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We propose a simple and effective cross-lingual transfer learning method to adapt monolingual wav2vec-2.0 models for Automatic Speech Recognition (ASR) in resource-scarce languages. We show that a monolingual wav2vec-2.0 is a good few-shot ASR learner in several languages. We improve its performance further via several iterations of Dropout Uncertainty-Driven Self-Training (DUST) by using a moderate-sized unlabeled speech dataset in the target language. A key finding of this work is that the adapted monolingual wav2vec-2.0 achieves similar performance as the topline multilingual XLSR model, which is trained on fifty-three languages, on the target language ASR task.

INTRODUCTION

Few-shot learning, the ability to train a machine to exhibit intelligent behavior via a small amount of supervision has been a long-standing research goal in Artificial Intelligence. To build few-shot learners we turn to a class of transfer learning (TL) methods that extract knowledge from vast quantities of unlabeled data to make the task of learning from a few labeled examples easier. Recently, Self-Supervised Learning (SSL) has emerged as a promising TL approach of learning from unlabeled data [START_REF] Chen | A simple framework for contrastive learning of visual representations[END_REF][START_REF] Devlin | Bert: Pretraining of deep bidirectional transformers for language understanding[END_REF][START_REF] Van Den Oord | Representation learning with contrastive predictive coding[END_REF].

SSL [START_REF] Desa | Learning classification with unlabeled data[END_REF][START_REF] Schmidhuber | Making the world differentiable: On using self-supervised fully recurrent neural networks for dynamic reinforcement learning and planning in non-stationary environments[END_REF] refers to the process of Pre-Training (PT) a model on unlabeled data using an SSL task, such as masked self-prediction [START_REF] Devlin | Bert: Pretraining of deep bidirectional transformers for language understanding[END_REF]. The Pre-Trained model is then Fine-Tuned (FT) on the target task via a few labeled examples. Hence, SSL forms the first stage of the PT then FT (PT → FT) sequential TL framework [START_REF] Wang | Transfer learning for speech and language processing[END_REF]. Recently, speech neural net encoders Pre-Trained using the wav2vec2 SSL framework have proven to be excellent few-shot learners for automatic speech recognition (ASR) across multiple languages [START_REF] Baevski | wav2vec 2.0: A framework for self-supervised learning of speech representations[END_REF][START_REF] Conneau | Unsupervised cross-lingual representation learning for speech recognition[END_REF]. However, wav2vec2 assumes access to massive amounts of unlabeled data for PT, which diminishes their usefulness to resource-scarce languages, where the massive unlabeled data assumption does not hold.

To remedy the above issue, [START_REF] Conneau | Unsupervised cross-lingual representation learning for speech recognition[END_REF] proposes xlsr, a cross-lingual sequential TL framework of the form mPT → FT, i.e., Multilingual Pre-Training of wav2vec2 followed by target language ASR finetuning on a few labeled examples. Indeed, Pre-Trained xlsr is an excellent few-shot learner for ASR in multiple languages. However, in this work we show that xlsr's ASR performance is quite poor if there is a domain mismatch between the target language speech and the speech data used to Pre-Train xlsr. Thus, to make xlsr a truly universal speech model, we would have to Pre-Train on speech from all languages in all possible speech domains, which is clearly This work uses HPC resources of IDRIS under the allocation AD011012527 made by GENCI.

an unscalable strategy. Instead, in this work, we propose a TL framework that could efficiently adapt any Pre-Trained wav2vec2 model, monolingual or multilingual, to make it a good few-shot ASR learner in any target language in any speech domain.

In this work, motivated by the SSL framework's limitations when developing ASR for a resource-scarce language, we propose a simple yet effective cross-lingual TL framework ( §2) for wav2vec2 model adaptation to a target language. Our adaptation framework is a sequential TL framework consisting of three steps: First, we Pre-Train a wav2vec2 model on a high-resource language. Second, we perform supervised fine-tuning of the Pre-Trained wav2vec2 model on the target language ASR task using ten hours of labeled data. Finally, we perform Dropout Uncertainty-Driven Self-Training (DUST) [START_REF] Khurana | Unsupervised domain adaptation for speech recognition via uncertainty driven self-training[END_REF] using a hundred hours of unlabeled speech data in the target language for adaptation of the Fine-Tuned wav2vec2 model.

