1.96 eV (632.8 nm) line of a He-Ne laser. The laser 

beam was focused by a 50x objective lens (0.8 NA) onto the sample flake and the scattered 

light was collected (a backscattering geometry). Fig. S1d,e shows the polarization angle-

dependent Raman results for our thin film of WTe2 exfoliated on SiO2/Si substrates. The 

Raman peak around 162 cm-1 has a maximum intensity when the light polarization direction is 

aligned with the a-axis1,2.  

 

Figure S1. a, Optical microscopy image of the WTe2 device. b, Atomic force microscopy result 

of fabricated devices and height line profile along the red dashed line in (a). c, Optical 

microscopy image of the WTe2 flake before making devices. d, Raman spectra with three 

different light polarization angles, along the a-axis, 45° to a-axis, and along the b-axis. e, 

Polarization dependence on the Raman intensity at the 162 cm-1 peak. It shows that the 

maximum intensity occurs when the light polarization is oriented along the a-axis. 
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S2. Electric transport properties of WTe2 

The electrical characterization of the fabricated device is conducted at room temperature 

in a high vacuum (< 10-6 Torr) using a probe station with a semiconductor analyzer (Keithley 

4200 system). Temperature-dependent transport measurements are carried out in a Physical 

Property Measurement System (PPMS-Quantum Design). The linear current-voltage 

characteristic and the decrease of resistance with a temperature of the fabricated devices 

manifest the metallic behavior of WTe2 thin film3-5. The resistance of the b-axis device is larger 

than that of the a-axis device about 1.6~1.8 times at room temperature, which reflects the highly 

anisotropic property of WTe2, and is in line with previous reports6,7.  

 
Figure S2 a, Current-voltage (IV) characteristics and b, temperature-dependent resistivity of 

WTe2 with a current along the a- and b-axes of devices. The linear behavior of the IV 

characteristic is a manifestation of the Ohmic contacts. The decrease of the resistivity with 

decreasing temperature shows the metallic property of WTe2. The inset in (a) shows an optical 

image of the a- and b-axes of devices. 

 

S3. Optical setup for measuring the polarization rotation 

An optical setup in Fig. S3 was used for detecting polarization rotation of the probe light 

reflected from the sample surface with alternating current (AC) injection into the sample. As a 

light source, Ti:Sapphire pulsed laser was used with a 780 nm center wavelength. A current 

source is used for the application of AC to WTe2 devices with a 3 kHz modulation frequency. 

The laser beam was incident onto the WTe2 devices by passing through a 50x objective lens at 

the surface normal direction. The beam waist is about 1 !m, and power is about 5 mW. For 

adjusting the azimuth angle of the light polarization, a half-wave plate (HWP1) was used. After 

reflection from the sample, the reflected light is separated from the incident light by a beam 



 5 

splitter (BS), passes through a half-wave plate (HWP2), then goes to a balanced detector. Given 

the complex nature of the dielectric constant of WTe2, we measured the complex polarization 

rotation angle (Δ#$) with and without the quarter-wave plate (QWP), which is in between BS 

and HWP2, to measure the real part Re[Δ#$] and imaginary part	Im[Δ#$], respectively. For all 

mapping measurements in the main text, Im[Δ#$] is shown because it is much larger than 

Re[Δ#$].  In the main text, Δ# denotes Im[Δ#] for simplicity. A lock-in amplifier is used for 

collecting a subtle change of the polarization rotation of reflected light with the same 

modulation frequency of the AC. 

 
Figure S3. Schematic illustration of the AC-induced polarization rotation measurement. Obj. 

is the objective lens, BS is 5:5 beam splitter, HWP is half-wave retarder plate, QWP is quarter-

wave retarder plate, and WP is Wollaston prism. 
 

S4. Noise level of the optical measurement 
In our optical system, the dominant noise source is the intensity fluctuation of our laser. 

We measure the relative intensity noise (RIN) from the laser fluctuation as,  

RIN = !"#$%&'(	*!"#
*$%

,                           (S1) 

where the spectral Vrms is the voltage reading on the lock-in amplifier by the laser fluctuation 

per √Hz, and VDC is the DC voltage by the average laser power. The repetition of pulsed laser 

is injected into a normal Si photodetector. The photocurrent output from the photodetector is 

connected to the input of the lock-in amplifier. The Vrms is measured at reference frequencies 

of 10~100,000 Hz. The VDC is determined as /+, = 0(-./% × 20#%#$%1& × 3(1$23-4, where Ilight is 

the average power of the laser, Rdetector is the responsivity of the photodetector of 0.4 A W-1, 

and Zlock-in is the input impedance of the lock-in amplifier of 50 Ω. The measured RIN decreases 

with frequency (Fig. S4(a)); then, at >kHz frequency, saturates to a few 10-6. When we measure 



 6 

the Kerr rotation using a balanced photodetector (Thorlabs, PDA450A-AC), the noise level 

further decreases by the common-mode rejection of the balanced detector. The typical noise 

level of our measurement at a bandwidth of 0.05 Hz is 5×10-8, shown in Fig. S4b, determined 

from the standard deviation of multiple measurements. Further reduction of the noise level can 

be achieved by averaging multiple measurements. 

 

Figure S4. a, The relative intensity noise of the pulsed laser at different frequencies. b, 

Repeated measurements of the Kerr rotation at the same experimental condition. One data point 

is taken at the bandwidth of 0.05 Hz. The standard deviation of 13 data points is 0.05 μrad. 

 

S5. Modulation of the diagonal part of the dielectric tensor 

WTe2 is an optically anisotropic material with a reflectivity anisotropy of 45&&5''
4
6
≈ 1.2, 

where 977 and 988 are the reflection coefficients for the light’s polarization along the a- and b-

axes, respectively (Fig. S5a). When the charge accumulation modulates the Fermi level, a 

change in the optical transition rate leads to a change in the dielectric constant of WTe2 (Fig. 

S5b). Then, the modulation of the dielectric constant in an optically anisotropic medium results 

in a polarization rotation upon the reflection8. 
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Figure S5. a, Azimuthal angle dependence of the reflectance, which is measured in the absence 

of the electric current. It shows anisotropic reflectance behavior. : denotes an angle between 

light polarization direction and a-axis of the Wte2 crystal. b, A schematic diagram for the 

change of Fermi level and interband transition owing to the charge accumulation. The red solid 

(dashed) arrow indicates optical interband transition when positive (negative) bias is applied. 

 

The optical signal can be generated either by the diagonal or off-diagonal part of the 

dielectric tensor.  To clarify which part is responsible for the charge accumulation effect, we 

calculate the polarization rotation by adopting the Jones matrix formalism. The polarization of 

light at the detector can be written as,  

;<19%
7 (>:)

<19%8 (>:)@ = A;/6 B22.5° +
#
2FA;/=(#)	2(>)	A;/6 B

#
2F ;

<-47
<-48
@, (S2) 

where # is the fast axis angle of the wave plates, <-4>  (<19%> ) is the initial (final) electric field of 

light with polarization along G -direction, >  is electric current density, A;/6  (A;/= ) are the 

matrix for the half-(quarter-)wave plate, and R is the reflection matrix of Wte2. The polarization 

of the initial light and the a-axis of Wte2 are set to the x-direction. After passing through the 

first half-wave plate of A;/6 H?6I, the polarization of light (right before the sample) rotates by 

the angle θ with respect to the x-direction. After reflecting from Wte2, the polarization of light 

rotates to θ+Δθ, where Δθ is polarization angle variation which is linearly proportional to j 

(Fig. 1f in the main text). The second half-wave plate of A;/6 H?6I  is required to set the 

polarization close to the balance point, θ~45o, for the detector. The Jones matrices for each 

optical element are expressed as, 

A;/6(#) = J3>
@
6 Hcos6# − sin6 # 2	cos#	sin#

2	cos#	sin# sin6 # − cos6 #I (S3) 
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A;/=(#) = J3>
@
= B cos

6# + G sin6 # (1 − G)	cos#	sin#
(1 − G)		cos#	sin# sin6 # + G	cos6# F (S4) 

2 = H977 978
987 988I, (S5) 

where 9>>  is the reflection coefficient, which is related with the diagonal dielectric tensor 

component as 9>> = A3BC((
ADBC((

, and 9>E is related with the off-diagonal dielectric tensor components. 

A balanced detection with an application of electric current can be described as, 

Δ#(>:) = A
6
FG)*+' (E,)F

-3FG)*+
& (E,)F

-

FG)*+' (E,)F
-DFG)*+

& (E,)F
- = JK(E,)

6K.
.  (S6) 

Finally, the lock-in detects the difference between Δ0(>)  and Δ0(> = 0)  with the current 

alternates between j and 0 with a modulation frequency of 3 kHz. 

	0LKM(>) = Δ0(>) − Δ0(> = 0).   (S7) 

In our experiment, the dielectric tensor can acquire contributions to its off-diagonal and 

diagonal elements. In a case, when the charge current affects the off-diagonal part of the 

dielectric tensor, the dielectric tensor modulation takes the following form: 

R(̿>: = 0) = BR77 0
0 R88F → 	 R(̿>:) = ; R77 U78

−U78 R88@, (S8) 

where the off-diagonal element U78  can be generated, for example, by the current-induced 

magnetization such as the valley Hall effect9,10. Then the complex angle Δ# , plotted as a 

function of #, exhibits a cos(2#) behavior with a constant offset (Fig. S6a).  

 

When the charge current modifies the diagonal part of the dielectric tensor, then the dielectric 

tensor modulation can be represented as follows: 

R(̿>: = 0) = BR77 0
0 R88F → 	 R(̿>:) = BR77 + U77 0

0 R88 + U88F, (S9) 

where the corrections U77	and	U88 could be driven by the charge carrier accumulation. In this 

case, the complex angle shift Δ#  shows a distinctive sin(2#) behavior with the maximum 

signal at appearing, without any offset, at #	= 45° (Fig. S6b). The periodic sin(2#) behavior is 

produced due to the anisotropy between R77 and R88.  

The dependence of Δ#  on the anisotropy ratio 9 = C&&
C''

  is shown in Fig. S6c. There is no 

rotation of the polarization angle,  Δ# = 0, for an isotropic environment, 9 = 1. If the system 
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is strongly anisotropic, then the signal follows a sin(2θ) behavior, and the maxima are reached 

at two values of the angle, θ =45° and θ =135°. 

 

Figure S6. a, Rotation of polarization Δ# as the function of the azimuthal angle (#) in the case 

when the current induces the change in the off-diagonal permittivity, ΔR>E ≠ 0	(G ≠ >). b, The 

same as in a, but for the diagonal permittivity, ΔR>> ≠ 0. c, Dependence of the polarization 

rotation Δ# on the anisotropic ratio r in the case when the diagonal permittivity is modified, 

ΔR>> ≠ 0. The sin(2θ) behavior emerges for a large anisotropy, 9 > 1,  with the maximum 

absolute values of Δ# occurring at	 #	= 45o, 135o, 225o, and 315o. 

 

S6. Determination of the charge relaxation length 
The relaxation length can be obtained by adopting the convolution procedure with the bi-

exponential function: 

∆#([) ∝ ∫^([ − _)Δ[(_)`_,  (S10) 

where ^([) is the Gaussian function	exp c− H 7
N.
I
6
d with the width eO of ≈ 1	!m and ∆#([) 

is the measured signal distribution along x-axis obtained with the Gaussian-shaped laser beam. 

