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We here aim at proving the global existence and uniqueness of solutions to the inhomogeneous incompressible Navier-Stokes system in the case where the initial density ρ0 is discontinuous and the initial velocity u0 has critical regularity.

 are unique.

Our work relies on interpolation results, time weighted estimates and maximal regularity estimates in Lorentz spaces (with respect to the time variable) for the evolutionary Stokes system.

Introduction

We are concerned with the initial value problem for the following inhomogeneous incompressible Navier-Stokes system:

         ρ t + u • ∇ρ = 0, ρu t + ρu • ∇u -µ∆u + ∇P = 0, div u = 0, (ρ, u)| t=0 = (ρ 0 , u 0 ), (IN S)
where ρ = ρ(t, x) ≥ 0, P = P (t, x) ∈ R and u = u(t, x) ∈ R d stand for the density, pressure and velocity field of the fluid, respectively. We consider the evolution for positive times t in the case where the space variable x belongs to the whole space R d with d = 2, 3.

It has long been observed that smooth enough solutions obey the following energy balance:

(0.1) 1 2 ρ(t)u(t) 2 L 2 + t 0 ∇u(t) 2 L 2 dτ = 1 2 √ ρ 0 u 0 2 L 2 ,
and that, as a consequence of the divergence free property of the velocity field, the Lebesgue measure of (0.2)

x ∈ R d : α ≤ ρ(t, x) ≤ β is independent of t, for any 0 ≤ α ≤ β.

In 1974, by combining these relations with Galerkin approximation and compactness arguments, Kazhikhov [START_REF] Kazhikov | Solvability of the initial-boundary value problem for the equations of the motion of an inhomogeneous viscous incompressible fluid[END_REF] established that for any data (ρ 0 , u 0 ) such that ρ 0 ∈ L ∞ , div u 0 = 0 and √ ρ 0 u 0 ∈ L 2 , and provided ρ 0 is bounded away from vacuum (that is inf ρ 0 (x) > 0), (INS) has at least one global distributional solution satisfying (0.1) with an inequality. The no vacuum assumption was removed later by J. Simon in [START_REF] Simon | Nonhomogeneous viscous incompressible fluids: existence of velocity, density, and pressure[END_REF], then, by taking advantage of the theory developed in [START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF], P.-L. Lions [START_REF] Lions | Incompressible Models[END_REF] extended the previous results to the case of a density dependent viscosity, proved that the mass equation of (INS) is satisfied in the renormalized meaning, that the velocity field admits a unique generalized flow and, finally, that (0.2) is true. However, from that time whether these weak solutions are unique is an open question, even in dimension two. By using totally different approaches, a number of authors proved that in the case of smooth enough data, (INS) admits a unique solution at least locally in time. In fact, as for the classical incompressible Navier-Stokes equations (that is (INS) with constant positive density), the general picture is that provided the initial density is sufficiently smooth, bounded and bounded away from zero, there exists a global unique solution if the initial velocity is small in the sense of some 'critical norm', and that it can be arbitrarily large in dimension d = 2. This general fact has been first observed by O. Ladyzhenskaya and V. Solonnikov [START_REF] Ladyženskaja | Unique solvability of an initial and boundary value problem for viscous incompressible inhomogeneous fluids[END_REF] in the case where the fluid domain Ω is a smooth bounded subset of R d (d = 2, 3) and the velocity vanishes at the boundary. More precisely, assuming that u 0 is in the Sobolev-Slobodeckij space W 2-2 p ,p (Ω) with p > d, is divergence free and has null trace on ∂Ω, and that ρ 0 is C 1 and is bounded away from zero, they proved:

-the global well-posedness in dimension d = 2, -the local well-posedness in dimension d = 3 (and global well-posedness if u 0 is small in W 2-2 p ,p (Ω)). Results in the same spirit in other functional frameworks have been proved by a number of authors (see e.g. the survey paper [START_REF] Danchin | The inhomogeneous incompressible Navier-Stokes equations with discontinuous density: three diferent approaches[END_REF]). Still for smooth enough data, the non vacuum assumption has been weakened by Choe and Kim in [START_REF] Cho | Unique solvability for the density-dependent Navier-Stokes equations[END_REF] A natural question is the minimal regularity requirement for the data ensuring (at least local) existence and uniqueness. It has been observed by Fujita and Kato [START_REF] Fujita | On the Navier-Stokes initial value problem I[END_REF] in the constant density case (and later for a number of evolutionary equations) that this issue is closely linked to the scaling invariance of the system under consideration. Here it is obvious that if (ρ, u, P ) is a solution of (INS) on R + × R d for data (ρ 0 , u 0 ) then, for all λ > 0, the rescaled triplet (ρ, u, P ) → (ρ λ , u λ , P λ ) defined by (0.3) (ρ λ , u λ , P λ ) def = (ρ(λ 2 t, λx), λu(λ 2 t, λx), λ 2 P (λ 2 t, λx))

is a solution of (INS) on R + × R d , with data (ρ 0 (λ•), λu 0 (λ•)).

A number of works have been dedicated to the well-posedness of (INS) in R d , in so-called critical framework, that is to say in functional spaces with the above scaling invariance. Restricting our attention to the case where the density tends to some positive constant at infinity (say 1 for notational simplicity) and setting a def = 1/ρ -1, System (INS) rewrites in terms of (a, u, P ) as follows:

(0.4)

           a t + u • ∇a = 0, u t + u • ∇u -(1 + a)(µ∆u -∇P ) = 0, div u = 0, (a, u)| t=0 = (a 0 , u 0 ).
In [START_REF] Danchin | Density-dependent incompressible viscous fluids in critical spaces[END_REF], the first author established the existence and uniqueness of a solution to (0.4) in critical Besov spaces. More precisely, in the case where a 0 ∈ Ḃd/2 2,1 (R d ) and u 0 ∈ Ḃd/2-1 2,1 (R d ) with div u 0 = 0, he proved that there exists a constant c depending only on d such that, if ) and ∇P ∈ L 1 (0, T ; Ḃd/2-1 2,1

a 0 Ḃ1
) and that there exists c > 0 such that this solution is global (i.e. one can take

T = ∞) if u 0 Ḃd/2-1 2,1 ≤ c µ.
Shortly after, these results have been extended by H. Abidi in [START_REF] Abidi | Équation de Navier-Stokes avec densité et viscosité variables dans l'espace critique[END_REF], then H. Abidi and M. Paicu [START_REF] Abidi | Existence globale pour un fluide inhomogène[END_REF] to critical Besov spaces of type Ḃs p,1 with p > 1.

Again in the critical functional framework, J. Huang, M. Paicu and P. Zhang noticed that, somehow, only d -1 components of u 0 need to be small for global existence of weak solutions: in [START_REF] Huang | Global well-posedness to incompressible inhomogeneous fluid system with bounded density and non-Lipschitz velocity[END_REF], they just required that (µ a 0 L∞ + u h Achieving results in the critical functional framework when the density has large variations requires techniques that are not just based on perturbation arguments. In [START_REF] Danchin | Local and global well-posedness results for flows of inhomogeneous viscous fluids[END_REF], the first author investigated the problem in Sobolev spaces but failed to reach the critical exponent. Recently, H. Abidi and G. Gui [START_REF] Abidi | Global Well-posedness for the 2-D inhomogeneous incompressible Navier-Stokes System with large initial data in critical Spaces[END_REF] proved the global unique solvability of the 2-D incompressible inhomogeneous Navier-Stokes equations whenever ρ -1 0 -1 is in Ḃ2/p p,1 (R 2 ) for some 2 < p < ∞, and u 0 is in Ḃ0 2,1 (R 2 ). This is, to our knowledge, the first global well-posedness result at the critical level of regularity, that does not require any smallness condition (see also the work by H. Xu in [START_REF] Xu | Maximal L 1 regularity for solutions to inhomogeneous incompressible Navier-Stokes equations[END_REF], based on different techniques).

A number of recent works aimed at proving existence and uniqueness results in the case where the density is only bounded (and not continuous). In this respect, significant progress has been done by M. Paicu, P. Zhang and Z. Zhang in [START_REF] Paicu | Global unique solvability of inhomogeneous Navier-Stokes equations with bounded density[END_REF] where the global existence and uniqueness of solution to (INS) is shown in R d , d = 2, 3 assuming only that ρ ±1 0 is bounded and that u 0 ∈ H s (R 2 ) for some s > 0 (2D case) or u 0 ∈ H 1 (R 3 ) with u 0 L 2 ∇u 0 L 2 sufficiently small (3D case). This result was extended to velocities in H s (R 3 ) with s > 1/2 by D. Chen, Z. Zhang and W. Zhao in [START_REF] Chen | Fujita-Kato theorem for the 3-D inhomogeneous Navier-Stokes equations[END_REF]. Finally, the lower bound assumption was totally removed by the first author and P.B. Mucha in [START_REF] Danchin | The incompressible Navier-Stokes equations in vacuum[END_REF] in the case where the fluid domain Ω is either bounded or the torus. There, it is only needed that u 0 is H 1 0 (Ω) and that ρ 0 is bounded. Very recently, in the 3D case, P. Zhang [START_REF] Zhang | Global Fujita-Kato solution of 3-D inhomogeneous incompressible Navier-Stokes system[END_REF] established the global existence of weak solutions to the 3D inhomogeneous incompressible Navier-Stokes system with initial density in L ∞ (R 3 ), bounded away from zero, and initial velocity sufficiently small in the critical Besov space Ḃ1/2 2,1 (R 3 ). This is the first example of a global existence result within a Besov critical framework for the velocity and no regularity for the density, in the large variations case. Note however that the uniqueness of these solutions has not been proved so far.

The primary goal of our paper is to establish the global existence of solutions of (INS) that are unique in a critical regularity framework, in the case where the initial density is close to a positive constant in L ∞ but has no regularity whatsoever. To our knowledge, no result of this type has been proved before. In accordance with the state-of-the art for the homogeneous Navier-Stokes equations (that is, with constant density), smallness of the velocity will be required if

d = 3, but not if d = 2.
The uniqueness part of our statements will come up has an easy consequence of a much more general result within a critical regularity framework, that allows for density with large variations (that is even allowed to vanish on arbitrary sets if the dimension is 3). As a by-product, we shall obtain that the global solutions constructed by P. Zhang in [START_REF] Zhang | Global Fujita-Kato solution of 3-D inhomogeneous incompressible Navier-Stokes system[END_REF] (that are allowed to have large density variations), are actually unique.

Our existence results are strongly based on a novel maximal regularity estimate for the Stokes system equation originating from the recent paper [START_REF] Danchin | Lorentz spaces in action on pressureless systems arising from models of collective behavior[END_REF] by P.B. Mucha, P. Tolksdorf and the first author, where the time regularity is measured in Lorentz spaces. Time weighted estimates will also play an important role (see the end of the next section for more explanation).

Tools, results and approach

Before stating our main existence results for (INS), introducing a few notations and recalling some results is in order.

First, throughout the text, A B means that A ≤ CB, where C designates various positive real numbers the value of which does not matter.

For any Banach space X, index q in [1, ∞] and time T ∈ [0, ∞], we use the notation z Lq(0,T ;X) def = z X Lq(0,T ) . If T = ∞, then we just write z Lq(X) . In the case where z has n components z k in X, we keep the notation z X to mean k∈{1,••• ,n} z k X .

We shall use the following notation for the convective derivative:

(1.1) D Dt def = ∂ t + u • ∇ and u def = u t + u • ∇u.
Next, let us recall the definition of Besov spaces on R d . Following [4, Chap. 2], we fix two smooth functions χ and ϕ such that

Supp ϕ ⊂ {ξ ∈ R d , 3/4 ≤ |ξ| ≤ 8/3} and ∀ξ ∈ R d \ {0}, j∈Z ϕ(2 -j ξ) = 1, Supp χ ⊂ {ξ ∈ R d , |ξ| ≤ 4/3} and ∀ξ ∈ R d , χ(ξ) + j≥0 ϕ(2 -j ξ) = 1,
and set for all j ∈ Z and tempered distribution u,

∆j u def = F -1 (ϕ(2 -j •) u) def = 2 jd h(2 j •) u with h def = F -1 φ, (1.2) Ṡj u def = F -1 (χ(2 -j •) u) def = 2 jd h(2 j •) u with h def = F -1 χ,
where Fu and u denote the Fourier transform of u.

Definition 1.1 (Homogeneous Besov spaces). Let (p, r) ∈ [1, ∞] 2 and s ∈ R. We set u Ḃs p,r (R d ) def = (2 js ∆j u Lp(R d ) ) j∈Z r (Z) .
We denote by Ḃs p,r (R d ) the set of tempered distributions u such that u Ḃs p,r (R d ) < ∞ and

(1.3) lim j→-∞ Ṡj u L∞(R d ) = 0.
It is classical that the scaling invariance condition for u 0 pointed out in (0.3) is satisfied for all elements of Ḃ-1+d/p p,r

(R d ) with 1 ≤ p, r ≤ ∞.
Next, we define Lorentz spaces, and recall a useful characterization.

Definition 1.2. Given f a measurable function on a measure space (X, µ) and 1 ≤ p, r ≤ ∞, we define

f Lp,r(X,µ) :=    ( ∞ 0 (t 1 p f * (t)) r dt t ) 1 r if r < ∞, sup t>0 t 1 p f * (t) if r = ∞, where f * (t) := inf s ≥ 0 : |{|f | > s}| ≤ t •
The set of all f with f Lp,r(X,µ) < ∞ is called the Lorentz space with indices p and r.