Through this work, we make the following contributions: 1) We analyze the cross lingual transferability of several Pre-Trained English wav2vec2 models (Table 1) across eight target languages. We show that by simply fine-tuning English wav2vec2 on ten hours of labeled data in target languages, we can recover on average up to 86% of the performance of the fine-tuned multilingual xlsr topline. Still, there is a considerable gap in performance between wav2vec2 and xlsr on target languages that are considered indomain for xlsr, but the gap is much smaller on a more challenging out-of-domain Arabic target language. Another interesting finding is that ASR Fine-Tuning of the Pre-Trained wav2vec2 models on labeled data in the source language (English) before Fine-Tuning on the target languages hurts cross-lingual transfer. 2) We adapt an English wav2vec2 model to two target languages, French and Arabic, under the constraint that in each target language we have ten hours of labeled data for ASR training and a hundred hours of unlabeled data for adaptation. For French, we show that by starting with a Pre-Trained English wav2vec2 model and applying the proposed adaptation procedure ( §2), we are able to reach similar ASR performance as the xlsr topline. For Arabic, both the xlsr and English wav2vec2 perform poorly and hence, we apply the adaptation procedure to both the models and improve the ASR performance considerably. A key finding of this study is that it is possible to adapt a monolingual wav2vec2 model Pre-Trained on a high-resource language using moderately-sized unlabeled data and small-sized labeled data in the target language to achieve similar performance as the multilingual wav2vec2 model Pre-Trained on multiple languages. Although the amount of unlabeled data that we use for adaptation is orders of magnitude smaller than the data used to Pre-Train wav2vec2 models, a moderate-sized unlabeled dataset might not be available for extremely resource-scarce and endangered languages. This scenario is out of scope for this paper.

METHOD

Self-Training Self-Training (ST) [START_REF] Scudder | Probability of error of some adaptive patternrecognition machines[END_REF] is a Teacher/Student (T/S) TL framework that leverages unlabeled data by pseudo-labeling it. ST proceeds by building a base model, known as teacher, using the labeled data. The teacher is used to predict (pseudo-)labels for the unlabeled data points. Then, a new model, known as student, is trained on the combined labeled and pseudo-labeled data points. Due to having access to more supervision, the student is expected to generalize better than the teacher on the task at hand. ST is an iterative process, where, the student from a previous round becomes the teacher for the next round of ST. Recently, ST has shown excellent results in neural sequence generation tasks such as ASR [START_REF] Khurana | Unsupervised domain adaptation for speech recognition via uncertainty driven self-training[END_REF][START_REF] Kahn | Self-training for end-to-end speech recognition[END_REF][START_REF] Xu | Iterative pseudo-labeling for speech recognition[END_REF] and Machine Translation [START_REF] He | Revisiting selftraining for neural sequence generation[END_REF] Transfer Learning Algorithm The overall transfer learning process is described in Algorithm 1. We assume access to a set LT of labeled examples and a set UT of unlabeled speech utterances in the target language. Also, we are given a set US of unlabeled speech utterances in the source language. The transfer learning process proceeds by Pre-training a neural network f φ,p on unlabeled source language set US with dropout layers, using a dropout probability p ∈ [0, 1]. The Pre-training process leads to the initial model f φ 0 ,p , which is Fine-Tuned on the target language labeled set to give the first-generation teacher model f φ 1 ,p for Dropout-Uncertainty driven Self-Training (DUST). Next, the base teacher model f φ 1 ,p is used to provide predictions on the target language unlabeled set UT to provide pseudo-parallel data of which a subset P is chosen based on the model's uncertainty about its predictions on each unlabeled data point xu ∈ UT . Finally, a student model, is trained on the combined labeled LT and pseudo-labeled set P. We perform N iterations of the Teacher/Student training, where the student f φn,p from the n th iteration becomes teacher for the (n + 1) th iteration. Usually, in each iteration of DUST, a randomly initialized neural network is used as the student model, but, in our adaptation framework, the Pre-Trained source language SSL model f φ 0 ,p is used as the student in each DUST iteration.