We assume that the signal profile Δ#(_) has a sinh H 7;/I profile as predicted by the theory (SM 

S10). Figure S7 shows the convolution lines obtained for a number of values of the relaxation 

length gP  taken within the interval 0.2	!m  to 2	!m  with the step of Δg = 0.2	!m . A 

comparison of these convolution lines with the experimental data, shown in the same figure, 

makes it evident that the fit of the experimental data with the convolution function (S10) allows 

us to resolve a sub-micrometer decay length of the experimental data ∆#([) with the use of the 

much wider, ≈ 1	!m, laser spot.  
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Figure S7. A relaxation profile data and the Gaussian-convoluted fitting lines. The red dots 

represent an example of experimental data along the a-axis of the device. The fitting lines are 

normalized to have the same maximum Kerr angle. The relaxation length gP is varied in the 

interval from 0.2 !m  to 2 !m  with the step Δg = 0.2	!m . Using a fitting procedure, the 

relaxation length ≈ 1.4	!m can be resolved with an acceptable accuracy with the use of the 

beam	of	the	width	 ≈ 1	!m.  
 

S7. Crystal axis dependence of the charge relaxation length  

To study the effects of the anisotropy of Wte2, we conduct 2D spatial mappings for the 

charge accumulation of the devices where the electrical current is injected separately in the a- 

and b-axes of the same flake as shown in Fig. S8. Importantly, the charge accumulation is 

observed at both axes, but with different screening lengths (Fig. S8a and Fig. S8d). Figures 

S8b and S8f show the line profiles of the longitudinal charge distributions along the a-axis (the 

red dashed line in Fig. S8a) and b-axis (the blue dashed line in Fig. S8d). The charge 

accumulation and its relaxation profile can be expressed as sinh H7;I, where [ is a longitudinal 

position, and g is a relaxation length. We fit the data taking into account the effect of finite 

probe size. We calculate the convolution integral between the charge profile and a Gaussian 

function, exp c− H 7N.I
6
d, where eO ≈ 1	!m is the 1/e2 beam waist of probe light (SM S6). 

Finally, we obtain the extremely long charge relaxation lengths, gP = 1.4	!m  and gQ =
0.7	!m for a-axis (Fig. S8b) and b-axis (Fig. S8f) directions, respectively. These lengths appear 
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to be anomalously long in view of the fact that the Wte2 semimetal possesses a high carrier 

concentration, ~1020 cm-3 (ref. 23 in the main text), which should correspond to the expected 

Debye screening length of less than 1 nm [Ref. 8].  

We note that some devices exhibit similar long-ranged ∆#  signals not only in the 

longitudinal direction along the current flow but also in the transverse edges with respect to the 

current direction, as shown in Fig. S8c (the scanning result along the blue dashed line of Fig. 

S8a) and Fig. S8e (the scanning result along the red dashed line of Fig. S8c). Regardless of the 

direction of the current, the relaxation lengths along each axis remain the same: gP = 1.4	!m 

(shown in Figs. S8b,e) and gR = 0.7	!m  (shown in Fig. S8c,f). In the absence of the 

background magnetic field, we suspect that the transverse charge accumulation is due to a small 

mismatch between the current direction and the crystalline axis11,12. According to our 

theoretical arguments presented in Section S11, the mismatch in an electrically anisotropic 

crystal can induce a charge accumulation in the transverse directions with respect to the 

direction of the current. 

 

 

Figure S8.  Charge accumulation along different crystal directions of WTe2. a, d, The 

polarization rotation (∆θ) mappings with the electric current of 2 mA along the a-axis and b-

axis of WTe2. The red and blue colors indicate the sign and the magnitude of ∆θ. The black 

scale bar in (a) corresponds to 5 !m. The black arrows in (a) and (d) indicate the direction of 

the current flow. b, e, The profile of ∆θ along the a-axis corresponding to the red dashed lines 

in (a) and (d). c, f, The same the b-axis denoted by the blue dashed lines in (a) and (d). The 
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open circles are the experimental data, while the black lines are the fits that use the convolution 

between the charge distribution of sinh	([/}) and probe-intensity profile of exp[−([/eO)6]. 
The fitted τ values are 1.4 and 0.7 μm for a- and b-axes, respectively. The inset in (c) shows an 

optical microscopy image of the investigated device.  
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Supplementary Material (Theory)

In this theoretical section of the Supplementary Material, we first review known trans-

port and charge-accumulation properties in two-component electron-hole systems. Then

we present new calculations which support the pseudo-hydrodynamic interpretation of the

charge-accumulation patterns observed experimentally.

S8. TRANSPORT IN ELECTRON-HOLE SYSTEM

A. Basic equations

In our considerations below, we do not advocate any particular model of the electronic

band structure. Instead, we use a remarkably transparent and simple parabolic two-band

model used in Refs. [13–15] which we follow closely in this introductory subsection. This

model has a rather generic character.

We consider a generic two-component, electron-hole system which stays slightly away

from charge neutrality point and possesses a weakly broken electron-hole symmetry. In

a steady-state regime, the electronic (↵ = e) and hole (↵ = h) currents j↵, and the local

fluctuations of the respective charge densities �n↵(r) = n↵(r)� n0,↵ with respect to the con-

stant background densities n0,↵ are described, in the background of electric E and magnetic

B fields, by the following macroscopic equations:

D↵r�n↵ � sign(e↵)�↵E � ⌧↵j↵ ⇥ !↵ + F ↵ = �j↵, (S14)

r · j↵ = �
1

2
(�e�ne + �h�nh), (S15)

where

F e = +F eh, F h = �F eh, F eh =
�

2
(je � jh), (S16)

is the friction force between the flows of electrons and holes controlled by the small pa-

rameter �. The electron and hole currents are proportional to the corresponding drift

velocities u↵:

j↵ =
mhv2

iu↵

2
. (S17)

The electric charges of holes and electrons are, respectively, ee = �e and eh = +e, where

e = +|e| is the elementary electric charge.

The transport equations (S14) involve the di↵usion coe�cients

D↵ =
hv2

i↵⌧↵

2⌫0,↵
, (S18)
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the appropriate conductivities,

�↵ =
en0,↵⌧↵

m↵
> 0, (S19)

and the cyclotron frequencies

!↵ =
e↵B

m↵c
, (S20)

which are expressed in terms of the masses m↵, the momentum relaxation times ⌧↵, the

background charge densities n0,↵, and the electric charges of electrons (ee = �e) and holes

(eh = +e) calculated in units of the fundamental electric charge e = +|e|.

The quantities ⌫0,↵ in Eq. (S18) are the proportionality coe�cients (the susceptibilities)

which relate the fluctuations of the local densities �n↵ and the corresponding chemical

potentials �µ↵:

�n↵(r) = ⌫0,↵ �µ↵(r). (S21)

The recombination rates that enter the current conservation equations (S15),

�e = 2�n0,h, �h = 2�n0,e, (S22)

are expressed via a model-dependent coe�cient � which describes the electron-hole recom-

bination process.

To avoid unnecessary complications that do not a↵ect the qualitative features of the

system, we set the equal masses for electrons and holes mh = me = m, so that the cyclotron

frequencies (S20) get simplified:

!e = �!, !h = !, ! =
eB

mc
. (S23)

It is also convenient to work at the exact charge-neutrality point in terms of electron and

hole populations, n0,e = n0,h = n0. This condition simplifies calculations without restricting

the generality of our results. Furthermore, we take into account that the electron and hole

recombination rates are the same (S22):

�e = �h =
1

⌧R
, (S24)

where we denoted by ⌧R the common electron-hole recombination time.

It is convenient to introduce the charged current j and the neutral current of the quasi-

particles P :

j = je � jh, P = je + jh, (S25)
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and the charge and quasiparticle density fluctuations, respectively:

�n = �ne � �nh, �⇢ = �ne + �nh. (S26)

The electric current and the electric charge are defined, respectively, as follows:

J = �ej, �Q = �e�n. (S27)

In order to discriminate between J and j, we will call them the electric current and the

charged current, respectively (and likewise for the densities �Q and �n).

The linear combinations of Eqs. (S14) for electrons and holes give us the equations for

charged and neutral currents and their densities in the disorder-dominated regime:

D+r�n+D�r�⇢+ �+E + (⌧�j + ⌧+P )⇥ ! = �(1 + �)j, (S28a)

D�r�n+D+r�⇢+ ��E + (⌧+j + ⌧�P )⇥ ! = �P , (S28b)

where we used the following combinations for the conductivities, momentum relaxation times

and the di↵usion coe�cients, respectively [13, 14]:

�± = �e ± �h ⌘
2en0

m
⌧±, (S29)

⌧± =
1

2
(⌧e ± ⌧h) , (S30)

D± =
1

2
(De ±Dh) . (S31)

We assume a (small) di↵erence in the momentum relaxation times and the di↵usion co-

e�cients for electrons and holes, so that none of the quantities (S29), (S30) and (S31) is

vanishing.

The transport relations (S28) should be supplemented by the continuity condition for the

electric current,

r · j = 0, (S32)

the relaxation for the neutral particle current,

r · P = �
�⇢

⌧R
, (S33)

and the Maxwell equation:

r ·E = �4⇡e�n. (S34)

The relaxation law (S33) follows from Eqs. (S15) and (S24).

The presence of (nearly) compensated charge carriers produces profound e↵ects on trans-

port properties in confined geometries [14]. For example, in the Hall experiment, in the



16

regime of perfect electron-hole symmetry, the Hall currents of electrons and holes propa-

gating in opposite directions cancel each other completely. As a result, the lateral voltage

drop disappears. If the electron-hole symmetry is violated, then the classical Hall e↵ects

generated by electrons and holes do not cancel each other, and the Hall voltage is formed.

Our observations show that for perfectly oriented crystals of WTe2 at room temperature,

the classical Hall current is relatively small, thus indicating an approximate validity of the

electron-hole symmetry. A slight deviation from charge neutrality allows us to explain the

observed charge accumulation pattern and nonlocal conductivity of the system.

In our paper, we are interested in the charge and quasiparticle accumulation e↵ects in

the absence of the background magnetic field. Since the Oersted magnetic field induced

by the electric current is negligibly small, we set the cyclotron frequencies (S20) to zero

for the rest of our considerations. In addition, we exclude the thermal transport from our

considerations neglecting the local temperature fluctuations �T (r) = 0, which should play a

subleading role. In the disorder-dominated regime, the thermalization between the electronic

subsystem (which includes both hole and electron flows) and the crystal lattice is much faster

than the electron-hole recombination time, ⌧ph ⌧ ⌧R implying that the charge accumulation

e↵ects emerge in the already locally thermalized system. To simplify our calculations, we

do not consider slight friction between electron and hole flows (S16) which does not bring

any qualitatively new e↵ects.

B. Length scales in the absence of magnetic field

By setting a vanishing magnetic field B = 0 and zero electron-hole friction � = 0, we

bring the transport equations (S28) to the symmetric form:

D+r�n+D�r�⇢+ �+E = �j, (S35a)

D�r�n+D+r�⇢+ ��E = �P , (S35b)

which can also be derived from Eq. (1) of the main text.

Applying the divergence operator to these equations and using Eqs. (S32), (S33), and

(S34), we get two coupled second-order di↵erential equations for charged and quasiparticle

densities:

D+

�
�� �

�2
+

�
�n+D���⇢ = 0, (S36a)

D�
�
�� �

�2
�
�
�n+D+

�
�� �

�2
R

�
�⇢ = 0, (S36b)

where

�
2
± =

D±

4⇡e�±
⌘

1

8⇡e

De ±Dh

�e ± �h
, (S37)

are two (squared) lengths expressed via the combinations of the electron and hole parameters,
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and

�R =
p

D+⌧R ⌘

r
(De +Dh)⌧R

2
, (S38)

is an e↵ective length associated with the electron-hole recombinations. Notice that the

parameter �2
� in Eq. (S37) can take negative values.

Excluding the quasiparticle density �⇢ from Eqs. (S36), we get the following equivalent

equations for the charge density �n and the quasiparticle density �⇢:
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are the two new length scales which control the spatial variation of the charge density �n in

the sample. Notice that both lengths (S40) are nonvanishing, real-valued parameters.

