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ABSTRACT

Autonomous driving systems validation remains one of the biggest challenges car manufacturers must
tackle in order to provide safe driverless cars. The high complexity stems from several factors: the
multiplicity of vehicles, embedded systems, use cases, and the very high required level of reliability
for the driving system to be at least as safe as a human driver. In order to circumvent these issues,
large scale simulations reproducing this huge variety of physical conditions are intensively used to
test driverless cars. Therefore, the validation step produces a massive amount of data, including
many time-indexed ones, to be processed. In this context, building a structure in the feature space is
mandatory to interpret the various scenarios. In this work, we propose a new co-clustering approach
adapted to high-dimensional time series analysis, that extends the standard model-based co-clustering.
The FunCLBM model extends the recently proposed Functional Latent Block Model and allows to
create a dependency structure between row and column clusters. This structured partition acts as a
feature selection method, that provides several clustering views of a dataset, while discriminating
irrelevant features. In this workflow, times series are projected onto a common interpolated low-
dimensional frequency space, which allows to optimize the projection basis. In addition, FunCLBM
refines the definition of each latent block by performing block-wise dimension reduction and feature
selection. We propose a SEM-Gibbs algorithm to infer this model, as well as a dedicated criterion to
select the optimal nested partition. Experiments on both simulated and real-case Renault datasets
shows the effectiveness of the proposed tools and the adequacy to our use case.

Keywords Model-Based Clustering · Coclustering · Time Series Analysis
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1 Introduction

Autonomous car development remains a challenge for car manufacturers. Nowadays, advanced driving assistance
systems are being introduced gradually into new car models, yielding more and more complex vehicles that must be
proven to be safe. Given the high number of different vehicles, different models, embedded systems, drivers, and
expected reliability, physical validation of cars has become prohibitive. Groupe Renault has made the technical choice
to invest in massive driving simulation technology in order to circumvent this issue. The simulation tool chain mimics
car driving conditions based on vehicle physics, driver behavior, and interaction with a configurable environment.
The software produces a large quantity of data of excellent quality that needs to be mined. The simulation process
outputs a large amount of information in the form of multivariate time series. Data size, complexity, and dimensions
are considerable: the simulation of a validation test suite, the number of simulations can be as large as O(106), with
O(103) signals, each recording O(104) time steps. Overall, this setting implies the production of more than O(1013)
data points.

One issue driving system developers are facing with this large amount of data, is the ability to identify operational modes
of the driving systems, in order to better understand and refine the control logic. Specific visualization methods are
required for this purpose. Clustering is a first approach to tackle the problem, which consists in the automatic grouping
of "similar" observations into homogeneous groups (clusters). The clustering of time series (also called functional data)
already helps decision-making in many domains (Health, Finance, Industry. . . ) and has been intensively studied (see
Bagnall et al. (2017); Aghabozorgi et al. (2015) for reviews). In such methods, observation clusters construction is
based on every functional features (see Fig. 1, left panel).

Co-clustering techniques produce joint clusters of observations and clusters of features. The Latent Block Model (LBM)
is a model-based approach to co-clustering which has recently proved its effectiveness in various applications (Govaert
and Nadif (2013); Jacques and Biernacki (2018)). It can be applied when every feature can be modeled with the same
probability density function, for instance applied to the clustering of text based on word counts, or in the functional
case like in Bouveyron et al. (2018) where features (also called signals) come from the day-by-day segmentation of
electricity consumption curves. Latent Block Model applied to time series is a recent approach, and there exists only
few works on the topic Chamroukhi and Biernacki (2017); Slimen et al. (2018); Schmutz et al. (2019). In particular,
Bouveyron et al. (2018) presents an interesting Functional Latent Block Model (FunLBM) that relies on functional PCA
projections of the series expressed in a Fourier basis. Co-clustering methods enable grouping of similar features with,
in our applications, a limiting constraint: observation clusters and feature clusters are independent and observation
partition is common to every features (see Fig. 1, middle panel).