Remark 1.3. It is well known that L p,p (X, µ) coincides with the Lebesgue space L p (X, µ). Furthermore, according to [20, Prop.1.4.9], the Lorentz spaces may be endowed with the following (equivalent) quasi-norm:

f Lp,r(X,µ) :=        p 1 r ∞ 0 s|{|f | > s}| 1 p r ds s 1 r if r < ∞ sup s>0 s|{|f | > s}| 1 p if r = ∞.
Our results will strongly rely on a maximal regularity property for the following evolutionary Stokes system:

(1.4)        u t -µ∆u + ∇P = f in R + × R d , div u = 0 in R + × R d , u| t=0 = u 0 in R d .
It has been pointed out in [17, Prop. 2.1] that for the free heat equation supplemented with initial data u 0 in Ḃ2-2/q q,r (R d ), the solution u is such that u t and ∇ 2 u are in L q,r (R + ; L p (R d )) and that, conversely, the Besov regularity Ḃ2-2/q q,r (R d ) corresponds to the regularity of the trace at t = 0 of functions u : R

+ × R d → R such that u t , ∇ 2 u ∈ L q,r (R + ; L p (R d )).
This motivates us to introduce the following function space:

(1.5) Ẇ 2,1 p,(q,r) (R + × R d ) := u ∈ C(R + ; Ḃ2-2/q p,r (R d )) : u t , ∇ 2 u ∈ L q,r (R + ; L p (R d )) •
Back to (INS), in accordance with (0.3), we need 2 -2/q = -1 + d/p. Furthermore, for reasons that will be explained later on (in particular the fact Ḃd/p p,r (R d ) embeds in L ∞ (R d ) if and only if r = 1), we shall only consider Besov spaces of type Ḃd/p-1

p,1 (R d ).
It is now time to state the main results of the paper. In the two-dimensional case, our global existence result reads: Theorem 1.4. Let p ∈ (1, 2) and q be defined by 1/q + 1/p = 3/2. Denote by s and m the conjugate Lebesgue exponents of p and q, respectively. Assume that the initial divergence-free velocity u 0 is in Ḃ-1+2/p p,1 (R 2 ), and that ρ 0 belongs to L ∞ (R 2 ). There exists a constant c > 0 such that if

(1.6) ρ 0 -1 L∞(R 2 ) < c,
then (INS) has a unique global-in-time solution (ρ, u, ∇P ) satisfying the energy balance (0.1), u ∈ Ẇ 2,1 p,(q,1) (R

+ × R 2 ), ∇P ∈ L q,1 (R + ; L p (R 2 )), (1.7) ρ -1 L∞(R + ×R 2 ) = ρ 0 -1 L∞(R 2 ) < c,
and the following properties:

• ∇u ∈ L 1 (R + ; L ∞ (R 2 )) and u ∈ L 2 (R + ; L ∞ (R 2 )); • tu ∈ L ∞ (R + ; Ḃ1+2/m m,1 (R 2 )) and u, (tu) t , ∇ 2 (tu), ∇(tP ) ∈ L s,1 (R + ; L m (R 2 )); • t u ∈ Ẇ 2,1 p,(q,1) (R + × R 2 ) and t u ∈ L 2 (R + ; L ∞ (R 2 )); • t k 2 ∇ k u ∈ L ∞ (R + ; L 2 (R 2 )) and t k 2 ∇ k+1 u ∈ L 2 (R + × R 2 ) for k = 0, 1, 2, • t k+2 2 ∇ k u ∈ L ∞ (R + ; L 2 (R 2 )) for k = 0, 1 and t k+1 2 ∇ k u ∈ L 2 (R + × R 2 ) if k = 0, 1, 2, • t 1 2 ∇P ∈ L 2 (R + × R 2 ) and t∇P ∈ L ∞ (R + ; L 2 (R 2 )).
In dimension three, our global existence result reads : Theorem 1.5. Let p ∈ (1, 3) and q ∈ (1, ∞) such that 3/p + 2/q = 3. There exist a positive constant c such that if the initial density is such that

(1.8) ρ 0 -1 L∞(R 3 ) < c,
and if the initial divergence-free velocity satisfies

u 0 ∈ Ḃ-1+3/p p,1 (R 3 ) (1 < p ≤ 2) or u 0 ∈ Ḃ-1+3/p p,1 (R 3 ) ∩ L 2 (R 3 ) (2 < p < 3) with (1.9) u 0 Ḃ-1+3/p p,1 (R 3 ) < cµ, then (INS) has a unique global-in-time solution (ρ, u, ∇P ) with ∇P ∈ L q,1 (R + ; L p (R 3 )) and u ∈ Ẇ 2,1 p,(q,1) (R + × R 3 ), satisfying the energy balance (0.1) if p > 2, (1.10) ρ -1 L∞(R + ×R 3 ) = ρ 0 -1 L∞(R 3 ) < c,
and, furthermore, the following properties:

• ∇u ∈ L 1 (R + ; L ∞ (R 3 )) and u ∈ L 2 (R + ; L ∞ (R 3 )); • (tu) ∈ W 2,1 m,(s,1) (R + × R 3 ) and t∇P ∈ L s,1 (R + ; L m (R 3 )) for all 3 < m < ∞ and q < s < ∞ such that 3/m + 2/s = 1; • t u ∈ Ẇ 2,1 p,(q,1) (R + × R 3 ); • (u, t u) ∈ L s,1 (R + ; L m (R 3 )).
Remark 1.6. If p > 2, then the (subcritical) assumption u 0 ∈ L 2 (R 3 ) ensures the constructed solution to have finite energy. It is only required for proving uniqueness, and it is not needed if p ≤ 2. At the same time, the priori estimates leading to global existence are performed in critical spaces, and do not require the energy to be finite.

Like in the two-dimensional case, higher order time weighted energy estimates may be proved. However, since they are not needed for getting uniqueness, we refrain from stating them.

The uniqueness part of the above two theorems is a consequence of the following much more general result.

Theorem 1.7. Let (ρ 1 , u 1 , P 1 ) and (ρ 2 , u 2 , P 2 ) be two solutions of (IN S) on [0, T ] × R d corresponding to the same initial data. Assume in addition that:

• √ ρ 1 (u 2 -u 1 ) ∈ L ∞ (0, T ; L 2 (R d )); • (∇u 2 -∇u 1 ) ∈ L 2 (0, T × R d ); • ∇u 2 ∈ L 1 (0, T ; L ∞ (R d )); • t u2 ∈ L 2 (0, T ; L ∞ (R d ));
• Case d = 2: ρ 0 is bounded away from zero and t∇ 2 u2 ∈ L q (0, T ; L p (R 2 )) for some 1 < p, q < 2 such that 1/p + 1/q = 3/2,

• Case d = 3: t∇ u2 ∈ L 2 (0, T ; L 3 (R 3 )). Then, (ρ 1 , u 1 , P 1 ) ≡ (ρ 2 , u 2 , P 2 ) on [0, T ] × R d .
Remark 1.8. Although the density may have large variations (and even vanish in the three-dimensional case), the regularity requirements in the above uniqueness result are all at the critical level in the sense of (0.3).

In the last section of the paper, we shall present another uniqueness statement in dimension two, that allows for vacuum, but require a slightly supercritical regularity assumption.

We shall also see that the Fujita-Kato type global solutions constructed by P. Zhang in [START_REF] Zhang | Global Fujita-Kato solution of 3-D inhomogeneous incompressible Navier-Stokes system[END_REF] satisfy ∇u ∈ L 1 (R + ; L ∞ (R 3 )). As a consequence, Theorem 1.7 will ensure uniqueness. This leads to the following global well-posedness statement. Theorem 1.9. Let (ρ 0 , u 0 ) satisfy

0 < c 0 ≤ ρ 0 ≤ C 0 < ∞ and u 0 ∈ Ḃ1/2 2,1 (R 3
). Then, there exists a constant ε 0 > 0 depending only on c 0 , C 0 such that if

(1.11) u 0 Ḃ1/2 2,1 (R 3 ) ≤ ε 0 µ, then System (INS) has a unique global solution (ρ, u, ∇P ) with u ∈ C(R + ; Ḃ1/2 2,1 (R 3 )) ∩ L 2 (R + ; Ḃ3/2 2,1 (R 3 )) which satisfies (1.12) c 0 ≤ ρ ≤ C 0 on R + × R 3 ,
and, for some absolute constant C, 

(
+ √ t(µ∇ 2 u, ∇P ) L 2 (R + ;L 3 ) + tu t L∞(R + ; Ḃ1/2 2,1 ) ≤ C u 0 Ḃ1/2 2,1
.

Furthermore, we have ∇u is in

L 1 (R + ; L ∞ (R 3 )) with µ ∇u L 1 (R + ;L∞(R 3 )) ≤ C u 0 Ḃ1/2 2,1 (R 3 )
• Let us shortly present the main ingredients leading to the above statements. The common starting point for proving the existence part in Theorems 1.4 and 1.5 is the maximal regularity result in Lorentz spaces stated in Proposition A.5. In fact, in parabolic spaces, the Besov regularity that is required for the initial velocity exactly corresponds to the trace at t = 0 of functions u : R + × R d → R such that u t and ∇ 2 u are in L q,1 (R + ; L p (R d )). Then, proving estimates for (INS) is based on a perturbation argument from the Stokes system (this is the only place where we need the density to be close to some positive constant). In dimension d = 2, the space L 2 (R 2 ) turns out to be critical, and one can combine these estimates with the energy balance (0.1) so as to discard any smallness assumption for the velocity.

Since the first part of (INS) is a transport equation, in order to prove the uniqueness, it is essentially mandatory to have at least ∇u ∈ L 1,loc (R + ; L ∞ (R d )). This property will be achieved by combining critical estimates for u and tu, with an interpolation argument involving, again, Lorentz norms for the time variable.

In our setting, it is not clear whether knowing only ∇u ∈ L 1,loc (R + ; L ∞ (R d )) is enough to get uniqueness. Here, to conclude, we establish a number of time weighted estimates of energy type (still involving only critical norms). We will in particular get accurate enough information on u, which will spare us going to Lagrangian coordinates. In fact, in contrast with recent works on similar issues (see e.g. [START_REF] Danchin | The incompressible Navier-Stokes equations in vacuum[END_REF][START_REF] Danchin | Lorentz spaces in action on pressureless systems arising from models of collective behavior[END_REF]) our proof of uniqueness is performed directly on the original system (INS): we estimate the difference of velocities in the energy space and, by means of a duality argument, the difference of densities in Ḣ-1 (R d ). In dimension d = 3, we do not need the density to be positive. In the twodimensional case, the space Ḣ1 (R 2 ) fails to be embedded in any Lebesgue space, which complicates the proof, unless the density has a positive lower bound. If it is not the case, then one can combine a suitable logarithmic interpolation inequality with Osgood lemma so as to get a uniqueness result in some cases where the density vanishes. However, we have to strengthen slightly our regularity requirement on the velocity (see the end of Section 5).

The rest of the paper unfolds as follows. The a priori estimates leading to global existence for Theorems 1.4 and 1.5 are performed in the next two sections. Section 4 is devoted to the proof of the global existence. Section 5 is dedicated to the proof of various stability estimates and uniqueness statements that, in particular, imply Theorem 1.7 and the uniqueness part of Theorems 1.4, 1.5 and 1.9. For reader's convenience, we present in Appendix the maximal regularity result in Lorentz spaces of [START_REF] Danchin | Lorentz spaces in action on pressureless systems arising from models of collective behavior[END_REF] adapted to the Stokes system, recall a few properties of Besov and Lorentz spaces and prove a critical bilinear estimate with a logarithmic loss that is needed for uniqueness in dimension d = 2.

A priori estimates in the 2D case

This part is devoted to the proof of a priori estimates for (INS) in the 2D case. We shall first establish estimates for u in the critical regularity space Ẇ 2,1 p,(q,1) (R + × R 2 ) with 1/q + 1/p = 3/2 defined in (1.5), which actually suffices to get the global existence of a solution. Then, we will prove time weighted estimates both of energy type and in critical Besov spaces that are needed for uniqueness. The last statement of the section points out higher order time weighted estimates, of independent interest. Proposition 2.1. Let (ρ, u) be a smooth solution of (INS) on [0, T ]×R 2 with sufficiently decaying velocity, and density satisfying

(2.1) sup t∈[0,T ] ρ(t) -1 L∞(R 2 ) ≤ c 1.
Then, it holds that

(2.2) u 2 L∞(0,T ;L 2 (R 2 )) + 2µ ∇u 2 L 2 (0,T ×R 2 ) ≤ u 0 2 L 2 (R 2 )
and, for all 1 < p, q < 2 with 1/p + 1/q = 3/2, (2.3)

µ 1 p -1 2 u L∞(0,T ; Ḃ-1+2/p p,1 (R 2 )) + u t , µ∇ 2 u, ∇P L q,1 (0,T ;Lp(R 2 )) + µ 1 2 u L s,1 (0,T ;Lm(R 2 )) ≤ Cµ 1 p -1 2 u 0 Ḃ-1+2/p p,1 (R 2 ) e Cµ -2 u 0 2 L 2 (R 2 ) ,
for a constant C independent of T and µ, with m and s being the conjugate exponents of q and p, respectively. Furthermore, we have

(2.4) u L q,1 (0,T ;Lp(R 2 )) ≤ Cµ 1 p -1 2 u 0 Ḃ-1+2/p p,1 (R 2 ) e Cµ -2 u 0 2 L 2 (R 2 )
and

(2.5) µ 1 2 u L 2 (0,T ;L∞(R 2 )) ≤ Cµ 1 p -1 2 u 0 Ḃ-1+2/p p,1 (R 2 ) e Cµ -2 u 0 2 L 2 (R 2 ) •
Proof. Putting together the energy balance (0.1) and (2.1) clearly ensures (2.2) provided c has been chosen small enough.