The first screening length (S40a) is expressed via the recombination length (S38) as well

as the Thomas-Fermi length:

�TF =

s
DeDh

4⇡e(�eDh + �hDe)
. (S41)

In the illustrative example when the electron/hole average velocities and the corresponding

susceptibilities satisfy the relation hv2
ie/⌫0,e = hv2

ih/⌫0,h, the electron and hole di↵usivi-

ties (S18) are proportional to the corresponding relaxation times, De/⌧e = Dh/⌧h, implying,

together with Eq. (S29), that �+ = �� = �TF, were the Thomas-Fermi length takes the

familiar form:

�TF =

✓
1

4⇡e2n0⌫0

mhv2
i

2

◆ 1
2

. (S42)

This particular situation can be realized when the electron-hole symmetry is almost exact,

with the only di↵erence in the relaxation times, ⌧e 6= ⌧h.
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What is the hierarchy of the length scales (S40) close to the neutrality point? The

Thomas-Fermi length, given by Eq. (S41) or Eq. (S42), determines the distance scale of

the electrostatic screening. In typical metals, the charge screening length is very short, of

the order of a few nanometers while the e-h recombination length varies from hundreds of

nanometers to centimeters depending on material and temperature [13]. Given the large

di↵erence in these lengths,

�R � �TF . (S43)

we can neglect the relaxation length in Eq. (S40a) and assume that the electron and hole

relaxation times are close to each other, ⌧e ' ⌧h with |⌧e�⌧h| ⌧ ⌧e+⌧h which is a reasonable

assumption close to the electron-hole symmetry point. One then gets:

⇠1 ' �TF, ⇠2 '

p
�TF�R (⌧h ' ⌧e), (S44)

implying that ⇠2 � ⇠1 due to the natural scale hierarchy of the e-h relaxation and charge

screening lengths (S43).

It is convenient to rewrite Eq. (S39) in the form of Eq. (2) of the main text:

�
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2

�
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where the quantities
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characterize two new inverse length scales �1 and �2 via the length parameters ⇠1 and ⇠2

given explicitly in Eq. (S40). In Eq. (S46), the signs “+” and “�” correspond, respectively,

to the quantities {1 and {2 arranged according to the hierarchy:

{1 > {2 > 0 . (S47)

In the near-neutrality regime with the natural di↵erence between the length scales (S43),

one gets:
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Using Eq. (S44), we conclude that the quantities {1 and {2 are determined by the Thomas-

Fermi length and the electron-hole recombination length, respectively:

{1 '
1

�TF
, {2 '

1

�R
, {1 � {2 . (S50)
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S9. A LINK TO TWO-DIMENSIONAL (PSEUDO)HYDRODYNAMICS

A. Charge density in two-component systems and stream function

In electronic fluids, the hydrodynamic behavior of electrons naturally leads to negative

values of the local (vicinity) resistance Rv. The e↵ect appears due to the emergence of the

electronic backflow caused by the whirlpools in a viscous electronic fluid that are created, for

instance, near current-injecting contacts. The striking example of the nonlocal electrostatic

response emerges in graphene [16–21]. The e↵ect can be described by hydrodynamics of one-

component electronic fluid with the local velocity u = u(r) which satisfies the Navier-Stokes

equation for a steady flow:

�⌘�u�

⇣
⇣ +

⌘

3

⌘
r (r · u) = f � ⌫u, (S51)

where ⌘ and ⇣ are the shear and bulk viscosities of the fluid, P is the pressure and n is

the local electronic density. We do not consider the magnetic-field background and omit

the terms nonlinear in the fluid velocity u since our experimental data indicates that the

Oersted magnetic fields are negligible while the optical experiment implies the absence of

nonlinearities because we do not observe higher-harmonic responses in our experiments.

The first term in the right-hand side of Eq. (S51) is the force exerted on the unit-volume

fluid element:

f = �rP � neE . (S52)

It includes the gradient of pressure P which can be considered, in general, as a consequence

of an external force f ext = �rP applied to the sample [16]. Following closely Ref. [16]

in this subsection, we neglect the e↵ects related to the pressure inhomogeneities by setting

rP = 0.

The second term in Eq. (S52) is the electrostatic force exerted on electrons by the local

electric field

E = �r�, (S53)

where � is the electrostatic potential.

The last term in the right-hand-side of Eq. (S51) involves, via the parameter ⌫ = mn/⌧e,

the momentum-relaxation scattering time ⌧e which characterizes the di↵usive relaxation of

the electronic momentum density p = mnu due to the lattice disorder and interactions with

the phonons [16]. Here the quantity m plays a role of the e↵ective mass of the particle.

The validity of hydrodynamics requires that the momentum-conserving electron-electron

scattering proceeds with shorter relaxation times ⌧mc as compared to the momentum-relaxing

disorder scattering, ⌧mc ⌧ ⌧mr.
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The flow generates the local electric current density

J = enu, (S54)

subjected to the conservation equation:

r · J(r) = 0 . (S55)

For the charged fluid velocities smaller than the plasmonic velocities, the electronic density

can be safely considered as a spatially homogeneous quantity, n(r) = n0. The conservation

of electric charge (S55) then implies that the electronic fluid is described by a divergenceless

velocity field, r · u = 0 and corresponds to an incompressible flow. Consequently, the

second term in the left-hand side of the Navier-Stokes equation (S51) vanishes, and the bulk

viscosity does not play any role.

With all these simplifications, the Navier-Stokes equation (S51) reduces to the following

di↵erential equation [16, 17]:

�0r�(r) +D
2
v�J(r)� J(r) = 0, (S56)

where

�0 =
n0e

2

m
⌧e , (S57)

is the Drude-like conductivity for the particles with electric charge e, density n0, and mass

m which scatter over each other with the momentum-relaxing time ⌧e. Equation (S56)

corresponds to Eq. (4) of the main text.

The quantity Dv has the dimension of length and plays the role of a di↵usion constant.

In the absence of viscous behavior, ⌘ = 0, the di↵usion constant vanishes, Dv = 0, and

the Navier-Stokes equation (S56) reduces to the Ohmic flow J = �0E with the conductiv-

ity (S57).

It is convenient to describe a two-dimensional incompressible flow via the stream function

 =  (r),

u = ẑ ⇥r , (S58)

where ẑ is a unit out-of-plane vector. In the components, ux = �@y and uy = @x , implying

that the vorticity of the incompressible flow (S58) takes the simple form: r ⇥ u = ẑ� .

Applying the curl operator to the Navier-Stokes equation (S56) and using Eq. (S54), we

then get the following equation for the stream function [17]:

�

✓
��

1

D2
v

◆
 = 0, (S59)

which is also given in Eq. (3) of the main text.

The Navier-Stokes equation (S59) for the stream function  in the single-component
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electronic system is strikingly similar to Eq. (S39) which describes the behavior of the charge

density �n in the two-component, electron-hole system close to the neutrality point. The

role of the stream function  is played by the charge density �n, while the di↵usion length

Dv is associated with the first length scale ⇠1 given in Eq. (S40a). Using the association of

the length scales (S50), we notice that at for the lengths of the order of the shortest length

in the system, |x| ⇠ �TF ⌧ �R, the equation for the particle density (S45) resembles the

hydrodynamic equation (S59) for the stream function with

�
�
�� �

�2
TF

�
�n(r) ' 0. (S57)

The particle-hole recombination is not e�cient at short length scales, and the number of

quasiparticles is conserved. In this limit, Eq. (S60) acquires a formal mathematical resem-

blance with the hydrodynamic relation (S59).

While this curious association may seem to have a very formal character, we show below

that the neutral quasiparticle current P develops large whirlpool-like structures in the bulk

of the sample and the backflow in close vicinity of the current-injecting contacts. These

structures are responsible for the experimentally observed sign-changing charge accumu-

lation pattern discussed in our paper. The reason is that the high-derivative nature of

Eq. (S60) allows for the appearance of the non-harmonic solutions, which lead to the emer-

gence of a non-Ohmic component of the neutral quasiparticle current P . As we show below,

the latter, non-harmonic component of the neutral quasiparticle flow P is responsible for

the sign-alternating charge accumulation pattern of electric charge density �n observed near

the contacts. Moreover, the very same, non-harmonic property of the system leads to the

sign-alternating pattern of electrostatic potential observed in graphene [16]. Thus, the anal-

ogy of Eq. (S60) with the hydrodynamic relation (S59) is closer than one might seem from

first sight.

Finally, we notice that similarly to the electric current j, the quasiparticle current P

possesses zero curl, r⇥P ⌘ 0, because P is a pure gradient flow according to Eqs. (S35b)

and (S53). The quasiparticle flow velocity v = P /�⇢ can, however, can exhibit signatures

of nonzero vorticity, r ⇥ v = (P ⇥ r�⇢)/�⇢ 6= 0, because the quasiparticle current P

represents a compressible flow and the local quasiparticle density �⇢ = �⌧Rr · P is not a

globally uniform quantity.

B. Navier-Stockes equation with higher-order Burnett terms

The two-component system of electrons and holes (S35) possesses two types of currents:

the conserved (S32) electric current J and the non-conserved (S33) neutral particle cur-

rent P . The electric current J represents a non-hydrodynamic flow which is described, as

we will see below, by a coordinate-independent quantity in one spatial dimension and by a

harmonic function in two dimensions. In the regimes considered in this article, the charged

current does not exhibit a backflow and cannot lead, for example, to a negative resistance,

similar to the e↵ect found in graphene.
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Curiously enough, the neutral current P , given by a chargeless sum of the electrons

and holes, can be interpreted as a hydrodynamic flow of compressible fluid described by a

Navier-Stokes equation equipped with higher-order derivatives and generalized forces. In

order to demonstrate this property, we apply the operator D+

�
�� �

�2
+

�
to Eq. (S35b) and

use Eq. (S36a) to express the charged particle density �n via the neutral density �⇢. Next,

we use the relaxation of the neutral charge (S33) to represent the neutral particle density

�n via the neutral current P . We get the following equation for the neutral current:

�
�
2
+

⌧R
�P �D+r(r · P ) +

DeDh

4⇡e�+
�r(r · P ) = �

1

⌧R
P �

��

⌧R

�
�
2
+�� 1

�
E . (S61)

Despite its cumbersome form, this equation resembles quite closely the linearized Navier-

Stokes equation (S51):

• The first two terms at the left-hand side of these two equations have the same dif-

ferential form if one associates the current P with the velocity u of a fluid [we can

safely ignore the di↵erence in dimensions of these two quantities given the linearity of

Eq. (S61)].

• The first term in the right-hand side of Eq. (S61) perfectly matches the exact Navier-

Stokes counterpart in Eq. (S51): it describes the momentum relaxation of a fluid vol-

ume element. The recombination time ⌧R plays the role of the momentum-relaxation

time ⌧mr.

• The second term in the right-hand side depends only on the background electric field

and thus can be associated with a generalized force F which also appears in the

linearized Navier-Stokes equation (S51).

• The only principal di↵erence between the di↵erential equation (S61) that describes the

neutral current P and the usual Navier-Stokes equation (S51) emerges in the third

term of the left-hand side of Eq. (S61). This four-derivative term is absent in the

standard Navier-Stokes equation, but it can appear in the higher-order generalizations

of the hydrodynamic equations known as Burnett and super-Burnett equations [22].

However, due to the high order of derivatives, this term is irrelevant for long wave-

lengths and can be neglected in the infrared limit.

The lowest-order terms of the Navier-Stokes equation (S61) are represented in Eq. (5) of the

main text.