In real cases, chances are that for every feature cluster there is a different set of observation clusters. The main advantage
of this new model, called Functional Conditional Latent Block Model (FunCLBM), is that a joint structure is introduced
in the clusters dependency: clusters are not assumed to be independent anymore and observation clusters depend on
feature ones. Consequently, users have at disposal a clustering made of multiple views, from which it is easy to discard
groups of useless features. This construction grants a valuable tool to the expert: feature selection and discrimination of
uninformative features. Fig. 1 shows the differences between the clustering, co-clustering, and the proposed conditional
co-clustering approaches.

In the most recent FunLBM works, time series are expressed in a common polynomial basis and block-wise functional
PCAs (Ramsay and Silverman (2005)) are applied on the regression coefficients. FunCLBM builds on this construction
and improves the first part: the time series are first transformed with a Discrete Fourier Transform procedure, then
obtained periodograms are interpolated in order to construct a finely-tuned expression basis. The rest of this paper
is organized as follows: Section 2 presents the work related to both model-based clustering and co-clustering. Both
data processing aspects and the FunCLBM workflow are detailed in Section 3. Section 4 describes the inference and
implementation details. Experiments on both a simulated dataset and a real case data are presented in Section 5. Finally,
the paper ends on Section 6 with future work perspectives.

2 Related work

2.1 Model-based clustering

Mixture modeling (MM is a standard clustering approach first introduced in Dempster et al. (1977) and based on the
assumption of latent clusters. The cluster membership probabilities are jointly estimated with the mixture parameters:
the proportions and the distribution parameters of each component. In opposition to non-model-based methods, this
approach enables the construction of confidence intervals and probabilistic outliers detection. The inference is performed
by optimizing the likelihood of the model, with a dedicated algorithm, the Expectation-Maximization (EM) algorithm
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Figure 1: Differences between Mixture Model clustering, Latent Block Model Co-clustering and Conditional Latent
Block Model Co-clustering

Dempster et al. (1977). This algorithm is iterative and composed of two steps: the E step computes the posterior cluster
membership probabilities while the M step updates the model parameters based on these probabilities.

Several variants of this algorithm exist, which mainly consist in variations of the M step. The Classification-EM version
updates the parameters based on the observations that are "most likely" to belong to each cluster (this version is the
closest to the popular K-Means, of which it can be considered a probabilistic generalisation). In the Stochatisc-EM
(SEM) approach, the cluster belongings are drawn at random according to the membership probabilities. FunCLBM
uses this last EM extension, in an adapted version detailed in Section 4. Model-based clustering has been subject to
many works, improving several aspects (e.g. the initialization Biernacki et al. (2003) or the model selection strategy
Vlassis and Likas (2002); Biernacki et al. (2000)). It has also been extended to the modeling of various data types,
including time series Bouveyron and Jacques (2011); Chamroukhi et al. (2010) The Latent Block Model is an extension
of the MM model addressing the co-clustering problem.

2.2 Model-based co-clustering

The Latent Block Model, proposed in Govaert and Nadif (2013), assumes the presence of latent feature clusters
(column-cluster) in addition to the observation clusters (row-cluster). In the standard multivariate MM, each component
of the mixture defines a density over multivariate observations (an observation corresponding to a row). It is no longer
the case in the LBM framework: the modeled object is the cell, i.e the intersection of a row and a column, that is an
observation for a given feature.

Inside the block component created by crossing the column and row partition, LBM assumes the independence
conditional to the block, which means that, given a block partition, every cell composing a block is independent of each
other. From this perspective, the density of an LBM component is univariate.
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Given an observed dataset x = (xij)n×p of n observations of p features, let denote z = (zik)n×K and w = (wj`)p×L
the random binary matrices indicating respectively the row and cluster partitions. The standard LBM is defined by:

p(x; θ) =
∑
Z×W

p(z; θ)p(w; θ)p(x|z, w; θ),

where Z andW respectively denote the sets of all possible row and column partitions. The quantity p(z; θ) is defined
as
∏

ik π
zik
k , with π = (πk)K the membership probabilities prior (respectively for w with the membership probabilities

ρ = (ρ`)L). The set of parameters θ is composed of the mixing proportions and of the component density parameters.
These densities p(x|z, w; θ) are part of a common model family suited to clustering interpretation.