DUST performs pseudo-label filtering by measuring the model's confidence about its predictions on the unlabeled points xu ∈ UT . The filtering process for a particular unlabeled example xu consists of the following steps: 1) First, we generate a reference hypothesis ŷu ref for the unlabeled instance xu using beam search. During inference, the model's dropout layers are deactivated and hence, this step imitates the usual ASR inference process. 2) Second, we sample R hypotheses (ŷ r u ) R r=1 from the model by running beam search R times with a different random seed r ∈ R each time. During inference, the dropout layers are active, hence each beam search iteration would lead to a slightly different hypothesis. This is akin to getting predictions from different models. 3) Finally, we compute the Levenshtein edit distance [START_REF] Levenshtein | Binary Codes Capable of Correcting Deletions, Insertions and Reversals[END_REF] normalized by the length of the reference hypothesis between each of the R stochastically sampled hypothesis and the one reference hypothesis, which gives us a set E of R edit distances. If all the edit-distances in E are less than the threshold ratio τ of the length |ŷ ref t | of the reference hypothesis, then we add the pseudo-labeled data points {(xu, ŷref u ), (xu, y 0 u ), . . . , (xu, y R u }) to P, otherwise we reject it. In practice, we set R = 3 and hence, we have a total of four hypotheses per utterance. Unlike the original DUST that adds only the reference pseudo-label hypothesis for xu to the set P, we also add the sampled hypotheses. Adding multiple pseudo-labels corresponding to an unlabeled instance xu for student model training could increase model's robustness to noise in pseudolabels. This idea is also explored in [START_REF] Dey | Exploiting semi-supervised training through a dropout regularization in end-to-end speech recognition[END_REF].

Algorithm 1 Transfer Learning Algorithm

1: Given labeled data LS and unlabeled data US in the source language 2: Given labeled data LT and unlabeled data UT in the target language 3: Given R natural numbers 4: Pre-Train f (φ,p) on US to get f (φ 0 ,p) 5: Fine-Tune f (φ 0 ,p) on LT to get f (φ 1 ,p) 6: for n =1 to N do 7: Let P be the set of selected pseudo-labeled data points 11:

f (φ n+1 ,p) = DUST(f (φn ,p) , f (φ 0 ,p) ,
Let E be a set of edit distances 12:

Initialize P and E as empty sets 13:

for all xu ∈ U do 14:

Compute deterministic forward pass g Teacher (θ,0) (xu)

15:

ŷref u = beam_search(g Teacher (θ,0) (xu)) 16:
for all r ∈ R do Set random seed to r 18:

Compute stochastic forward pass g Teacher (θ,p) (xu) end for • Wav2Vec2.0 Base (w2v_base) [START_REF] Baevski | wav2vec 2.0: A framework for self-supervised learning of speech representations[END_REF]: consists of 0.1 billion parameters and is Pre-Trained on the Librispeech 960 hours (LS960) [START_REF] Panayotov | Lib-riSpeech: An ASR corpus based on public domain audio books[END_REF] English speech dataset in the read speech domain.

• Wav2Vec2.0 Large (w2v_large) [START_REF] Baevski | wav2vec 2.0: A framework for self-supervised learning of speech representations[END_REF]: consists of 0.3 billion parameters and is Pre-Trained on either LS960 or Libri-Light 60k (LL60k) hours [START_REF] Kahn | Libri-light: A benchmark for asr with limited or no supervision[END_REF] English read speech dataset.

• Wav2Vec2.0 Robust (w2v_rob) [START_REF] Hsu | Robust wav2vec 2.0: Analyzing domain shift in selfsupervised pre-training[END_REF]: consists of the same architecture as the large model but, is trained on three speech datasets namely Switchboard (SWBD), English part of Com-monVoice (CV-En) and LL60k. We refer to the combination of these three datasets as LL60k+.

• XLSR-53 (xlsr) [START_REF] Conneau | Unsupervised cross-lingual representation learning for speech recognition[END_REF]: consists of the same architecture as w2v-large which is trained on the following datasets Multilingual Speech (MLS), BABEL and CommonVoice (CV), that combined consists of 53 languages. We refer to the combination of these three datasets as MLS+.