Summarising, the neutral current P can now be interpreted as a new velocity variable,

u $ P , of a compressible and non-conserved hydrodynamic flow. The equation for the

neutral quasiparticle current (S61) can be rewritten in the suggestive hydrodynamical form:

�⌘̄�u�

⇣
⇣̄ +

⌘̄

3

⌘
r (r · u)� ⇤�r(r · u) = f e↵ �

1

⌧mr
u. (S62)
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The association of the hydrodynamical variables (the kinematic share viscosity ⌘̄, the kine-

matic bulk viscosity ⇣̄, the Burnett coupling ⇤, and the e↵ective force acting on the neutral

quasiparticle flow f e↵) with the parameters of the electron-hole system (conductivities, dif-

fusion constants, recombination time) is shown in Table I.

shear viscosity ⌘̄
�2
+

⌧R

bulk viscosity ⇣̄ D+ �
�2
+

3⌧R

(super)Burnett coupling ⇤ 2DeDh
De+Dh

�
2
+

generalized force f e↵
��
⌧R

�
1� �

2
+�

�
E

momentum-relaxation time ⌧mr ⌧R

fluid velocity u P

TABLE I. The association of the quantities in the transport equation (S62) for the neutral quasipar-
ticle current P with the hydrodynamical variables of the linearized Navier-Stokes equation (S61).

Thus, we demonstrated analytically that the neutral quasiparticle current P could be

associated with a compressible fluid that obeys a linearized Navier-Stokes equation equipped

with a higher-derivative velocity term and a generalized force acting on a fluid element.

Moreover, in the long-wavelength limit, at the distances more extended than the Thomas-

Fermi length (⇠ �+), the higher-derivative (super)Burnett term and a higher-derivative

correction to the generalized force drop out from the Navier-Stokes equation (S62) which

then reduces to the standard linearized hydrodynamic equation for the neutral flow shown

in Eq. (5) of the main text of our work.

Finalizing this subsection, we stress that the formal resemblance of the transport equa-

tion (S62) with the higher-order Navier-Stokes equation does not mean in any way that we

have real hydrodynamics in our system for which the momentum-conserved length scale –

that governs the collisions between electrons and holes – is shorter than the momentum-

relaxing length (the latter quantity is given by mean scattering length of electrons or holes

with impurities or phonons). While the hydrodynamic regime in WTe2 is known to be

realized around 20K, it is excluded at room temperature [23] which we consider in our

article.

On the other hand, we show theoretically that the Navier-Stokes-like form of the transport

equation for the neutral current in the two-carrier systems (S62) leads to the hydrodynamic-

like features marked by the appearance of the backflow and whirlpools. Moreover, while the

neutral current itself cannot be observed in our experiments, we show that the neutral par-

ticle backflow produces the sing-alternating patterns of electric charge accumulation that

we were able to detect experimentally in room-temperature WTe2. To stress the hydrody-

namic features in the non-hydrodynamic regime, we use the term “pseudo-hydrodynamics”

concerning the two-carrier transport in WTe2. In the passing, we notice that the pseudo-

hydrodynamic regime appears because of the deviation from the charge neutrality regime

and, simultaneously, due to the existence of the long recombination time. The latter property
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implies that the inelastic, momentum-relaxing recombination of electrons and holes proceeds

slower than any other processes in the system, including the momentum-preserving kinetic

equilibration within either electron and hole subsystems and the momentum-relaxing scat-

tering over phonons and impurities.

S10. CHARGE ACCUMULATION IN ONE-DIMENSIONAL CONDUCTOR

The accumulation of electric charge density and quasiparticle density naturally occurs

in the background of the magnetic field in the Hall geometry [13, 14]. The e↵ect appears

due to the transverse voltage gradient caused by the Lorentz force acting on the drifting

charge carriers. In this section of Supplementary Material, we discuss the features of the

charge accumulation in the absence of a background magnetic field. The e↵ect occurs in the

longitudinal direction parallel to the Ohmic drift of the charge carriers.

A. Generic one-dimensional solution

Before addressing the two-dimensional problems, it is instructive to consider the simplest

one-dimensional example, which illustrates the basic properties of the two-carrier system

close to the neutrality point. Despite its simplicity, even this one-dimensional example

has some nontrivial properties, which are the precursors of a more complicated behavior

that emerges in the two-dimensional case, which we will consider in detail later. A similar

nontrivial one-dimensional behavior is also observed for the lateral charge accumulation

in the Hall e↵ect in two-component nearly-compensated conductors [13, 14]. As there are

geometrical di↵erences in the charge-accumulation mechanisms in our one-dimensional setup

and the nearly-compensated Hall e↵ect, we discuss the one-dimensional case in very detail.

Consider a wide uniform conductor with the length L and width W much larger than the

recombination length, L � �R and W � �R.

E

L

y
x

PPPP JJJJ J

FIG. S8. One-dimensional character of the electric charge accumulation in a two-component con-
ductor with wide electrodes attached to its upper and lower sides.

Given the linearity of the equations of motion, the transport in the middle of the sample
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features a one-dimensional current flow shown in Fig. S8. The charged current j = jey is

injected (absorbed) at the upper, y = L/2 (lower, y = �L/2) side of the slab. Both these

currents,

j(y)

����
y=±L/2

= (0, j), (S63)

have no dependence on the coordinate x along the boundary, so that the solution inside

the sample has a one-dimensional character: �⇢ = �⇢(y), �n = �n(y), etc. Notice that

according to Eq. (S27), the electric current J is related to the charged current j via the

relation J = �ej.

The continuity (S32) of the electric current j(x, y) = (0, jy(y)) implies @yjy(y) = 0.

Therefore, the charged current is a constant quantity inside the sample jy(y) = j, which

coincides with the value that the current (S63) takes at each sides of the slab.

In one spatial dimension, the equation for the charge density (S45) reduces to the simple

di↵erential equation:

�
@
2
y � {2

1

� �
@
2
y � {2

2

�
�n(y) = 0, (S64)

with the general solution

�n(y) =
X

s=±

2X

a=1

n
s
ae

s{ay , (S65)

The solution is entirely characterized by four arbitrary parameters n±
1,2 which will be fixed

later via appropriate boundary conditions.

The electric field E(x, y) = (0, Ey(y)) is related to the electric charge density (S65) with

the help of the one-dimensional Maxwell equation (S34):

@yEy(y) = �4⇡e �n(y). (S66)

Its solution,

Ey(y) = E0 +
X

s=±

2X

a=1

e
s
ae

s{ay, (S67)

contains a homogeneous, coordinate-independent contribution E0 supplemented by the inho-

mogeneous, space-dependent part. The latter is rigidly tightened to the charge density (S65),

and its parameters n±
1,2, via the four amplitudes:

e
±
a = ⌥C

(E)
a n

±
a , a = 1, 2. (S68)
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where the proportionality coe�cients are as follows:

C
(E)
a =

4⇡e

{a
. (S69)

In the near-neutrality regime,

C
(E)
1 ⌧ C

(E)
2 , (S70)

because {1 ' �
�1
TF � �

�1
R ' {2. Notice that in the chosen near-neutrality regime,
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◆
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, (S71)

C
(⇢)
2 '

De +Dh

De �Dh

✓
�R

�+

◆2

. (S72)

Since �+ ⇠ �TF � �R, then {1 � {2 (because {1 ' �
�1
TF and {2 ' �

�1
R ) which implies the

following hierarchy:

C
(⇢)
1 ⌧ C

(⇢)
2 . (S73)

In our regime,
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and

C
(P )
1 ⌧ C

(P )
2 . (S76)

The neutral and charged particle currents take the following form (S35):

D+@y�n+D�@y�⇢+ �+Ey = �j, (S77a)

D�@y�n+D+@y�⇢+ ��Ey = �Py. (S77b)

According to Eq. (S77a), the space-independent component E0 of the electric field (S67)

gives us the dissipative Ohm law for the charged current:

j = ��+E0 , (S78)

In the conventional notations, this relation corresponds to the Ohm law for the electric
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current:

J = �ej = �E0 , (S79)

with the electric conductivity � ⌘ e�+.

The consistency of the solution requires that the homogeneous part of the electric field

E0 should be related to the charged current j – which consists only of a homogeneous part

– via the Ohm law (S78). This requirement implies the following relation for the electric

field (S67) at the boundaries of the sample:

Ey(y)

����
y=±L/2

= E0 . (S80)

The very same equation (S77a), applied now to the inhomogeneous components of the

densities �n and �⇢, as to the electric field (S67), gives us the particle density:

�⇢(y) =
X

s=±

2X

a=1

⇢
s
ae

s{ay , (S81)

with the amplitudes:

⇢
±
a = C

(⇢)
a n

±
a , (S82)

where the proportionality coe�cients are as follows:
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Finally, the last transport equation (S77b) determines the quasiparticle flow P =

(0, Py(y)) through the sample:

Py(y) = P0 +
X

s=±

2X

a=1

s{ap
±
a e

±{ay . (S84)

This quantity is expressed via the following amplitudes:

p
±
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a n

±
a , (S85)
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An analog of the Ohm law determines the homogeneous contribution to the neutral

quasiparticle current (S84) for the neutral current (S78):

P0 = ���E0 . (S87)
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Contrary to the electric current (S78), the uniform contribution to the neutral quasiparticle

current (S87) naturally vanishes at the perfect neutrality point (�� = �e � �h = 0) due to

the exact compensation of the electron and hole currents.

Finally, the relaxation law for the quasiparticle current (S33), expressed in one spatial

dimension as @yPy(y) = ��⇢(y)/⌧R, is automatically satisfied by virtue of Eqs. (S40), (S46)

and (S77b).

The boundary condition determines the precise form of the solution on the electric field

at the boundaries of the slab (S80) accompanied by the hard-wall condition for the neutral

quasiparticle current. As a result, the quasiparticles cannot exit the sample, and therefore

the normal component of the quasiparticle current vanishes at upper and lower electrodes

of the sample, Fig. S8:

Py(y)

����
y=±L/2

= 0 . (S88)

We remind that the only free (external) parameter of the system is the electric current

J ⌘ �ej. This parameter determines, via the Ohm law (S78), the homogeneous part of

the electric field, which, in turn, fixes the homogeneous part of the neutral current (S88).

Next, the condition for the neutral current (S87) relates the homogeneous part of the neu-

tral current to the inhomogeneous component of the same neutral current; both are seen

in Eq. (S84). This chain of relations determines the whole solution of the system since

the amplitudes n
±
1,2, e

±
1,2, ⇢

±
1,2, and p

±
1,2, that characterize the inhomogeneous parts of the

appropriate quantities, are already linked to each other in Eqs. (S68), (S82), (S85).

We get the following result for the coe�cients:

n
±
a = ±(�1)a

{a

�1{1 � �2{2

��J

2e�+

1

cosh {aL
2

, (S89)

where we used the relation j = �J/e between the charged current j and the electric cur-

rent J .

The explicit solutions for the charged component of the density �n ⌘ ��Q/e, the neutral

density �⇢, the electric field Ey, the electrostatic potential �, the neutral current Py, and

the electrically charged current Jy are, respectively, as follows:
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Jy(y) = J ⌘ �ej . (S90f)

The electrostatic potential (S90d) is related to the electric field (S90c) via Eq. (S53), and

is normalized as follows: �(0) = 0. The linear part of the electrostatic potential (S90d) is

straightforwardly determined by the Ohmic drift of the current J while the non-linear part

is related to the charge accumulation (S90a). As there is no simple relationship between

these two contributions, the importance of one or another contribution cannot be determined

from general reasoning. However, as we will see below, in a two-dimensional system, the

Ohmic part of the electrostatic potential is determined by a harmonic function, while a

non-harmonic contribution gives the charge accumulation part.

It is also instructive to write separately the densities of particles and holes given by the

linear combinations (S26) and (S27) of the first two equations in Eq. (S90):
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The solutions (S90) possess specific exciting properties which are worth discussing before

proceeding to the analysis of a more complicated two-dimensional case.

In our experiments, the longest length {�1
2 associated with the variation of the electric

charge density is approximately one order of magnitude smaller than the linear size L of

our samples. Due to the hierarchy of the inverse length scales (S47), we fix, to mimic the

realistic case, the length scales as {2L ' L/�R = 10 and consider the dependence of the

electric charge density (S90a) on the other length scale {�1
1 . The corresponding charge

accumulation patterns are shown in Fig. S9 for three values of {1 which include, for the sake

of generality and visualization, certain academic cases as well.