For proving the other inequalities, note that, thanks to the following rescaling:

(2.6) ( ρ, u, P )(t, x) := (ρ, µ -1 u, µ -2 P )(µ -1 t, x), ( ρ 0 , u 0 )(x) := (ρ 0 , µ -1 u 0 )(x),
one may assume with no loss of generality that µ = 1.

In order to prove (2.3), let us observe that (2.7)

u t -∆u + ∇P = -(ρ -1)u t -ρu • ∇u, div u = 0.
Looking at (2.7) as a Stokes equation with source term, Proposition A.5 gives us

(2.8) u L∞(0,T ; Ḃ-1+2/p p,1 (R 2 )) + u t , ∇ 2 u, ∇P L q,1 (0,T ;Lp(R 2 )) + u L s,1 (0,T ;Lm(R 2 )) ≤ C u 0 Ḃ-1+2/p p,1 (R 2 ) + (ρ -1)u t + ρu • ∇u L q,1 (0,T ;Lp(R 2 ))
• By Hölder inequality, we have

(ρ -1)u t + ρu • ∇u L q,1 (0,T ;Lp(R 2 )) ≤ ρ -1 L∞(0,T ×R 2 ) u t L q,1 (0,T ;Lp(R 2 )) + ρ L∞(0,T ×R 2 ) u • ∇u L q,1 (0,T ;Lp(R 2 )) .
If c is small enough in (2.1), then the first part in the right-hand side can be absorbed by the left-hand side of (2.8). For the last term, we have by Hölder inequality,

u • ∇u L q,1 (0,T ;Lp(R 2 )) ≤ u L s,1 (0,T ;Lm(R 2 )) ∇u L 2 (0,T ;L 2 (R 2 )) .
Hence, there exists a (small) constant α > 0 such that if

(2.9) ∇u L 2 (0,T ;L 2 (R 2 )) ≤ α, then (2.8) implies that u L∞(0,T ; Ḃ-1+2/p p,1 (R 2 )) + u t , ∇ 2 u, ∇P L q,1 (0,T ;Lp(R 2 )) + u L s,1 (0,T ;Lm(R 2 )) u 0 Ḃ-1+2/p p,1 (R 2 )
. If (2.9) is not satisfied then we follow the method used for proving [START_REF] Danchin | Lorentz spaces in action on pressureless systems arising from models of collective behavior[END_REF]Theorem 3.1] and split [0, T ] into a finite number K of intervals [T k-1 , T k ) with T 0 = 0, T K = T , and

T 1 , • • • , T K-1 defined by: ∇u L 2 ((T k-1 ,T k )×R 2 ) = α if 1 ≤ k ≤ K -1; ∇u L 2 ((T k-1 ,T k )×R 2 ) ≤ α for k = K.
For fixed α, we calculate the value of K by

Kα 2 ≥ K k=1 ∇u 2 L 2 ((T k-1 ,T k )×R 2 ) = ∇u 2 L 2 (0,T ×R 2 ) > K-1 k=1 ∇u 2 L 2 ((T k-1 ,T k )×R 2 ) = (K -1)α 2 , which gives (2.10) K = α -2 ∇u 2 L 2 (0,T ×R 2 ) .
Then, we adapt (2.8) to each interval [T k , T k+1 ) getting

u L∞(T k ,T k+1 ; Ḃ-1+2/p p,1 (R 2 )) + u t , ∇ 2 u, ∇P L q,1 (T k ,T k+1 ;Lp(R 2 )) + u L s,1 (T k ,T k+1 ;Lm(R 2 )) ≤ C u(T k ) Ḃ-1+2/p p,1 (R 2 ) .
Arguing by induction, taking K according to (2.10) and using (2.2) so as to bound ∇u L 2 (0,T ×R 2 ) , we conclude that

(2.11) u L∞(0,T ; Ḃ-1+2/p p,1 (R 2 )) + u t , ∇ 2 u, ∇P L q,1 (0,T ;Lp(R 2 )) + u L s,1 (0,T ;Lm(R 2 )) ≤ C u 0 Ḃ-1+2/p p,1 (R 2 ) exp (C u 0 2 L 2 (R 2 ) ).
In order to prove (2.4), it suffices to use the fact that

u L q,1 (0,T ;Lp(R 2 )) ≤ u t L q,1 (0,T ;Lp(R 2 )) + u • ∇u L q,1 (0,T ;Lp(R 2 )) ≤ u t L q,1 (0,T ;Lp(R 2 )) + u L s,1 (0,T ;Lm(R 2 )) ∇u L 2 (0,T ;L 2 (R 2 )) .
Then, bounding the right-hand side according to (2.2) and (2.11) yields (2.4).

Finally, as a consequence of Gagliardo-Nirenberg inequality and embedding, we have:

(2.12)

z L∞(R 2 ) z 1-q/2 L 2 (R 2 ) ∇ 2 z q/2 Lp(R 2 ) z 1-q/2 Ḃ-1+2/p p,1 (R 2 ) ∇ 2 z q/2 Lp(R 2 ) .
Hence, using Inequality (2.11), we find that (2.13)

T 0 u 2 L∞(R 2 ) dt ≤ C T 0 u 2-q Ḃ-1+2/p p,1 (R 2 ) ∇ 2 u q Lp(R 2 ) dt ≤ C u 2-q L∞(0,T ; Ḃ-1+2/p p,1 (R 2 )) ∇ 2 u q Lq(0,T ;Lp(R 2 )) ≤ C u 0 2 Ḃ-1+2/p p,1 (R 2 ) exp (C u 0 2 L 2 (R 2 ) ).
This completes the proof of the proposition.

For better readability, we drop from now on R 2 in the norms.

Proposition 2.2. Under the assumptions of Proposition 2.1, we have

µ tu L∞(0,T ; Ḃ2-2/s m,1 ) + µ 1 s (tu) t , µ∇ 2 (tu), ∇(tP ) L s,1 (0,T ;Lm) + µ 1 s t u L s,1 (0,T ;Lm) ≤ CE 0 u 0 Ḃ-1+2/p p,1 with E 0 := exp Cµ -s u 0 s Ḃ-1+2/p p,1 e Cµ -2 u 0 2 L 2 •
Proof. Again, we use the rescaling (2.6) to reduce the proof to the case µ = 1. Now, multiplying both sides of (2.7) by time t yields

(tu) t -∆(tu) + ∇(tP ) = -(ρ -1)(tu) t + ρu -ρu • ∇tu, div (tu) = 0.
Then, taking advantage of of Proposition A.5 with Lebesgue indices m and s gives

tu L∞(0,T ; Ḃ2-2/s m,1 ) + (tu) t , ∇ 2 (tu), ∇(tP ) L s,1 (0,T ;Lm) ≤ ρ -1 L∞(0,T ×R 2 ) (tu) t L s,1 (0,T ;Lm) + ρ L∞(0,T ×R 2 ) u L s,1 (0,T ;Lm) + tu • ∇u L s,1 (0,T ;Lm) •
Owing to (2.1), the second line may be absorbed by the first one. Next, as 2/m = 1-2/s, combining Hölder inequality and the following embedding:

(2.14) Ḃ2/m m,1 (R 2 ) → L ∞ (R 2 ) yields tu • ∇u L s,1 (0,T ;Lm) ≤ t∇u L∞(0,T ×R 2 ) u L s,1 (0,T ;Lm)
tu L∞(0,T ; Ḃ2-2/s m,1 ) u L s,1 (0,T ;Lm) . Hence, there exists a (small) positive constant β such that, if

u L s,1 (0,T ;Lm) ≤ β, then we have (2.15) tu L∞(0,T ; Ḃ2-2/s m,1 ) + (tu) t , ∇ 2 (tu), ∇(tP ) L s,1 (0,T ;Lm) ≤ C u L s,1 (0,T ;Lm) . If u L s,1 (0,T ;Lm) > β,
then one can argue as in the proof of the previous proposition: there exists a finite sequence 0 = T

0 < T 1 < • • • < T K-1 < T K = T such that (2.16) ∇u L s,1 ((T k-1 ,T k );Lm) = β if 1 ≤ k ≤ K -1; ∇u L s,1 ((T k-1 ,T k ;Lm)) ≤ β for k = K.
Indeed, from Remark 1.3, we have

U (t) L s,1 (0,T ) = s ∞ 0 |{t ∈ (0, T ) : |U (t)| > λ}| 1/s dλ with U (t) := u(t, •) Lm
which, together with Lebesgue dominated theorem gives

∞ 0 |{t ∈ (T 1 , T 2 ) : |U (t)| > λ}| 1/s dλ → 0 as T 2 -T 1 → 0,
which allows to construct a family (T k ) 0≤k≤K satisfying (2.16). Now, by Hölder inequality (with exponents s and p) we have for all λ > 0,

K k=1 |{t ∈ (T k-1 , T k ) : |U (t)| > λ}| 1/s ≤ K 1/p K k=1 |{t ∈ (T k-1 , T k ) : |U (t)| > λ}| 1/s = K 1/p |{t ∈ (0, T ) : |U (t)| > λ}| 1/s .
Hence, integrating with respect to λ and using (2.16) yields K β -s u s L s,1 (0,T ;Lm) . Arguing by induction, we thus obtain

tu L∞(0,T ; Ḃ2-2/s m,1 ) + (tu) t , ∇ 2 (tu), ∇(tP ) L s,1 (0,T ;Lm) ≤ C u L s,1 (0,T ;Lm) e C u s L s,1 (0,T ;Lm) •
In the end, using the first estimate of Proposition 2.1, one may conclude that (2.17) tu L∞(0,T ; Ḃ2-2/s m,1 ) + (tu) t , ∇ 2 (tu), ∇(tP 

) L s,1 (0,T ;Lm) ≤ C u 0 Ḃ-1+2/p p,1 exp C u 0 s Ḃ-1+2/p p,1 exp C u 0 2 L 2 • To bound t u,
µ T 0 ∇u L∞ dt ≤ C u 0 Ḃ-1+2/p p,1 E 0 e Cµ -2 u 0 2 L 2 , (2.18) µ T 0 t ∇u 2 L∞ dt 1/2 ≤ C u 0 Ḃ-1+2/p p,1 E 0 e Cµ -2 u 0 2 L 2 , (2.19) sup t∈[0,T ] (µt) 1/2 u(t) L∞ ≤ C u 0 1/2 L 2 u 0 1/2 Ḃ-1+2/p p,1 E 0 . (2.20)
Proof. Just consider the case µ = 1. From the following Gagliardo-Nirenberg inequality

z L∞ ∇z 1-2/m Lp ∇z 2/m
Lm , and Hölder estimates in Lorentz spaces (see Proposition A.1), we gather that

T 0 ∇u L∞ dt T 0 t -2/m ∇ 2 u 1-2/m Lp t∇ 2 u 2/m Lm dt t -2/m L m/2,∞ (0,T ) ∇ 2 u 1-2/m L q,1 (0,T ;Lp) t∇ 2 u 2/m L s,1 (0,T ;Lm) . As t → t -2/m ∈ L m/2,∞ (R + )
and the other terms of the right-hand side may be bounded by means of Propositions 2.1 and 2.2, we get (2.18). Next, by virtue of (2.14), we have

T 0 t ∇u 2 L∞ dt ≤ T 0 t ∇u Ḃ2/m m,1 ∇u L∞ dt T 0 tu Ḃ2-2/s m,1
∇u L∞ dt tu L∞(0,T ; Ḃ2-2/s m,1 ) ∇u L 1 (0,T ;L∞) , whence the second inequality.

Finally, by interpolation, we have for all t ∈ [0, T ],

t 1/2 u(t) L∞ u(t) 1/2 L 2 tu(t) 1/2 Ḃ1+2/m m,1
which, in light of (2.2) and of Proposition 2.2 completes the proof.

The rest of this section is devoted to establishing supplementary time weighted estimates of energy type that will be needed to prove the uniqueness of solutions of (INS). For expository purpose, we shall always assume that µ = 1.

Proposition 2.4. Under the assumptions of Proposition 2.1, we have for all t ∈ [0, T ],

t R 2 |∇u(t)| 2 dx + t 0 R 2 τ ρ | u| 2 + ∇ 2 u 2 + |∇P | 2 dx dτ ≤ C u 0 2 L 2 exp C u 0 L 2 u 0 Ḃ-1+2/p p,1 E 2 0 •
Proof. Let us rewrite the velocity equation as:

(2.21) ρ u = ∆u -∇P with u := u t + u • ∇u.