We emphasize that our goal is to provide a cluster belonging probability that is not independent anymore, i.e. the
approximation p(z, w; θ) ≈ p(z; θ)p(w; θ) does not hold.

2.3 Functional co-clustering

In the case of time series co-clustering, the dataset is composed of sequences: x = (xij)n×p, with xij = (xij(t))T
and T the time support. Each time series model-based co-clustering method defines and makes use of a specific
representation of the time series and probability density functions for the mixture components. While one article from
Chamroukhi and Biernacki (2017) uses a density based on a piecewise regression model, the majority of them Slimen
et al. (2018); Bouveyron et al. (2018); Schmutz et al. (2019) are based on modeling the time series using a functional
PCA (fPCA) projection Ramsay and Silverman (2005). This process assumes the dataset time series can be adequately
represented in a common low-space expansion basis, i.e. each xij can be expressed as xij(t) =

∑S
s=1 cijsfs(t). This

projection allows to reconstruct the functional form from the discrete time series representation. Fourier basis is a
common choice in the domain.

The LBM is then applied to the coefficients dataset. Applying the fPCA block-per-block, as presented in Bouveyron
et al. (2018), allows to detect even the smallest signal change. This work shows good performances but cannot deal with
datasets that contain irrelevant, uninformative features or in the case column clusters define different row clusters. In this
situation, using the LBM forces to make compromises in the block partitioning, resulting in sub-optimal block clustering
solutions. Fig. 2 illustrates this behavior with an example of univariate Gaussian Latent Block Model co-clustering.
FunCLBM allows to extend the FunLBM in order to overcome this limitation.

Raw Data True partition LBM Partition

Figure 2: Several reordered views of a conditionally partitioned univariate Gaussian dataset: the original "random"
view, the optimal "true" partition and the best partition that can be produced with a standard Gaussian LBM approach
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3 Functional Conditional Latent Block Model

This section presents the FunCLBM model, as well as its inference and model selection strategies. The proposed
approach relies on the projection of the time series in a specific space. It consists in applying a PCA on the representation
of the series in the frequency domain.

3.1 Representation with interpolated Fourier transform

This paper focuses on working with high-dimensional time series. Using such series as is makes learning hard due to
both the curse of dimension, tending to make all individuals equally distant from each other, and the huge quantity of
noise involved. It is required to choose a more compact representation for learning. Many have been studied in the
literature (Fourier, wavelets, Chebyshev, . . . ) each with its pros and cons. In this paper, an interpolated log-scaled
Fourier periodogram representation is chosen, following what is advocated in Caiado et al. (2009). Formally, given a
family of series X = (xij)n×p, each xij with its own time length lij = |xij | (its number of discrete time points), the
first step is to compute the Fourier periodograms P = (pij)n×p of same length. These periodograms are not indexed
over time though but over frequencies F = (fij)n×p = (〈f1ij , . . . , f

lij
ij 〉)n×p.

However, the different length of each time series makes the discrete periodogram frequencies unaligned, so that the
fij values for a dataset of series are likely to be significantly different between series. Thus, in order to make the
representation comparable, one needs to find a common sequence of frequencies f̂ from F which is not obtainable by
selecting a subset of each series frequencies. A possible solution chosen for this paper is to obtain f̂ by computing
the sample average gap ∆̂f between two consecutive frequencies over all time series. Then, choosing a desired
representation length l̂, it is possible to build f̂ = 〈0, ∆̂f, 2∆̂f, . . . , (l̂ − 1)∆̂f〉.

