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ABSTRACT

We propose a simple and effective cross-lingual transfer learning

method to adapt monolingual wav2vec-2.0 models for Automatic

Speech Recognition (ASR) in resource-scarce languages. We show

that a monolingual wav2vec-2.0 is a good few-shot ASR learner in

several languages. We improve its performance further via several

iterations of Dropout Uncertainty-Driven Self-Training (DUST) by

using a moderate-sized unlabeled speech dataset in the target lan-

guage. A key finding of this work is that the adapted monolingual

wav2vec-2.0 achieves similar performance as the topline multilin-

gual XLSR model, which is trained on fifty-three languages, on the

target language ASR task.

Index Terms— Cross-lingual transfer learning, self training,

self-supervised Learning, ASR, adaptation

1. INTRODUCTION

Few-shot learning, the ability to train a machine to exhibit intelligent

behavior via a small amount of supervision has been a long-standing

research goal in Artificial Intelligence. To build few-shot learners we

turn to a class of transfer learning (TL) methods that extract knowl-

edge from vast quantities of unlabeled data to make the task of learn-

ing from a few labeled examples easier. Recently, Self-Supervised

Learning (SSL) has emerged as a promising TL approach of learning

from unlabeled data [1–3].

SSL [4, 5] refers to the process of Pre-Training (PT) a model on

unlabeled data using an SSL task, such as masked self-prediction [2].

The Pre-Trained model is then Fine-Tuned (FT) on the target task via

a few labeled examples. Hence, SSL forms the first stage of the PT

then FT (PT → FT) sequential TL framework [6]. Recently, speech

neural net encoders Pre-Trained using the wav2vec2 SSL frame-

work have proven to be excellent few-shot learners for automatic

speech recognition (ASR) across multiple languages [7,8]. However,

wav2vec2 assumes access to massive amounts of unlabeled data for

PT, which diminishes their usefulness to resource-scarce languages,

where the massive unlabeled data assumption does not hold.

To remedy the above issue, [8] proposes xlsr, a cross-lingual

sequential TL framework of the form mPT → FT, i.e., Multilingual

Pre-Training of wav2vec2 followed by target language ASR fine-

tuning on a few labeled examples. Indeed, Pre-Trained xlsr is an

excellent few-shot learner for ASR in multiple languages. However,

in this work we show that xlsr’s ASR performance is quite poor

if there is a domain mismatch between the target language speech

and the speech data used to Pre-Train xlsr. Thus, to make xlsr a

truly universal speech model, we would have to Pre-Train on speech

from all languages in all possible speech domains, which is clearly
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an unscalable strategy. Instead, in this work, we propose a TL frame-

work that could efficiently adapt any Pre-Trained wav2vec2 model,

monolingual or multilingual, to make it a good few-shot ASR learner

in any target language in any speech domain.

In this work, motivated by the SSL framework’s limitations

when developing ASR for a resource-scarce language, we propose a

simple yet effective cross-lingual TL framework (§2) for wav2vec2

model adaptation to a target language. Our adaptation framework

is a sequential TL framework consisting of three steps: First, we

Pre-Train a wav2vec2 model on a high-resource language. Second,

we perform supervised fine-tuning of the Pre-Trained wav2vec2

model on the target language ASR task using ten hours of labeled

data. Finally, we perform Dropout Uncertainty-Driven Self-Training

(DUST) [9] using a hundred hours of unlabeled speech data in the

target language for adaptation of the Fine-Tuned wav2vec2 model.

Through this work, we make the following contributions: 1)

We analyze the cross lingual transferability of several Pre-Trained

English wav2vec2 models (Table 1) across eight target languages.