As div u = 0, testing (2.21) by t u yields

R 2 ρt| u| 2 dx = t R 2 ∆u • u t dx -t R 2 ∇P • u t dx + t R 2 ∆u -∇P ) • (u • ∇u) dx
whence, integrating by parts and using again (2.21), 1 2

d dt R 2 t |∇u| 2 dx + R 2 ρt | u| 2 dx = R 2 ρt u • (u • ∇u) dx + 1 2 R 2 |∇u| 2 dx.
Performing a time integration, we get for all 0 ≤ t ≤ T,

t 2 R 2 |∇u(t)| 2 dx+ t 0 R 2 τ ρ | u| 2 dx dτ = t 0 R 2 τ ρ u•(u•∇u) dx dτ + 1 2 t 0 R 2 |∇u(τ )| 2 dxdτ.
To bound the right-hand side, we use the fact that

t 0 R 2 τ ρ u • (u • ∇u) dx dτ ≤ t 0 √ ρτ u L 2 √ ρτ u • ∇u L 2 dτ ≤ 1 2 t 0 √ ρτ u 2 L 2 dτ + ρ 0 L∞ 2 t 0 u 2 L∞ τ 1/2 ∇u 2 L 2 dτ.
Observe that, thanks to (2.21), we have for some constant C depending only on ρ 0 L∞ ,

(2.22) ∇ 2 u 2 L 2 + ∇P 2 L 2 ≤ C √ ρ u 2 L 2 .
Hence, applying Gronwall lemma yields some constant C depending only on ρ 0 L∞ , and such that t

R 2 |∇u(t)| 2 dx + t 0 R 2 τ ρ | u| 2 dx dτ + t 0 R 2 τ ∇ 2 u 2 + |∇P | 2 dx dτ ≤ C t 0 ∇u 2 L 2 exp C t τ u 2 L∞ dτ dτ.
Putting together with (2.2) and (2.13) completes the proof of the proposition. , such that for all t ∈ [0, T ],

R 2 t 2 ρ |u t | 2 + | u| 2 + ∇ 2 u 2 + |∇P | 2 dx + t 0 R 2 τ 2 |∇u| 2 + |∇ u| 2 dx dτ ≤ C 0 .
Proof. From (2.14), the definition of u and Hölder inequality, one can write

t u -tu t L∞(0,T ;L 2 ) ≤ t∇u L∞(0,T ×R 2 ) u L∞(0,T ;L 2 ) ≤ C tu L∞(0,T ; Ḃ1+2/m m,1
) u L∞(0,T ;L 2 )

and

t∇ u -t∇u t L 2 (0,T ×R 2 ) ≤ t∇u ⊗ ∇u L 2 (0,T ×R 2 ) + tu ⊗ ∇ 2 u L 2 (0,T ×R 2 )
≤ t∇u L∞(0,T ×R 2 ) ∇u L 2 (0,T ×R 2 ) + t∇ 2 u L∞(0,T ;L 2 ) u L 2 (0,T ;L∞)

≤ C tu L∞(0,T ; Ḃ1+2/m m,1
) ∇u L 2 (0,T ×R 2 ) + t∇ 2 u L∞(0,T ;L 2 ) u L 2 (0,T ;L∞) .

Furthermore, (2.22) implies that

(2.23) t∇ 2 u 2 L 2 + t∇P 2 L 2 ≤ C t √ ρ u 2 L 2 .
Hence, to complete the proof, it is only a matter of showing that

tu t L∞(0,T ;L 2 ) + t∇u t L 2 (0,T ×R 2 ) ≤ C 0 .
To do so, apply ∂ t to the momentum equation of (INS). We get (2.24)

ρu tt + ρu • ∇u t -∆u t + ∇P t = -ρ t u -ρu t • ∇u.
As div u t = 0, by taking the L 2 (R 2 ; R 2 ) scalar product of (2.24) with t 2 u t , we obtain 1 2

d dt R 2 ρt 2 |u t | 2 dx + R 2 t 2 |∇u t | 2 dx ≤ R 2 tρ |u t | 2 dx - R 2 t 2 ρ t u • u t dx - R 2 t 2 ρ(u t • ∇u) • u t dx.
Then, integrating with respect to time yields for all t ∈ [0, T ],

(2.25) 1 2 sup

τ ≤t t √ ρu t 2 L 2 + t∇u t 2 L 2 (0,t×R 2 ≤ t 0 R 2 τ ρ |u τ | 2 dx dτ - t 0 R 2 τ 2 ρ τ u • u τ dx dτ - t 0 R 2 τ 2 ρ(u τ • ∇u) • u τ dx dτ =: I 1 + I 2 + I 3 .
For term I 2 , the mass equation of (INS) and integration by parts yield

I 2 = t 0 R 2 τ 2 div (ρu) u • u τ dx dτ = - t 0 R 2 τ 2 (ρu • ∇ u) • u τ dx dτ - t 0 R 2 τ 2 (ρu • ∇u τ ) • u dx dτ =: I 21 + I 22 .
Since u = u t + u • ∇u, we may write

I 21 = - t 0 R 2 τ 2 (ρu • ∇u τ ) • u τ dx dτ - t 0 R 2 τ 2 (ρu • ∇(u • ∇u)) • u τ dx dτ = - t 0 R 2 τ 2 (ρu • ∇u τ ) • u τ dx dτ - t 0 R 2 τ 2 ρu • (∇ 2 u • u) • u τ dx dτ - t 0 R 2 τ 2 ρu • (∇u • ∇u) • u τ dx dτ
and

I 22 = - t 0 R 2 τ 2 (ρu • ∇u τ ) • u τ dx dτ - t 0 R 2 τ 2 (ρu • ∇u τ ) • (u • ∇u) dx dτ.
Applying Young's inequality and remembering that ρ is bounded gives for all ε > 0,

I 21 t 0 u L∞ τ ∇u τ L 2 τ √ ρu τ L 2 dτ + t 0 τ u 2 L∞ ∇ 2 u L 2 τ √ ρu τ L 2 dτ + t 0 τ 1/2 ∇u L 2 τ 1/2 ∇u L∞ τ √ ρu τ L 2 u L∞ dτ ≤ Cε -1 t 0 u 2 L∞ τ √ ρu τ 2 L 2 dτ + C t 0 τ 1/2 u 2 L∞ τ 1/2 ∇ 2 u 2 L 2 dτ + C t 0 τ 1/2 ∇u 2 L 2 τ 1/2 ∇u 2 L∞ dτ + ε t 0 τ ∇u τ 2 L 2 dτ, and 
I 22 t 0 τ √ ρu τ L 2 τ ∇u τ L 2 u L∞ dτ + t 0 τ τ ∇u τ L 2 u 2 L∞ ∇u L 2 dτ ≤ Cε -1 t 0 τ √ ρu τ 2 L 2 u 2 L∞ dτ + t 0 u 2 L∞ τ 1/2 u 2 L∞ τ 1/2 ∇u 2 L 2 dτ + ε t 0 τ ∇u τ 2 L 2 dτ.
For I 3 , one has

I 3 = - t 0 R 2 τ 2 (ρu τ • ∇u) • u τ dx dτ ≤ t 0 τ √ ρu τ 2 L 2 ∇u L∞ dτ.
Taking ε small enough, then reverting to (2.25) and applying Gronwall inequality gives sup

τ ≤t t √ ρu t 2 L 2 + t 0 t∇u t 2 L 2 dτ ≤ Cexp t 0 u 2 L∞ + ∇u L∞ dτ t 0 τ 1/2 ∇u 2 L 2 τ 1/2 ∇u 2 L∞ dτ + t 0 R 2 τ ρ |u τ | 2 dx dτ + t 0 u 2 L∞ τ 1/2 u 2 L∞ τ 1/2 ∇u 2 L 2 dτ + t 0 τ 1/2 u 2 L∞ τ 1/2 ∇ 2 u 2 L 2 dτ •
Combining with Propositions 2.2 and 2.4, Inequality (2.13) and Corollary 2.3 allows to bound the right-hand side by C 0 for all t ∈ [0, T ], and using also (2.23) completes the proof.

In order to get a higher order time weighted estimate, one has to consider the evolutionary equation for u. So we take the convective derivative of (2.21), getting

D Dt (ρ u) - D Dt ∆u + D Dt ∇P = 0.
Observe that

- D Dt ∆u = -∆ u + ∆u • ∇u + 2∇u • ∇ 2 u with (∇u • ∇ 2 u) i := 1≤j,k≤d ∂ k u j ∂ j ∂ k u i , D Dt ∇P = ∇ Ṗ -∇u • ∇P, D Dt (ρ u) = ρü with ü := D Dt u.
Hence, we have

(2.26) ρü -∆ u + ∇ Ṗ = f with f := -∆u • ∇u -2∇u • ∇ 2 u + ∇u • ∇P.
Proposition 2.6. Under the assumptions of Proposition 2.2, it holds that

t u L∞(0,T ; Ḃ-1+2/p p,1 (R 2 )) + (t u) t , t∇ 2 u L q,1 (0,T ;Lp(R 2 )) + t u L 2 (0,T ;L∞(R 2 )) ≤ C 0 .
Proof. From (2.26), we get the following equation for t u:

(2.27)

ρ(t u) t -∆(t u) + ∇(t Ṗ ) = -tρu • ∇ u + ρ u + tf.
Since div u = 0, one cannot apply directly Proposition A.5. Now, let us introduce the Helmholtz projectors on divergence free and gradient like vector-fields, namely, (2.28)

P := Id + ∇(-∆) -1 div and Q := -∇(-∆) -1 div
We observe that

∇(t Ṗ ) = Q -tρu • ∇ u + ρ u + tf -ρ(t u) t + ∆(t u) •
Hence, reverting to (2.27) implies that

(2.29) ρ(t u) t -∆(t u) = P ρ u + tf -tρu • ∇ u + Q ρ(t u) t -∆(t u) .
Using the fact that div u = 0, we easily get

(2.30) div u = 1≤i,j≤d ∂ i u j ∂ j u i = Tr(∇u • ∇u), whence Q(t∆ u) = t∇Tr(∇u • ∇u)
and since )

Q((ρ(t u) t ) = Q (ρ -
+ (t u) t , ∇ 2 t u L q,1 (0,T ;Lp) (1 -ρ)(t u) t -tρu • ∇ u + ρ u + tf L q,1 (0,T ;Lp) + u + tu t • ∇u + tu • ∇u t L q,1 (0,T ;Lp) + t∇u ⊗ ∇ 2 u L q,1 (0,T ;Lp) .
As usual, owing to (1.7), the first term in the right-hand side may be absorbed by the left-hand side. Now, using (2.14) and the definition of f in (2.26), we get tf L q,1 (0,T ;Lp) ≤ C t∇u L∞(0,T ×R 2 ) ( ∇ 2 u L q,1 (0,T ;Lp)) + ∇P L q,1 (0,T ;Lp) )

≤ C tu L∞(0,T ; Ḃ1+2/m m,1
) ( ∇ 2 u L q,1 (0,T ;Lp) + ∇P L q,1 (0,T ;Lp) ).

Next, u L q,1 (0,T ;Lp) may be bounded according to Inequality (2.4). Finally, we have

tρu • ∇ u L q,1 (0,T ;Lp) ≤ C t∇ u L 2 (0,T ×R 2 ) u L s,1 (0,T ;Lm) , tu • ∇u t L q,1 (0,T ;Lp) ≤ C t∇u t L 2 (0,T ×R 2 ) u L s,1 (0,T ;Lm) , tu t • ∇u L q,1 (0,T ;Lp) ≤ C tu t L s,1 (0,T ;Lm) ∇u L 2 (0,T ×R 2 ) , t∇u ⊗ ∇ 2 u L q,1 (0,T ;Lp) ≤ C t∇u L∞(0,T ×R 2 ) ∇ 2 u L q,1 (0,T ;Lp) ≤ C tu L∞(0,T ; Ḃ1+2/m m,1
) ∇ 2 u L q,1 (0,T ;Lp) .

Then, putting all together with Proposition 2.1, Inequality (2.4), Proposition 2.2 and Proposition 2.5, we discover that t u L∞(0,T ; Ḃ-1+2/p p,1

) + (t u) t , t∇ 2 u L q,1 (0,T ;Lp) ≤ C 0 • Finally, Inequality (2.12) enables us to conclude that

t u L 2 (0,T ;L∞) ≤ t u 2-q 2 L∞(0,T ; Ḃ-1+2/p p,1
)

t∇ 2 u 2 q
L q,1 (0,T ;Lp) ≤ C 0 , which completes the proof.

We end this section by stating higher order energy type time weighted estimates (that are not required for proving the uniqueness). Proposition 2.7. Under the assumptions of Proposition 2.2, we have for all t ∈ [0, T ],

sup τ ∈[0,t] τ 3/2 ∇ u 2 L 2 + t 0 τ 3/2 ∇ 2 u, t 3/2 ∇ Ṗ , t 3/2 √ ρü 2 L 2 dτ ≤ C 0
where C 0 depends only on p and on u 0 Ḃ-1+2/p p,1

.

