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Abstract. 
Our work focuses on the transition from high school to university in the field of calculus. In France, 
recursive sequences are studied as one of the classical exercises in both institutions. Their studies 
use different theorems and notions, such as functions, convergence, monotonicity, induction, etc. 
The work expected at this transition requires the development of recognition and control activities 
on the part of the students. We propose a new task allowing the development of such activities 
from a dialectic between two paradigms of analysis using the calculator. We highlight that students 
at the end of high school have difficulties in studying these sequences, and they do not easily 
develop the activities of recognition and control independently. This could cause problems in 
understanding recursive sequences at the beginning of university. 

Keywords: Mathematical work, Paradigm, mathematical activities, Activity Theory, 

control. 

1 Introduction 

Many studies have characterized the significant transition between secondary school and 
university in mathematical education. This transition brings both continuities and 
discontinuities in teaching and learning (Gueudet, 2008; Gueudet et al., 2016; Winsløw et al., 
2018; Gueudet & Thomas, 2020; Monaghan et al., 2019). 
In calculus, functions, limits, derivatives and real numbers are mathematical objects that have 
been widely studied, and are known to be problematic for students (Thomas et al., 2015; 
Bressoud et al., 2016; Oktaç & Vivier, 2016). However, despite their importance, only a few 
studies have focused on sequences of the form 𝑢!"# = 𝑓(𝑢!) (Boschet, 1982; Weigand, 1991, 
2004; Ghedamsi, 2008; Ghedamsi & Fattoum, 2018). These objects are interesting because they 
draw upon many notions found in calculus that students find difficult. Moreover, in science 
degrees, recursive sequences are often used to solve problems in science disciplines other than 
mathematics (Krainer, 2015). 
Studies such as Sierpinska (1990), Mamona-Downs (2001) and Przenioslo (2004, 2005) 
highlight the importance of sequences, and their convergence, in the teaching and learning of 
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calculus. In Germany, Weigand (1991, 2004) noted the role of representations as high school 
students discover the properties of recursive sequences. He also emphasized the need to train 
students in the interpretation of graphical representations with the help of computers. 
Our study focuses on the recognition of the properties of recursive sequences using 
representations given by technological tools, reflecting the transition from high school to 
university in France. The work we present here is a continuation of a previous study, which 
confirms that high school teaching of recursive sequences is insufficient in preparing students 
for higher education. At university, undergraduates are expected to work autonomously and 
master new knowledge (including formal notions). Although tasks remain in the domain of 
calculus, they are less clear-cut and give fewer indications. Students are expected to be able to 
recognize correct methods, but there is no help to check their results. In spite of its potential, 
and the competencies acquired by students in high school, a calculator is often kept aside or 
forbidden at university. 
In that context, how can we prepare students to recognize and control their work, in using both 
their theoretical knowledge and their instrumental competencies with calculator? 
In section 2, we discuss the importance of the recursive sequences in the curriculum, and outline 
the main difficulties encountered by students. In Section 3, we present the theoretical tools used 
in our study, which are mainly drawn from Activity Theory in Didactic of Mathematics 
(Vandebrouck, 2018). Our methodology is presented in Section 4. Section 5 presents the a 
priori analysis of our experimental exercise, while Section 6 outlines our a posteriori analysis. 

2 Learning about recursive sequences 

2.1 From advanced mathematics to the curriculum 
Recursive sequences are of great interest in many mathematical problems at university level. 
They are used to find solutions to equations 𝑔(𝑥) = 0, using for instance Newton’s numerical 
method that ask to study the convergence of a sequence (𝑢!) defined by 𝑢!"# = 𝑓(𝑢!) with a 
new function 𝑓(𝑥) = 𝑥 + 𝛼(𝑥)𝑔(𝑥). Examples also include the Cauchy Lipschitz (Picard-
Lindelöf) method for solutions of differential equations, the implicit function theorem, 
multivariable analysis, differential geometry, fractal and dynamical systems theory and so on. 
Moreover, the structure of ℕ, and specially the notion of successor, is crucial for the definition 
of recursive sequences (and induction). Recursive sequences cannot be interpreted only as 
functions between two sets. 
Given their importance in the mathematical universe, in France, recursive sequences appear 
both at the end of secondary school, and at the start of university. First of all, in high school, 
sequences constitute an important part of calculus: in 12th grade, it is almost a quarter of the 
calculus curriculum in the textbook (Barbazo & Barnet, 2020). Calculus starts with two chapters 
on sequences; one is dedicated to recursiveness. This concerns the students who choose the 
spécialité mathématique option (taken by 41% of the students in 20201). In 2019, at the 

 
1https://www.education.gouv.fr/la-rentree-2020-les-eleves-de-terminale-precisent-leur-choix-de-parcours-

307016 



*macarena.flores-gonzalez@cyu.fr, vandebro@univ-paris-diderot.fr, laurent.vivier@univ-paris-diderot.fr 

 

baccalaureate2, there was a study of a recursive sequence with a parameter. High school 
exercises generally present the task as follows. First, study the function that generates the 
sequence: determine any fixed points (𝑓(𝑥) = 𝑥), variations3 and, in some cases, the stability 
of an interval. Then, study the sequence: look for monotony, bounds (often with a proof by 
induction), convergence (using the theorem: “any monotone and bounded sequence is 
convergent”) and the value of the limit. Thus, at high school, the study of recursive sequences 
is carried out with algebraic techniques and, in some cases, they propose either a graphical 
representation or the use of the calculator.  
On the other hand, in the first year at university, students begin with some preliminary exercises 
(limits, continuity and differentiability of functions), before moving to tasks based on recursive 
sequences of the form 𝑢!"# = 𝑓(𝑢!). As an example, on the exercise sheet about real numbers 
and sequences for the first semester at the University, one fifth of the exercises directly or 
indirectly concern such recursive sequences, without any graphical representation and without 
the use of the calculator. At this stage, students are expected to use a wider range of theorems 
and methods. In addition to the methods and theorems studied in high school, students work 
with a formal definition of convergence, monotonic, adjacent and extracted sequences, the 
Bolzano-Weierstrass theorem, the extension of broad inequalities, and the two theorems: 1) if 
lim
$→&