We show that by simply fine-tuning English wav2vec2 on ten hours

of labeled data in target languages, we can recover on average up

to 86% of the performance of the fine-tuned multilingual xlsr

topline. Still, there is a considerable gap in performance between

wav2vec2 and xlsr on target languages that are considered in-

domain for xlsr, but the gap is much smaller on a more challenging

out-of-domain Arabic target language. Another interesting finding

is that ASR Fine-Tuning of the Pre-Trained wav2vec2 models on

labeled data in the source language (English) before Fine-Tuning

on the target languages hurts cross-lingual transfer. 2) We adapt

an English wav2vec2 model to two target languages, French and

Arabic, under the constraint that in each target language we have

ten hours of labeled data for ASR training and a hundred hours

of unlabeled data for adaptation. For French, we show that by

starting with a Pre-Trained English wav2vec2 model and applying

the proposed adaptation procedure (§2), we are able to reach sim-

ilar ASR performance as the xlsr topline. For Arabic, both the

xlsr and English wav2vec2 perform poorly and hence, we apply

the adaptation procedure to both the models and improve the ASR

performance considerably. A key finding of this study is that it is

possible to adapt a monolingual wav2vec2 model Pre-Trained on a

high-resource language using moderately-sized unlabeled data and

small-sized labeled data in the target language to achieve similar

performance as the multilingual wav2vec2 model Pre-Trained on

multiple languages. Although the amount of unlabeled data that we

use for adaptation is orders of magnitude smaller than the data used

to Pre-Train wav2vec2 models, a moderate-sized unlabeled dataset

might not be available for extremely resource-scarce and endangered

languages. This scenario is out of scope for this paper.

http://arxiv.org/abs/2110.03560v1


2. METHOD

Self-Training Self-Training (ST) [10] is a Teacher/Student (T/S)

TL framework that leverages unlabeled data by pseudo-labeling it.

ST proceeds by building a base model, known as teacher, using the

labeled data. The teacher is used to predict (pseudo-)labels for the

unlabeled data points. Then, a new model, known as student, is

trained on the combined labeled and pseudo-labeled data points. Due

to having access to more supervision, the student is expected to gen-

eralize better than the teacher on the task at hand. ST is an itera-

tive process, where, the student from a previous round becomes the

teacher for the next round of ST. Recently, ST has shown excellent

results in neural sequence generation tasks such as ASR [9, 11, 12]

and Machine Translation [13]

Transfer Learning Algorithm The overall transfer learning pro-

cess is described in Algorithm 1. We assume access to a set LT of

labeled examples and a set UT of unlabeled speech utterances in the

target language. Also, we are given a set US of unlabeled speech

utterances in the source language. The transfer learning process pro-

ceeds by Pre-training a neural network fφ,p on unlabeled source

language set US with dropout layers, using a dropout probability

p ∈ [0, 1]. The Pre-training process leads to the initial model fφ0,p,

which is Fine-Tuned on the target language labeled set LT to give the

first-generation teacher model fφ1,p for Dropout-Uncertainty driven

Self-Training (DUST). Next, the base teacher model fφ1,p is used

to provide predictions on the target language unlabeled set UT to

provide pseudo-parallel data of which a subset P is chosen based

on the model’s uncertainty about its predictions on each unlabeled

data point xu ∈ UT . Finally, a student model, is trained on the

combined labeled LT and pseudo-labeled set P . We perform N iter-

ations of the Teacher/Student training, where the student fφn,p from

the nth iteration becomes teacher for the (n + 1)th iteration. Usu-

ally, in each iteration of DUST, a randomly initialized neural network

is used as the student model, but, in our adaptation framework, the

Pre-Trained source language SSL model fφ0,p is used as the student

in each DUST iteration.

DUST performs pseudo-label filtering by measuring the model’s

confidence about its predictions on the unlabeled points xu ∈ UT .

The filtering process for a particular unlabeled example xu consists

of the following steps: 1) First, we generate a reference hypothesis

ŷuref for the unlabeled instance xu using beam search. During infer-

ence, the model’s dropout layers are deactivated and hence, this step

imitates the usual ASR inference process. 2) Second, we sample

R hypotheses (ŷru)
R
r=1 from the model by running beam search R

times with a different random seed r ∈ R each time. During infer-

ence, the dropout layers are active, hence each beam search iteration

would lead to a slightly different hypothesis. This is akin to getting

predictions from different models. 3) Finally, we compute the Lev-

enshtein edit distance [14] normalized by the length of the reference

hypothesis between each of the R stochastically sampled hypothesis

and the one reference hypothesis, which gives us a set E of R edit

distances. If all the edit-distances in E are less than the threshold

ratio τ of the length |ŷref
t | of the reference hypothesis, then we add

the pseudo-labeled data points {(xu, ŷ
ref
u ), (xu, y

0
u), . . . , (xu, y

R
u })

to P , otherwise we reject it. In practice, we set R = 3 and hence,

we have a total of four hypotheses per utterance. Unlike the original

DUST that adds only the reference pseudo-label hypothesis for xu
to the set P , we also add the sampled hypotheses. Adding multiple

pseudo-labels corresponding to an unlabeled instance xu for student

model training could increase model’s robustness to noise in pseudo-

labels. This idea is also explored in [15].

