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Abstract

Over the past decades, control charts, one of the essential tools in
Statistical Process Control (SPC), have been widely implemented in
manufacturing industries as an effective approach for Anomaly Detec-
tion (AD). Thanks to the development of technologies like the Internet
of Things and Artificial Intelligence (AI), Smart Manufacturing (SM)
has become an important concept for expressing the end goal of dig-
itization in manufacturing. However, SM requires a more automatic
procedure with capabilities to deal with huge data from the contin-
uous and simultaneous process. Hence, traditional control charts of
SPC now find difficulties in reality activities including designing, pat-
tern recognition, and interpreting stages. Machine Learning (ML) al-
gorithms have emerged as powerful analytic tools and great assistance
that can be integrating to control charts of SPC to solve these issues.
Therefore, the purpose of this chapter is first to presents a survey on
the applications of ML techniques in the stages of designing, pattern
recognition, and interpreting of control charts respectively in SPC espe-
cially in the context of SM for AD. Second, difficulties and challenges
in these areas are discussed. Third, perspectives of ML techniques-
based control charts for AD in SM are proposed. Finally, a case study
of an ML-based control chart for bearing failure AD is also provided
in this chapter.
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1 Introduction

Together with the blooming flourish rapidly of data, including velocity, vol-
ume, and variety, anomaly detection (AD) has become a hot topic in recent
years. The important role of AD has demonstrated throughout various
studies in numerous different disciplines such as emergency hospital sys-
tems (Kadri et al. 1), traffic measurement (Münz and Carle 2), credit card
fraud detection (Tran et al. 3), manufacturing industry (Tran et al. 4 ; Tran
and Heuchenne 5). According to Chandola et al. 6 , AD has seen as a term
concern to find the instances that do not well conform to a defined no-
tion of normal behavior. These instances are called anomalies or outliers
or interchangeably. The beginning of the 19th century is considered as the
milestones of the AD issue that has been dealt with by the statistical science
community (Edgeworth 7).The requirement for early detection of anomalies
in the process is necessary to ensure system performance and save time as
well as cost for an organization.

It worth mentioning that statistical process control (SPC) is an essen-
tial approach for AD that is widely applied in industry. The aim of this
approach is to monitor and reduce variation in the process as soon as pos-
sible to guarantee high product quality at a minimal cost. In particular,
the control chart, one of the fundamental tools of SPC first introduced by
Shewhart 8 has been an effective tool to detect changes and anomalies of
characteristics in the procedure. The contribution of the control chart is
based on the idea to gives the producers a simple graphical tool for con-
trolling production, i.e. having correction activities in a timely manner.
This allows them to keep production centered on its target and to maintain
its dispersion within the specified tolerance interval. However, numerous
studies show that the implementation of control charts meets some disad-
vantages in particular situations including designing (Alwan 9 ; Noorossana
and Vaghefi 10 ; Costa and Castagliola 11 ; Leoni et al. 12 ; Vanhatalo and Ku-
lahci 13), trend recognition (Guh and Hsieh 14 ; Swift and Mize 15 ; Guo and
Dooley 16 ; Miao and Yang 17 ; Zan et al. 18), and interpreting (Wang and
Chen 19 ; Low et al. 20 ; S. T. A. Niaki and Abbasi 21) of control chart. A
more specific discussion is presented as follows.

It is important to note that a disadvantage of traditional control charts
have been discussed in the designing stage. One of the principles in de-
signing a control chart by statistical traditional methods is that it has to
under an assumption in which samples of the observed process are nor-
mally, independently, and identically distributed (i.i.d. assumption). For
example: in the case of univariate process, this implies that the observed
in-control process has a steady-state and is characterized by two fixed pa-
rameters as mean µ and standard deviation σ. They also lie on an assump-

2



tion that the main parameters are known or estimated from the historical
data. However, this approach faces difficulties in some real activities situa-
tions of industry process when considering in the new context as dynamic
behavior environment or sampling regularly. Firstly, the normal popula-
tion distribution assumption is unreal in many cases. Secondly, a vari-
ety of researches(Alwan 9 ; Noorossana and Vaghefi 10 ; Costa and Castagli-
ola 11 ; Leoni et al. 12 ; Vanhatalo and Kulahci 13) showed the developed con-
trol charts using the assumption of independent observations have been
enormous influenced by the presence of autocorrelation. Finally, the com-
plex industry procedure could be dominated by various variables and it is
impossible to know the covariance relationships before. This leads to false
alarms appear many time. Therefore, efforts to develop advanced control
chart using ML in the mentioned cases are necessary.