𝑓(𝑥) = 𝑙 and if lim𝑢! = 𝑘	 ⟹ lim𝑓(𝑢!) = 𝑙; 2) if for all sequences (𝑢!) convergent to 

𝑘 one has lim 𝑓(𝑢!) ⟶ 𝑙, hence lim
$→&

𝑓(𝑥) ⟶ 𝑙. Moreover, neither the proof by induction nor 

the study of the recursive sequences are explicitly addressed in the lecture course. 

2.2 Students’ difficulties in the high school-university transition  
From a didactic perspective, recursive sequences, together with the concepts of convergence 
and limit, bring difficulties for students. These topics combine two objects: sequences and 
functions, which are not yet mastered by students at the end of high school and the beginning 
of university (Rousse, 2018). Concerning semiotic representations, representations such as the 
“cobweb diagram” (Figure 1), frequently used in teaching, are not understood by students and 
are not at all helpful (Weigand, 1991). 

 
Figure 1: Examples of cobweb diagrams (Krainer, 2015, p. 301). 

 

 
2 The final exam of high school required to enter at university. 
3 With respect to functions, it is usual to summarize variations using a table with arrows on each interval where 

the function is increasing or decreasing. 
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In our previous study (Flores González et al., 2020), we compared some assessment tasks at the 
end of high school and in the first year of university in France about recursive sequences, and 
we analysed students’ responses at both levels of education. Success rate was low, especially 
at the university level. Students easily confuse exercises that are based on techniques from the 
domain of sequences and those from the domain of functions. In spite of few similarities in both 
domains, overall for functional sequences of type 𝑓(𝑛) and sometimes with subtility like in “if 
𝑓 is increasing then 𝑢!"# = 𝑓(𝑢!) is monotone”, most calculus techniques are different; 
derivative computation or proof by induction are specific to, respectively, functions and 
sequences. There is no link between the limits of 𝑓 and the limit of recursive sequence (𝑢!), 
and the existence of a recursive sequence is a specific problem, even if it remains implicit in 
teaching. Some students did not recognize recursive sequences as specific sequences, and 
treated them as 𝑢! = 𝑓(𝑛) (see Figure 2). Thus, many students were unclear about the 
distinction between sequences and functions and were unable to produce coherent mathematical 
work. Finally, the task did not use a numerical tool to explore the recursive sequence in either 
the last year of high school or the first year of university. 

 
Figure 2: First year university student who does not recognize the correct sequence. 

 
In this paper, we design and experiment a task at high school level aiming at preparing future 
students for the recognition and mathematical control activities in the field of recursive 
sequences. 

3 Theoretical tools 

3.1 Activity Theory in Didactic of Mathematics 
Adapted from Activity Theory, Activity Theory in Didactic of Mathematics (ATDM) was 
developed about 20 years ago (Vandebrouck, 2018). ATDM models epistemological and 
cognitive aspects by differentiating between task and activity (Rogalski, 2013). Drawing on the 
tools that ATDM uses to describe and interpret the student’s activity, we identify both the 
mathematical knowledge needed to solve the task and the way it must be used in terms of 
adaptations of knowledge. Examples of adaptations of knowledge are: mixtures of knowledge; 
the use of intermediaries; a change of mathematical domain; the introduction of steps; the 
introduction of results from previous questions, etc. (Horoks & Robert, 2007). The direct 
application of a theorem does not need any adaptation. Adaptations of knowledge leads us to 
the concept of individual mathematical activities among students. This emphasis on the 
cognitive dimension of the student’s activity can explain the process of internalisation 
(Vygotsky, 1978) from a socio-constructivist point of view, providing, as Simon et al. (2018, 
p. 2) note, “a complement to sociocultural theory”. 
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Our study expands on complex tasks (those that require adaptations of knowledge), their 
context, the mediations, and the student’s activities. We focus especially on two critical 
mathematical activities that are characteristic of complex tasks (Robert & Vandebrouck, 2014): 

• Recognizing activities mainly occur in a context where students have to recognize the 
mathematical knowledge they can use to solve the task they are given. They may also 
be asked to recognize how they can apply or adapt this knowledge. Students can also 
recognize a method and that various steps in their reasoning can be connected. 

• Control activities are found when students must highlight that their mathematical 
reasoning is coherent, by introducing several check points. They also ensure that the 
answer produced corresponds to the intended goal of the activity. 

Tasks of recursive sequences are complex, due to the mix of knowledge about functions and 
sequences and the need for students to adapt this knowledge. These tasks lead specifically to 
recognizing and control activities4.  
Recognizing activities are developed when students autonomously choose the method and the 
associate knowledge that will help to solve the task: how to determine the variation of a 
sequence, to calculate the sign of 𝑢!"# − 𝑢! or compare '!"#

'!
 with 1, to use a proof by induction 

or not, to find out whether the sequence is bounded above or below, to select a possible theorem 
among all the theorem about sequences, to recognize the need of the results of the previous 
questions etc. Of course, mediations can help students recognize the method to be applied. Their 
form depends on the context (i.e., it may come from the problem statement or from the teacher). 
However, mediation often reduces the cognitive demand. On the other hand, control activities 
are seen when students relate different elements and properties of the recursive sequence to 
their results.  