Algorithm 1 Transfer Learning Algorithm

1: Given labeled data LS and unlabeled data US in the source lan-

guage

2: Given labeled data LT and unlabeled data UT in the target lan-

guage

3: Given R natural numbers

4: Pre-Train f(φ,p) on US to get f(φ0,p)

5: Fine-Tune f(φ0,p) on LT to get f(φ1,p)

6: for n =1 to N do

7: f(φ
n+1,p) = DUST(f(φn,p), f(φ0,p), LT , UT )

8: end for

9: function DUST(gTeacher
(θ,p) , fStudent

(ψ,p) ,L,U)

10: Let P be the set of selected pseudo-labeled data points

11: Let E be a set of edit distances

12: Initialize P and E as empty sets

13: for all xu ∈ U do

14: Compute deterministic forward pass gTeacher
(θ,0) (xu)

15: ŷref
u = beam_search(gTeacher

(θ,0) (xu))
16: for all r ∈ R do

17: Set random seed to r

18: Compute stochastic forward pass gTeacher
(θ,p) (xu)

19: ŷru = beam_search(gTeacher
(θ,p) (xu))

20: e = edit_distance(ŷru, ŷ
ref
u )

21: Add e to the set E
22: end for

23: if max(E) < τ |ŷref
u | (with τ a filtering threshold) then

24: Add {(xu, ŷ
ref
u ), (xu, ŷ

0
u), . . . , (xu, ŷ

R
u }) to P

25: end if

26: end for

27: Fine-Tune fStudent
(ψ,p) on A = L ∪ P

28: return fStudent
(ψ,p)

29: end function

Pre-Training In our work, we explore the following Pre-Trained

wav2vec2 SSL models that provide the initial model fφ0,p (Algo-

rithm 1) for transfer learning.

• Wav2Vec2.0 Base (w2v_base) [7]: consists of 0.1 billion

parameters and is Pre-Trained on the Librispeech 960 hours

(LS960) [16] English speech dataset in the read speech do-

main.

• Wav2Vec2.0 Large (w2v_large) [7]: consists of 0.3 billion

parameters and is Pre-Trained on either LS960 or Libri-Light

60k (LL60k) hours [17] English read speech dataset.

• Wav2Vec2.0 Robust (w2v_rob) [18]: consists of the same

architecture as the large model but, is trained on three speech

datasets namely Switchboard (SWBD), English part of Com-

monVoice (CV-En) and LL60k. We refer to the combination

of these three datasets as LL60k+.

• XLSR-53 (xlsr) [8]: consists of the same architecture as

w2v-large which is trained on the following datasets Mul-

tilingual Speech (MLS), BABEL and CommonVoice (CV),

that combined consists of 53 languages. We refer to the com-

bination of these three datasets as MLS+.

We use the publicly available Pre-Trained wav2vec2 model check-

points from fairseq toolkit [19].



Table 1: Cross-Lingual Transferability of Pre-Trained wav2vec2 model on eight target languages. Seven languages are from the MLS dataset

of read audiobooks, while Arabic is from the MGB broadcast news dataset

WER / CER [%] WERR / CERR

Target Langs MLS/en MLS/fr MLS/de MLS/it MLS/pl MLS/es MLS/pt MLS/nl MGB/ar

Model PT Avg.↓ Avg.↑

Baseline 119.1 / 58.5 114.2 / 51.6 106.0 / 41.5 99.5 / 35.0 111.9 / 44.7 99.5 / 37.3 107.0 / 45.3 108.8 / 50.0 112.0 / 51.5 107.4 / 44.6 0 / 0

w2v_base LS960 23.4 / 8.1 44.0 / 14.5 28.6 / 6.9 34.1 / 7.3 35.6 / 6.9 37.2 / 8.6 41.1 / 10.9 47.2 / 14.2 47.4 / 15.1 39.4 / 10.6 79.0 / 87.8

w2v_large LS960 17.1 / 5.8 40.9 / 13.3 28.3 / 6.8 33.3 / 6.9 32.0 / 6.2 23.6 / 5.6 38.6 / 10.2 45.0 / 13.3 42.7 / 14.2 35.6 / 9.6 83.6 / 90.5