Proof. Taking the L 2 (R 2 ; R 2 ) inner product of (2.26) with t 3 ü then integrating on [0, t] yields (2.32)

t 3 2 R 2 |∇ u| 2 dx + t 0 R 2 τ 3 ρ |ü| 2 dx dτ = t 0 R 2 3τ 2 2 |∇ u| 2 dx dτ + t 0 R 2 ∆ u • τ 3 u • ∇ u dx dτ - t 0 R 2 ∇ Ṗ • τ 3 u • ∇ u dx dτ + t 0 R 2 ∇ Ṗ • τ 3 u t • ∇u dx dτ + t 0 R 2 ∇ Ṗ • τ 3 u • ∇u t dx dτ + t 0 R 2 f • τ 3 ü dx dτ =: J k 1≤k≤6 .
In order to bound J 2 , J 3 , J 4 , J 5 , we proceed as follows:

J 2 = t 0 R 2 ∆ u • τ 3 u • ∇ u dx dτ ≤ τ 3/2 ∇ 2 u L 2 (0,t×R 2 ) τ ∇ u L 2 (0,t×R 2 ) τ 1/2 u L∞(0,t×R 2 ) , J 3 = - t 0 R 2 ∇ Ṗ • (τ 3 u • ∇ u) dx dτ ≤ τ 3/2 ∇ Ṗ L 2 (0,t×R 2 ) τ ∇ u L 2 (0,t×R 2 ) τ 1/2 u L∞(0,T ×R 2 ) , J 4 = t 0 R 2 ∇ Ṗ • (τ 3 u τ • ∇u) dx dτ ≤ τ 3/2 ∇ Ṗ L 2 (0,t×R 2 ) τ u τ L∞(0,t;L 2 ) τ 1/2 ∇u L 2 (0,t;L∞) , J 5 = t 0 R 2 ∇ Ṗ • τ 3 u • ∇u t dx dτ ≤ τ 3/2 ∇ Ṗ L 2 (0,t×R 2 ) τ ∇u t L 2 (0,t×R 2 ) τ 1/2 u L∞(0,t×R 2 ) .
At this point, we have to explain how to bound t 3/2 ∇ 2 u and

t 3/2 ∇ Ṗ in L 2 (0, T × R 2 ).
Observe that (2.26) and (2.30) ensure that (2.33)

∇ Ṗ = Qf + Q ρü + ∇Tr(∇u • ∇u).
Hence, owing to the continuity of Q on L 2 , we have for all t ∈ [0, T ],

t 3/2 ∇ Ṗ (t) L 2 √ ρ t 3/2 ü(t) L 2 + t 3/2 (∇u ⊗ ∇ 2 u)(t) L 2 + t 3/2 f (t) L 2 .
Hence, since

t 3/2 ∆ u = t 3/2 ∇ Ṗ + ρt 3/2 ü + t 3/2 ∆u • ∇u + 2t 3/2 ∇u • ∇ 2 u -t 3/2 ∇u • ∇P,
we easily get

t 3/2 ∇ 2 u, t 3/2 ∇ Ṗ L 2 (0,t×R 2 ) t 3/2 √ ρü L 2 (0,t×R 2 ) + t 3/2 ∇u ⊗ ∇ 2 u L 2 (0,t×R 2 ) + t 3/2 ∇u • ∇P L 2 (0,t×R 2 ) t 3/2 √ ρü L 2 (0,t×R 2 )
+ t∇ 2 u, t∇P L∞(0,t;L 2 ) t 1/2 ∇u L 2 (0,t;L∞) .

Thanks to Corollary 2.3 and Proposition 2.5, we thus end up with (2.34)

t 3/2 ∇ 2 u, t 3/2 ∇ Ṗ L 2 (0,t×R 2 ) t 3/2 √ ρü L 2 (0,t×R 2 ) + C 0 .
Reverting to the above inequalities for J 2 to J 5 and taking advantage of Corollary 2.3, Proposition 2.4 and Proposition 2.5, we conclude that there exists some constant C 0 depending only on p and on u 0 Ḃ-1+2/p p,1

, and such that

5 k=2 J k ≤ C 0 t 3/2 √ ρ ü L 2 (0,t×R 2 ) + C 0 ≤ 1 4 t 3/2 √ ρ ü 2 L 2 (0,t×R 2 ) + 2C 2 0 . (2.35)
For J 6 , we write that

J 6 = t 0 R 2 f • τ 3 ü dx dτ = t 0 R 2 (-∆u • ∇u -2∇u • ∇ 2 u + ∇u • ∇P ) • τ 3 ü dx dτ τ 3/2 ü L 2 (0,t×R 2 ) τ 1/2 ∇u L 2 (0,t;L∞) τ ∇ 2 u L∞(0,t;L 2 ) + τ ∇P L∞(0,t;L 2 ) ,
which along with Proposition 2.5, Corollary 2.3 and (1.7) gives

J 6 ≤ C 0 τ 3/2 √ ρü L 2 (0,t×R 2 ) ≤ 1 4 τ 3/2 √ ρü 2 L 2 (0,t×R 2 ) + 2C 2 0 .
Inserting the above inequality and (2.35) in (2.32), we get

t 3 R 2 |∇ u| 2 dx + t 0 R 2 τ 3 ρ |ü| 2 dx dτ ≤ 3 t 0 R 2 τ 2 |∇ u| 2 dxdτ + C 0
which, by virtue of Proposition 2.5, completes the proof.

Estimates in the three-dimensional case

Here we establish the inequalities that are needed to prove Theorem 1.5. The first two propositions are required for proving the existence of a global solution, while the last one is needed for uniqueness. Proposition 3.1. Let (ρ, u) be a smooth solution of (IN S) on [0, T ] × R 3 , with u sufficiently decaying at infinity and ρ such that

(3.1) sup t∈[0,T ] ρ(t) -1 L∞(R 3 ) ≤ c 1.
Then, for all indices 1 < m, p, q, s < ∞ satisfying

(3.2) 3 p + 2 q = 3 and 3 m + 2 s = 1, with p < m < ∞ and q < s < ∞,
the following inequalities hold true:

(3.3) µ 3 2p -1 2 u L∞(0,T ; Ḃ-1+3/p p,1 (R 3 )) + µ 3 2p -1 2 + 1 s u L s,1 (0,T ;Lm(R 3 )) + u, u t , µ∇ 2 u, ∇P L q,1 (0,T ;Lp(R 3 )) ≤ Cµ 3 2p -1 2 u 0 Ḃ-1+3/p p,1 (R 3 ) , (3.4) and µ 1 2 u L 2 (0,T ;L∞(R 3 )) ≤ C u 0 Ḃ-1+3/p p,1 (R 3 ) • Proof.
For notational simplicity, we omit to specify the dependence of the norms with respect to R 3 in the proof. As usual, we only consider the case µ = 1. Now, applying Proposition A.5 to System (2.7) yields (3.5) u L∞(0,T ; Ḃ-1+3/p p,1

) + u t , ∇ 2 u, ∇P L q,1 (0,T ;Lp) + u L s,1 (0,T ;Lm)

≤ C u 0 Ḃ-1+3/p p,1 + (ρ -1)u t + ρu • ∇u L q,1 (0,T ;Lp) •
By Hölder inequality, we have

(ρ -1)u t + ρu • ∇u L q,1 (0,T ;Lp) ≤ ρ -1 L∞(0,T ×R 3 ) u t L q,1 (0,T ;Lp) + ρ L∞(0,T ×R 3 ) u • ∇u L q,1 (0,T ;Lp) .
Owing to (3.1), the first term can be absorbed by the left-hand side of (3.5). For term u • ∇u L q,1 (0,T ;Lp(R 3 )) , by embedding

(3.6) Ḃ-1+3/p p,1 (R 3 ) → L 3 (R 3 ) and (3.7) Ẇ 1 p (R 3 ) → L p * (R 3 ) with 1 p * = 1 p - 1 3 , we obtain u • ∇u L q,1 (0,T ;Lp) ≤ u L∞(0,T ;L 3 ) ∇u L q,1 (0,T ;L p * ) u L∞(0,T ; Ḃ-1+3/p p,1
) ∇ 2 u L q,1 (0,T ;Lp) . Denoting Φ 0 := u 0 Ḃ-1+3/p p,1 and Φ := u L∞(0,T ; Ḃ-1+3/p p,1

) + u t , ∇ 2 u, ∇P L q,1 (0,T ;Lp) + u L s,1 (0,T ;Lm) , we can conclude that Φ ≤ C(Φ 0 + Φ 2 ).

Hence, if

(3.8) 4CΦ 0 < 1,
then one can assert that

(3.9) Φ ≤ 2Φ 0 .
Clearly, u satisfies the same inequality since Φ is small and, by Hölder inequality, u L q,1 (0,T ;Lp) ≤ u t L q,1 (0,T ;Lp) + u L∞(0,T ; Ḃ-1+3/p p,1

) ∇ 2 u L q,1 (0,T ;Lp) ≤ CΦ(1 + Φ). Finally, as a consequence of Gagliardo-Nirenberg inequality and embedding, we have:

(3.10) z L∞ z 1-q/2 L 3 ∇ 2 z q/2 Lp z 1-q/2 Ḃ-1+3/p p,1 ∇ 2 z q/2 Lp , whence (3.11) T 0 u 2 L∞ dt ≤ C T 0 u 2-q Ḃ-1+3/p p,1 ∇ 2 u q Lp dτ ≤ C u 2-q L∞(0,T ; Ḃ-1+3/p p,1
)

∇ 2 u q L q,1 (0,T ;Lp) ≤ CΦ 2 •
Owing to (3.9), this yields (3.4).

Proposition 3.2. Under the assumptions Proposition 3.1, we have

µ tu L∞(0,T ; Ḃ1+3/m m,1 (R 3 )) + µ 1 s (tu) t , µ∇ 2 (tu), ∇(tP ) L s,1 (0,T ;Lm(R 3 )) ≤ C u 0 Ḃ-1+3/p p,1 (R 3 ) .
Moreover, the following inequalities hold true:

µ T 0 ∇u L∞(R 3 ) dt ≤ C u 0 Ḃ-1+3/p p,1 (R 3 ) and µ T 0 t ∇u 2 L∞(R 3 ) dt ≤ C u 0 2 Ḃ-1+3/p p,1 (R 3 )
.

Proof. Assume that µ = 1. Multiplying both sides of (2.7) by time t yields

(tu) t -∆(tu) + ∇(tP ) = (1 -ρ)(tu) t + ρu -ρu • ∇tu.
Then, taking advantage of Proposition A.5, we get:

tu L∞(0,T ; Ḃ1+3/m m,1
) + (tu) t , ∇ 2 (tu), ∇(tP ) L s,1 (0,T ;Lm) ρ -1 L∞(0,T ×R 3 ) (tu) t L s,1 (0,T ;Lm)

+ ρ L∞(0,T ×R 3 ) u L s,1 (0,T ;Lm) + tu • ∇u L s,1 (0,T ;Lm) •

Owing to (3.1), the first term of the right-hand side may be bounded by the left-hand side, and we deduce from Hölder inequality and the embedding

(3.12) Ḃ3/m m,1 (R 3 ) → L ∞ (R 3 ) that tu • ∇u L s,1 (0,T ;Lm) ≤ u L s,1 (0,T ;Lm) t∇u L∞(0,T ×R 3 ) ≤ C u L s,1 (0,T ;Lm) tu L∞(0,T ; Ḃ1+3/m m,1
) .

Remember that Proposition 3.1 allows to bound u in L s,1 (0, T ; L m (R 3 )) by Φ 0 . Hence, setting Π := tu L∞(0,T ; Ḃ1+3/m m,1

) + (tu) t , µ∇ 2 (tu), ∇(tP ) L s,1 (0,T ;Lm) , the above calculations imply that Π ≤ C(1 + Π)Φ 0 and, as Φ 0 is small, this completes the proof of the first part of the proposition.

Bounding ∇u relies on the following interpolation inequality (as (3.2) implies that p < 3 < m):

u L∞(R 3 ) ≤ ∇u p(m-3) 3(m-p) Lp(R 3 ) ∇u m(3-p) 3(m-p) Lm(R 3 ) .
Hence, applying Hölder inequality in Lorentz spaces with exponents:

(p 1 , r 1 ) = 3(m -p) m(3 -p) , ∞ , (p 2 , r 2 ) = 3q(m -p) p(m -3) , p 2 q , (p 3 , r 3 ) = 3s(m -p) m(3 -p) , p 3 s , using the fact that t -α with α = m(3 -p)/(3(m -p)) is in L 1/α,∞ (R + ), (3.
3) and the first inequality of Proposition 3.2, we end up with

T 0 ∇u L∞ dt ≤ T 0 t - m(3-p) 3(m-p) ∇ 2 u p(m-3) 3(m-p) Lp t∇ 2 u m(3-p) 3(m-p) Lm dt ≤ C ∇ 2 u p(m-3) 3(m-p) L q,1 (0,T ;Lp) t∇ 2 u m(3-p) 3(m-p) L s,1 (0,T ;Lm) ≤ C u 0 Ḃ-1+3/p p,1
.

Furthermore, we deduce from (3.12) that

T 0 t ∇u 2 L∞ dt ≤ T 0 t ∇u Ḃ3/m m,1 ∇u L∞ dt ≤ tu L∞(0,T ; Ḃ1-3/m m,1
)

T 0 ∇u L∞ dt ≤ C u 0 2 Ḃ-1+3/p p,1
, by virtue of the inequality we proved just before.

To prove the uniqueness, the following time weighted estimate is required. ) + (t u) t , µt∇ 2 u L q,1 (0,T ;Lp)

+ µ 3 2p -1 2 + 1 s t u L s,1 (0,T ;Lm) ≤ Cµ 3 2p -1 2 u 0 Ḃ-1+3/p p,1
.

Furthermore, we have

(3.14) µ 1 2 t∇ u L 2 (0,T ;L 3 (R 3 )) + µ 1 2 t u L 2 (0,T ;L∞(R 3 )) ≤ C u 0 Ḃ-1+3/p p,1 (R 3 ) .
Proof. We know that t u satisfies (2.31) and we also observe, owing to div u = div u t = 0, that

Q(u • ∇u t ) = Q(u t • ∇u).
Hence, using the maximal regularity estimates in Lorentz spaces for the heat equation (cf [START_REF] Danchin | Lorentz spaces in action on pressureless systems arising from models of collective behavior[END_REF]Prop. 2.1]) and the continuity of the Helmholtz projectors on L q,1 (0, T ; L p ), we get t u L∞(0,T ; Ḃ-1+2/p p,1

) + (t u) t , t∇ 2 u L q,1 (0,T ;Lp) + t u L s,1 (0,T ;Lm) (1-ρ)(t u) t L q,1 (0,T ;Lp)

+ tρu • ∇ u L q,1 (0,T ;Lp) + ρ u L q,1 (0,T ;Lp) + tf L q,1 (0,T ;Lp)

+ u + tu t • ∇u L q,1 (0,T ;Lp) + t∇Tr(∇u • ∇u) L q,1 (0,T ;Lp) .