Besides, control chart pattern recognition (CCPR) is an important prob-
lem in SPC. A control chart is used for detecting whether a process is in con-
trol or out of control. But one out-of-control state is found and is eliminated,
it is necessary to have an observation, i.e., abnormal pattern recognition to
well monitor the behavior of the process in the future. Numerous studies
focus on CCPR issue from the middle of 1980s (Western 22 ; Swift 23). The
aim of the CCPR task is to diagnose nine common abnormal patterns, i.e.
unnatural patterns in the process including upward trend, downward trend,
upward shift, downward shift, cycles, runs, stratification, freak patterns, and
freak points (Shewhart 24). This activity in order to find out and prevent
potential causes as soon as possible. CCPR can be performed by quality en-
gineers in small production systems. However, along with the development
of manufacturing systems especially SM, sensors are deployed everywhere
with huge data sources to be collected and monitored, the application of
Machine Learning (ML) to automating this task is an irreversible trend.
Miao and Yang 17 reveal that the analysis of the statistical characteristics
and shape features of the control chart pattern contribute to recognizing
unreal patterns of the process through the relevant algorithm was classified.
However, the application of DL methods to automatically extract features
from the control chart has proven superior in the ability to recognize pat-
terns, see Zan et al. 18 for more details. Since then, efforts in applying Deep
Learning (DL) in this field are a very important research direction.

Finally, a very important issue that needs attention in SPC is the in-
terpretation of out-of-control signals. Traditional univariate control charts
have played a significant role in the literature to monitor the characteristic
processes for ensuring the quality of the system. However, in real activ-
ities of industry, the truth is that the process was dominated by various
characteristics in some cases. This issue was often solved by the way of
using different univariate control charts. But this would lead to false alarms

3



when these characteristics have a high correlation or sampling in a short
duration. Therefore, it is necessary to collect and monitor multivariate
variables simultaneously, i.e. using multivariate statistical process control
(MSPC). Hotelling’s T 2 chart (Hotelling 25), Multivariate Cumulative Sum
(MCUSUM) chart (Woodall and Ncube 26), and Multivariate Exponentially
Weighted Moving Average (MEWMA) chart (Lowry et al. 27) are common
multivariate control charts of MSPC used to solve the quality control prob-
lems. However, a challenge of these traditional multivariate control charts
is that they are just only able to detect a shift in the process mean vector,
i.e., out-of-control signals of the process. It is impossible to indicate which
variable(s) or a group of variables is responsible for out-of-control signals of
the process. Moreover, the MSPC requires more rapid identification in com-
parison with a univariate process that is beyond the capacity of traditional
multivariate control chats. The interpretation of out-of-control signals can
be considered a classification problem in ML. Therefore, the application of
ML to develop methods to automatically interpret the out-of-control sig-
nals in the multivariate control charts has attracted a lot of efforts from
researchers (Diren et al. 28).

In short, thanks to the appearance of ML methods, these difficulties are
solved. The application of ML in control charts is a new approach that is
overcome these previous disadvantages or issues. Swift 23 and Shewhart 24

have seen as the pioneer researchers published ideas combining ML in a
control chart. Recently, many pieces of research showed that recognition
control-based new ML algorithms have performance better than one based
traditional statistical methods as well as conduct to estimate pattern param-
eters (Guh and Hsieh 14 ; Guh and Tannock 29 ; Wu and Yang 30). Besides,
numerous authors also showed that ML methods are useful techniques ap-
plied to control charts to tackle the issues in the interpreting stage (Wang
and Chen 19 ; Low et al. 20 ; S. T. A. Niaki and Abbasi 21 ; Cheng and Lee 31).
Due to the various advantages of integrating ML techniques to control charts
in SPC, we would like to encourage more studies to consider this approach.
This can be seen as the alternative one to overcome the above limitations of
traditional control charts. However, this is a lack of researches that focuses
to give a general picture of these issues in literature. Therefore, the main
objective of our chapter is to fill this gap. The remainder of this chapter is
organized as follows. Section 2 briefly reviews the design of control chart-
based ML methods. Section 3 makes a literature review relevant to CCPR.
Section 5 presents the recent studies about the issue of the interpreting-based
ML of control charts. Difficulties and challenges in these areas are discussed
in Section 5. Section 6 proposed perspectives for ML techniques-based con-
trol charts for AD in SM. An experiment for a case study is proposed in
Section 7. Finally, concluding remarks of the study are outlined in Section
8.
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2 Machine Learning (ML) techniques based Con-
trol Charts for process monitoring