The final step is to obtain the periodogram values P̂ = (p̂ij)n×p of all series of X for f̂ frequencies, which can only
be estimated, e.g. using linear or cubic interpolation techniques from P . One could be tempted to use P̂ directly
as the compact representation for model selection. However, as advised in Caiado et al. (2009), log

(
z
(
P̂
))

=

(log (z (p̂ij))n×p, where z is the z-normalization function substracting the mean value and dividing by the standard
deviation, is used instead to compare relative periodogram values and limit the bias towards low frequencies encountered
in practice.

3.2 Model definition

Considering independent row-clusters partition for each column-cluster, it is mandatory to adapt the previous notation.
Let denote K` the number of row-clusters associated to column-cluster `, 1 ≤ ` ≤ L. We still denote by w = (wj`)p×L
the binary vector that indicates the column-cluster belonging. Given a column-cluster `, the associated row-clusters
partition is denoted as z` = (z`ik)n×K`

. For convenience, we note z`i = (z`ik)K`
the row-cluster membership of

observation i in the column cluster `. The global row-partition is denoted as z = (z`)L. While the column mixing
proportion remains the same, the row mixing proportion is now denoted π = (π`)L, with π` = (πk`

)K`
. Finally, the

joint model density can be decomposed in the following:

p(x; θ) =
∑
Z×W

p(w; θ)p(z|w; θ)p(c|z, w; θ)

=
∑
Z×W

∏
j`

ρ
wj`

l

∏
i`

∏
k`

π`
k`

zl
ik
∏
ij`

∏
k`

p(cij ; θ
`
k)z

`
ikwjl ,

with p(cij ; θ
`
k) = p(cij |wj , z

l
i) being the density of the block (k`, `) with parameters θ`k. This density is the one of a

multivariate gaussian model on the projections of the interpolated periodogram coefficients into a low-dimensional
subspace. This density is parameterized by three elements:

• A matrix A`
k of size m × d which defines the linear transformation of the periodogram (of size m) in the

lower-dimension subspace (of size d).

• The m-dimension mode µ`
k.

• Σ`
k, the d× d covariance matrix in that subspace.

The complete set of parameter θ=(π, ρ, (θ`k)K`×L) is inferred with a dedicated SEM-Gibbs algorithm.
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3.3 Inference with SEM-Gibbs algorithm

Using the SEM algorithm is a popular practice in the model-based clustering framework. As described in section 2.1,
the SEM implies that the block component parameters are updated based on sampled observations. In the co-clustering
case, there is an additional constraint: the direct computation of the block belonging is intractable. A popular solution
from Keribin et al. (2010) is to use a Gibbs sampler that alternatively draws the cluster belongings in one dimension
conditionally to the other. Starting from an initial parameter state θ0 and an initial column partition w0, the SEM-Gibbs
alternates between these two steps:

1. SE step:

• For each column partition ` and each row i, draw the associated row cluster belonging z`i
(q+1) ∼

M(1, z̃`i1, . . . , z̃
`
iK`

), with

z̃lik = p
(
z`ik = 1|ci., w(q); θ(q)

)
=

π`
k

(q)
f `k
(
ci.|w(q); θ(q)

)∑K`

h=1 π
`
h

(q)
f `h
(
ci.|w(q); θ(q)

) ,
where ci. = (cij)0≤j≤p and f `k the density of the row:

f `k
(
ci.|w(q); θ(q)

)
=
∏

j p
(
cij ; θ

(q)
k`

)w(q)
j`

.

• For each column j, draw the column cluster belonging w(q+1)
j ∼M(1, w̃j1, . . . , w̃jL), with

w̃j` = p
(
wj` = 1|c.j , z(q+1); θ(q)

)
=

ρ
(q)
` g`

(
c.j |z(q+1); θ(q)

)∑L
r=1 ρ

(q)
r fr

(
c.j |z(q+1); θ(q)

) ,
where c.j = (cij)0≤i≤n and g` is the density of the column c(.j) given the multiple row partition:

g`

(
c.j |z(q+1); θ(q)

)
=
∏
ik

p
(
cij ; θ

(q)
k`

)zl
ik

(q+1)