Owing to (3.1), the first term in the right-hand side may be absorbed by the left-hand side, and Proposition 3.1 allows to bound u L q,1 (0,T ;Lp) . Also recall that

f = -∆u • ∇u -2∇u • ∇ 2 u + ∇u • ∇P.
Hence, thanks to (3.12) and to Propositions 3.1, 3.2, tf L q,1 (0,T ;Lp) + t∇Tr(∇u • ∇u) L q,1 (0,T ;Lp) t∇u L∞(0,T ×R 3 ) ∇ 2 u, ∇P L q,1 (0,T ;Lp)

tu L∞(0,T ; Ḃ1+3/m m,1 ) ∇ 2 u, ∇P L q,1 (0,T ;Lp) u 0 2 Ḃ-1+3/p p,1
.

Using the Hölder inequality in Lorentz spaces, the embeddings (3.7) and (3.6), and Propositions 3.1, 3.2, we obtain tρu • ∇ u L q,1 (0,T ;Lp) t∇ u L q,1 (0,T ;L p * ) u L∞(0,T ;L 3 )

t∇ 2 u L q,1 (0,T ;Lp) u 0 Ḃ-1+3/p p,1
, tu t • ∇u L q,1 (0,T ;Lp) ≤ u t L q,1 (0,T ;Lp) t∇u L∞(0,T ×R 3 ) u t L q,1 (0,T ;Lp) tu L∞(0,T ; Ḃ1+3/m m,1

)

u 0 2 Ḃ-1+3/p p,1
.

Putting the above inequalities together, we conclude that

t u L∞(0,T ; Ḃ-1+3/p p,1 ) + (t u) t , t∇ 2 u L q,1 (0,T ;Lp) + t u L s,1 (0,T ;Lm) u 0 2 Ḃ-1+3/p p,1 + 1 + t∇ 2 u L q,1 (0,T ;Lp) u 0 Ḃ-1+3/p p,1
.

Since u 0 Ḃ-1+3/p p,1
is small, we have (3.13).

In order to prove Inequality (3.14), let us first consider the case 3/2 < p < 3 (which implies that 1 < q < 2). Then, Inequality (3.10) ensures that

u L∞ ≤ C u 1-q 2 L 3 ∇ 2 u q 2 Lp ≤ C u 1-q 2 Ḃ-1+3/p p,1 ∇ 2 u q 2 Lp . Consequently, t u L 2 (0,T ;L∞) ≤ C t u 1-q 2 L∞(0,T ; Ḃ-1+3/p p,1 ) ∇ 2 (t u) q 2
Lq(0,T ;Lp) , Then, applying (3.13) gives the second part of (3.14).

In order to complete the proof of (3.14), it suffices to apply Proposition A.4 with r = 3 to t u (keeping in mind that -1 + 3/p = 2 -2/q) then Hölder inequality with respect to the time variable. In the end, as p ∈ (3/2, 3), we get

t∇ u L 2 (0,T ;L 3 ) t u θ L∞(0,T ; Ḃ-1+3/p p,1
)

t∇ 2 u 1-θ Lq(0,T ;Lp) with θ = 2p -3 3p -3 •
Then, applying the first part of the proposition gives the desired result.

The case 1 < p ≤ 3/2 reduces to the case we treated before since Ḃ-1+

3 p p,1 → Ḃ-1+ 3 p 1 p 1 ,1
for some p 1 ∈ (3/2, 3).

Existence

This section is devoted to the proof of existence of a global solution under our assumptions (both in dimensions 2 and 3).

As a first step, we shall smooth out the data so as to apply prior results ensuring the existence of a sequence (a n , u n , ∇P n ) n∈N of strong (relatively) smooth solutions to (0.4). The estimates of Sections 2 and 3 will guarantee that the solution (a n , u n , ∇P n ) n∈N is global and uniformly bounded in the expected spaces. In order to pass to the limit, we shall take advantage of compactness arguments. A technical point is that Lorentz spaces L q,1 are nonreflexive, so that one cannot directly use the classical results, like Aubin-Lions' lemma. To overcome the difficulty, we shall look at the approximate solutions in the slightly larger (but reflexive) space

Ẇ 2,1 p,r (R + × R d ) := u ∈ C b (R + ; Ḃ2-2/r p,r (R d ) : u t , ∇ 2 u ∈ L r (R + ; L p (R d ))
for some 1 < r < ∞, then check afterward that the constructed solution has the desired regularity.

As a first, let us smooth out the initial data a 0 and u 0 by means of non-negative mollifiers, to get a sequence (a n 0 , u n 0 ) n∈N of smooth data such that (4.1)

a n 0 L∞ ≤ a 0 L∞ , u n 0 Ḃ-1+d/p p,1 ≤ C u 0 Ḃ-1+d/p p,1
with, in addition,

a n 0 a 0 weak * in L ∞ and u n 0 → u 0 strongly in Ḃ-1+d/p p,1
.

According to e.g. [START_REF] Danchin | Local and global well-posedness results for flows of inhomogeneous viscous fluids[END_REF], there exists T > 0 such that System (0.4) supplemented with initial data (a n 0 , u n 0 ) admits a unique smooth local solution (a n , u n , ∇P n ) on [0, T ] × R d . In particular, the energy balance is satisfied (in the cases where u 0 is in

L 2 (R d )), a n ∈ C b ([0, T ] × R d ) and (u n , ∇P n ) is in the space E p,r T = (u, ∇P ) with u ∈ Ẇ 2,1 p,r (0, T ×R d ) and ∇P ∈ L r (0, T ; L p ) for all r ≥ 1.
Let us denote by T n the maximal time of existence of (a n , u n , ∇P n ). Since the calculations of the previous sections just follow from the properties of the heat flow and transport equation, basic functional analysis and integration by parts, each (a n , u n , ∇P n ) satisfies the estimates therein up to time T n , and thus

(4.2) a n (t) L∞ = a n 0 L∞ ≤ a 0 L∞ for all t ∈ [0, T n ) and (4.3) u n Ẇ 2,1 p,(q,1) (0,T n ×R d ) + ∇P n L q,1 (0,T n ;Lp) ≤ C u n 0 Ḃ-1+d/p p,1 ≤ C u 0 Ḃ-1+d/p p,1
• Furthermore, taking any r ∈ (1, ∞) and applying Proposition A.5 with q = r to

∂ t u n -∆u n + ∇P n = -a n ∂ t u n -(1 + a n )u n • ∇u n , div u n = 0, yields for all T < T n , u n , ∇P n E p,r T ≤ C( u n 0 Ḃ2-2/r p,r + a n ∂ t u n + (1 + a n )u n • ∇u n Lr(0,T ;Lp) ) ≤ C( u n 0 Ḃ2-2/r p,r + a n L∞(0,T ×R d ) ∂ t u n
Lr(0,T ;Lp)

+ (1 + a n L∞(0,T ×R d ) ) u n • ∇u n Lr(0,T ;Lp)
). In light of (1.6) or (1.9), and (4.2), the above inequality becomes

u n , ∇P n E p,r T u n 0 Ḃ2-2/r p,r + u n • ∇u n Lr(0,T ;Lp) , whence u n , ∇P n r E p,r T u n 0 r Ḃ2-2/r p,r + T 0 u n • ∇u n r Lp dt u n 0 r Ḃ2-2/r p,q + T 0 u n r L dr r-1 ∇u n r L β dt with 1 β + 1 d - 1 dr = 1 p •
Combining with Proposition A.4 and Young's inequality, one gets

u n , ∇P n r E p,r T u n 0 r Ḃ2-2/r p,r + ε T 0 ∇ 2 u n r Lp dt + C ε T 0 u n 2r L dr r-1 u n r Ḃ2-2/r p,r dt•
Then, taking ε small enough and using Gronwall's inequality yields

(4.4) u n , ∇P n r E p,r T ≤ C u n 0 r Ḃ2-2/r p,r exp C T 0 u n 2r L dr r-1 dt •
In the end, Gagliardo-Nirenberg inequality and embedding give

u n L dr r-1 ≤ u n 1 r L∞ u n 1-1 r Ḃ-1+d/p p,1
, which implies that (4.5)

T 0 u n 2r L dr r-1 dt ≤ u n 2 L 2 (0,T ;L∞) u n 2(r-1) L∞(0,T ; Ḃ-1+d/p p,1
)

. Now, we deduce from Proposition 2.1 (case d = 2) or Proposition 3.1 (case d = 3) that the two factors of the right-hand side of (4.5) are bounded by u 0 Ḃ-1+d/p p,1

. Hence, reverting to (4.4) and using a classical continuation argument allows to conclude that the solution is global and belongs to all spaces W 2,1 p,r (R + ×R d ) with 1 < r < ∞. Furthermore, since the solution is smooth and (4.1) is satisfied, all the a priori estimates of Sections 2 and 3 are satisfied uniformly with respect to n.

In particular, (u n , ∇P n ) n∈N is bounded in E p,q T for all T ≥ 0. This, together with (4.2) ensures that there exists a subsequence, still denoted by (a n , u n , ∇P n ) n∈N , and (a, u, ∇P ) with

a ∈ L ∞ (R + × R d ), ∇P ∈ L q (R + ; L p (R d )) and u ∈ Ẇ 2,1 p,q (R + × R d ) such that (4.6) a n a weak * in L ∞ (R + × R d ), u n u weak * in L ∞ (R + ; Ḃ2-2/q p,q ), (∂ t u n , ∇ 2 u n ) (∂ t u, ∇ 2 u) weakly in L q (R + ; L p ),
∇P n ∇P weakly in L q (R + ; L p ).

Furthermore, as all the spaces under consideration in the previous sections have the Fatou property, the estimates proved therein as still valid. For example, one gets

u ∈ Ẇ 2,1 p,(q,1) (R + × R d ) and ∇P ∈ L q,1 (R + ; L p (R d ))
. Note that the fact that (∂ t u n ) n∈N is bounded in L q (R + ; L p ) enables us to take advantage of Arzelà-Ascoli Theorem in order to get strong convergence results for u like, for instance, for all small enough ε > 0, (4.7)

u n → u strongly in L ∞,loc (R + ; L d-ε,loc (R d )), ∇u n → ∇u strongly in L q,loc (R + ; L p * -ε,loc ) with 1 p * = 1 p - 1 d •
This allows to pass to the limit in the convection term of the velocity equation of (0.4).

In order to pass to the limit in the terms containing a n and conclude that (a, u, ∇P ) is a global weak solution, one can argue as in [START_REF] Danchin | A well-posedness result for viscous compressible fluids with only bounded density[END_REF][START_REF] Huang | Global well-posedness to incompressible inhomogeneous fluid system with bounded density and non-Lipschitz velocity[END_REF]. Since a

∈ L ∞ (R + × R d ) and ∇u ∈ L 2q (R + ; L dq 2q-1
), the Di Perna -Lions theory in [START_REF] Diperna | Ordinary differential equations, transport theory and Sobolev spaces[END_REF] ensures that a is the only solution to the mass equation of (INS) and that

a n → a strongly in L α,loc (R + × R d ) for all 1 < α < ∞.
Then, using the uniform bounds for (a n , u n , P n ) n∈N one can pass to the limit in all the terms of the following equations, that are satisfied by construction of (a n , u n , ∇P n ):

∞ 0 R d a n (∂ t φ + u n • ∇φ) dx dt + R d φ(0, x)a n 0 (x) dx = 0, ∞ 0 R d φ div u n dx dt = 0 for all functions φ ∈ C ∞ c (R + × R d ),
and

∞ 0 R d (1 + a n )(u n • ∂ t Φ + (u n ⊗ u n : ∇Φ)) + (∆u n -∇P n ) • Φ dx dt + R d u n 0 • Φ(0, x) dx = 0, for all Φ ∈ C ∞ c (R + × R d ; R d
) with div Φ ≡ 0. This ensures that (a, u, ∇P ) is a distributional solution of (0.4), which completes the proof of the existence parts of Theorems 1.4 and 1.5.

Uniqueness results

The goal of this section is to prove Theorem 1.7, and to show that it implies the uniqueness part of Theorems 1.4, 1.5 and 1.9. Theorem 1.7 will come up as a consequence of the stability estimates of Proposition 5.1 (in the 3D case) and of Propositions 5.2, and 5.3 (2D case).