Control charts have been developed and applied a lot (see Fig 6, taken from
Web of Science), major publications in the fields of the engineering industry.
Control charts provide a simple method that can be used to indicate whether
the process is stable or not (in control or out-of-control). In detail, it is a
chronological graph whose dots represent the tracking of a characteristic of
the process. A horizontal line represents the central value (the average).
The lower control limit (LCL) and the upper control limit (UCL) are rep-
resented by two horizontal lines on either side of the mean. The values of
a measured characteristic must be within these limits; otherwise, the pro-
cess is out of control and must be examined. The main benefits of control
charts are: 1) they increase productivity by the proportion of ”good prod-
uct” and decrease costs because there is less waste; 2) they give an estimate
of the central tendency of the characteristic of interest, its variability, and
the limits within which it varies; 3) control charts assist in the evaluation
of the performance of a measurement system. One of the major advantages
of the control card is its ease of construction and use, an operator or engi-
neer familiar with the technique of control charts can, in general, diagnose
the cause of a problem. However, in order for the control chart to be a
reliable and effective indicator of the status of the process, the production
using the control chart should pay special attention to the type of chart used.

Figure 1: Number of publications on Control Charts from 1984

ML is a domain of Artificial Intelligence (AI), which consists of pro-
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gramming algorithms to learn automatically from data and experiences or
by interaction with the environment. What makes ML really useful is the
fact that the algorithm can ”learn” and adapt its results based on new data
without any a priori programming. There are three main branches: su-
pervised learning, unsupervised learning, and reinforcement learning. The
algorithm of supervised learning is to find correlations between input data
(explanatory variables) and output data (predictable variables), for then
infer the knowledge extracted on inputs with unknown outputs. Differ-
ent from supervised learning, the technique of unsupervised learning must
discover by itself the structure according to the data, which has only one
dataset collected as input. This technique is used to divide data into groups
of homogeneous items/datapoint. Finally, Reinforcement learning is an area
of machine learning concerned with how to make a sequence of decisions. In
literature and practice, many researchers have combined techniques of ML
and control charts. As mentioned above, by the ease of use of controls charts
and the wide application of ML, this combination is increasingly researched
and applied. This is because many types of problems that are arising during
the implementation of control charts in nowadays complex processes can be
effectively solved with the help of ML approaches (see for example Kang
et al. 32 and Qiu and Xie 33). One of the main contributions of applying ML
techniques in designing control charts is that the modern (production, in-
surance, healthcare, and etc) processes generate huge data sets with a large
degree of diversity by means of modern measurement systems like sensors.
In such situations, the traditional statistical monitoring methods fail to han-
dle the monitoring procedure of such processes while ML techniques are able
to provide impressive results (Weese et al. 34). This section will summarize
the most common techniques for designing control charts with ML methods
for process monitoring.

2.1 Kernel-based Learning Methods

Kernel-based learning methods such as the Support Vector Machine (SVM)
algorithm are extensively used and play major roles in the SPC activities,
both in developing control charts and recognition of abnormal patterns, due
to their remarkable solutions for existing problems. In brief, kernels have
been applying in the ML area because, when it is difficult to do a task in
the original problem space, the kernel method enables the practitioner to
transform the problem space into another in which they can work easier.
Recently, Apsemidis et al. 35 provided a comprehensive review on about 90
articles after 2002 that include the combination of kernel-based approaches
with other ML techniques. Mashuri et al. 36 proposed a Tr(R2) control chart
based on the squared correlation matrix with the trace operator and used
the kernel density estimation method to calculate the better control limit for
the proposed chart. Chinnam 37 demonstrates that SVMs can be extremely
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effective in minimizing both Type-I errors and Type-II errors and in detect-
ing shifts in both the non-correlated processes ou autocorrelated processes.
A comparison of SVM and Neural Network (NN) for drug/nondrug classifi-
cation has been done by Byvatov et al. 38 and it was demonstrated that the
SVMs classifier yielded slightly higher prediction accuracy than NN. By the
efficiency of SVMs, many researchers used this technique based on control
charts. For example, Li and Jia 39 proposed a SVMs based model for fault
identification in MEWMA control charts, they examined the effects of SVM
parameters on classification performance and provide a SVM parameter op-
timization method.