2. M Step: given the sampled block partition, and denoting by c`k the observations belonging to block (k, `), the
mixture proportions are updated by:

• πk`
(q+1) = 1

n

∑
i z

l
ik

(q+1), 0 ≤ ` ≤ L,
• ρ`(q+1) = 1

p

∑
j wj`

(q+1)

• A`
k the loadings matrix produced by the block-wise PCA of c`k, i.e. the m× d matrix containing the d

eigenvectors with highest eigenvalues.
• µ`

k and Σ`
k the mean and covariance matrices in the lower-dimensional subspace:

µ`
k =

1

n`k
(q+1)

∑
i,j

z`ik
(q+1)

w
(q+1)
jl vij

Σ`
k =

1

n`k
(q+1)

∑
i,j

z`ik
(q+1)

w
(q+1)
jl

(
vij − µ`

k

) (
vij − µ`

k

)T
,

with vij = cijA
`
k, and n`k

(q+1)
=
∑

i

∑
j z

(q+1)
ik w

(q+1)
j`

This algorithm is run for a given number of iterations, or until a relative convergence threshold is reached. Choosing a
good initialization state is crucial in order to ensure the good behaviour of the algorithm. It is a well-known dilemma in
model-based clustering, subject of several works Blömer and Bujna (2013); Baudry and Celeux (2015).

Several methods are often considered: populating components with a small random sample of the observations, shuffling
the column and block partitions, or using another clustering algorithm to get a good initial starting point. In section 4
these different initializations are experimented. Independently from the method, taking the result with highest likelihood
among several runs is an agreed-upon strategy.
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3.4 Model Selection

With a good initialization choice, SEM-Gibbs may converge to a solution for a given clustering structure, i.e. a column
cluster number L and a set of row clusters numbers K = (K`)L. Several criteria have been developed to address
the model selection problem. In this work, we propose a dedicated criterion based on the Integrated Classification
Likelihood (ICL) Biernacki et al. (2000). Initially developed for Gaussian Mixture Model Selection, extended by Lomet
(2012) to co-clustering and in Bouveyron et al. (2018) to functional co-clustering, we propose the following extension
to functional conditional co-clustering:

ICL(K,L) = log p(x, v̂, ŵ; θ̂)− L− 1

2
log p

− 1

2

∑
`

((K` − 1) log n)−
∑

`,k ν
`
k

2
log(np),

where ν`k is the component parameter number of block (k, `). This score penalizes the log-likelihood with a function of
the number of parameters. The best model is the one maximizing this score. In the co-clustering case, finding the best
structure can be done by an exhaustive grid search, we will see in the experiments that this strategy is not suitable to
FunCLBM.

4 Experiments on Synthetic Data

In order to test the capabilities of FunCLBM, experiments are first conducted on a simulated dataset. These experiments
help us check that the model is suited and that the SEM-Gibbs algorithm behaves well in a controlled environment.

4.1 Simulated dataset

The first experiment is conducted on a dataset sampled from a known generative model. The objective is to check
the behavior of FunCLBM, its initialization and model selection strategies. The dataset is generated by sampling
around one of several "prototypes" denoted (φ`k) and which represents the components modes in the original space.
For each block (k, `), several time series are drawn following N

(
φk`(t+ ts), s

2
)

with s = 0.02 and ts a random shift
∼ N

(
0, s2

)
. These modes are depicted in Fig. 3 according to the dataset structure.

In the experiments, the quality of the estimated block partition is compared to the known generative partition, based
on the Adjusted Rand Index (ARI). This is a popular criterion choice in the clustering domain, which represents the
proportion of correctly grouped and separated observations with respect to the observed classes. In our particular
context, we compare the obtained partition based on three aspects: the column cluster partition, the rows cluster
partitions (made of the binning of every row cluster partition per column), and the block partition. We generate a dataset
of size 90x90, with column cluster of size (45, 15, 30) and row cluster sizes of respective sizes (20, 40, 30), (60, 30)
and (40, 50).