w2v_large LL60k 12.3 / 4.0 39.9 / 12.7 26.7 / 6.4 31.8 / 6.7 32.8 / 6.4 21.9 / 5.1 35.6 / 9.4 42.6 / 12.6 42.0 / 13.2 34.2 / 9.1 85.6 / 92.1

w2v_rob LL60k+ 12.8 / 4.2 38.3 / 12.3 26.7 / 6.4 30.3 / 6.2 34.2 / 6.6 22.9 / 5.3 34.2 / 8.9 39.1 / 11.8 41.6 / 13.1 33.4 / 8.8 86.3 / 92.5

w2v_large_sup LL60k 7.6 / 2.5 44.2 / 14.2 31.1 / 7.2 37.7 / 7.8 46.5 / 9.0 28.1 / 6.4 40.8 / 10.4 51.3 / 15.3 50.6 / 15.8 41.3 / 10.8 78.8 / 88.6

Topline (xlsr) MLS+ 17.6 / 6.3 19.7 / 6.5 11.1 / 3.1 17.1 / 3.6 16.4 / 3.3 7.9 / 2.1 20.4 / 5.3 21.7 / 6.3 37.9 / 12.0 19.0 / 5.3 100 / 100

Fine-Tuning The Fine-Tuning of Pre-Trained SSL models con-

sists of 1) Adding a linear projection layer hα : RT×d → R
T×|V |

to the output of the SSL model, where V is the output character

vocabulary for the task of ASR, 2) ASR task Fine-Tuning of only

the projection layer for the first k training iterations and 3) Joint

ASR task Fine-Tuning of both the SSL model and the projection

layer until convergence. Note the wav2vec2 SSL models consists of

a Convolutional Neural Network (CNN) feature extractor, followed

by a transformer encoder. The CNN feature extractor remains frozen

throughout the ASR Fine-Tuning process.

3. EXPERIMENT SETUP

Transfer Learning Targets We chose seven languages from the

MLS dataset as the targets for cross-lingual adaptation of the Pre-

Trained wav2vec2 SSL models, namely French (MLS/fr), German

(MLS/de), Italian (MLS/it), Polish (MLS/pl), Spanish (MLS/es),

Portugese (MLS/pt) and Dutch (MLS/nl). In addition, we also tar-

get Arabic from the Multi-Genre Multi-Dialectal Broadcast News

(MGB) dataset [20]. In order to simulate the resource-scarce ASR

scenario, we assume access to just ten hours of labeled data and a

hundred hours of unlabeled data in each target language. We use

the official nine hours labeled split in MLS for training and the one

hour split for validation. We report Word Error Rates (WERs) on

the unseen development set. The hundred hours unlabeled set is

sampled randomly from the full training set (minus the utterances in

the ten hours split). For Arabic, we randomly sample ten hours of

labeled data, of which nine hours is used for training and one hour

for validation. We also randomly sample a hundred hours of speech

from the 1200 hours MGB training set for cross-lingual adaptation.

The results are reported on the standard development set. For the

xlsr model, MGB/ar is considered an out-of-domain target lan-

guage because xlsr is Pre-Trained on multiple datasets including

MLS, which are in the read speech and conversational domains,

while MGB is in the broadcast news domain. This is evident from

the high WERs of the Fine-Tuned xlsr on the MGB/ar dataset as

compared to the MLS target languages in Table 1.

Hyperparameters For ASR Fine-Tuning ASR Fine-Tuning of

the Pre-Trained SSL models is performed on the ten hours labeled

data (x, y) ∈ LT in the target language T , where x is the input

speech waveform and y is the corresponding sub-word token se-

quence. We choose characters as sub-word units for ASR training.