We use the publicly available Pre-Trained wav2vec2 model checkpoints from fairseq toolkit [START_REF] Ott | fairseq: A fast, extensible toolkit for sequence modeling[END_REF]. Fine-Tuning The Fine-Tuning of Pre-Trained SSL models consists of 1) Adding a linear projection layer hα : R T ×d → R T ×|V | to the output of the SSL model, where V is the output character vocabulary for the task of ASR, 2) ASR task Fine-Tuning of only the projection layer for the first k training iterations and 3) Joint ASR task Fine-Tuning of both the SSL model and the projection layer until convergence. Note the wav2vec2 SSL models consists of a Convolutional Neural Network (CNN) feature extractor, followed by a transformer encoder. The CNN feature extractor remains frozen throughout the ASR Fine-Tuning process.

EXPERIMENT SETUP

Transfer Learning Targets We chose seven languages from the MLS dataset as the targets for cross-lingual adaptation of the Pre-Trained wav2vec2 SSL models, namely French (MLS/fr), German (MLS/de), Italian (MLS/it), Polish (MLS/pl), Spanish (MLS/es), Portugese (MLS/pt) and Dutch (MLS/nl). In addition, we also target Arabic from the Multi-Genre Multi-Dialectal Broadcast News (MGB) dataset [START_REF] Ali | The mgb-2 challenge: Arabic multi-dialect broadcast media recognition[END_REF]. In order to simulate the resource-scarce ASR scenario, we assume access to just ten hours of labeled data and a hundred hours of unlabeled data in each target language. We use the official nine hours labeled split in MLS for training and the one hour split for validation. We report Word Error Rates (WERs) on the unseen development set. The hundred hours unlabeled set is sampled randomly from the full training set (minus the utterances in the ten hours split). For Arabic, we randomly sample ten hours of labeled data, of which nine hours is used for training and one hour for validation. We also randomly sample a hundred hours of speech from the 1200 hours MGB training set for cross-lingual adaptation.

The results are reported on the standard development set. For the xlsr model, MGB/ar is considered an out-of-domain target language because xlsr is Pre-Trained on multiple datasets including MLS, which are in the read speech and conversational domains, while MGB is in the broadcast news domain. This is evident from the high WERs of the Fine-Tuned xlsr on the MGB/ar dataset as compared to the MLS target languages in Table 1.

Hyperparameters For ASR Fine-Tuning ASR Fine-Tuning of the Pre-Trained SSL models is performed on the ten hours labeled data (x, y) ∈ LT in the target language T , where x is the input speech waveform and y is the corresponding sub-word token sequence. We choose characters as sub-word units for ASR training. The model is trained using the Connectionist Temporal Classification (CTC) [START_REF] Graves | Sequence transduction with recurrent neural networks[END_REF] loss. For optimization, we use the Adam optimizer with a learning rate schedule given by the following equation: lr = max_lr * warmup_steps 0.5 * min(step -0.5 , step * warmup_steps -1.5 )

where, max_lr is the maximum learning rate, warmup_steps are the number of training iterations before the maximum learning rate is achieved and step refers to the current training iteration. We use a relatively small value of 1e-4 for max_lr and the first 8k training iterations for warmup. The model is trained for a total of 300 epochs.

For the first 4k training iterations, we only train the linear projection layer hα. Batching is performed by pooling together raw speech waveforms in such a way that the total number of samples do not exceed 3.2 million. We use a gradient accumulation factor of four to ensure that the model is updated after every four training iterations, which leads to an effective batch size that is four times the original. The feature sequence output by the CNN encoder of the SSL models is randomly masked in the time dimension. We mask a span of ten consecutive time steps with a masking probability of 0.65, which leads to 65% of the input signal being masked. We use 4 V100-32GB GPUs for fine-tuning. We use the Espnet2 codebase [START_REF] Watanabe | The 2020 espnet update: new features, broadened applications, performance improvements, and future plans[END_REF] to perform all our experiments.

Decoding We use beam search decoding without a language model (LM) with a beam size of 10. We do not use an LM because, in this work we are solely concerned about the acoustic model adaptation. Also, in a resource-scarce ASR scenario, we might not have text data to train a LM.