3.2 Paradigms of analysis 
The transition from school to university is marked by significant differences in mathematical 
work. For instance, calculators are widely used in high school, but are often not allowed in 
French universities. 
In the following, we refer to the MWS notion of paradigms (Houdement & Kuzniak, 2006). 
This notion allows us to identify different types of work that are internally coherent. In the 
domain of analysis, Montoya Delgadillo and Vivier (2016, pp. 742–743) distinguish three 
paradigms: 

• Arithmetic/geometric analysis [A1]. This supports interpretations that draw upon 
implicit assumptions based on geometry, arithmetic calculations or the real world. 
Although argumentation plays a role, work is grounded on the visualization of signs, 
possibly produced by software or a calculator. Visualizing the curve of a function or a 
table of values is admissible as a proof in [A1]. 

 
4 Note that sometimes we omit the word “activity”, and simply use “control” or “recognize”. 
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• Calculation analysis [A2]. The rules of the calculation are defined more-or-less 
explicitly, and are applied independently of any reflection on the existence and nature 
of the objects in question. Calculations are often based on an algorithmic approach, 
along with formal expressions that have a representative role. These routines are 
executed without being aware of the nature of the mathematical objects. Work is 
oriented toward the production of proofs and demonstrations, using the properties of the 
objects and theorems, in the mathematical tradition. Visualizing the curve of a function 
or a table of values is not admissible in [A2]. However, tools, such as computer algebra 
system software may be used (to compute a derivative, for instance). 

The third paradigm appears at university level, especially when students begin to manipulate 
the epsilon definitions. Our study on control activities focuses on paradigms [A1] and [A2], 
leaving the third paradigm for further investigations. 

In the context of a recursive sequence of the form 𝑢!"# = 𝑓(𝑢!), paradigm [A1] consists in 
working with the representation of the first terms of the sequence, for example in a table of 
values or graphically, and visualizing, for instance, monotony or convergence. The work can 
be controlled, for example, by calculating more terms or by zooming in or out on a graph. This 
is similar to how a mathematician studies a new object for which no procedure is available. On 
the other hand, work in the [A2] paradigm consists in working with algebraic calculations and 
theorems. For example, showing by induction that the sequence is bounded by 1, that 𝑢!"# −
𝑢! is positive, therefore the sequence is increasing, to conclude, by theorem, that it is 
convergent. 

It can be difficult to evaluate a student’s work in terms of a single paradigm, and the paradigms 
given above should not be seen as a way to categorize students. Rather, they offer a way to 
understand how the work is expected by the institution and the work actually done. Moreover, 
paradigms are not isolated from each other and the links between them can promote 
mathematical control. For example, paradigm [A1] can be used to develop a conjecture and, 
thus, to guide the work in paradigm [A2] which helps to prevent errors and promote a 
mathematical coherence (control). Consequently, mathematical work is based on a dialectic 
between paradigms; the same idea is seen in geometry, where few would attempt to make a 
demonstration without preparing a figure. 

However, in the French context, the teaching of recursive sequences at the transition from high 
school to university focuses on the [A2] paradigm which guides the expected work. Work in 
the [A1] paradigm appears mainly at the beginning of the teaching in high school to introduce 
new notions and to make (the correct) conjectures before switching to a work in [A2], without 
going back to an [A1] work. Only a little part of the [A1]/[A2] dialectic is used and there is 
almost nothing about control, which causes difficulties for students at university (Flores 
González, 2021). 

3.3 Hypotheses and research question 

The study aims to deepen the understanding of the transition from high school to university in 
the domain of calculus. In France, recursive sequences play an important role in the curriculum 
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of both institutions with specific difficulties for students at university level. In this sense, the 
research is based on the following two hypotheses: (1) in order to be better prepared for the 
mathematical work which awaits them at university, students need to develop recognizing and 
control activities for recursive sequences (Flores González et al., 2020); (2) the dialectic 
between [A1] and [A2] paradigms seems to have a good potential for the development of these 
two activities in the field of calculus.  

Then, focusing on high school students, we wonder to what extent does a [A1]/[A2] dialectic 
paradigms support the development of the recognizing and control activities expected in the 
study of recursive sequences? 

4 Method: the design of an experimental task 

In order to answer our research question, taking into account our previous study, we design an 
experimental task devoted to promote a dialectic between [A1] and [A2] paradigms aiming at 
improving the students’ recognizing and control activities. We pay particular attention to the 
calculator, an emblematic tool of the transition that enables students to produce numerical or 
graphical representations on which a work in [A1] is possible. 

In our previous study (Flores González et al., 2020), we studied an exercise of first year of a 
university in the Paris region, on the recursive sequence 𝑢!"# =

#
()'!

 with 𝑢* = 𝛼 in [0,1]. 

This exercise was complex, above all because of the parameter 𝛼. In this case, the sequence and 
the function 𝑓(𝑥) = #

()$
 were interlinked and required students to be able to recognize, and 

control, the mathematical objects they are working with. In a baccalaureate exercise, this kind 
of task was divided into two parts: the first related to the function, and the second to the 
recursive sequence. With these two exercises, we designed the experimental complex task in 
adopting the structure of the baccalaureate, in two parts, with the sequence of the university 
exam. Finally, and consistent with our research question, we introduced a part that ask for a 
work in the [A1] paradigm to promote a dialectic between the [A1] and [A2] paradigms. Then 
the exercise was divided into three parts: 

• Part A concerned the function 𝑓(𝑥) = #
()$

 (Figure 3, below) which properties are 
needed to study the sequence. Technical questions are stated like in the baccalaureate. 