Throughout this part, we denote There exists an absolute constant C such that the following inequality holds true for all t ∈ [0, T ]:

sup τ ∈[0,t] τ -1 δρ(τ ) Ḣ-1 (R 3 ) ≤ R 1/2 0 √ ρ 0 δu 0 L 2 (R 3 ) e C 2 R 0 t 0 f 2 dτ exp (2 t 0 g dτ ) e 2 t 0 g dτ , ρ 1 (t)δu(t) 2 L 2 (R 3 ) + t 0 ∇δu 2 L 2 (R 3 ) dτ ≤ √ ρ 0 δu 0 2 L 2 (R 3 ) e CR 0 t 0 f 2 dτ exp (2 t 0 g dτ ) e 2 t 0 g dτ •
Proof. The beginning of the proof is independent of the dimension d. In sharp contrast with [START_REF] Danchin | The inhomogeneous incompressible Navier-Stokes equations with discontinuous density: three diferent approaches[END_REF][START_REF] Danchin | The incompressible Navier-Stokes equations in vacuum[END_REF][START_REF] Danchin | Lorentz spaces in action on pressureless systems arising from models of collective behavior[END_REF], our stability estimates are performed directly in Eulerian coordinates: we consider the following system that is satisfied by δρ, δu and δP := P 1 -P 2 , denoting u2 := (u 2 ) t + u 2 • ∇u 2 ,

(5.2)

     (δρ) t + δu • ∇ρ 1 + u 2 • ∇δρ = 0, ρ 1 (δu) t + ρ 1 u 1 • ∇δu -∆δu + ∇δP = -δρ u2 -ρ 1 δu • ∇u 2 , δρ| t=0 = 0, δu| t=0 = δu 0 . Let us set φ := -(-∆) -1 δρ (so that δρ Ḣ-1 (R d ) = ∇φ L 2 (R d ) )
. Testing the first equation of (5.2) by φ yields after integrating by parts and using that div u 1 = div u 2 = 0, 1 2

d dt ∇φ 2 L 2 (R d ) ≤ R d ∇u 2 : (∇φ ⊗ ∇φ) dx - R d ρ 1 δu • ∇φ dx ≤ ∇u 2 L∞(R d ) ∇φ⊗∇φ L 1 (R d ) + ρ 1 1/2 L∞(R d ) √ ρ 1 δu L 2 (R d ) ∇φ L 2 (R d ) .
After time integration, we find that for all t ∈ [0, T ],

(5.3)

∇φ(t) L 2 (R d ) ≤ t 0 ∇u 2 L∞(R d ) ∇φ L 2 (R d ) dτ + t 0 ρ 1 1/2 L∞(R d ) √ ρ 1 δu L 2 (R d ) dτ.
For all t ∈ [0, T ], set

X(t) := sup τ ∈[0,t] τ -1 δρ(τ ) Ḣ-1 (R d )
and 

Y (t) := sup τ ∈[0,t] ( √ ρ 1 δu)(τ ) 2 L 2 (R d ) + ∇δu 2 L 2 (0,t×R d ) 1/2
d dt R d ρ 1 |δu| 2 dx + R d |∇δu| 2 dx = - R d δρ u2 • δu dx - R d ρ 1 (δu • ∇u 2 ) • δu dx.
Bounding the last term is straightforward: we just write that (5.8) -

R d ρ 1 (δu • ∇u 2 ) • δu dx ≤ ∇u 2 L∞(R d ) √ ρ 1 δu 2 L 2 (R d ) .
In order to estimate the term with δρ u2 • δu, we argue by duality, writing that

- R d δρ u2 • δu dx ≤ δρ Ḣ-1 (R d ) u2 • δu Ḣ1 (R d ) ≤ X τ ∇ u2 • δu L 2 (R d ) + τ u2 • ∇δu L 2 (R d ) • (5.9)
Assuming in the rest of the proof that d = 3, and using Hölder inequality and the embedding Ḣ1 (R 3 ) → L 6 (R 3 ), we get

- R 3 δρ u2 • δu dx ≤ X τ ∇ u2 L 3 (R 3 ) δu L 6 (R 3 ) + τ u2 L∞(R 3 ) ∇δu L 2 (R 3 ) ≤ CX ∇δu L 2 (R 3 ) τ ∇ u2 L 3 (R 3 ) + τ u2 L∞(R 3 ) ≤ 1 2 ∇δu 2 L 2 (R 3 ) + C 2 2 X 2 τ ∇ u2 L 3 (R 3 ) + τ u2 L∞(R 3 ) 2 •
Hence, plugging (5.8) and the above inequality in (5.7) and using the notation of the statement, we get (for another constant C):

d dt R 3 ρ 1 |δu| 2 dx + R 3 |∇δu| 2 dx ≤ 2 ∇u 2 L∞(R d ) √ ρ 1 δu 2 L 2 (R 3 ) + Cf 2 X 2 .
Integrating on [0, t], the above inequality becomes

Y 2 (t) ≤ Y 2 (0) + 2 t 0 gY 2 dτ + C t 0 f 2 X 2 dτ • Hence, Gronwall lemma gives Y 2 (t) ≤ e 2 t 0 g Y 2 (0) + C t 0 e -2 τ 0 g dτ f 2 X 2 dτ •
Plugging (5.6) in the above inequality, we discover that

Y 2 (t) ≤ e 2 t 0 g dτ Y 2 (0) + CR 0 t 0 f 2 Y 2 dτ •
Hence, applying again Gronwall inequality, we end up with

Y 2 (t) ≤ e CR 0 ( t 0 f 2 dτ ) exp (2 t 0 g dτ ) e 2 t 0 g dτ Y 2 (0).
Inserting this latter inequality in (5.6) completes the proof.

We claim that the above proposition implies the uniqueness part of Theorem 1.5. As a first, we have to explain why the map t → t -1 δρ belongs to L ∞ (0, T ; Ḣ-1 (R 3 )). In fact, for all t ∈ [0, T ], integrating the mass equation of (INS) on [0, t] yields

ρ i (t) -ρ 0 = - t 0 div (ρ i u i ) dτ, i = 1, 2.
Hence,

ρ i (t) -ρ 0 Ḣ-1 (R 3 ) ≤ t 0 div (ρ i u i ) Ḣ-1 (R 3 ) dτ ≤ t √ ρ i u i L∞(R + ;L 2 (R 3 )) √ ρ i L∞(R + ×R 3 ) ,
and thus, thanks to the energy balance and the mass equation,

t -1 δρ(t) Ḣ-1 (R 3 ) ≤ R 0 √ ρ 0 u 0 L 2 (R 3 ) .
Next, we have to show that δu is in the energy space. If 2 < p < 3, then this is guaranteed by the assumption of Theorem 1.5. If 1 < p ≤ 2, then we argue as follows. By construction,

∂ t u is in L q,1 ([0, T ]; L p (R 3 )) and u is in C b ([0, T ]; Ḃ-1+3/p p,1 (R 3 )), whence u(t) -u 0 ∈ C([0, T ]; L p (R 3 )) ∩ C([0, T ]; Ḃ-1+3/p p,1 (R 3 )). Hence u(t) -u 0 ∈ C([0, T ]; B -1+3/p p,1 (R 3 
)) (nonhomogeneous Besov space). Owing to the classical embedding

B -1+3/p p,1 (R 3 ) → H 1/2 (R 3 ) for 1 < p ≤ 2, we obtain u(t) -u 0 ∈ C([0, T ]; L 2 (R 3 )).
Now, taking (s, m) = (4, 2) in (A.3), we see that ∇u i belongs to L 4,1 ([0, T ]; L 2 ), hence to L 2 (0, T ×R d ). From this, we eventually conclude that δu is in L ∞ (0, T ; L 2 )∩L 2 (0, T ; Ḣ1 ).

Finally, the solution constructed in Theorem 1.5 satisfies t∇ u ∈ L 2 (R + ; L 3 (R 3 )) and ∇u ∈ L 1 (R + ; L ∞ (R d )). Hence, all the assumptions of Theorem 1.7 are satisfied by the solutions constructed in Theorem 1.5, which are thus unique.

Another corollary Proposition 5.1 is the uniqueness of P. Zhang's solutions constructed in [START_REF] Zhang | Global Fujita-Kato solution of 3-D inhomogeneous incompressible Navier-Stokes system[END_REF]. Indeed, if (ρ, u) stands for a solution of Theorem 1.9 then it satisfies (1.13). Therefore, thanks to the embeddings

Ḃ1/2 2,1 (R 3 ) → L 3 (R 3 ), Ḃ3/2 2,1 (R 3 ) → L ∞ (R 3 ),
on can write that for all T > 0, we have

t∇ u ∈ L 2 (R + ; L 3 (R 3 )) and t u ∈ L 2 (R + ; L ∞ (R 3 )).
Hence, if we prove in addition that ∇u ∈ L 1 (0, T ; L ∞ (R 3 )) for all T > 0, then Proposition 5.1 will ensure uniqueness.

In order to prove this latter property, let us observe as in [START_REF] Zhang | Global Fujita-Kato solution of 3-D inhomogeneous incompressible Navier-Stokes system[END_REF] that if (ρ, u, ∇P ) is a solution to (INS) on [0, T ] × R 3 , and if we look at the following linear Stokes system with convection: 

     ρ∂ t u j + ρu • ∇u j -∆u j + ∇P j = 0, div u j = 0, u j | t=0 = ∆j u 0 , then 
√ t∇ 2 u j L 2 (0,T ×R 3 ) + t∇∂ t u j L 2 (0,T ×R 3 ) + t∇ 2 u j L∞(0,T ;L 2 ) d 1 j 2 -j 2 u 0 Ḃ1/2 2,1
(5.11)

∇ 2 u j L 2 (0,T ×R 3 ) + √ t∇ 2 u j L∞(0,T ;L 2 ) + t∇∂ t u j L∞(0,T ;L 2 ) d 2 j 2 j 2 u 0 Ḃ1/2 2,1
, (5.12) with {d 1 j } j∈Z and {d 2 j } j∈Z in the unit ball of 1 (Z). This, together with the following interpolation result (see [START_REF] Triebel | Interpolation theory, function spaces, differential operators[END_REF]Th2:1.18.6]):

L 4,1 (0, T ; L 2 ) = L 2 (0, T ; L 2 ), L ∞ (0, T ; L 2 ) 1/2,1 yields (5.13) √ t∇ 2 u j L 4,1 (0,T ;L 2 ) ≤ Cd j u 0 Ḃ1/2 2,1 with j∈Z d j = 1.
Next, since -∆u j + ∇P j = -ρ∂ t u j -ρv • ∇u j ,

we have in light of the standard elliptic regularity result for the Stokes system:

t∇ 2 u j , t∇P j L 2 (0,T ;L 6 ) ≤ C ∂ t u j L 2 (0,T ;L 6 ) + v • ∇u j L 2 (0,T ;L 6 ) • Hence, as u 0 Ḃ1/2 2,1
is small, using Hölder inequality, Ḣ1 (R 3 ) → L 6 (R 3 ) and Ḃ3/2 2,1 (R 3 ) → L ∞ (R 3 ) and, eventually, (1.13) and (5.11), we get t∇ 2 u j , t∇P j L 2 (0,T ;L 6 ) ≤ C t∂ t u j L 2 (0,T ;L 6 ) + tu • ∇u j L 2 (0,T ;L 6 ) ≤ C t∇∂ t u j L 2 (0,T ×R 3 ) + u L 2 (0,T ;L∞) t∇ 2 u j L∞(0,T ;L 2 )

≤ Cd 1 j 2 -j/2 u 0 Ḃ1/2 2,1
.

Similarly, we deduce from elliptic regularity, embedding, (1.13) and (5.12) that t∇ 2 u j , t∇P j L∞(0,T ;L 6 ) ≤ C t∂ t u j L∞(0,T ;L 6 ) + tu • ∇u j L∞(0,T ;L 6 )

≤ C t∇∂ t u j L∞(0,T ;L 2 ) + √ tu L∞(0,T ×R 3 ) √ t∇ 2 u j L∞(0,T ;L 2 ) ≤ Cd 2 j 2 j/2 u 0 Ḃ1/2 2,1
.

Together with the interpolation property

L 4,1 (0, T ; L 6 ) = L 2 (0, T ; L 6 ), L ∞ (0, T ; L 6 ) 1/2,1 , this yields (5.14) t∇ 2 u j L 4,1 (0,T ;L 6 ) ≤ Cd j u 0 Ḃ1/2 2,1 with j∈Z d j = 1.
Summing up on all j ∈ Z we deduce from (5.10), (5.13) and (5.14) that (5.15)

t∇ 2 u L 4,1 (0,T ;L 6 ) + √ t∇ 2 u L 4,1 (0,T ;L 2 ) u 0 Ḃ1/2 2,1
.

It is now easy to bound ∇u in L 1 (0, T ; L ∞ ) for all T > 0. Recall the following Gagliardo-Nirenberg inequality:

z L∞ ≤ ∇z 1/2 L 2 ∇z 1/2
L 6 , Then, combining with Proposition A.1 (items (iii), (iv) and (v)) and (5.15) yields

T 0 ∇u ∞ dt ≤ C T 0 ∇ 2 u 1/2 L 2 ∇ 2 u 1/2 L 6 dt ≤ C T 0 t -3/4 √ t∇ 2 u 1/2 L 2 t∇ 2 u 1/2 L 6 dt ≤ C t -3/4 L 4/3,∞ (R + ) √ t∇ 2 u 1/2 L 4,1 (0,T ;L 2 ) t∇ 2 u 1/2 L 4,1 (0,T ;L 6 ) ≤ C u 0 Ḃ1/2 2,1

•

This completes the proof of the Lipschitz regularity for the velocity. Now, applying Proposition 5.1 yields uniqueness in Theorem 1.9.

5.2.

Stability and uniqueness in the two-dimensional case. Let us present a first result that requires the density to be bounded away from zero (that is r 0 > 0 in (5.1)).