4.2 Model Adequacy

As a preliminary test, we verify that FunCLBM objective function in lower-dimensional spaces is suited to the clustering
of such dataset. To do so, we compare the Log-likelihood produced through 100 launches of SEM-Gibbs to the
corresponding ARI criterion and depicted in Fig. 4. We verify this relationship by computing the Pearson’s correlation
coefficient between the two scores, and Kendall’s correlation test. We use this latter test to avoid making assumptions
on ARI or Log-likelihood normality and because of the presence of ex-aequos values that can be produced if the "true
state" is reached. The test results (with 95 % confidence level) are displayed in Table 1. For this dataset, the suitability
of the method is attested by the strong Pearson’s correlation for every partition dimension and confirmed by Kendall’s
correlation test p-value at 95% confidence level.

Table 1: Kendall’s correlation test p-value (conf level: 0.95)

Row Column Block
Pearson’s correlation 0.7110134 0.8974437 0.7111690
Kendall test p-value 7.88e-18 6.091e-08 8.09e-06
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Figure 3: Prototypes used as block mode for the simulations
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Figure 4: ARI versus Log-Likelihood in 100 launches of SEM-Gibbs on the simulated dataset

4.3 Initialization

The next experiments aim at evaluating the different initialization strategies. It is, once more, evaluated with the ARI
criterion. We compare four strategies:

• Populate blocks with samples

• Random shuffle of the column partition, then of the row partition

• Initialize the column partition with a K-Means run on the transposed dataset, then the row partition with one
K-Means run per column.
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• Initialize the column partition with a model-based functional co-clustering approach.

Row clusters Column clusters Block clusters
0

0.2

0.4

0.6

0.8

1

sample randomPartition KMeans FunLBM

A
d
ju

s
te

d
 R

a
n
d
 I
n

d
e
x

Figure 5: Results of Row, Cluster and Block partition ARI obtained with different initialization methods (median and
quantile 0.9 on 30 SEM-Gibbs runs)

For the last approach, we use a modified version of the original FunLBM, closer to the FunCLBM variant: the time series
are transformed into interpolated log-periodograms and component parameter updates are the same as in FunCLBM
(c.f. Section 3).

In Fig. 5 are displayed the ARI obtained after launching 30 times SEM-Gibbs with each initialization method. The
figure shows important differences between row and column cluster results, as expected since the model does not treat
rows and column symmetrically anymore. We can also observe that the K-Means run has an unexpected behavior:
while performing well on average, its results show a high dispersion for column cluster ARI. Its row cluster ARI
however is slightly better than the other methods. On average, the model-based co-clustering performs well but not
overwhelmingly.

On this small experimental case, the random partition seems a direct and cheap initialization strategy. Whichever
initialization strategy is applied, the concurrent run of several methods allows to stabilize the results, as displayed in
Fig. 7. In this experimental setup, finding the perfect structure is an easy task whenever the number of concurrent
launches is higher than 4.

4.4 Model selection

The last experiments compared the initialization methods for a given choice of structure. However, the most challenging
part, and also the most useful for the field expert, is the model selection strategy. In Bouveyron et al. (2018), the authors
proposed the co-clustering grid search method, which requires inferring K × L models. In the clustering case, the
number of components is preferably low for interpretability sake. In our case, such approach is not possible: the number
of combinations is prohibitive. For a maximal number of column clusters LM and per-column row clusters KM , it is
the number of un-ordered set of length ` among KM possibilities, for 0 ≤ ` ≤ LM , i.e.

∑LM

`=1

(
KM+`−1

`

)
. The quantity

is prohibitive: with LM = 5, KM = 5, it amounts to 251 combinations, i.e. 10 times more than in the LBM case (5x5
combinations).