The model is trained using the Connectionist Temporal Classifica-

tion (CTC) [21] loss. For optimization, we use the Adam optimizer

Table 2: Transfer of Pre-Trained w2v_rob to the target French lan-

guage in the MLS dataset

WER [%] WERR [%]

Method |P| [k] P MLS / fr MLS / fr

Baseline (w2v_rob) 38.3 0

DUST1 11 20.2 31.9 34.4

DUST2 24 20.3 27.4 58.6

DUST3 30 20.0 24.2 75.8

DUST4 30 19.2 23.5 79.6

DUST5 30 18.7 22.3 86.0

Topline (xlsr) 19.7 100

with a learning rate schedule given by the following equation:

lr = max_lr ∗ warmup_steps
0.5∗

min(step
−0.5

, step ∗ warmup_steps
−1.5)

where, max_lr is the maximum learning rate, warmup_steps are the

number of training iterations before the maximum learning rate is

achieved and step refers to the current training iteration. We use

a relatively small value of 1e-4 for max_lr and the first 8k training

iterations for warmup. The model is trained for a total of 300 epochs.

For the first 4k training iterations, we only train the linear projection

layer hα. Batching is performed by pooling together raw speech

waveforms in such a way that the total number of samples do not

exceed 3.2 million. We use a gradient accumulation factor of four to

ensure that the model is updated after every four training iterations,

which leads to an effective batch size that is four times the original.

The feature sequence output by the CNN encoder of the SSL models

is randomly masked in the time dimension. We mask a span of ten

consecutive time steps with a masking probability of 0.65, which

leads to 65% of the input signal being masked. We use 4 V100-

32GB GPUs for fine-tuning. We use the Espnet2 codebase [22] to

perform all our experiments.

Decoding We use beam search decoding without a language model

(LM) with a beam size of 10. We do not use an LM because, in this

work we are solely concerned about the acoustic model adaptation.

Also, in a resource-scarce ASR scenario, we might not have text data

to train a LM.

4. RESULTS

In Table 1, we show the cross-lingual transferability of different Pre-

Trained wav2vec2 models on eight target languages. The goal is to



Table 3: Transfer of Pre-Trained w2v_rob and xlsr models to the

target Arabic Language in the MGB dataset

WER [%]

Method |P| [k] P MGB / ar

Baseline (w2v_rob) 41.6

DUST1 12 21.0 32.7

DUST2 26 21.2 27.4

DUST3 30 20.8 25.2

DUST4 30 19.5 23.1

DUST5 30 18.7 21.2

xlsr 37.9

Baseline (xlsr) 37.9

DUST1 13 20.3 31.1

DUST2 29 20.4 26.3

DUST3 30 20.1 24.1

DUST4 30 18.5 22.5

DUST5 30 18.1 20.8

analyze how much of the multilingual xlsr topline’s performance

can be recovered by simply Fine-Tuning the English wav2vec2

models on ten hours of labeled data in target languages. We Fine-

Tune a randomly initialized transformer encoder which consists of

the same architecture as w2v_base on ten hours of labeled data

in each language to use as a baseline. We perform ASR Fine-

Tuning of several Pre-Trained English wav2vec2 on ten hours of

labeled data in target languages and compare their ASR performance

against the Fine-Tuned xlsr model topline. We make the follow-

ing conclusions: 1) Pre-Training Matters: ASR Fine-Tuning of

Pre-Trained English wav2vec2 models lead to significant improve-

ments in WERs on target languages over the baseline. Through

the simple PT → FT process, we are able to recover on average

79% to 86% of the WER and 88% to 93% of the CER of the xlsr

topline. 2) Big SSL models provide better transfer: By Fine-

Tuning w2v_large that is Pre-Trained on the LS960 dataset, we

are able to recover on average 83% of the topline WER compared

to 79% achieved by Fine-Tuning w2v_base that is also Pre-Trained

on LS960. 3) Pre-Training dataset size matters upto a point:

Fine-Tuned w2v_large that is Pre-Trained on LL60k recovers on

average 86% of the topline WER compared to 84% recovered by

Fine-Tuning w2v_large that is Pre-Trained on LS960. But the gap

in average Word Error Rate Recovery (WERR) between w2v_rob

that is Pre-Trained on the combined CV, SWBD and LL60k datasets,

and w2v_large that is Pre-Trained only on LL60k is less than one

percentage point (pp). 4) ASR Fine-Tuning of SSL models on

source language hurts transfer: The average WERR on target lan-

guages of w2v_large_sup model which is Pre-Trained on LL60k

followed by its ASR Fine-Tuning on labeled LS960 is worse than

directly Fine-Tuning the Pre-Trained wav2vec2 models on the tar-

get languages. The WERR for w2v_large_sup is about 8pp worse

than w2v_rob that is directly Fine-Tuned on target languages. 5)

About the out-of-domain Arabic Target Language: We see that

on the seven in-domain languages (MLS/x, where x is the target

language) xlsr achieves an average WER of 16.5% compared to

29.8% achieved by the ASR Fine-Tuning of w2v_rob, the best of

the English wav2vec2 models, giving a performance gap of about

14pp between the two. However, on the out-of-domain Arabic target

language (MGB/ar), the gap is less than 4pp. Next, we perform

cross-lingual adaptation of Pre-Trained wav2vec2 models using

DUST. We choose French and Arabic as the target languages for

transfer learning and w2v_rob and xlsr as the target models for

adaptation.