Although the kernel-based ML algorithms are mainly applied as classi-
fiers for dividing data into two or more classes, in most of SPC implemen-
tations training data from one class (normal state) are only available and
there is no information about the other class (abnormal state). This sit-
uation may arise from several reasons such as the general difficulties (lack
of resources or time or cost) or even impossibility of collecting enough ob-
servations for the abnormal class to learn the ML algorithm (Camci and
Chinnam 40). To handle such situations, one-class classifiers are introduced.
One-class classifier just learns from the normal training data and labelled
the newly encountered data as in-class or out-of-class observations. Several
one-class classifiers have been developed by researchers, while support vec-
tor data description (SVDD), the k nearest neighbor data description (KN-
NDD), and K means data description (KMDD) one-class classifiers were
only used to develop control charts. One of the first studies in this domain
was conducted by Sun and Tsung 41 who designed a kernel distance-based
chart (K-chart) using SVDD algorithm, as a modified version of the original
SVM for solving one-class classification problems, and concluded that the K
chart outperforms conventional charts when the data distribution departs
from normality. This work improved by Ning and Tsung 42 for non-normal
process data. Sukchotrat et al. 43 developed a K chart that integrates a
traditional control chart technique with a KNNDD algorithm, one of the
one-class classification algorithms. Later, to examine the feasibility of us-
ing one-class classification-based control charts to handle multivariate and
autocorrelated processes, Kim et al. 44 developed a K chart that uses origi-
nal observations instead of residuals to monitor autocorrelated multivariate
processes. Throughout a simulation study, they showed that the K charts
outperformed the T 2 control charts, and the performance K charts is not
significantly affected by the degrees of autocorrelation. Gani and Limam 45

examined the performance of the K chart and KNNDD chart through a real
industrial application. They investigated the effectiveness of both charts
in detecting out-of-control observations using the average run length (ARL)
criterion. The results of this study show that the K chart is sensitive to small
shifts in the mean vector, whereas the KNNDD chart is sensitive to moder-
ate shifts in the mean vector. In addition, Gani and Limam 46 introduced a
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new chart using the KMDD algorithm and reported that their chart has a
better performance in detecting small shifts of mean vector based on ARL
than the K chart and KNNDD chart. To improve the performance of K-
charts, Maboudou-Tchao et al. 47 used a one-class SVM technique based on
the SVDD method for monitoring the mean vector based on Mahalanobis
kernel. They used the Mahalanobis kernel as an alternative for Gaussian
kernel and showed that the proposed method is more sensitive than SVDD
using Gaussian kernel for detecting shifts in the mean vectors of three differ-
ent multivariate distributions. They also demonstrated that the proposed
method outperforms Hotelling’s T 2 chart in multivariate normal cases.

Zhang et al. 48 developed a general monitoring framework for detecting
location shifts in complex processes using the SVM model and multivariate
EWMA chart. Later, Wang et al. 49 developed SVM-based one-sided control
charts to monitor a process with multivariate quality characteristics. They
used the differential evolution (DE) algorithm to obtain the optimal param-
eters of the SVM model by minimizing mean absolute error. In this study,
the performance of the control charts is investigated using a multivariate
normal distribution and two non-normal distributions by considering differ-
ent process shift scenarios. In addition, through an ARL analysis using the
Monte Carlo simulations, they showed that the proposed chart has better
performance than the distance-based control charts based on SVM studied
by He et al. 50 . Recently, Maboudou-Tchao 51 introduced a least-squares
one-class SVM (LS-OCSVM) for monitoring the mean vector of processes.
They counted several advantages of their proposed monitoring approach over
the existing SVDD chart provided by Sun and Tsung 41 and Hotelling’s T 2

chart in terms of simplicity in computation and design, flexibility in implan-
tation, and superiority in performance. For example, they claimed that the
LS-OCSVM method can be easily extended to online monitoring. This fea-
ture is very beneficial when we are facing a large-scale training dataset that
updates over time. The SVDD method uses a batch learning phase in which
we learn on the entire training set and generate the best model at once. If
new additional training data arrive, SVDD must be retrained from scratch.
Using SVM techniques based on control charts to have a better performance
can be found at many works, see for example, He et al. 50 , Salehi et al. 52 , Hu
and Zhao 53 , Gani et al. 54 , Sukchotrat et al. 55 , Kakde et al. 56 , Jang et al. 57 .