RESULTS

In Table 1, we show the cross-lingual transferability of different Pre-Trained wav2vec2 models on eight target languages. The goal is to analyze how much of the multilingual xlsr topline's performance can be recovered by simply Fine-Tuning the English wav2vec2 models on ten hours of labeled data in target languages. We Fine-Tune a randomly initialized transformer encoder which consists of the same architecture as w2v_base on ten hours of labeled data in each language to use as a baseline. We perform ASR Fine-Tuning of several Pre-Trained English wav2vec2 on ten hours of labeled data in target languages and compare their ASR performance against the Fine-Tuned xlsr model topline. We make the following conclusions: 1) Pre-Training Matters: ASR Fine-Tuning of Pre-Trained English wav2vec2 models lead to significant improvements in WERs on target languages over the baseline. Through the simple PT → FT process, we are able to recover on average 79% to 86% of the WER and 88% to 93% of the CER of the xlsr topline. 2) Big SSL models provide better transfer: By Fine-Tuning w2v_large that is Pre-Trained on the LS960 dataset, we are able to recover on average 83% of the topline WER compared to 79% achieved by Fine-Tuning w2v_base that is also Pre-Trained on LS960. 3) Pre-Training dataset size matters upto a point: Fine-Tuned w2v_large that is Pre-Trained on LL60k recovers on average 86% of the topline WER compared to 84% recovered by Fine-Tuning w2v_large that is Pre-Trained on LS960. But the gap in average Word Error Rate Recovery (WERR) between w2v_rob that is Pre-Trained on the combined CV, SWBD and LL60k datasets, and w2v_large that is Pre-Trained only on LL60k is less than one percentage point (pp). 4) ASR Fine-Tuning of SSL models on source language hurts transfer: The average WERR on target languages of w2v_large_sup model which is Pre-Trained on LL60k followed by its ASR Fine-Tuning on labeled LS960 is worse than directly Fine-Tuning the Pre-Trained wav2vec2 models on the target languages. The WERR for w2v_large_sup is about 8pp worse than w2v_rob that is directly Fine-Tuned on target languages. 5) About the out-of-domain Arabic Target Language: We see that on the seven in-domain languages (MLS/x, where x is the target language) xlsr achieves an average WER of 16.5% compared to 29.8% achieved by the ASR Fine-Tuning of w2v_rob, the best of the English wav2vec2 models, giving a performance gap of about 14pp between the two. However, on the out-of-domain Arabic target language (MGB/ar), the gap is less than 4pp. Next, we perform cross-lingual adaptation of Pre-Trained wav2vec2 models using DUST. We choose French and Arabic as the target languages for transfer learning and w2v_rob and xlsr as the target models for adaptation.

In Table 2, we use DUST to perform cross-lingual adaptation of Pre-Trained w2v_rob to French (MLS/fr). DUST proceeds as follows: 1) First, we perform the ASR Fine-Tuning of the initial w2v_rob (f φ 0 ,p ) model using the standard nine hours labeled split provided by MLS/fr dataset to get the first-generation teacher f φ 1 ,p ( §2). 2) Second, f φ 1 ,p is used to generate pseudo-labels on the random 100 hours unlabeled split from MLS/fr, which amounts to about 30k utterances, using the pseudo-label generation process explained in §2 to give a set P of pseudo-parallel data. We use 0.2 as the value of the DUST filtering threshold τ . We choose τ blindly without tuning it on a labeled validation set. 3) Lastly, we Fine-Tune w2v_rob (student), f φ 0 ,p , on the combined labeled and pseudo-labeled data P to get f φ 2 ,p , which is used as the teacher for the next iteration of DUST. We perform a total of five DUST iterations. The final student model f φ 5 ,p achieves a WER of 22.3% which is 16pp lower than the WER of 38.3% achieved by the first generation teacher model f φ 1 ,p . Furthermore, f φ 5 ,p is able to recover 86% of the xlsr topline's WER. Additionally, we make the following observations: 1) Unsurprisingly, the size of the filtered pseudo-label set P (denoted as |P| in Table 2) is larger in later DUST iterations due to the continual improvement in the quality of the student (see WER [%] in Table 2), which leads to an improved teacher for subsequent DUST iterations; an improved teacher leads to cleaner pseudo-labels and hence less rejected unlabeled data points during the pseudo-label filtering process. 2) Also, in the later DUST iterations the quality of the pseudo-labels improve, which is implied by the lower WER on pseudo-label set P during the later iterations. Next, we consider Arabic (MGB/ar) as the target language for transfer learning, a more challenging transfer learning scenario.