At large values of the second length {�1
2 (i.e., at small {2), there are two regions of space
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FIG. S9. Electric charge accumulation, �Q = �e�n, Eq. (S90a) at L/�R ' {2L = 10 and three
values of the inverse length {1. For {1L = 100 (the orange dotted line), the Thomas-Fermi
length (�TF ' {�1

2 ⌘ �2) and the recombination length (�R ' {�1
1 ⌘ �1) are shown explicitly.

Experimentally realizable situation corresponds to large values of {1L corresponding to four regions
of charge accumulation (cf. also discusson around Figs. S10 and S11 below). The regions closest
to the boundaries have width shorter than �TF and therefore they cannot be resolved in the
experiment. The value L/�R ' {2L = 10 approximately corresponds to the conditions of our
numerical experiment with L ' 15µm and �R ' 1.4µm along the a axis of the WTe2 crystal.

characterized by positive and negative values of the accumulated charge. As {2 increases,

the system develops a more complicated pattern: the electric charge density changes its sign

three times, thus exposing four, instead of two, di↵erent regions with alternating order of the

accumulated charge density. This pattern is a natural feature of the overlapping exponential

tails with di↵erent amplitudes and characteristic lengths.

In Fig. S10 we show the appearance of the charge pattern as the function of two inverse

length parameters {1 and {2. The two-region pattern appears at small values of {2, and

large values of {1 while the charge pattern featuring the four regions is located at large

values of both {1 and {2.

The alternating regions of charges along the y direction of the sample are also illustrated

in Fig. S11 for the fixed value of the second length with {2L = 10 as the function of the

(inverse) first length, {1. This plot features a  -type figure which shows a two-region charge

pattern at low {1 and a four-region pattern at physical, higher values of {1.

In two-component (semi)metals, the recombination length �R is of the order of a microm-

eter while �TF amount a few nanometers. These lengths define the sign-flipping points of the

charge accumulation regions as illustrated in Fig. S9. The physical point, shown by the red

point in Fig. S10, belongs to the four-region phase for our (approximately) ten-micron-sized

samples with very short Thomas-Fermi length �TF ' 1 nm.

Our optical experiment cannot resolve the region in the nanometer scale so that the charge

accumulation very close to the boundary avoids the experimental detection. Therefore, we
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FIG. S10. The pattern of the charge accumulation in the ({1,{2) plane of parameters. The regions
where two (four) charge-alternating regions are realized correspond to green (magenta) colors. We
show the region {1 > {2 corresponding the hierarchy (S46) and (S47). The red point approximately
marks the physical case realized in the experiment: ({1L)�1

' �TF/L ⌧ ({2L)�1
' �R/L ' 0.1,

Eq. (S50). The inset shows the zooming in on the origin.

detect the two-zone accumulation pattern rather than the four-zone one.

2

1

FIG. S11. The  -type pattern of the charge accumulation along the conductor with the coordinate
y vs. the varying parameter {1 at the fixed value of the combination length �R/L ' {2L = 10.
The red (blue) color corresponds to the positively (negatively) charged regions. The physical case
corresponds to a very large value of {1L ' L/�TF � 1 when the near-surface charge accumulation
region becomes undetectably thin and the experimentally observable accumulation pattern is given
by two central regions.



32

Notice that the sign of the accumulated charge density depends not only on the direction

of the electric current J but also on the relative magnitude of the di↵usion constants De

and Dh: For the same current J , the change in the sign of the di↵erence D� = (De �Dh)/2

also reverses the charge accumulation pattern to the opposite one. This property will be

discussed later in detail.

B. Charge accumulation: electron/hole asymmetry in conductivity and di↵usivity

We have just seen that, in the general case, a passing electric current leads to the accumu-

lation of electric charges at both sides of the sample. In this short subsection, we stress that

the asymmetry in the conductivities of holes and electrons plays a decisive role in charge

accumulation.

If the electron and hole conductivities are equal to each other, �� = �e � �h = 0, then,

according to Eq. (S26), the electric current does not lead to any accumulation of charges

and holes (�ne = �nh = 0) inside the sample. The quasiparticle current is absent as well:

�n = 0, �⇢ = 0, Py = 0 (if �e = �h) . (S92)

In this case, the electric field becomes a featureless coordinate-independent expression given

by the standard Ohm law: E = J/(e�+).

Equation (S90a) also indicates that the charge accumulation occurs if and only if the

di↵usion coe�cients for electrons and holes are not equal to each other: De 6= Dh so that

D� 6= 0. In the case when the di↵usivities of the electrons and holes are the same De = Dh,

while their conductivities are di↵erent, �e 6= �h, the electric charge accumulation is absent,

�n = 0 and the electric field (S90c) is constant inside the sample. However, the accumulation

of the neutral particles does occur (S90b): the sides of the sample will host a balanced neutral

density of electrons and holes of equal magnitudes. The accumulation is maintained by the

nonvanishing neutral particle current (S90e). We will consider this case in detail below.

The sign of the charge accumulation is determined by the direction of the current J , as

well as by the relative magnitude of the conductivities of charges and holes. For example,

the same current J can induce a positive electric charge (with a dominant presence of holes)

or a negative electric charge (with a dominant presence of electrons) at the vicinity of the

same electrode depending on which conductivity, of charges or holes, is higher.

These observations can be interpreted as follows. The background electrostatic field

Ey generates the oppositely directed currents of electrons (je,y) and holes (jh,y). If the

conductivities of electrons and holes are not equal, �e 6= �h, then the magnitudes of these

currents do not match each other. Therefore, a nonvanishing total particle current, Py =

je,y + jh,y 6= 0, is generated (S90e). Since the particle current vanishes at the boundary

of the sample, the nonvanishing bulk current produces a nonzero total particle density in

the vicinity of the boundaries of the sample (S90b). This particle density is an electrically

neutral quantity, implying that the neutral particle current brings the electrons and holes

to the boundaries in the same proportions. However, if the di↵usion rate of particles and
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holes are di↵erent, De 6= Dh, then these excitations di↵use di↵erently from the boundaries

to the bulk of the sample, thus leaving the corresponding charged imprint in the form of the

nonzero charge density (S90a) in the vicinity of the boundary. It is the charge accumulation

e↵ect that we detect in the experiment. Thus, for the e↵ect of the charge accumulation to be

realized at the boundary, we need an electron-hole asymmetry both in their conductivities,

�e 6= �h, and in their di↵usivities, De 6= Dh.

Below, we set �� > 0, which corresponds to the case when the electron conductivity is

higher than the conductivity of holes. In the case, �� < 0, the charge accumulation pattern

remains precisely the same in its amplitude but gets reversed in its sign.

C. Screening lengths and sign of the charge accumulation

Given by the theoretical expression (S90a), the charge accumulation could provide us

with direct access to the evaluation of at least the longest one of the inverse lengths {1

and {2 from the experiment. As we will see below, our experimental data indicate that

the slope of the charge accumulation near the boundaries can be excellently described by a

single exponent, thus indicating that one of the lengths is much larger than another. This

conclusion fits well our expectation (S50) that the parameters 1/{1 and 1/{2 correspond

to the Thomas-Fermi and recombination lengths, respectively, with the hierarchy {1 � {2

which is expected to hold in two-component systems [13, 14].

Therefore, our experimental results justify our choice to consider the limit of large {1

which simplifies the subsequent analysis. According to Eq. (S40), the spatial features of the

solution are controlled by a single (inverse) length scale { ⌘ {2 ' 1/�R. Neglecting small

near-boundary terms, we simplify the solution (S90) in the limit {2 ' 1/�R ⌧ {1 ' �
�1
TF:
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The expression of the electric current (S90f) remains, obviously, unchanged. Notice that the

1 This equation is obviously valid for the bulk of the sample, at |y|  L/2��TF, and not at the very narrow

region of close to the boundary. Therefore, Eq. (S93e) is not valid at the points y = ±L/2 that cannot

be probed in our optical experiment anyway.
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significant value of inverse length {2 ' 1/�TF leads to the diminishing of the amplitudes of

the inhomogeneities in all discussed quantities, while the spatial size of the inhomogeneities

is controlled by another, smaller quantity {1 which remains finite.

The densities of particles and holes (S91) become, respectively, as follows:

�ne(y) = ⇢0
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�R
�

4⇡e

{1
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�
sinh y

�R
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where the quantity
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e
, (S95)

characterizes the magnitude of the accumulated density of electrons and holes. We also used

Eqs. (S29) and (S31).

Now let us simplify the solution further by considering the case when the di↵usivities of

the electrons and holes are the same, De = Dh = D while their conductivities are di↵erent,

�e 6= �h. In this limit, the symmetrized Thomas-Fermi length (S37) and the relaxation

length (S38) become, respectively, as follows:
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In agreement with our previous calculations, we find that for De = Dh the electric

charge accumulation is absent, �n(y) = 0, because the densities (S94) of electrons and holes

coincide at each point of the sample, �ne(y) = �nh(y). The electric field Ey is a coordinate-

independent quantity related to the electric current via the Ohm law: J = e(�e + �h)Ey.

The quasiparticle density and the quasiparticle current (S93e) are, however, not vanishing.

The main conclusion arising from the analysis of Eq. (S93) is that in the background

of the electric field, the two-carrier system accumulates the quasiparticle density (S93b)

and generates the quasiparticle current (S93e) even in the absence of the electric charge

accumulation (that is in the case when the conductivities of the electrons and holes are

equal to each other �e = �h). Outside of the exact neutrality point, �e 6= �h, the electrically

charged component of the system picks up the properties of its neutral component. While the

quasiparticle density avoids, due to its neutrality, a direct detection by the electromagnetic

probes, it is the electric charge density that allows us to find the indirect signatures of the

neutral quasiparticle density and the neutral quasiparticle current. We use this property

below to study the pseudo-hydrodynamic behavior of the neutral component of the electron-

hole system.

According to the phase diagram of Fig. S10, the physical point {2 ' �
�1
TF � {1 ' �

�1
R ,
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shown by the red dot in Fig. S11, corresponds to the accumulation of the electric charge

close to the sides of the sample. In this limit, the additional sign flip of the electric charge in

the multiple-alternating density pattern (the upper part of the diagram in Fig. S11) cannot

be seen in the experiment due to the thinness of the boundary charge layer (which is of the

order of �TF). We observe, instead, a single sign flip corresponding to the accumulation of

the electric charge of the certain sign at one boundary and of the other sign at the opposite

boundary.

We illustrate the normalized profiles of all the quantities (S93) for various relative dif-

fusivities and conductivities in Fig. S12. The sign of the charge accumulation depends not

only on the current direction but also on the relative magnitude of the di↵usivities and

conductivities of charges and holes. The electric current is carried by particles and holes

traveling in opposite directions. When the electron and hole currents are imbalanced, the

regions close to the contacts become predominantly saturated by a carrier of a single type,

either by electrons or by holes. Due to the imbalance, the recombination of these excitations

cannot remove all carriers and the electric charge of a single sign is therefore accumulated

in these regions.

It is the relative magnitude of the electron-hole di↵usivities, De and Dh, and conductivi-

ties, �e, and �h, that determines the sign of the charge accumulation (S93a) near the bound-

aries at the fixed sign of the electric current. In other words, the accumulated charge (S93a)

flips its sign if we pass from the higher di↵usivity for electrons, De > Dh, to the higher

di↵usivity for holes, De < Dh (with all other parameters fixed), while the Ohmic part of the

potential stays the same.

Summarizing, in order for the charge accumulation (S90a) to occur, the electrons and

holes must possess both non-equal di↵usivities De 6= Dh and non-equal conductivities, �e 6=

�h. On the contrary, if any of these quantities are the same for particles and holes, the

charge accumulations do not occur.