• Part B was directly related to the study of the sequence 𝑢!"# = 𝑓(𝑢!) in the [A1] 
paradigm. After using their calculator to calculate the first terms of the sequence, we 
asked students to develop conjectures about the properties of the sequence.  

• Part C was dedicated to proving the properties in the [A2] paradigm. 

Hence, part B (paradigm [A1]) prepares students for part C (paradigm [A2]). Part C is designed 
to reflect undergraduate exercises; the questions are more open than in the baccalaureate task, 
and require undergraduates to develop recognizing activities. For instance, proof by induction 
is not explicitly stated, and the question about the variation of the sequence is less directive than 
in the baccalaureate – students are asked to study it once they have worked on part B. 
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Our aim is to identify students’ ability to recognize the sequence as a recursive one 𝑢!"# =
𝑓(𝑢!), especially the clear distinction between the properties of the function and the properties 
of the sequence. For instance, 𝑓 is increasing on [0,1] and this property only implies that the 
sequence is monotone. From the point of view of control activities, our aim is to identify 
examples of such activities or, on the other hand, inconsistencies indicative of a lack of control 
in part C. For this, part B includes an explicit instruction for using a calculator. By 
experimenting in this order (paradigm [A1] in part B for conjectures, and paradigm [A2] in part 
C for proving), we want to promote control and recognizing activities relying on the [A1]/[A2] 
dialectic. This order is known to high school students, but only at the beginning of the teaching 
and not, as in our experimentation, after the teaching where [A2] is usually predominant. 

Our experiment was run with a 12th grade mathematics class in a general public high school in 
Paris. It took place at the beginning of the school year, after the teaching of limits of sequences 
and functions. Thus, the students had already worked on proof by induction, finite and infinite 
limits of a sequence, general theorems on the limits of sequences and functions (operations and 
comparisons), and limits of usual functions (polynomial, exponential). The teacher regularly 
used the scientific calculator with the students. 

The class was composed of 30 students, named E1 to E30, who worked individually with their 
calculators (Texas Instruments TI 83 and CASIO graph) without any interaction with the 
teacher. A researcher was in the classroom and took some photos when she noticed interesting 
work. We analysed the students' written answers. 

5 A priori analysis of the designed task and students awaited activities 

In this section, we present the three parts of the designed tasks, detailing the possible (and 
expected) recognizing and control activities both in paradigm [A1] (part B) and paradigm [A2] 
(part C) as well as the control activities based on the [A1]/[A2] dialectic (going back to part B 
when working in part C). 

In part A (Figure 3), work can be done in either of the two paradigms. But we do not present an 
analysis of part A, as we focus only on parts B and C. 

 

Figure 3: Part A devoted to the study of 𝑓. 

5.1 Part B 

Part B begins (Figure 4) with three tables to be filled in, by computing values of 𝑢# to 𝑢+ for 
three values of 𝛼, 0, 0.5 and 0.9 (Table 1). 
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Figure 4: First question in part B. 

Table 1: Expected answers to question B1, in decimal register. 

Case 𝜶𝟏 = 𝟎  Case 𝜶𝟐 = 𝟎, 𝟓  Case 𝜶𝟑 = 𝟎, 𝟗 

𝑢$ 0  𝑢$ 0,5  𝑢$ 0,9 

𝑢% 0,5000  𝑢% 0,6666  𝑢% 0,9090 

𝑢& 0,6666  𝑢& 0,7500  𝑢& 0,9166 

𝑢' 0,7500  𝑢' 0,8000  𝑢' 0,9230 

𝑢( 0,8000  𝑢( 0,8333  𝑢( 0,9285 

𝑢) 0,8333  𝑢) 0,8571  𝑢) 0,9333 

𝑢* 0,8571  𝑢* 0,8750  𝑢* 0,9375 

 

The purpose of question B1 was to identify and become familiar with the sequence using 
explicit examples for three values of 𝛼. In theoretical terms, we expected students to recognize 
the recursive sequence 𝑢!"# =

#
()'!

 (not explicitly given in the problem statement). This 

recognition was expected to lead to a control of the terms of the sequence using the calculator 
which here was essential: computing 𝑓(𝑛) leads to a problem of definition of the sequence for 
𝑛 = 2 and the three tables, for different value of 𝛼, are the same. 

Note that the calculator could give two numerical representations: decimal (Table 1) and 
fractional. The former (the one we were hoping to see) is more helpful in answering the 
following questions (B2 and B3). Although the latter is less useful, it does help in conjecturing 
the algebraic expression of the sequence 𝑢! =

!
!"#

. The choice of representation can either be 
conscious, or ‘decided’ by the calculator’s configuration. If conscious, it could help students to 
either develop a control activity (using the expression of 𝑢! or the calculator).  

The following two questions (Figure 5) asked students to develop conjectures based on the table 
of values. 
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Figure 5: Questions B2 and B3, [A1] paradigm. 

Questions B2 and B3 asked the student to develop conjectures for the variation, convergence 
and limit of the sequence based on their observation of its first six terms, for each given value 
of 𝛼. While the monotony of the sequence is quite clear from the first terms (possibly supported 
by a control using the calculator to compute more terms), this is not so easy for the convergence 
and the limit, which are a local property at infinity and cannot be clearly determined from the 
information of B15. Thus, some non-responses to the question could come from a good 
understanding of the values given in the table and the notion of convergence. 