Proposition 5.2. Let (ρ 1 , u 1 , P 1 ) and (ρ 2 , u 2 , P 2 ) be two solutions of (IN S) on [0, T ] × R 2 corresponding to the same initial density ρ 0 bounded away from 0 and, possibly, two different initial velocities u 1,0 and u 2,0 . Denote g(t) := ∇u 2 (t) L∞(R 2 ) and

f 1 (t) := t u2 2 L∞(R 2 ) + t∇ 2 u2
q Lp(R 2 ) for some 1 < p, q < 2 such that

1 p + 1 q = 3 2 •
There exists a constant C depending only p such that the functions δρ := ρ 1 -ρ 2 and δu := u 1 -u 2 satisfy for all t ∈ [0, T ]: Proof. Let us define the functions X and Y according to (5.4). Compared to the threedimensional case, the only change is in the treatment of the first term of the right-hand side of (5.9). Now, using Hölder inequality, the embedding

sup τ ∈[0,t] τ -1 δρ(τ ) Ḣ-1 (R 2 ) ≤ R 1/2 0 √ ρ 0 δu 0 L 2 (R 2 ) exp t 0 (2g + Cf 1 2r 0 ) dτ exp CR 0 2 e 2 t 0 g dτ t 0 f 1 dτ , ρ 1 (t)δu(t) 2 L 2 (R 2 ) + t 0 ∇δu 2 L 2 (R 2 ) dτ ≤ √ ρ 0 δu 0 2 L 2 (R 2
Ẇ 1 p (R 2 ) → L m (R 2 ) with 1 m = 1 p - 1 2 ,
and Gagliardo-Nirenberg inequality, we get (with 1/s := 1 -1/p):

τ ∇ u2 • δu L 2 (R 2 ) ≤ τ ∇ u2 Lm(R 2 ) δu Ls(R 2 )
≤C t∇ 2 u2 Lp(R 2 ) δu

2 s L 2 (R 2 ) ∇δu 2 m
L 2 (R 2 ) . Hence, reverting to (5.9) and using Young inequality, we obtain that

- R 2 δρ u2 • δu dx ≤ 1 2 ∇δu 2 L 2 (R 2 ) + CX 2 t u2 2 L∞(R 2 ) + CX q t∇ 2 u2 q Lp(R 2 ) δu 2-q L 2 (R 2 ) ≤ 1 2 ∇δu 2 L 2 (R 2 ) + CX 2 t u2 2 L∞(R 2 ) + t∇ 2 u2 q Lp(R 2 ) + C t∇ 2 u2 q Lp(R 2 ) δu 2 L 2 (R 2 )
• Then, substituting (5.8) and the above inequality into (5.7) yields

d dt R 2 ρ 1 |δu| 2 dx + R 2 |∇δu| 2 dx ≤ 2g √ ρ 1 δu 2 L 2 (R 2 ) + Cf 1 X 2 + Cf 1 δu 2 L 2 (R 2 ) •
As the density is bounded from below by r 0 > 0, after integrating on [0, t], we get

Y 2 (t) ≤ t 0 (2g(τ ) + Cr -1 0 f 1 (τ ))Y 2 (τ ) dτ + C t 0 X 2 (τ )f 1 (τ ) dτ + Y 2 (0).
Hence, applying Gronwall's inequality yields Inserting this latter inequality in the inequality for X completes the proof.

Proposition 5.2 implies the uniqueness part of Theorem 1.4. Indeed, the density of the solutions constructed therein is bounded away from zero, the gradient of their velocity is in L 1 (R + ; L ∞ (R d )), we have t∇ 2 u ∈ L q (R + ; L p (R 2 )) with 1 < p, q < 2 such that 1/p + 1/q = 3/2 and t u ∈ L 2 (R + ; L ∞ (R 2 )), the solutions have finite energy, the map t → t -1 δρ is in L ∞ (0, T ; Ḣ-1 (R 3 )) for all T > 0 (the proof is exactly the same as in the 3D case).

Having in mind the results in the three-dimensional case, it is natural to address the uniqueness issue without assuming that the density has a positive lower bound. The following result ensures uniqueness in the case of periodic boundary conditions, without making any particular assumption on the density. Proposition 5.3. Let (ρ 1 , u 1 , P 1 ) and (ρ 2 , u 2 , P 2 ) be two solutions of (IN S) on [0, T ]×T 2 corresponding to the same data (ρ 0 , u 0 ) such that M := T 2 ρ 0 dx is positive. If, in addition, ∇u 2 ∈ L 1 (0, T ; L ∞ (T 2 )) and t → t log (e + t -1 ) u2 ∈ L 2 (0, T ; L ∞ (T 2 ) ∩ H 1 (T 2 )), then (ρ 1 , u 1 , P 1 ) = (ρ 2 , u 2 , P 2 ) on [0, T ] × T 2 .

Proof. Compared to the previous proposition, the only change is in the treatment of the first term of the right-hand side of (5.9). Thanks to Inequality (A.8) adapted to the periodic setting 1 , we have

- T 2 δρ u2 • δu dx ≤ δu H 1 (T 2 ) δρ • u2 H -1 (T 2 ) δu H 1 (T 2 ) δρ H -1 (T 2 ) log 1 2 1 + δρ L 2 (T 2 ) δρ H -1 (T 2 )
u2 H 1 (T 2 )∩L∞(T 2 ) . (5.16) Note that one cannot bound directly δu H 1 (T 2 ) from ∇δu L 2 (T 2 ) since T 2 δu dx need not be zero and, in the periodic setting, δu H 1 (T 2 )

T 2 δu dx + ∇δu L 2 (T 2 ) .
To bound the first term we write that by virtue of Cauchy-Schwarz and Poincaré inequalities,

M T 2 δu dx = T 2 ρ 1 δu dx + T 2 (M -ρ 1 ) δu - T 2 δu dx dx ≤ √ M √ ρ 1 δu L 2 (T 2 ) + C M -ρ 1 L 2 (T 2 ) ∇δu L 2 (T 2 ) .
Therefore, there exists a constant C depending only on M and on R 0 , and such that

δu H 1 (T 2 ) ≤ C √ ρ 1 δu L 2 (T 2 ) + ∇δu L 2 (T 2 ) •
Let us denote (5.17) g(t) := ∇u 2 (t) L∞(T 2 ) and f 2 (t) := t u2 L∞(T 2 )∩H 1 (T 2 ) .

1 The Littlewood-Paley decomposition that is required for proving (A.8) may be adapted to the periodic setting, see e.g. [START_REF] Danchin | Fourier analysis methods for Partial Differential Equations[END_REF].

Plugging the above inequality in (5.16) and using (5.17), (5.4) and (5.1), and, finally, Young's inequality for the second line yields

- T 2 δρ u2 • δu dx ≤ C √ ρ 1 δu L 2 (T 2 ) + ∇δu L 2 (T 2 ) X log 1 2 1 + R 0 δρ H -1 (T 2 ) f 2 ≤ 1 2 ∇δu 2 L 2 (T 2 ) + Y 2 + CX 2 f 2 2 log 1 + R 0 tX •
Still thanks to (5.1), we see that there exists a constant C such that sup t∈[0,T ] δρ(t) L 2 ≤ CR 0 .

Hence, reverting to (5.7) and using the notation of (5. Our assumptions ensure that both g and τ → log (1 + R 1/2 0 τ -1 ) e 2 τ 0 g dτ f 2 2 (τ ) are integrable on [0, T ]. Furthermore, the function r → r(1 -1 2 log r) is increasing near 0 + and satisfies Hence one can apply Osgood lemma (see e.g. [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF]Lemma 3.4]) so as to conclude that Y ≡ 0 on [0, T ], and thus, owing to (5.6), we have X ≡ 0, too.
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0 ( 1 +

 01 6) and integrating the above inequality yieldsY 2 (t) t g)Y 2 dτ + R 0 advantage of the following basic inequality: log (1 + aY -1 ) ≤ log (1 + a)(1 -log Y ), a ≥ 0, Y ∈ (0

  we just have to observe that t u = (tu) t -u + tu • ∇u. Hence, by Hölder inequality and (2.14), we get t u L s,1 (0,T ;Lm) ≤ (tu) t L s,1 (0,T ;Lm) + u L s,1 (0,T ;Lm) + tu L∞(0,T ; Ḃ2-2/s m,1 ) u L s,1 (0,T ;Lm) . At this stage, using Inequalities (2.3) and (2.17) gives the desired result.Corollary 2.3. With the notation of Proposition 2.2, we have:

  In[START_REF] Zhang | Global Fujita-Kato solution of 3-D inhomogeneous incompressible Navier-Stokes system[END_REF], under assumptions(1.11) and (1.12), the following time weighted estimates have been proved (see Corollaries 3.1, 3.2 and 4.2 and Inequalities (2.10), (3.8) and (3.23)):

	, by uniqueness, we have
	(5.10)	u =

j∈Z u j and ∇P = j∈Z ∇P j •
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Appendix A

For the reader's convenience, we here list some results involving Besov spaces and Lorentz spaces, prove maximal regularity estimates in Lorentz spaces for (1.4), and product estimates that were needed at the end of the last section.

The following properties of Lorentz spaces may be found in e.g. [START_REF] Grafakos | Classical and Modern Fourier Analysis[END_REF]: Proposition A.1 (Properties of Lorentz spaces). There holds:

(1) Interpolation: For all 1 ≤ r, q ≤ ∞ and θ ∈ (0, 1), we have

where 1 < p 1 < p < p 2 < ∞ are such that 1 p = (1-θ) p 1 + θ p 2 • (2) Embedding: L p,r 1 → L p,r 2 if r 1 ≤ r 2 , and L p,p = L p .

(3) Hölder inequality: for 1 < p, p 1 , p 2 < ∞ and 1 ≤ r, r 1 , r 2 ≤ ∞, we have

This still holds for couples (1, 1) and (∞, ∞) with the convention

) For any α > 0 and nonnegative measurable function f, we have f α Lp,r = f α Lpα,rα . (5) For any k > 0, we have

Next, let us state a few classical properties of Besov spaces.

Proposition A.2 (Besov embedding). There holds:

(1) For any (p, q) in [1, ∞] 2 such that p ≤ q, we have

(

Then, for any real number s,

The interpolation theory in Besov spaces played an important role in our paper. Below are listed some results that we used (see details in [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF]Prop. 2.22] or in [28, chapter 2.4.2]).

Proposition A.3 (Interpolation).

A constant C exists that satisfies the following properties. If s 1 and s 2 are real numbers such that s 1 < s 2 and θ ∈]0, 1[, then we have, for any (p, r) ∈ [1, ∞] 2 and any tempered distribution u satisfying (1.3),

and, for some constant C depending only on θ and s 2 -s 1 ,

. Furthermore, we have for all s ∈ (0, 1) and (p,

The following proposition has been used several times.

Then, there exists C so that the following inequality holds true

and, according to Proposition A.2 and to the definition of θ, we have

we get the desired inequality.

The following result that is an easy adaptation of [17, Prop. 2.1] played a key role in Sections 2 and 3.

Proposition A.5. Let 1 < p, q < ∞ and 1 ≤ r ≤ ∞. Then, for any u 0 ∈ Ḃ2-2/q p,r (R d ) with div u 0 = 0, and any f ∈ L q,r (0, T ; L p (R d )), the Stokes system (1.4) has a unique solution (u, ∇P ) with ∇P ∈ L q,r (0, T ; L p (R d )) and 2 u in the space

Furthermore, there exists a constant C independent of T such that

Let s > q be such that

and define m ≥ p by the relation

Then, the following inequality holds true:

≤ C(µ 1-1/q u L∞(0,T ; Ḃ2-2/q p,r

). Finally, if 2/q + d/p > 2, then for all s ∈ (q, ∞) and m ∈ (p, ∞) such that

it holds that

Proof. Let P and Q be the Helmholtz projectors defined in (2.28). As u = Pu, we have

Hence applying [17, Prop 2.1] and using that P is continuous on L q,r (0, T ; L p (R d )) gives (A.2) and (A.4) for u. Since ∇P = Qf, and Q is also continuous on L q,r (0, T ; L p (R d )), ∇P satisfies (A.2) too.

In order to prove (A.3), take q 0 and q 1 such that 1 < q 0 < q < q 1 < ∞ and 2/q = 1/q 0 + 1/q 1 . From the mixed derivative theorem we have for all γ ∈ (0, 1) and i = 0, 1, Ẇ 2,1 p,q i ((0, T ) × R d ) := Ẇ 2,1 p,(q i ,q i ) ((0,

Let γ := 1/q -1/ s (so that d/ m = d/p + 2γ -1). As γ ∈ (0, 1 2 ] and 1 -2γ < d/p, one can use the Sobolev embedding

In the proof of [17, Prop. 2.1], it is pointed out that

Consequently, the embeddings (A.5) with i = 0 and i = 1 imply that

Note that our definition of γ, s 0 , s 1 , q 0 and q 1 ensures that 1 2

Hence the real interpolation space in the right of (A.6) is nothing but L q,r (0, T ; Ẇ 1 m (R d )), which completes the proof.

The usual product is continuous in many Besov spaces (see e.g. [START_REF] Abidi | Équation de Navier-Stokes avec densité et viscosité variables dans l'espace critique[END_REF][START_REF] Danchin | Density-dependent incompressible viscous fluids in critical spaces[END_REF][START_REF] Runst | Sobolev spaces of fractional order, Nemytskij operators, and nonlinear partial di erential equations[END_REF]). We here present a result that played a key role in the proof of uniqueness in dimension two. In order to prove it, we need to introduce following so-called Bony's decomposition (see [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF]):

Above, we used the notation ∆ j := ∆j for j ≥ 0, ∆ -1 := Ṡ0 , ∆ j = 0 if j ≤ -2 and S j := j ≤j-1 ∆ j .

The above operators T and R are called paraproduct and remainder, respectively. Their general properties of continuity may be found in [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF][START_REF] Bergh | Interpolation Spaces, an Introduction[END_REF][START_REF] Triebel | Interpolation theory, function spaces, differential operators[END_REF]. The last inequality is new to the best of our knowledge.

Then, the following inequality holds true:

.

In R 2 , it holds that

Proof. To prove the first statement, we use that, by definition of the homogeneous remainder operator

∆ j u∆ j v with ∆ j ∆ j-1 + ∆ j + ∆ j+1 .

Hence, owing to the support properties of the dyadic partition of unity, there exists an integer N 0 such that

Therefore, using convolution inequalities and (A.9), we discover that 2

which gives (A.7).

In order to prove (A.8), we start from the following properties of continuity of the paraproduct operator (see the details in [4, Chapter 2]):

Next, we decompose R(u, v) into low and high frequencies, using (A.7), to get

Then, choose N be the closest integer larger than log 2 1 +

Together with (A.10) and (A.11), this completes the proof of (A.8).