S11. MISALIGNED CURRENT/CRYSTAL AXIS

In the previous Section, we demonstrated that in a two-carrier system with imbalanced

electrons and holes, the background electric field leads to the longitudinal charge accumu-

lation near the system’s boundaries, even in the absence of a background magnetic field.

The word “longitudinal” is used here to stress that the charge accumulation emerges in the

direction of the electric field. While we studied the one-dimensional case, the e↵ect also

appears in the two-dimensional samples provided the electric field is aligned with one of the

axes of the crystal while the boundary is perpendicular to the direction of the field as shown

in Fig. S13a.

The longitudinal accumulation of electric charge is a close counterpart of the trans-

verse charge accumulation in the Hall systems, which appears due to the emergence of the

transverse voltage in the isotropic two-component conductors in the magnetic field back-

ground [13–15]. In our experiments, the transverse charge accumulation appears as well
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FIG. S12. Qualitative behavior of the electric charge density �Q, the neutral quasiparticle density
�⇢, the quasiparticle current Py and the electric field Ey in the sample with the coordinate y along its
length L. The left and right panels show the e↵ect of the electron-hole di↵usivity imbalance, De >
Dh and De < Dh, respectively. The upper and lower panels compare the e↵ect of the imbalance in
the electron-hole conductivities, with �e > �h and �e < �h, respectively. The quantities |Py| and
|Ey| are normalized to unity at y = 0 while the densities of the neutral quasiparticle density �⇢ and
the charged density �n are shown in arbitrary units. The insets show the directions of electric and
quasiparticle currents as well as the charge density pattern inside the sample (the experimentally
unobservable part of the charge accumulation at the thin layers near the boundaries is not shown).
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FIG. S13. (a) The longitudinal and (b) transverse charge accumulation near the boundaries (shown
by the thick black lines) for (a) the perfectly oriented and (b) misaligned direction of the electric
field E and the symmetry axis of the crystals in the ab plane.
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(see Figs. S8a and S8d) although the background magnetic field is absent while the Oersted

magnetic field, generated by the electric current, is negligible. In this Section, we briefly

argue that the transverse charge accumulation appears due to the intrinsic anisotropy of the

crystal and the misalignment of the electric field axis concerning the boundaries.

Consider the case of a spatially anisotropic crystal for which all quantities that charac-

terize the dynamics of electrons and holes (conductivities, di↵usion parameters, and, conse-

quently, kinetic and recombination times, etc.) are spatially anisotropic. Then the transport

equations (S35) get promoted to the matrix relations with the parameters D± and �± that

takes a matrix form. Finally, these relations are supplemented with the continuity equation

for the electric current (S32), the recombination equation for the quasiparticle current (S33),

and the Maxwell equation (S34) which are not a↵ected by the anisotropy.

To simplify our considerations, let us assume that the anisotropy a↵ects only the electric

conductivity while leaving the di↵usion parameter isotropic. In the basis of the orthogonal

a and b axes, the electric conductivity matrix has the diagonal form

�̂
(0) =

 
�
aa 0

0 �
bb

!
, (S97)

where �
aa and �

bb are conductivities along the principal axes a and b, respectively. The

anisotropy implies that �aa
6= �

bb.

Let us rotate the crystal counterclockwise around the c axis by the angle ✓. The conduc-

tivity in the rotated sample is represented by the symmetric matrix,

�̂ = ⌦T
�̂
(0)⌦ =

 
�
xx

�
xy

�
yx

�
yy

!
, (S98)

where the rotation in the ab plane is given by the matrix

⌦ =

 
cos ✓ sin ✓

� sin ✓ cos ✓

!
. (S99)

The components of the conductivity matrix (S98) in the rotated crystal,

�
xx = �

aa cos2 ✓ + �
bb sin2

✓ , (S100a)

�
yy = �

aa sin2
✓ + �

bb cos2 ✓ , (S100b)

�
xy = �

yx = (�aa
� �

bb) cos ✓ sin ✓ , (S100c)

are, respectively, given by the longitudinal conductivities along the x and y axes and the

o↵-diagonal conductivity.

Let take the electric field E = (0, Ey) parallel to the boundaries of the crystal in the y

direction as shown in Fig. S13b. For simplicity, let us consider an infinitely long slab in the

y direction and show that due to the misalignment of the crystals axes with the boundary
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and the electric field, the system accumulated electric charge in transverse directions.

It is clear that the currents and the densities of charges and quasiparticles, along with

the electric field, are independent of the y coordinate due to the translational symmetry in

the longitudinal direction. Therefore, the electrostatic potential should be a linear function

of the y coordinate only, �(x, y) = f1y+f0, where f0 and f1 are constants (if these constants

were functions of the x coordinate, then the electric field would depend on y what contradicts

the translational symmetry along y). Thus we arrive that the electric field along the y axis,

Ey = �f1, does not depend on the transversal x coordinate.

The electric charge conservation (S32) along with the independence of the electric current

on the y coordinate, j(x, y) = j(y), implies the independence of the transverse current jx on

the x coordinate, @xjx = 0. However, the transverse current should be globally vanishing,

jx = 0, since the electric charge cannot quit the crystal at transverse boundaries. Then the

x component of Eq. (S35a), with vanishing right-hand side, leads to the relation between

the x-independent parts of the electric fields in the transverse and longitudinal directions:

E
(0)
x = �

�
xy
+

�xx
+

Ey . (S101)

Here the superscript “(0)” reminds us that we consider only the x-independent component of

the electric field. In the one-dimensional case considered earlier, this coordinate-independent

component corresponds to the uniform electric field given by the first term in the square

brackets of Eq. (S90c).

The transverse electric field (S101) produces – in a distant similarity to a Hall system [13,

14] and in close resemblance of the results on the one-dimensional case discussed in detail

in the previous section – the charge accumulation in the transverse direction:

�n(x) = n1 sinh1x+ n2 sinh2x , (S102)

which shares similarity with its one-dimensional analogue (S90a). Here the inverse lengths

1 and 2 are given by Eqs. (S40) and (S46), where the conductivities are associated with

the transverse diagonal components, �± ⌘ �
xx
± . To keep our considerations short, we do

not pursue this discussion further, but we notice that the coe�cients n1 and n2 that define

the electric charge accumulation in Eq. (S102) can be calculated similarly to the approach

described earlier in the one-dimensional case. It is interesting to notice that the behavior

of the accumulated electric charge density is determined by the boundary conditions on

the neutral quasiparticle currents. The charge accumulated patterns in two-dimensional

geometries with finite-sized electrodes will be discussed below.

The essential message of this Section is that the coe�cients n1,2 are nonzero in the imba-

lanced system so that a misaligned crystal should exhibit the transverse charge accumula-

tion (S102) illustrated in Fig. S13b. The same e↵ect was also observed in our experiments in

Figs. S8a and S8d which we attribute to the slight misalignment of the intrinsic crystal axis

and the geometry of the sample. Below we consider a more involved system with finite-sized

electrodes, whish leads us directly to the pseudo-hydrodynamic phenomena.
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S12. SOLUTION IN AN INFINITELY LONG SLAB

A. General solution

We assume that the electric current is injected at the y = �L/2 (lower) side of the

slab and then gets absorbed at the y = L/2 (upper) side as illustrated in Fig. S8. Following

Ref. [16], it is instructive to consider the solution in a slab that is unbounded in the direction

of the x axis. In this case, it is convenient to represent all quantities, the densities and the

currents, O = O(r) in terms of the partial Fourier integral:

O(x, y) =

Z 1

�1

dk

2⇡
e
ikx

Ok(y), (S103)

where Ok(y) are the Fourier coe�cients which are given by the inverse Fourier transforma-

tion:

Ok(y) =

Z 1

�1
dxe

�ikx
O(x, y), (S104)

and k ⌘ kx is the Fourier momentum along the x axis.

Substituting into Eq. (S45) the representation (S103) for the charge density O = �n(r),

we get the following equation for the Fourier coe�cients:

�
@
2
y � !

2
1,k

� �
@
2
y � !

2
2,k

�
�nk(y) = 0, (S105)

where we choose the positively-defined “frequencies”:

!a(k) = +
p

{2
a + k2, a = 1, 2. (S106)

A general solution of Eq. (S105) can be expressed in the following form:

�nk(y) = n
+
1,ke

!1,ky + n
�
1,ke

�!1,ky + n
+
2,ke

!2,ky + n
�
2,ke

�!2,ky ⌘

X

a=1,2

X

s=±
n
s
a,ke

s!a,ky, (S107)

where n
±
a,k with a = 1, 2 are four arbitrary parameters which depend on the momentum k.

Using the set of equations (S36), one also gets the corresponding representation for the

Fourier coe�cient of the quasiparticle density:

�⇢k(y) =
X

a=1,2

X

s=±
⇢
s
a,ke

s!a,ky (S108)

where the parameters (a = 1, 2)

⇢
±
a,k = C

(⇢)
a n

±
a,k, (S109)

with the coe�cients C(⇢)
a given in Eq. (S83), are linked to the coe�cients n±

a,k that determine

the charge density (S107).
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The electric field E satisfies the Maxwell equation (S34). Expressing the field E in terms

of the electrostatic potential � via Eq. (S53), the Maxwell equation becomes as follows:

��(r) = 4⇡e�n(r). (S110)

The general solution of Eq. (S110) is given by the sum �(r) = �
(n)(r)+�

(h)(r) of a solution

�h of the inhomogeneous equation (S110) and an arbitrary harmonic function �h which

solves the Laplace equation:

��
(h)(r) = 0. (S111)

The harmonic part of the solution can also be represented in the form (S103) with the

coe�cients:

�
(h)
k (y) = �+

k e
!0,ky + ��

k e
�!0,ky, (S112)

and

!0,k = k . (S113)

To keep our equations simple, we allow !0,k to take any sign in contrast to the previously

defined frequencies (S106). As we will see below, the (non-)harmonic component of the

solution in two spatial dimensions is the analog of the (non-)homogeneous part of the one-

dimensional solution discussed earlier.

In the following, we represent �n in terms of the Fourier integral (S103). The explicit

solution of the Maxwell equation (S110) with the source density (S107) reads as follows:

�k(y) =
2X

a=0

X

s=±
�
s
a,ke

s!a,ky, (S114)

where the non-harmonic coe�cients �
±
1,k and �

±
2,k are again related to the charge den-

sity (S107) via the following relation:

�
±
a,k =

4⇡e

{2
a

n
±
a,k , (a = 1, 2) , (S115)

while the harmonic coe�cients �±
0,k ⌘ �±

k of the electrostatic potential remain still undeter-

mined at this stage.

The Fourier components Ek(y) of the electric field (S53) then become rigidly fixed:

Ek,x(y)=�ik�k(y)⌘� ik

2X

a=0

X

s=±
�
s
a,ke

s!a,ky, (S116a)

Ek,y(y)=�@y�k(y)⌘�

2X

a=0

X

s=±
s!a,k�

s
a,ke

s!a,ky. (S116b)
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The electric current j and the particle current P can now be unambiguously determined

from the set of equations (S35):

j = �D+r�n�D�r�⇢� �+E, (S117a)

P = �D�r�n�D+r�⇢� ��E, (S117b)

which involve all the quantities �n, �⇢ and E that were identified above. We remind that,

according to Eq. (S27), the charged current j has the opposite direction with respect to the

electric current J = �ej.

Substituting Eqs. (S107), (S108), and (S116) into Eq. (S117a), we notice that the charged

current j is determined only by the harmonic component of the electric field:

j(r) = ��+E
(h)(r) ⌘ �+r�

(h)(r) , (S118)

with the following Fourier coe�cients:

jx,k(y) = ik�+

�
�+

k e
ky + ��

k e
�ky

�
, (S119a)

jy,k(y) = k�+

�
�+

k e
ky

� ��
k e

�ky
�
. (S119b)

This property qualitatively agrees with the one-dimensional case in which the charged cur-

rent j ⌘ (0, jy) is determined only by a coordinate-independent (that is, harmonic, in one

space dimension) component of the electric field (S78).