We anticipated that students would recognize (increasing) monotonicity, convergence, and that 
the limit of the sequence is 1. The recognizing activities initially rely on the interpretation of 
signs, by visualization. Then, students develop their mathematical discourse and the conjecture 
that it is an increasing, convergent sequence, and that its limit is possibly 1. 

In order to stimulate control of the mathematical object and successful recognition, we added 
the question “How did you use the calculator?”. The aim of this question was to make the 
student aware of how they used their calculator (and of the possibility to use it!) and stimulate 
them to recognize the coherence (or non-coherence) of their approach. These elements were 
expected to encourage them to control their mathematical work by, for example, programming 
an algorithm, developing a graphical representation, or calculating more terms of the sequence. 

5.2 Part C 

In part C, we expected students to recognize theorems, procedures and proofs related to each 
of the questions. The task brings many recognizing activities which are characteristic of the 
university level. Mathematical work was anchored in the [A2] paradigm in each of the questions 
with possible controls grounded in their work in part B. Moreover, some students may work in 
paradigm [A1] based on their answers to part B. 

For the sequence (𝑢+), defined in part B. 

C1) Show that for all natural numbers 𝑛, 𝑢+ is in [0,1]. 

C2) What is the variation of the sequence (𝑢+)? 

 
5 It is difficult to move from a punctual perspective based on a few values, to a local perspective: can it be 

established that the sequence ln(𝑛) converges to 3, given the 20 first values? Or that the harmonic series 
converges to 4 from the 30 first values? 
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C3) Show that the sequence (𝑢+) is convergent. 

C4) We denote 𝑙 as a limit of the sequence (𝑢+), explain why 𝑙 = 𝑓(𝑙). 

C5) Given 𝑙 = 𝑓(𝑙), compute the value of 𝑙. 

Figure 6: Questions in part C, [A2] paradigm. For each question, students were asked if the 
calculator could be used and, if so, to explain how. 

In question C1, we expected to see a recognition activity, with a demonstration by induction of 
the steps to be taken (as in the university exam). We interpret that students have a control 
activity if they explicitly relate their proofs to the conjectures of part B. 

In question C2, we expected to see recognition of a method to determine the increasing 
monotonicity of the sequence, as in the original university exam. There are various options. 
Students can either continue to use a proof by induction (showing that for every 𝑛, 𝑢! ≤ 𝑢!"#), 
using directly - or not – the growing property of the function 𝑓 from part A, or analyse the 
variation of the sequence with algebraic expressions 𝑢!"# − 𝑢! or '!"#

'!
. For the former strategy, 

we expect them to recognize the identity (𝑢! − 1)( in the numerator of 𝑢!"# − 𝑢! =
'!$)('!"#
()'!

, 

to conclude, using 𝑢! ≤ 1, that 𝑢!"# − 𝑢! is positive and, then, that the sequence is increasing. 
In the latter case, the student must be able to recognize the quadratic polynomial in the 
numerator and use their answer to question C1 (i.e. that 𝑢! is in [0,1]). A lack of coherence 
with the part B answers is seen as a lack of, or absence of, controls (notably when the students 
develop an interpretation without having recognized the method). 

Finally, question C3 only required the students to recognize the monotonic convergence 
theorem. Here, students can use their results from previous questions. From their answer to C1 
they can interpret that the sequence (𝑢!) is bounded by 1; from C2 they can interpret that the 
sequence (𝑢!) is increasing; therefore, by using the theorem, it is convergent. We also expected 
students to check their work (control activities) by linking their answer to question C3 with the 
conjectures developed in part B. 

C4 and C5 are quite technical and we do not analyse them, except the value of limit 𝑙 with 
respect to conjecture of part B. 

In this way, the design of the task and its a priori analysis are directly related to the hypotheses 
outlined in section 3.3. 

6 A posteriori analyses of the part B and C 

We gave students’ work one of the three statuses: 1) correct mathematical work (the 
mathematical activities were the expected ones); 2) incomplete or not totally correct 
mathematical work (discourse and written assertions that were mathematically true, but only 
partially justified); and 3) non-correct mathematical work (when the discourse and written 
assertions were false or did not correspond to what was expected). In the analyses below, this 
status of work is combined with an analysis in terms of mathematical activities and paradigms. 
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As previously mentioned, we do not analyse part A. We give a report about part B, the original 
part of our study, then we focus on part C and the influence of work in part B.  

6.1 Part B 

6.1.1 Question B1: recognizing of the recursive sequence 

First, we distinguished between students who correctly recognized the recursive sequence as it 
is defined, 𝑢!"# = 𝑓(𝑢!) =

#
()'!

, and those who did not. In particular, we identify the students 

who incorrectly recognized the sequence as 𝑢!"# = 𝑓(𝑛) = #
()!

. About half of the students 
succeeded in recognizing the correct recursive sequence (17 out of 30 students): fourteen 
students correctly used the calculator, which led them to produce correct tables of values, and 
the other three produced incomplete tables. For the other thirteen students: nine confused 𝑓(𝑢!) 
with 𝑓(𝑛), three did not answer the question, and one filled the table with zeros. 

The answers given by student E22 (Figure 7) illustrate the typical confusion between 𝑓(𝑢!) 
and 𝑓(𝑛), with three identical tables, together with an explanation of the shift 𝑛 − 1 (however, 
the student calculates #

("!
). 

 

Figure 7: E22’s answers to B1. 