Regression analysis is a technique of supervised ML. It is based on the
basic principles of physics that help predict the future from current data. It
also helps to find the correlation between two variables to define the cause
and effect relationship. However, there are different forms of regression,
ranging from linear regression and complex regression. One of the regres-
sion variants which yields very good results is the support vector regression
(SVR) method. This technique has been applied a lot in the construction
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of control charts, especially when the process variables are highly auto-
correlated. For example, Issam and Mohamed 58 apply the SVR method for
the construction of a residuals Multivariate Cumulative Sum (MCUSUM)
control chart to monitoring changes in the process mean vector. This charts
designed to detect small shifts in the process parameters and it performed
better than the time series based control chart because it can handle non-
linear relation between the controlled variables and do not use any restric-
tive assumption. In 2013, Du et al. 59 proposed one new Minimal Euclidean
Distance (MED) based control chart for recognizing the mean shifts of auto-
correlated processes. They also used SVR to predict the values of a variable
in time series. The numerical results showed that the MED chart outper-
formed those of some statistics-based charts and the neural-networks-based
(NN) control scheme for the small process mean shifts. Another example of
a combination of SVR technique and Control charts, Gani et al. 54 designed
a SVR-chart which using SVR to construct robust control charts for residu-
als. By comparing the behavior of Average Run Length (ARL), the authors
showed that the efficiency of this chart is better than ordinary least squares
(OLS), and the partial least squares method.

Besides the above-mentioned supervised learning methods, unsupervised
learning algorithms are another type of ML algorithms that applied to ana-
lyze and cluster unlabelled datasets. Clustering is one of the most important
unsupervised ML techniques, in which similar traits are used to make a pre-
diction. The algorithm measures the proximity between each element based
on defined criteria. K-Means is the most popular method of grouping input
data, which allows you to set the value of K and order the data according
to that value. The aim of the study of Silva et al. 60 is to apply the u-chart
to find out the number of clusters in the K-means method on Automatic
Clustering Differential Evolution (ACDE) in order to identify the behavior
patterns and relations between the different attributes. These results in this
work showed that the use of an u-chart increases the performance of ACDE.
Another example of application clustering technique based on control charts
in medicine, Thirumalai et al. 61 gave a prediction of diabetes disease for peo-
ple of various age groups and genders by using cost optimization and control
chart.

2.2 Dimensionality Reduction

For a given data, the higher the number of variables, the more complex the
results will be, which will make it difficult to consolidate the data. Dimen-
sionality reduction is considered a method of ML to overcome this difficulty.
Instead of studying the data involved in a grand dimension, the technique
of dimensionality reduction is to replace it with data in a smaller dimen-
sion. Roughly speaking, principal components analysis (PCA) is one of
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the most important methods of dimensionality reduction that transforms a
large dataset of (possibly) correlated observations into a smaller data set of
uncorrelated observations by minimizing information loss. Developing con-
trol charts based on the PCA method has been widely investigated in the
literature. For example, Stefatos and Hamza 62 introduced a robust mul-
tivariate statistical control chart using the Kernel PCA (KPCA) method.
They reported that the new chart is robust to outliers detection and per-
forms better than some existing multivariate monitoring and control charts.
Phaladiganon et al. 63 presented non-parametric PCA technique, kernel den-
sity estimation, and bootstrapping to establish the control limits of control
charts that. The proposed non-parametric PCA control charts performed
better than the parametric PCA control charts in non-normal situations
through the behavior of average run length. The PCA’s technique is also
used in Kullaa 64 , the author showed that the sensitivity of the control chart
to damage was substantially increased by further dimensionality reduction
applying the principal component analysis. Applying this technique, Lee
et al. 65 developed a new KPCA-based non-linear process monitoring tech-
nique for tackling the nonlinear problem. Base on T 2 and squared prediction
error (SPE) charts in the feature space, KPCA was applied to fault detection
in two example systems: a simple multivariate process and the simulation
benchmark of the biological waste-water treatment process. These examples
demonstrated that the proposed approach can effectively capture nonlinear
relationships in process variables and that, when used for process moni-
toring, it shows better performance than linear PCA. Using Hotelling’s T 2