It is interesting to observe that while the charged current originates from the purely

harmonic functions (S119), the charged density is entirely determined by the non-harmonic

expressions (S107). These seemingly unrelated terms are both contributing to the quasipar-

ticle current (S117b) which can be represented as a sum of the harmonic and non-harmonic

components, respectively:

P = P (nh) + P (h)
. (S120)

The harmonic component is the conserved part of the quasiparticle current which is propor-

tional to the electric current:

P (h) =
��

�+
j . (S121)

The system inevitably produces the Ohmic flow of quasiparticles due to the imbalance in the

electron-hole conductivities (�e 6= �h). The Ohmic flow cannot generate the quasiparticle

density and cannot lead to the electric charge accumulation in the system because the Ohmic

(harmonic) part of the quasiparticle current is exactly conserved,

r · P (h)
⌘ 0 . (S122)
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The non-harmonic part of the quasiparticle current (S120) is given by

P
(nh)
x,k (y) = �ik

X

a=1,2

X

s=±
p
s
a,ke

s!a,ky , (S123a)

P
(nh)
y,k (y) = �

X

a=1,2

X

s=±
s!a,kp

s
a,ke

s!a,ky , (S123b)

where, similarly to the one-dimensional case, the new coe�cients

p
±
a,k = C

(P )
a n

±
a,k , a = 1, 2 , (S124)

can be calculated with the use of Eqs. (S37), (S109), and (S115). The coe�cients C(P )
a are

given by Eq. (S86).

The non-harmonic part (S123) represents the non-Ohmic component of the neutral quasi-

particle current (S120) which leads to the accumulation of the electric charge observed in

the experiment. We will see below that the Ohmic and non-Ohmic components of the

quasiparticle current are related to each other via the boundary conditions on the neutral

quasiparticle current P .

B. Boundary conditions

Identifying the normally injected (or taken away) currents at the upper and lower sides

of the strip

I
±
✓
x, y = ±

L

2

◆
= j

±
y

✓
x, y = ±

L

2

◆
. (S125)

and implementing Eq. (S104) to rewrite Eq. (S125) in the Fourier space,

I
±
k =

Z 1

�1
dxe

�ikx
jy

✓
x, y = ±

L

2

◆
, (S126)

we determine the coe�cients �±
0,k ⌘ �±

k via Eq. (S119b) using the relations:

I
±
k = jy,k

✓
x, y = ±

L

2

◆
⌘ k�+

�
�+

k e
±kL/2

� ��
k e

⌥kL/2
�
. (S127)

Inverting this matrix equation, we fix the harmonic coe�cients of the solution as follows:

�±
k =

1

2�+k sinh kL

�
e
±kL/2

I
+
k � e

⌥kL/2
I
�
k

�
. (S128)

Notice that the solution is self-consistent if and only if the global conservation of electric

charge is respected. Indeed, if the total injected charge and the total charge taken away are
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equal to each other,

1Z

�1

dxjy

✓
x, y = +

L

2

◆
=

1Z

�1

dxjy

✓
x, y = �

L

2

◆
, (S129)

then

lim
k!0

�
I
+
k � I

�
k

�
= 0, (S130)

or I+k = I
�
k +O(k1) as k ! 0. We get for the parameters �±

0,k = O(k�1) so that the Fourier

coe�cients (S119) are finite in the infrared limit, jy,k(y) = O(k0), implying that the electric

currents j(r) are not divergent inside the slab due to the infinite charge accumulation caused

by an imbalanced source and drain flows of the electric current.

The electric current (S118) is given by the harmonic components (S119) which are

completely determined – in our setup – via the boundary conditions for the electric cur-

rent (S128). On the other hand, the electric charge accumulation and quasiparticle distri-

butions possess also a non-harmonic component which remains undetermined at this stage.

More concretely, we are now left with the task to find the four remaining coe�cients n
±
1,2

which determine the charge density (S107). These coe�cients can subsequently be used

to express the coe�cients for the neutral quasiparticle density ⇢
±
1,2, the electric potential

�
±
1,2, and the neutral quasiparticle current p±1,2 via the relations (S109), (S115), and (S86),

respectively.

While the intrinsically harmonic electric current is entirely defined by its Ohmic flow,

the non-harmonic components of the quasiparticle current can only be constrained by the

behavior of the quasiparticle current at the boundaries. The quasiparticle current P pos-

sesses both harmonic and non-harmonic components, with the harmonic component linking

tightly to the electric current (S121). Therefore, the non-harmonic part of P can only be

fixed by certain boundary constraints.

The first pair of equations for the non-harmonic coe�cients n±
1,2 is set by the boundary

condition that the quasiparticle current P cannot quit the sample at the upper and lower

edges of the slab:

Py

✓
x, y = ±

L

2

◆
= 0. (S131)

Written in the Fourier space, the condition (S131) for the normal component reads as follows:

Py,k(y = ±L/2) = 0.

The remaining two relations on n
±
1,2 should, in principle, be set by the conditions to the

tangential Px component of the quasiparticle current at the upper and lower edges. What

are these conditions? In our idealized setup, the harmonic part of P cannot be constrained

at all since it is tightly linked, via the system of Eqs. (S35), to the Ohmic flow of the electric

current. Moreover, similarly to the electric current, it is easy to check that the tangential

component of the harmonic part of the quasiparticle current P is not vanishing at the
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boundary similarity to the tangential component of the charged current. This property

becomes evident if we notice that the harmonic parts of both currents constitute the same

Ohmic flow.

It is not clear ab initio what should be the constraints on the tangential non-harmonic

component of the quasiparticle current at the boundary. Restricting ourselves to the most

straightforward cases, one could assume that this current component is vanishing at the

border or equals the minus harmonic component (in the latter case, the total tangential

current vanishes at the boundary). One can also generalize this condition by assuming that

the tangential parts of both components, given in the Fourier images by Eqs. (S120), are

proportional to each other:

⇥
P

(nh)
x + gP

(h)
x

⇤ ����
y=±L/2

= 0 . (S132)

The coe�cient of proportionality, g, determines phenomenologically the property of the

boundary that (de)couples the harmonic (h) and non-harmonic (nh) components. The two

simplest cases, mentioned above, correspond to g = 0 and g = 1, respectively.

In general case, the set of the boundary equations for the tangential component of the

quasiparticle current becomes as follows (with s, r = ±1):

2X

a=1

X

s=±
p
s
a,ke

sr!a,kL/2 = g��F
r
+,k , (S133a)

2X

a=1

X

s=±
s!a,kp

s
a,ke

sr!a,kL/2 = ��kF
r
�,k , (S133b)

where the following combinations give the functions on the right-hand side:

F
r
s,k = �+

k e
rkL/2 + s��

k e
�rkL/2

, s, r = ±1 . (S134)

Equations (S133a) and (S133b) set the boundary conditions for the tangential and normal

components of the quasiparticle current.

The explicit form of the boundary conditions (S133) for the quasiparticle current is as

follows:

p
+
1,ke

!1,kL/2 + p
�
1,ke

�!1,kL/2 + p
+
2,ke

!2,kL/2 + p
�
2,ke

�!2,kL/2 = g��F
+
+ , (S135a)

p
+
1,ke

�!1,kL/2 + p
�
1,ke

!1,kL/2 + p
+
2,ke

�!2,kL/2 + p
�
2,ke

+!2,kL/2 = g��F
�
+ , (S135b)

p
+
1,k!1,ke

!1,kL/2 � p
�
1,k!1,ke

�!1,kL/2 + p
+
2,k!2,ke

!2,kL/2 � p
�
2,k!2,ke

�!2,kL/2 = k��F
+
� , (S135c)

p
+
1,k!1,ke

�!1,kL/2 � p
�
1,k!1,ke

!1,kL/2 + p
+
2,k!2,ke

�!2,kL/2 � p
�
2,k!2,ke

!2,kL/2 = k��F
�
� . (S135d)

The right-hand side of this matrix equation is related to the harmonic modes of the solution

and is fixed by the form of the injected and absorbed electric current (S128). The coe�cients
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�±
k at this side also determine the lines of the electric current (S119) inside the sample.

The left-hand determines of Eq. (S135) gives the coe�cients p±a,k which, along with the

coe�cients �±
k , provide us with the density of the electric charge (S107), the neutral quasi-

particle density (S108), the lines of the electric fields (S116), and the neutral quasiparticle

currents (S135) via the relations (S109), (S115), and (S86). Thus, we get the complete

description of the two-component transport system.

C. Pointlike sources

Let us consider the �-function sources located, respectively, at the points x = +a/2 and

x = �a/2 of the upper, y = +L/2, and lower, y = �L/2, edges of the slab:

jy

✓
x, y = ±

L

2

◆
= I0� (x⌥ a/2) . (S136)

The Fourier components of the normal boundary currents (S126),

I
±
k (a) = I0e

⌥ika/2
, (S137)

give us the following harmonic coe�cients of the solution (S128):

�±
k =

I0

�+k sinh kL
sinh

±kL� ika

2
, (S138)

thus leading us to the following source functions (S134):

F
+
+,k(a) =

I0

�+k

e
�ika/2 cosh kL� e

ika/2

sinh kL
, (S139a)

F
�
+,k(a) =

I0

�+k

e
�ika/2

� e
ika/2 cosh kL

sinh kL
, (S139b)

F
±
�,k(a) =

I0

�+k
e
⌥ika/2

. (S139c)

At the head-on location of the point-like sources, a = 0, the harmonic coe�cients (S128)

and the source functions (S134) are respectively, as follows:

�±
k (a)

����
a=0

= ±
I0

2k�+ cosh kL/2
, (S140)

F
±
+,ka

����
a=0

= ±
I0

�+k
tanh

kL

2
, (S141)

F
±
�,ka

����
a=0

=
I0

�+k
. (S142)

The electric current (S118) is determined by the harmonic component of the electrostatic
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potential which takes the following form in the mixed coordinate-momentum representation:

�
(h)
k (y) =

I0 sinh(ky)

k�+ cosh(kL/2)
. (S143)

The solution in the coordinate space can be obtained by application of the Fourier trans-

form (S103) to the above expression.

D. Finite-sized electrodes

a

b
drain

b
source

L

FIG. S14. Geometry of electrodes and samples.

Consider now the extended electrodes of the width b each, centered at the points +a/2

and �a/2 at upper (lower) edges of the band, Fig. S14. For reference, the experimentally

observed charge density maps in Fig. 2c of the main text are produced with the vanishing

the o↵set a = 0 between the electrodes of the width b = 2.5µm separated by the distance

L = 15µm, while the density maps of Fig. 2f can be reproduced in the same geometry but

with the o↵set about a = 0.2µm.

The electric current at the edges is then:

jy

✓
x, y = ±

L

2

◆
=

(
I0/b,

��x⌥
a
2

�� 6 b
2 ,

0, otherwise ,
(S144)

so that the total current entering (leaving) the sample at lower (upper) edges is I0. The

Fourier transform of the current with the finite-sized electrodes (S144) is

I
±
k (a, b) = I0e

⌥ika/2
·
2

bk
sin

bk

2
, (S145)

which di↵ers from the point-like source (S137) by multiplication by the factor 2 sin(bk/2)/(bk).