This work in paradigm [A1] shows that many students found it difficult to correctly distinguish 
between recursive and functional sequences. As this distinction requires theoretical knowledge 
about recursive versus functional sequences, it is unlikely that they will produce correct work 
in paradigm [A2]. Consequently, in the following analysis, we focus only on the seventeen 
students who correctly recognized the sequence even if their work was non-correct.  
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6.1.2 An example of control, possible with the use of the calculator 

The following figures exemplify one type of control. The student E8 uses their calculator to 
calculate the values of the sequence. E8 is confronted with a systematic error message (Figure 
8 shows the message “ERREUR” on the calculator’s screen). We can make the hypothesis that 
E8 has a sufficient level of control to be able to understand the lack of coherence. E8 reviews 
its calculations. The whole process of E8 is not clear, but E8 may start by computing 𝑢# =
𝑓(1) = 1 and wrote “ERROR” on the sheet as on the calculator screen (Figure 8). Hence, 
starting with a 𝑓(𝑛) interpretation, the calculator helped E8 by giving feedback that allowed E8 
to produce the correct table (Figure 9). Moreover, it should be noted that this student is the one 
who performed best during the whole task. 

 

Figure 8: E8’s answers before control. 

 
Figure 9: E8’s answers given after control. 

This raises the question of whether some students correctly recognize the sequence because 
they are explicitly asked to use a calculator to compute the first terms, and thus receive the 
ERROR feedback of the calculator for a 𝑓(𝑛) interpretation. 

6.1.3 Questions B2 and B3: recognizing growth, convergence and limit 

Among the seventeen students who successfully recognize the recursive sequence in B1, fifteen 
answered B2 (Table 2). 

Table 2: Summary of the work done by fifteen students at B2 who recognized the recursive sequence 

Class 
number in 

B2 

Tables 
for B1  

Recognition in B2 Paradigm Correctness 

 Growth Convergence  Limit C I NC 



*macarena.flores-gonzalez@cyu.fr, vandebro@univ-paris-diderot.fr, laurent.vivier@univ-paris-diderot.fr 

 

15 students 12-C 11 10 7 [A1] 7 3 2 

3-I  2 2   2 1 

 

For the twelve students (12-C) who had produced correct tables in B1: seven recognized the 
growth, the convergence and the limit of the sequence (7-C); one did not recognize 
convergence, one found that the limit was 0.9 and one only recognized the growth (3-I); finally, 
two found that the limit was 0 (2-NC). Students are better able to recognize growth compared 
to convergence or the value of the limit. 

For the three students who had produced incomplete tables of values in B1 (3-I): two recognized 
that the sequence was growing, and one of them also recognized a convergence towards 0.9 (2-
I); and one recognized both convergence and divergence (1-NC). 

For the two students who consider the limit as 0.9, there is a lack of control. Indeed, calculating 
additional terms would enable to identify the mistake. Maybe there is a lack of control also for 
students who answer “limit is 1”, but there is no evidence. 

Among these fifteen students, ten gave an answer to B3, and only five with correct work. 
Indeed, recognition of growth, convergence and the limit are much more successful for the three 
fixed values of α (B2) than for the generalisation (B3). As this question asks the student to 
develop a conjecture (or the generalisation of another conjecture) based on their answer to B2, 
the falling success rate from B2 to B3 is unsurprising. 

Note that only one student worked with the fractional representation of the terms of the 
sequence given by the calculator: their work was correct for B2 and incomplete for B3. 

For the following, we decided to focus on these fifteen students who answered B2 (since very 
few students were able to answer B3) and recognized, even partially, the properties of growth, 
convergence and the limit of the sequence. 

6.2 Part C 

6.2.1 Question C1: the sequence is bounded 

Table 3 presents a summary of the work in question C1 done by the fifteen previous students. 
This table indicates the paradigms, the recognition of the proof by induction and the correctness 
of the work. We expected that these students would check the coherence of their discourse in 
part C with their answers in part B.  

From the students of table 2, we analyze separately: the seven students who produced a correct 
solution to B1 and B2; the three who produced correct tables in B1 and an incomplete solution 
to B2; the two students who produced incomplete work both in B1 and B2; and finally, we 
regroup the three students who did not produce a correct solution to B2 (two B1-C and one B1-
I). 

Table 3: Summary of the work done by fifteen students at C1. 
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Of the fifteen students who answered B2, five could not give any answer to C1 (NR), and only 
one of these five have produced a correct work in B2. Correct work in paradigm [A1] (part B) 
therefore seems to be a good precursor for the work that is expected in paradigm [A2] (part C). 
We can hypothesize that the more students are able to work in part B, the more they are prepared 
to address question C1. 

It should be noted, however, that among the seven students who produced correct work in B2 
(and who answered question C1), four spontaneously continued to work in the [A1] paradigm. 
Although working in the [A1] paradigm seems to be good preparation for switching to [A2], 
making the switch appears to be an obstacle for some students. 

Five students worked in the [A1] paradigm: four produced incomplete work but they were able 
to explicitly control their work in relation to part B. For example, student E15 argues that the 
sequence converges to 1 but does not reach it, so it is in [0,1]. Then, they say that they can use 
the calculator’s table function. 

One student (E4), who had produced an incomplete work in B1 and B2, gives an intermediate 
work between [A1] and [A2]. They base their arguments on the graph of the function 𝑓 (Figure 
10). Here again, although their answer is not in line with expectations, there is a control based 
on the graph of 𝑓 and they produce an incomplete work. 

 
Figure 10: Solution provided by E4 to C1. 

Four students worked in the expected [A2] paradigm. While two provided correct work to B1 
and B2, the remaining two correctly recognized the growth of the sequence but did not give 
correct work to the convergence question (notably, a value of 0.9 for the limit). These four 
students started with a proof by induction: one provided a correct work, two provided an 
incomplete work, and the fourth (E10) switched to the model 𝑢! = 𝑓(𝑛). 