In order to overcome this limitation, we propose and compare two strategies. Both are based on a different estimation
of L̂ and then on a column-wise grid search. In the first case, L̂ is estimated from a standard model-based co-clustering
exhaustive grid search, and in the second from a greedy algorithm. The first solution implies an exhaustive search of the
KM × LM combinations and then L̂×KM to produce the best number of row-clusters per column. The second one
is an iterative algorithm that chooses, at each iteration, the best functional Latent Block Model between the one with

9



A PREPRINT - AUGUST 4, 2020

0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 Greedy Search

Grid Search

Di erences to true partition (3,2,2)

F
re

q
u
e
n
c
y

Figure 6: Results of 50 runs of each selection model strategy, in terms of differences to the generative model structure.

an added row cluster and the one with an added column cluster. The number of inferences to perform depends on the
number of iterations, with upper bound LM +KM . After each construction, the candidate is finally taken as initial
FunCLBM model state for a new SEM-Gibbs run.

The results of 50 launches of each method is displayed in Fig. 6, in terms of differences to the true partition. While the
grid search superiority was predictable, the results illustrate the differences in results, to be compared to the computation
resources required. From our perspective, the grid search approach seems better, as long as we keep the clusters number
low.

5 Application to autonomous driving system validation

The Scala/Spark source code of the method is available at the github repository
https://github.com/EtienneGof/FunCLBM, along with the data simulation method. The real-case data is not,
however, put at disposal.

Validating an intelligent driving system is a complicated task, that can not be purely addressed with on-track tests. The
numerical simulation approach circumvents the limits of these physical experiments, mainly due to the high numbers
of validation check to perform to assess a system. A large scale simulation framework reproducing test conditions is
intensively used to test driverless cars, producing a massive amount of time series that needs to be processed. Several
aspects motivate the use of an autonomous behavior simulation platform. One of the main motivation is the physical
validation cost reduction. Such validations require specific infrastructures, equipment management and maintenance,
and significant human intervention to set up the experiments.

Another major disadvantage of physical testing is the impossibility to produce enough sample to prove the high
reliability of a system. A validation objective may be the assessment of vehicle incident odds (e.g. < 10−8 incidents per
hour). With a classical sampling method, estimating such probability would require running prototypes over hundreds
of millions of kilometers. Therefore, using a digital environment to test the different vehicles enables us to reproduce
an exact experimental setting, to repeat the tests on-demand in an automated fashion in parallel of the development
of the control software, as well as sample the test input parameters to assess the uncertainty of the experiments and
the robustness of the cars. Even if such a large amount of real-life data were available, as is the case in some data
science applications, there would be no guarantees about neither the data quality nor value. In our case, this value lies
in the specific driving situation in which to test the control logic reaction. These situations might be rarely occurring in
real-life driving sessions, such as emergency braking or lane departure events.
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Figure 7: Best ARI obtained among several SEM-Gibbs runs (median, quantile 0.9; with variable number of concurrents)

Therefore, the use of an high-perfomance computing environment provides a mean to extensively test a driving control
logic. Because of the large variety and complexity of the simulated driving situations, as well as the possibly unknown
operating modes of the intelligent car, using a supervised approach is intractable for the massive datasets under
consideration.

5.1 Use case description

In this situation, the objective is to test the reactions of a car (called Ego) equipped with the control logic. Ego runs
in a straight line and starts drifting laterally towards the road side or the other lane, simulating a sleeping driver. We
expect the drifting detection system to trigger the control logic, which in turn puts the car back in its line center, as an
emergency maneuver. The situation is depicted in Fig. 8.

Figure 8: Use case illustration: Ego drifts from the runway’s center line and cross the white line on the side of the road,
before being put back in the runway center

The simulated datasets contain the data from 56 simulations, each described by 20 signals. Some signals are duplicated
in order to test FunCLBM ability to regroup them, and some uninformative ones are kept on purpose.
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5.2 Results

The experiments on simulated datasets lead us to choose the following setup for the real case analysis: initialization is
always performed by sampling column and row cluster partitions, and the FunLBM grid search approach is applied for
model selection. Each combination is tested with 30 concurrent runs.