Consequently, the functions F±
±,k and �±

k for the finite-sized extended electrodes (S144) are

easily obtained from the expressions for �±
k (a) given in Eq. (S138) and F

±
±,k(a), Eq. (S139),
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that correspond to the point-like electrodes:

�±
k (a, b) =

2

bk
sin

bk

2
�±

k (a) , (S146)

F
±
±,k(a, b) =

2

bk
sin

bk

2
F

±
±,k(a) . (S147)

The electric current is determined solely by the harmonic component which takes, for the

wide electrodes of the finite width b and zero o↵set a = 0, the following form:

�
(h)
k (y) =

2I0
b�+k

2

sinh(ky) sin(bk/2)

cosh(kL/2)
. (S148)

S13. DENSITIES, CURRENTS, AND VORTICES

A. Overall picture

In this Appendix, we discuss an electron-hole system with specially chosen parameters

that were presented, at one hand, to enhance the geometric e↵ects and make the presence of

the backflow in the quasiparticle flow visually appealing, and, at the other hand, to match

the experimental setup closely. Unfortunately, given the multitude of di↵erent parameters

which describe the two-dimensional solution (involving, notably, unknown conductivities �e,

�h, the di↵usion coe�cients De, Dh and the boundary parameter g), the accuracy of our

experiment does not allow us to fix them reliably apart from the scale of the recombination

length around �R ⇠ 1µm within the range �R ' (0.5 � 2.0)µm. Moreover, the theoretical

solutions cannot be obtained in a closed analytical form, making the analysis even more

complicated. However, we found via matching of the results of the numerical analysis with

the experimental data that in a particular wide scale of these parameters, the theoretical re-

sult for the geometry of the charge accumulation region matches, albeit inevitably significant

systematical uncertainty, the experiment very well.

We consider an infinitely long strip of the width L with two finite-width electrodes, the

source (+I0) and the sink (�I0), placed in front of each other at, respectively, the lower and

upper edges of the strip. In notations of Fig. S14, we choose the o↵set a = 0 and the width

of electrodes b = 0.16L ' 2.5µm at L ' 15µm. We choose the lengths scales {1L = 300 and

{2L = 10 implying {�1
1 ' 50 nm and {�1

2 ' 1.5µm. According to our identification (S50),

the second length scale is close to the recombination length, {�1
2 ' �R along the a crystal

axis in an approximate agreement with the value obtained in our experment, Fig. S5. In

principle, the first length scale, {�1
1 , should be of the order of the Thomas-Fermi length

which is about 1 nm. However, the exact value of the first length scale is not important

for the qualitative long-scale features of our solution as long as it is much shorter than the

recombination length, {�1
1 ⌧ {�1

2 . Therefore, for the sake of the numerical convenience, we

choose the larger value of {�1
1 .

We set the boundary parameter for the quasiparticle current to a small but nonzero value,
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g = 0.01, which implies, according to Eq. (S132) that at the boundary, the non-harmonic

component of the quasiparticle current equals to a small fraction (fixed to be just 1%) of

the harmonic component. As we discussed earlier, the phenomenological parameter g is a

material property that cannot be fixed ab initio. The presence of the transverse boundary

does not a↵ect the results noticeably as long as the width of the sample is much larger than

the relaxation length �R (in our case, the ratio is about 20).

In order to support the electric charge accumulation in the vicinity of the electrodes,

we require – following the one-dimensional example that we considered earlier – that the

electrons and hole possess di↵erent di↵usion consants and di↵erent conductivities: De 6= Dh

and �e 6= �h. The solution is determined with the help of the boundary conditions (S135)

that fix the parameters p
±
1,2 of the quasiparticle flow. The latter coe�cients are related to

the electric charge components n±
a via the relation (S124) and the coe�cients C(P )

1,2 given in

Eq. (S86) as an involved function of the di↵usion coe�cients and conductivities for electrons

and holes. We choose for the ratio C
(P )
2 /C

(P )
1 = 102 which matches the hierarchy {�1

1 ⇠

�FT ⌧ �R ⇠ {�1
2 . The influence of the length-scale hierarchy, {�1

1 and {�1
2 , as well as the

value of the boundary condition parameter g on the geometry of the charge accumulation

domains and the quasipaticle currents will be briefly discussed closer to the end of this

section.

This set of parameters allows us to model the geometrical picture of the electric charge

accumulation, which correctly matches the optical experiment. The comparison of experi-

mental results and the theoretical model is shown in Fig. 2 of the main text. In this Sup-

plementary material, we discuss other characteristics of the system which accompany the

charge accumulation. As an example, we consider the case of vertically positioned electrodes

shown in Figs. 2a,b,c and depict in Fig. S15 the whole variety of charge and quasiparticle

densities and currents in the bulk of the sample.

Figure S15a represents the electric charge density which appears already in Fig. 2c of the

main text. It can be compared with the corresponding quasiparticle density, which is shown

in Fig. S15b. Both charged and neutral densities exhibit qualitatively similar alternating-

sign patterns around the electrodes, albeit slightly di↵erent geometrical structures. The

streamlines of the electric current, shown in Fig. S15c, are entirely given by the featureless

Ohmic drift, which is governed by the harmonic component of the electrostatic potential.

For completeness, the colors in the same figure show the electrostatic potential.

The quasiparticle current, Fig. S15d (Fig. 3a of the main text), however, exhibits a

nontrivial behavior featuring a pair of the whirlpool-like structures in the bulk of the sample

and a backflow near the electrodes. While these whirlpool-like structures are distantly similar

to the hydrodynamic vortices in fluids, the analogy is not complete because the ordinary

hydrodynamic flow is associated with the conserved flow while the quasiparticle charge is

not conserved. As a result, the quasiparticle current streamlines are not closed: while a

part of the quasiparticle flow originates and terminates at the source and the drain, some

quasiparticle current lines terminate at the edge, leading to the charge accumulation as it

is described in the main text. A similar e↵ect leads to a later electric charge accumulation
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FIG. S15. Charged and quasiparticle densities and currents in the two-component conductor with
the wide electrodes attached at the top (x, y) = (0,+L/2) and the bottom (x, y) = (0,�L/2)
edges: (a) the electric charge density, (b) the quasiparticle density, (c) the streamlines of electric
charge current, and (d) the streamlines of the non-Ohmic component of the quasiparticle current.
The colors in (a), (b) and (c), (d) show, respectively, the magnitude of the densities and currents.
The streamlines of the Ohmic component of the quasiparticle current are identical to those of the
charged current shown in panel (c). All lengths are given in units of the width of the strip L with
the parameters discussed in the text. The magnitudes of all quantities are presented in arbitrary
units. The figures a0, . . . , d0 zoom in the region in the close vicinity of the bottom electrode.

in almost-compensated conductors in the Hall geometry in the presence of the background

magnetic field [13–15]. Figure S15 allows us to visualize di↵erent features of the alternating-

sign charge accumulation mechanism due to the “pseudo-hydrodynamic” quasiparticle flow

in the two-dimensional geometry.

The di↵erence in the electrostatic potentials between the source and the drain generates

the harmonic Ohmic flow of the electric charge, Fig. S15c. The charged harmonic flow

does not lead directly to the charge accumulation. However, in a close analogy with the

one-dimensional example discussed earlier, the charged current produces the collinear quasi-

particle current across the slab. In the vicinity of the electrodes, the non-Ohmic part of

the quasiparticle flow creates the backflow close to the edges of the sample, Fig. S15d. The

quasiparticle backflow, directed against the main flow, brings the quasiparticles back to the

source (drain) located at the edge of the sample. The latter e↵ect leads to the accumulation

of the net quasiparticle number at the edges, Fig. S15b. The Ohmic part of the quasiparticle

current (not shown) represents a conserved (non-compressible) flow that does not lead to

density accumulation.

The carriers, accumulated at the boundaries, tend to spread back towards the bulk of

the sample due to the di↵usion. While the quasiparticle current brings equal electrons and

holes towards the boundary, these charge carriers di↵use di↵erently due to the imbalanced

di↵usion constants. The latter e↵ect produces the alternating charge and particle densities

in the vicinity of the electrodes, shown in Fig. S15a and Fig. S15b, respectively.

Since the quasiparticle number is not a conserved quantity, the harmonicity condition does
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not apply to the quasiparticle current. This property explains, in particular, the qualitative

di↵erence between the charged flow in Fig. S15c and the quasiparticle current in Fig. S15d.

Notice that that normal component of both charged and quasiparticle currents vanishes at

the boundary: while the streamlines of the quasiparticle current in Fig. S15d approach the

edges normally, the magnitude of its normal component vanishes at the edge.

Remarkably, the quasiparticle backflow near the electrodes is also associated with the

appearance of the symmetric pair of the whirlpools of the neutral quasiparticle current in

the bulk of the sample, Fig. S15d. In the center of each of these whirlpools, the quasiparticle

flow vanishes. The centers are located in the region where the electric charge density,

Fig. S15a, and the neutral quasiparticle charge density, Fig. S15b, are vanishing as well.

On the other hand, the whirlpool structures of the quasiparticle flow of the non-Ohmic

(non-harmonic) component of the quasiparticle current, Fig. S15d, do not a↵ect the electric

current, Fig. S15c, which is entirely determined by its Ohmic (harmonic) component.

We would also like to notice that the association of the sign of the electric charge density

�n with the sign of the variation of the quasiparticle density �⇢ and the direction of the

electric j and quasiparticle P currents depends on the relative magnitude of the electric

conductivities �↵ and the di↵usive coe�cients D↵ of the electrons and holes, ↵ = e, h. This

property is demonstrated in the one-dimensional example shown in Fig. S12. Having the

experimental access only to the charge density observable, we cannot determine the sign

of the quasiparticle charge accumulation in Fig. S15b as well as the direction (positive or

negative) of the associated quasiparticle currents in Fig. S15d.

B. Dependence on lengths scales and boundary condition

Our simulations indicate that the size and the position of the pseudo-hydrodynamic

vortices in the quasiparticle current depend not only on the recombination length �R but

also on the size of the electrodes, the distance to the boundaries and, to a smaller extent,

on other parameters of the system such as the boundary parameter g. The same statement

is also valid for the quasiparticle backflow, which determines the sign-alternating pattern of

the experimentally observable charge accumulation near the electrodes. In order to make our

discussion simpler and exclude one parameter, the electrode size, from our considerations, we

discuss below the case of a pointlike electrode. The relevant formulae were already obtained

in Section S12C.

In Fig. S16 we show the charge density and the streamlines of the quasiparticle currents

in the region very near to the pointlike electrode at the bottom edge of the sample. The

behavior of these quantities, shown for a set of the inverse lengths {1 and {2, indicates that

the size of the domains featuring the sign-alternating density and the size of the whirlpool in

the quasiparticle current is set by the shortest length in the system. Additionally, we observe

that at a fixed boundary condition (g = 0), the size of the whirlpool is correlated with the

size of the induced charge density domain (the former is approximately twice smaller than

the latter at g = 0). A similar quantitative picture is also observed for the quasiparticle
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FIG. S16. The charge density (left) and the non-Ohmic component of the quasiparticle current
(right) patterns close to the pointlike bottom electrode at various values of the inverse lengths {1

and {2 at the boundary condition g = 0 for the neutral current P , Eq. (S132). The lengths 1/{1

and 1/{2 are shown graphically at the insets by the segments in the magenta and black colors.

density (not shown). The mechanism is the same: the backflow originating from the pseudo-

hydrodynamic whirlpool brings the neutral quasiparticles back to the boundary and creates,

due to the imbalance in the electron and hole mobilities, sign-alternating density patterns

in electric charge that we observe in our optical experiment.

The size of the charge-alternating domains depends on the longest correlation length in the

system and the boundary condition. In Fig. S17 we show the same quantities as in Fig. S16

but for three di↵erent values of g at fixed {1 and {2. While the size of the quasiparticle

whirlpool stays unchanged, the size of the charge domain becomes substantially larger as

the value of the coupling g increases.
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FIG. S17. The same as in Fig. S16 but for di↵erent constants g = 0, 0.02, 0.04, 0.1 (from top
to bottom) in the boundary conditions Eq. (S132) for the neutral current P at the fixed inverse
lengths {1L = 10 and {2L = 50.
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