Categories from B1-B2  NR Paradigm Induction Correctness 

[A1] [A2] ? C I NC 

B1-C and B2-C: 7 students 1 4 2  2 [A2] 1 [A2] 4 1 

B1-C and B2-I (recognition 
of growth but not 
convergence): 3 students  

1  2  2 [A2]  2  

B1-I and B2-I: 2 students  1   1    2  

B2-NC: 3 students 3        

𝑓(0) =
1
2 

𝑓(1) = 1 
With no anormal variation in the 
bound [0,1] and as the curve is 
increasing, then for any whole 
number n, 𝑢% is in [0,1]. 
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Finally, among the fifteen students, only one student produced a non-correct work (E14) and 
only one produced fully correct work (E8). Eight students did incomplete work, in paradigms 
[A1] or [A2] (4 with an attempt of proof by induction). 

6.2.2 Question C2: the sequence is increasing 

All of the ten students who answered C1 also answered C2. This is consistent with the idea that 
working in paradigm [A1], even in question C1, supports students’ work up to question C2. 

Table 4 presents a summary to question C2.  

 

Table 4: Summary of the work done by 10 students at C2. 

Class number: 
Categories from C1 

Paradigm 𝒖𝒏'𝟏 − 𝒖𝒏 𝒇 increasing 
⇒ (𝒖𝒏) increasing 

Correctness 

[A1] [A2] ? C I NC 

 [A2]: 4 students 1 3  2 1 1 2 1 

[A1]: 5 students 4 1  1 1  2 3 

Other: 1 student   1  1  1  

 

Data only refers to the ten students who answered both questions C1 and C2 (and who 
recognized the recursive sequence in B1 and answered B2). It shows the paradigms, the two 
most-used strategies6 and the correctness of the work.  

Four out of ten students worked in the [A2] paradigm. Three of these had already worked in 
[A2] to answer C1 and one after working in [A1] in question C1 (E14). Among the first three, 
one produced a correct work and one produced an incomplete work (both by using the strategy 
	𝑢!"# − 𝑢!). One student (E25, Figure 11) produced a non-correct work without control 
(because of the confusion 𝑢! = 𝑓(𝑛)) – while an incomplete proof by induction in C1 was 
accompanied by the correct expression of the recursive sequence.  

 
Figure 11: E25’s answer to C2. 

 
6 None of the students proposed the calculation ,!"#

,!
. 
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Student E14 (Figure 12) shifted from the paradigm [A1] in C1 to [A2] in C2. In C2, they 
calculated 𝑢!"# − 𝑢! but with 𝑢! = 𝑓(𝑛) (non-correct work; they had already switched to the 
𝑢! = 𝑓(𝑛) model in C1), without referring to part B. 

 
 

Figure 12: E14’s answer to C2. 

Five students worked in the [A1] paradigm. Four had worked also in [A1] to solve question C1: 
two produced an incomplete work based on tables of values or the graph given by the calculator, 
and two produced a non-correct work. The fifth (E29) switched from [A2] in question C1 
(where they had worked with the 𝑢! = 𝑓(𝑛) model) to [A1] in question C2, this time with a 
generalisation, saying that “the sequence seems to be increasing because 𝑢* < 𝑢# <
𝑢(…𝑢!"#”. They probably relied on their correct tables of values produced in part B, however, 
their work is incomplete in C2. 

For the tenth student considered (E4), it is difficult to identify a paradigm: they argue that the 
sequence is increasing by referring to the increasing curve of the function. The theorem-in-act 
(Vergnaud, 1991) “𝑓 is increasing therefore (𝑢!) is increasing” that they seem to use may 
either hide a confusion between sequences and functions, suggesting a model of the type 𝑢! =
𝑓(𝑛), or indicating a transfer of the properties of 𝑓	to the sequence in the case of the model 
𝑢!"# = 𝑓(𝑢!). Four of the students in class applied this theorem-in-act. 

6.2.3 Question C3: the sequence is convergent 

We recall that fifteen students provided at least partially correct answers to questions B1 and 
B2. Ten of these provided answers to questions C1 and C2. Of these, only seven managed to 
answer to C3. 

Table 5 summarizes answers to C3 given by the seven students: paradigms, recognition of the 
theorem and the correctness of the work. 

Table 5: Summary of the work of seven students to C3. 

Categories from C2 Paradigm Theorem Correctness 

[A1] [A2] ? C I NC 

 [A1] in C1 and C2: 3 students 3     3  

[A2] in C1 and C2: 2 students  2  1 1  1 

Different paradigms in C1 and 
C2: 2 students 

 1  1     2 
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Three students worked in [A1] paradigm and provided incomplete work. It is remarkable that 
all of them worked in [A1] to answer all of the questions in part C. In particular, one of them 
worked with both references to the tables of values and the use of a calculator (Figure 13). 

 
According to the calculator, the sequence converges towards 1 but 
doesn’t reach it 

Yes, with the table 

Figure 13: E15’s answer to C3. 

Three students worked in the [A2] paradigm: only E8 correctly recognized the theorem to be 
used. All of their work in part C was in the [A2] paradigm. There is only one evidence of 
controls: this student explains, at the end of their work in part C, that the sequence converges 
towards 1 and not 0.9, which they had mistakenly conjectured in part B. The two other students 
provided non-correct work: one argued that the sequence converges because it was increasing 
and bounded (E21); another tried to calculate the limit of the sequence directly and did so 
erroneously (E14). 

The last student (E25) moved from a work in the [A2] paradigm, in C1 and C2, to work between 
[A1] and [A2] in C3; after a correct work in question C1 and non-correct work in C2, they 
conclude from their erroneous table of variation (Figure 11) that the sequence converges 
towards 0. 