statistic, Ahsan et al. 66 implemented the KPCA method for simultaneously
monitoring mixed (continuous and categorical) quality characteristics. In
this study, it is demonstrated that the KPCA-based control charts have a
great performance in terms of successful detection of the out-of-control ob-
servations in comparison with the conventional PCA mix charts discussed in
Ahsan et al. 67 . Another study in the area of monitoring procedures of mixed
quality characteristics based on the KPCA technique has been presented by
Mashuri et al. 68 . Recently, Lee et al. 69 presented new multivariate control
charts by Hotelling’s T 2 statistics and Q statistic based on KPCA approach
for rapidly detecting a worn cutting tool and thus avoiding catastrophic
tool failures products with unacceptable surface finish, and defective prod-
uct. Their proposed method converts raw multi-sensor data into principal
component space, and then, the KPCA-modified data are used to calculate
T 2 and Q values to develop control charts.

2.3 Neural network (NN) and deep learning (DL)

Unlike linear models, the NN is based on a complex, divisional data model.
It includes multiple layers to provide you with unique and precise output.
However, the model is still based on linear regression but uses multiple hid-
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den layers; this is why it is called a NN. In the paper of Arkat et al. 70 , they
designed a NN based model to forecast and construct residuals CUSUM
chart for multivariate Auto-Regressive of order one, AR(1), processes. The
comparison of the performance of the proposed method with the time series-
based residuals chart and the auto-correlated MCUSUM chart was made.
DL is a subset of ML, which is essentially a NN with multi layeres. Re-
cently, Lee et al. 71 proposed a variational autoencoder (VAE) approach
to monitor high-dimensional processes in the presence of non-linearity and
non-normality assumptions. They demonstrated the effectiveness and appli-
cability of the proposed VAE-based control charts in comparison with the
existing latent variable-based charts through a simulation study and also
via real data from a TFT-LCD manufacturing process. Chen and Yu 72 sug-
gested a novel recurrent neural network (RNN) residual chart with a DL
technique to recognize mean shifts in autocorrelated processes. A compari-
son study with some typical methods such as special causes control chart and
backpropagation network residual chart demonstrate that the RNN-based
chart provides the best performance for monitoring mean shifts in autocor-
related manufacturing processes. The readers can find more reference about
this technique based on control charts, for example, see Niaki and Abbasi 73 ,
Chen et al. 74 , and Diren et al. 28 .

3 Machine Learning (ML) techniques based Con-
trol Chart Pattern Recognition (CCPR)

Entering the 21st century, the world has changed dramatically with the de-
velopment of information technology, this is the beginning of the era of big
data. This comes with a marked increase in the general interest in ML. The
interpretation of control charts is mainly based on rough rules (i.e. heuris-
tics) which depend greatly on the experience and judgment of the operator.
It is therefore very important to make sure that they are well trained. Conse-
quently, expert systems were born and developed in the industry. An expert
system is software that is linked to at least two data sources: a database
that contains a set of rules and a data flow that comes from the process to
be controlled. The rules are based on the knowledge of experts in the field
and are encoded as logical conditions. Everything is connected to a motor
inference that applies the rules. The latter produces a result that is then
communicated to users through a graphical interface and is used as a deci-
sion support tool. More precisely, an expert system is a software capable
of answering questions, by reasoning from known facts and rules. However,
the period of popularity of expert systems is relatively short, from the end
of the 1980s, NNs are beginning to be used to automate the reading and
interpretation of control (see Pugh 75). Since that time, pattern recognition,
in general, is dominated by ML, is widely developed. There are several moti-
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vations for using ML algorithms for CCPR purposes. The first and probably
the main motivation is that several researchers demonstrated that the ML-
based CCPR model outperforms their alternative models in many practical
situations. For example, Li et al. 76 proposed a SVM-based CCPR frame-
work and demonstrates that this model can accurately classify the source(s)
of out-of-control signal and even outperforms the conventional multivariate
control scheme. There also other motivations for applying ML-based CCPR
models. For example, Guh 77 stated that the NN models are capable of
learning and self-organizing and hence are useful in pattern recognition and
can recall patterns learned from noisy or incomplete representations which
are practically impossible to detect by operators, even with the assistance of
an expert system. This makes the ML-based approaches suitable for CCPR
because CCPs are generally contaminated by common cause variations. In
addition, Diren et al. 28 reported that traditional CCPR models are not able
to predict unexpected new situations while ML techniques that can effec-
tively predict the unexpected new situations by learning from the historical
data. This section reviews some important references about the most popu-
lar ML algorithms used in recognition of patterns on control charts including
classification and regression tree (CART), decision trees (DTs), SVMs, NNs,
and DL.