In Table 2, we use DUST to perform cross-lingual adaptation

of Pre-Trained w2v_rob to French (MLS/fr). DUST proceeds as

follows: 1) First, we perform the ASR Fine-Tuning of the initial

w2v_rob (fφ0,p) model using the standard nine hours labeled split

provided by MLS/fr dataset to get the first-generation teacher fφ1,p

(§2). 2) Second, fφ1,p is used to generate pseudo-labels on the ran-

dom 100 hours unlabeled split from MLS/fr, which amounts to about

30k utterances, using the pseudo-label generation process explained

in §2 to give a set P of pseudo-parallel data. We use 0.2 as the value

of the DUST filtering threshold τ . We choose τ blindly without tun-

ing it on a labeled validation set. 3) Lastly, we Fine-Tune w2v_rob

(student), fφ0,p, on the combined labeled and pseudo-labeled data

P to get fφ2,p, which is used as the teacher for the next iteration of

DUST. We perform a total of five DUST iterations. The final stu-

dent model fφ5,p achieves a WER of 22.3% which is 16pp lower

than the WER of 38.3% achieved by the first generation teacher

model fφ1,p. Furthermore, fφ5,p is able to recover 86% of the xlsr

topline’s WER. Additionally, we make the following observations:

1) Unsurprisingly, the size of the filtered pseudo-label set P (de-

noted as |P| in Table 2) is larger in later DUST iterations due to the

continual improvement in the quality of the student (see WER [%] in

Table 2), which leads to an improved teacher for subsequent DUST

iterations; an improved teacher leads to cleaner pseudo-labels and

hence less rejected unlabeled data points during the pseudo-label fil-

tering process. 2) Also, in the later DUST iterations the quality of

the pseudo-labels improve, which is implied by the lower WER on

pseudo-label set P during the later iterations. Next, we consider

Arabic (MGB/ar) as the target language for transfer learning, a more

challenging transfer learning scenario.

In Table 3, we perform adaptation of w2v_rob and xlsr to the

MGB/ar dataset. Here, the results are achieved by following the

same adaptation process detailed above for experiments in Table 2.

After five DUST iterations, we achieve the final WER of 20.8%

when starting with a Fine-Tuned xlsr model as the first genera-

tion teacher fφ1,p. This result is about 17pp better than the WER of

37.4% with fφ1,p. Similar improvements are achieved when using

the Fine-Tuned w2v_rob as fφ1,p for DUST iterations.

5. CONCLUSIONS

We conclude by summarizing the key findings of the paper. We show

(Table 1) that the monolingual Pre-Trained wav2vec2 models trans-

fer well across multiple languages. In particular, we show that by

performing ASR Fine-Tuning of wav2vec2_robust on ten hours of

labeled data in a target language we are able to recover on average

86% of the performance of the topline multilingual xlsr model that

is Pre-Trained on 53 languages and Fine-Tuned on the same amount

of labeled target language data. This finding concurs with similar

findings of [23] on cross-lingual transfer of monolingual Pre-Trained

SSL models to different target languages for the task of phoneme

recognition. Our work goes a step further and proposes a simple

yet effective cross-lingual transfer learning algorithm (§2) for adap-

tation of monolingual wav2vec2 models via Dropout Uncertainty-

Driven Self-Training (DUST) by leveraging hundred hours of unla-

beled speech data from the target language. We show (Table 2) that

DUST improves over the baseline model that is Fine-Tuned only on

labeled target language data, and is able to recover 86% of the WER

of the topline xlsr model when adapting to French. We show simi-

lar results (Table 3) when considering Arabic as the target language.

Future work should explore combining our method with the adapter

framework for cross-lingual transfer learning [24–27].
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