In Table 3, we perform adaptation of w2v_rob and xlsr to the MGB/ar dataset. Here, the results are achieved by following the same adaptation process detailed above for experiments in Table 2. After five DUST iterations, we achieve the final WER of 20.8% when starting with a Fine-Tuned xlsr model as the first generation teacher f φ 1 ,p . This result is about 17pp better than the WER of 37.4% with f φ 1 ,p . Similar improvements are achieved when using the Fine-Tuned w2v_rob as f φ 1 ,p for DUST iterations.

CONCLUSIONS

We conclude by summarizing the key findings of the paper. We show (Table 1) that the monolingual Pre-Trained wav2vec2 models transfer well across multiple languages. In particular, we show that by performing ASR Fine-Tuning of wav2vec2_robust on ten hours of labeled data in a target language we are able to recover on average 86% of the performance of the topline multilingual xlsr model that is Pre-Trained on 53 languages and Fine-Tuned on the same amount of labeled target language data. This finding concurs with similar findings of [START_REF] Rivière | Unsupervised pretraining transfers well across languages[END_REF] on cross-lingual transfer of monolingual Pre-Trained SSL models to different target languages for the task of phoneme recognition. Our work goes a step further and proposes a simple yet effective cross-lingual transfer learning algorithm ( §2) for adaptation of monolingual wav2vec2 models via Dropout Uncertainty-Driven Self-Training (DUST) by leveraging hundred hours of unlabeled speech data from the target language. We show (Table 2) that DUST improves over the baseline model that is Fine-Tuned only on labeled target language data, and is able to recover 86% of the WER of the topline xlsr model when adapting to French. We show similar results (Table 3) when considering Arabic as the target language. Future work should explore combining our method with the adapter framework for cross-lingual transfer learning [START_REF] Pfeiffer | Mad-x: An adapter-based framework for multi-task cross-lingual transfer[END_REF][START_REF] Kannan | Large-scale multilingual speech recognition with a streaming end-to-end model[END_REF][START_REF] Kessler | Continual-wav2vec2: an application of continual learning for self-supervised automatic speech recognition[END_REF][START_REF] Hou | Exploiting adapters for cross-lingual low-resource speech recognition[END_REF].

  f Student (ψ,p) on A = L ∪ P 28: return f Student (ψ,p) 29: end function Pre-Training In our work, we explore the following Pre-Trained wav2vec2 SSL models that provide the initial model f φ 0 ,p (Algorithm 1) for transfer learning.

Table 1 :

 1 Cross-Lingual Transferability of Pre-Trained wav2vec2 model on eight target languages. Seven languages are from the MLS dataset of read audiobooks, while Arabic is from the MGB broadcast news dataset

	WER / CER [%]	WERR / CERR

Table 2 :

 2 Transfer of Pre-Trained w2v_rob to the target French language in the MLS dataset

			WER [%]	WERR [%]
	Method	|P| [k]	P	MLS / fr	MLS / fr
	Baseline (w2v_rob)			38.3	0
	DUST1	11	20.2	31.9	34.4
	DUST2	24	20.3	27.4	58.6
	DUST3	30	20.0	24.2	75.8
	DUST4	30	19.2	23.5	79.6
	DUST5	30	18.7	22.3	86.0
	Topline (xlsr)			19.7	100

Table 3 :

 3 Transfer of Pre-Trained w2v_rob and xlsr models to the target Arabic Language in the MGB dataset

			WER [%]
	Method	|P| [k]	P	MGB / ar
	Baseline (w2v_rob)			41.6
	DUST1	12	21.0	32.7
	DUST2	26	21.2	27.4
	DUST3	30	20.8	25.2
	DUST4	30	19.5	23.1
	DUST5	30	18.7	21.2
	xlsr			37.9
	Baseline (xlsr)			37.9
	DUST1	13	20.3	31.1
	DUST2	29	20.4	26.3
	DUST3	30	20.1	24.1
	DUST4	30	18.5	22.5
	DUST5	30	18.1	20.8