3.1 Regression tree (CART) and Decision tree (DT) based
CCPR

A DT is a decision support tool representing a set of choices in the graphic
form of a tree. Geometrically, construct a decision tree decision is to par-
tition the space of data attributes in areas where each region represents a
class. During prediction, when data is in this region then the decision tree
assigns it the corresponding class. In literature, there are different methods
to construct one or more decision trees from a learning data set. The com-
mon goal of each method is to determine the optimal test sequence to par-
tition the space of attributes into homogeneous regions. Very recently, Za-
man and Hassan 78 demonstrate the development of fuzzy heuristics and the
CART technique for CCPR and compare their classification performance.
The results show the heuristics Mamdani fuzzy classifier performed well in
classification accuracy (95.76%) but slightly lower compared to the CART
classifier (98.58%). This study opens opportunities for deeper investigation
and provides a useful revisit to promote more studies into explainable AI.

3.2 Neural network (NN) and deep learning (DL) based CCPR

In the paper of Hachicha and Ghorbel 79 , a survey of CCPR literature, the
majority of the reviewed articles use the NN approach. It is reported that
for the period 1988 to 2000, 9% of the revised publications use NNs and that
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for the period 2001 to 2010, that number climbed to 25%. This trend then
accelerates for the period from 2010 to 2021 (see Fig. 2 and Fig. 3). This
observation is supported by the number of articles published on NN which
shows an average annual increase of 10-15% for this period (source from
Web of Science). Pugh 75 was the first author to experiment with NN and
control charts. He concludes that NN is as effective as traditional control
charts for detect changes in average values following a surge (by comparing
the ARL) and NN was found to perform reasonably well under most condi-
tions. This study constitutes the proof of concept of NN in CCPR. Pham
and Oztemel 80 were the firsts described the structures of pattern recognition
systems which made up of independent multi-layer perception. They found
that these composite pattern recognition systems have better classification
capabilities than their individual modules. Cheng 81 also concluded that
hybrid networks are more efficient than networks singular. Addeh et al. 82

proposed a CCPR procedure based on optimized radial basis function neu-
ral network (RBFNN). The proposed method consists of four main modules:
feature extraction, feature selection, classification and learning algorithm. In
addition traditional patterns that have considered in literature including the
normal, cyclic, increasing trend, decreasing trend, upward shift and down-
ward shift, they investigated the stratification and systematic patterns as
well. They tested RBFNN-based CCPR model based on a dataset contain-
ing 1600 samples (200 samples from each pattern) and the results showed
that the proposed method has a very good performance. Yu et al. 83 de-
veloped an effective and reliable DL method known as stacked denoising
autoencoder (SDAE) for CCPR in manufacturing processes. Recently, Xu
et al. 84 proposed an efficient one-dimensional Convolutional Neural Net-
work (1D-CNN) to applied for CCPR purposes. They showed that their
method achieves 98.96% average recognition accuracy after 30 repeated tests
as well as has better generalization ability when there is an error between
the estimated value and true value of mean or standard deviation, which
are satisfactory results. Yang and Zhou 85 developed online CCPR systems
using NN0 ensemble also neglecting how the correlation coefficient is biased
when abnormal patterns occur, thus training one CCPR system for each of
the studied autocorrelation levels. Fuqua and Razzaghi 86 proposed a cost-
sensitive classification scheme within a deep convolutional neural network
(CSCNN) to fill the literature gap of developing computationally-efficient
methods of CCPR classification for large time-series datasets in the pres-
ence of imbalance. To show the benefits of the method, they conducted an
extensive experimental study using both simulated and real-world datasets
based on simple and complex abnormal patterns. For more information, see
examples some publications as Pham and Wani 87 , Yang and Zhou 85 .
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Figure 2: Number of publications on NN from 1988

Figure 3: Percentage of number of publications on NN according to the
period

3.3 Support vector machines (SVM)based CCPR

SVM are new statistical learning techniques proposed by V. Vapnik in 1995.
They help to address diverse issues as classification, regression, fusion, etc.
The essential idea of SVM consists in projecting the data of the input
space (belonging to two different classes) non-linearly separable in a space
of greater dimension called space of characteristics in such a way that the
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data becomes linearly separable. In this space, the technique construction
of the optimal hyperplane is used to calculate the function of classification
separating the two classes (see Figure 4). In other words, the algorithm
creates a line or a hyperplane which separates the data into classes.