What emerges from this analysis of answers is that constant reliance on paradigm [A1] makes 
it possible to continue to attempt to work up to question C3, even if the work is incomplete. On 
the other hand, work in paradigm [A2] does not necessarily lead to the expected work. It seems 
that students who want to make their work conform to the (expected) [A2] paradigm ultimately 
produce incorrect mathematics, for instance E14 (Figure 14). 

 
Figure 14: E14’s answer to C3. 

6.2.4 Non-correct work in [A1] (part B) does not produce a correct work in [A2] (part 

C) 

Among the nine students who used 𝑢! = 𝑓(𝑛) in B1, 5 do not answer Part C. Of the remaining 
four, with respect to C1: two work with induction ([A2] paradigm), but they do not necessarily 
follow the rules of the proof (1 NC and 1 I). One still works in the [A1] paradigm (I) and one 
only wrote “For 𝑛 ∈ ℕ, 0 ≤ 𝑢! ≤ 1” (I) ([A2] paradigm). In C2, two of these four students 
make the table of variation to show the growth of the sequence (NC); only one states the strategy 
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𝑢!"# − 𝑢! (I), and one student writes that the sequence is growing but provides no proof (I). 
For the answers to C3, 2 do not answer, one writes that the sequence is diverging (NC), and the 
last one that the sequence converges to 0 (NC) (relative to their working paradigm which we 
cannot tell). These observations are consistent with our choice in section 6.2 to focus only on 
the fifteen students who answered B2 and recognized, even partially, the properties of growth, 
convergence and the limit of the sequence. 

7 Conclusion 

Our work aims to deepen the understanding of the transition from high school to university with 
respect to recursive sequences 𝑢!"# = 𝑓(𝑢!). 

Considering our hypotheses and our research question, the task sought to determine the extent 
to which the [A1]/[A2] dialectic could be used to develop recognition and control activities in 
students. We start by summarizing the results for parts B and C. Then we answer, partially, our 
research question. 

7.1 Recognizing and control activities in [A1] and [A2] paradigms 

In part B, fewer than half of the students correctly recognized the recursive sequence, its growth 
and limit. Hence, the earlier practical work in the [A1] paradigm did not help these students to 
better recognize the form of the sequence: this recognizing activity is not obvious for many 
students. This pleads for more work in the [A1] paradigm. 

However, some students have already used some control activities in [A1], like E8 in B1 
(section 6.1.2) whose control allows him to avoid the error of considering 𝑓(𝑛)… and to do 
very good work up to C3. 

In part C, some students continued to work in paradigm [A1] partly based on their work in part 
B, with controls activities, and their work was incomplete. It seems that working in paradigm 
[A1] was helpful for these students. 

Students who worked in paradigm [A2] recognized the need for a proof by induction; this 
recognition seems to be a strong indicator of the switch to paradigm [A2] to study recursive 
sequences. However, some students who worked in the [A2] paradigm produced incorrect 
solutions and did not relate their work to part B (no control).  

We saw paradigm shifts between questions C1 and C2 (from [A1] to [A2] and from [A2] to 
[A1]). A work in the [A2] paradigm required students to recognize an adequate method, but 
these students were unable to produce correct work. Moreover, it seems that they cannot control 
their work. 

Only one student answered  all the questions correctly. They are the only one to answer C1 
correctly and also the only one to recognize the correct theorem in C3. This student appeared 
to be able to control their work based on part B, stating that “the sequence converges towards 
1 and not 0.9” (his conjecture).  
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7.2 What can be said about the research question 

In our previous study (Flores González et al., 2020), we concluded that a dialectic between 
paradigms could be interesting to help students improve their understanding of sequences 
𝑢!"# = 𝑓(𝑢!). In this new research, we wonder to what extent does a [A1]/[A2] dialectic 
paradigm support the development of the recognizing and control activities expected in the 
study of recursive sequences. With this aim, we designed a task that was given to students of 
one class at the end of high school. 

Obviously, the results are limited to the sample, and further investigations would be required if 
we wanted to extend them. However, we want to point out the following conclusions: 

- Some students recognized the adequate knowledge, whether in [A1] or in [A2] 
paradigms, sometimes with control; 

- The use of calculator favors control, even if it is not automatic; 

- A lot of students did not make any connection between paradigms [A1] and [A2], 
therefore blocking any fruitful control relying on the dialectic [A1]/[A2]. 

If the two first points prove the potential of the task with respect to the development of 
recognizing and control activities, it did not succeed in engaging the majority of students in this 
way. The third point is clearly a constraint, but it is worth mentioning that developing such 
activities is a ongoing work in progress. 

7.3 Other important findings 

In French high school, working in paradigm [A1] is asked mainly at the beginning of a chapter 
when new notions are introduced. There is an implicit hypothesis that students naturally connect 
‘elementary’ work in [A1] and ‘serious’ work in [A2]. But this is not so easy. Our study clearly 
shows that [A1] and [A2] are disconnected for most of the students. Are they aware that they 
are dealing with the same mathematical object? 

This has a consequence on the understanding that students might develop. Indeed, the recursive 
sequence is not recognized by a lot of students even for ‘elementary’ computations. What 
representations therefore of such a mathematical object do these students have? If they cannot 
make this recognition in [A1] paradigm, what is the meaning for them when working in the 
expected [A2] paradigm? It is paradoxical to think that such students would be able to correctly 
work in paradigm [A2], which is more abstract, when it appears that they are not even able to 
use the relevant recognition and control activities in paradigm [A1]. 
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