Figure 9: Final structure obtained on real case dataset

The final clustering structure is presented in Fig.9. It consists of 4 column clusters, each one with a different number of
row clusters: (6x5x4x4). Due to constraints on article length, each of these 19 clusters cannot be analyzed in-depth here.
However we give the main insights below.

The first column cluster groups the following features: Ego’s current lateral lane position (continuous), Ego’s current
lane index (discrete), type of the lane on Ego’s right side (discrete), and type of lane on Ego’s left side (discrete). The
last two signals seem to be wrongly clustered at first sight, but are in fact redundant Ego’s position, as they uniquely
identify Ego’s current lane index. Interestingly, this first column cluster therefore gathers every features related to the
position of Ego.

The conditional row partitioning in this column cluster is also interesting: the partition of Ego’s position signal is
represented in Figs. 10, 11. The clusters adequately gather simulations that share the same behavior. In Fig. 10 case,
the control logic is activated and the car is recentered in its lane, and then repeatedly bounces back on the exact same
road markings. In Fig. Fig 12 case, the decentering happens later, and the car bounces once before changing direction
and going straightforwardly to the other side of the road. In Fig 12 scenario, the car bounces only once and either goes
to other side of the road of comes back after a large drift.

12



A PREPRINT - AUGUST 4, 2020

Figure 10: Ego lateral position in Block Cluster (5,1)

Figure 11: Ego lateral position in Block Cluster (2,1)
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Figure 12: Ego lateral position in Block Cluster (3,1)

In the second, and largest, column-cluster can be found the uninformative signals, that either give constant values
(vehicle length, width, distance between wheels, road bend radius) or increasing linearly (distance to origin). Fig. 13
and Fig. 14 illustrates some of these signals.

The third column-cluster regroups two other interesting features: the rectangular function indicating the activation of
the control logic, and the changes in Ego’s heading. While the first column-cluster was grouping position, this one
gathers the control features. Fig.15 shows the content of subcluster (3, 3) which illustrates the relationship between
them. Overall, every set of duplicate features have been correctly grouped together.

This conditional clustering partition shows, in conclusion, that the FunCLBM approach has correctly discriminated
uninformative signals, while creating meaningful clusters of features (position and leverage). In each column-clusters,
the observatins are also informative and provide good insights of the dataset content.

6 Conclusions and Future Work

This paper describes FunCLBM, a model-based method which addresses the problem of clustering multivariate time
series in multi-views. This new model enables regrouping redundant signals, discriminating uninformative ones and
provides the user with multiple clustering views of a multivariate time series dataset.

The time series are transformed into interpolated log-periodogram before being projected into low-dimensional space.
This space is adapted to each block-cluster, and updated at each iteration of a SEM-Gibbs algorithm for model inference.

Several initialization methods and model selection strategies are proposed and experimented on a simulated dataset,
which shows the model adequacy and give insights on the most interesting implementation strategies. Finally, we apply
the method to a real-case dataset from the autonomous driving system validation domain. In this application, FunCLBM
has been able to simultaneously discriminate groups of signals and produce meaningful driving behavior clusters. These
results shows the usefulness of the model and the effectiveness of the initialization and model selection strategy.

The FunCLBM approach was applied here to an autonomous driving context, however we are confident that it can
be used in many other domains. Several improvements are being considered in order to facilitate its use. The model
selection, for instance, can become computationally expensive when the number of observations and signals increases.
Similarly, the initialization can become problematic for higher numbers of clusters. In order to overcome these
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Figure 13: Uninformative signals in Block Cluster (2,2): linearly increasing feature (vehicle’s width, length, headlights
activation..)

Figure 14: Uninformative signals in Block Cluster (1,2): linearly increasing feature (distance to origin)
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Figure 15: Control logic activation and changes in Ego’s heading in Block Cluster (3,3)

constraints, we plan to investigate new initialization methods based on Importance Sampling, as well as new model
selection strategies. In this context, the development of a non-parametric functional conditional latent block model
seems a promising lead.
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