Figure 4: Principle of SVM techniques

In this subsection, we will summarize some recent applications and ex-
tensions of SVM for the CCPR case. Ranaee et al. 88 study a novel hybrid
intelligent system that includes three main modules, in which two modules,
SVM technique is used to searching for the best value of the parameters that
tune its discriminant function (kernel parameter selection) and upstream by
looking for the best subset of features that feed the classifier. Simulation re-
sults show that the proposed algorithm has very high recognition accuracy.
A hybrid independent component analysis (ICA) and SVM is proposed for
CCPR (Lu et al. 89), the results showed that is able to effectively recog-
nize mixture control chart patterns and outperform the single SVM models,
which did not use an ICA as a preprocessor. Lin et al. 90 presented a SVM-
based CCPR model for the online real-time recognition of seven typical
types of abnormal patterns, assuming that the process observations come
from an AR(1) model. Through an extensive simulation study, they showed
that the proposed SVM-based CCPR model can effectively on-line recog-
nize unnatural patterns in both independent and autocorrelated processes.
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In addition, they indicated that the new model has a better recognition ac-
curacy and ARL performance than the existing learning vector quantization
network CCPR model provided by Guh 77 . Du et al. 59 integrated wavelet
transform and improved particle swarm optimization-based support vector
machine (P-SVM) for online recognition of concurrent CCPR. In other re-
search, original SVM demonstrates poor performance when applied directly
to these problems. Xanthopoulos and Razzaghi 91 improve SVM by using
weighted support vector machines (WSVM) for automated process moni-
toring and early fault diagnosis. They show the benefits of WSVM over
traditional SVM, compare them under various fault scenarios. Readers can
refer to many other references, see Wang 92 , Ranaee and Ebrahimzadeh 93 ,
Lin et al. 90 , Zhou et al. 94 , la Torre Gutierrez and Pham 95 .

4 Interpreting out-of-control signals using Machine
Learning (ML)

When the manufacturing process has more than two characteristics for mon-
itoring, it should be often solve with different univariate control charts.
However, when these characteristics have a high correlation or sampling in
a short duration, the false alarms may be appeared. Therefore, it is nec-
essary to use multivariable control charts for monitoring quality problems.
Hotelling’s T 2 chart (Hotelling 25), MCUSUM chart (Woodall and Ncube 26),
and MEWMA chart (Lowry et al. 27) are common multivariate charts were
used in MSPC. However, a challenge of these traditional multivariate control
charts is that they are just only able to provide the general mean shifts in
vector, i.e., out-of-control signals of the process. It is impossible for these
charts to indicate which variable(s) or a group of variables is responsible for
out-of-control signals of the process. Numerous researchers have paid atten-
tion to the topic which to find a variable or a number of variables or a set
of variables responsible for the signals when a multivariate process is in the
out-of-control state. From the past decades, the idea integrating ML to mul-
tivariate control charts as an effectively approach. Recently, this approach
seems more reasonable when the system of manufacturing has become more
automatic. Thus, this section will give a look at the literature about ML
methods for interpreting control charts in the multivariate process.

The first encouragement integrating ML methods to interpret signals
of multivariate control charts in the quality control process has been dis-
cussed from the beginning of the 2000s with the publication of Wang and
Chen 19 . Particularly, they used a neural-fuzzy model (a four-layer fully
connected feed-forward network with a back-propagation training rule) for
both detecting and classifying phases. An experiment for a bivariate pro-
cess was conducted demonstrated that the proposed method reaches higher
performance than the previous multivariate T 2 control chart. Lower out-
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of-control ARLs and more classification accuracy results of the proposed
method have been recorded. Then, Low et al. 20 continued highlight NNs
as the method contribute to detect more anomaly patterns and more sensi-
tive than traditional charts through out-of-control ARL and the numerous
abnormal instants detected. Chen and Wang 96 suggested using a model
of NNs, a three-layer fully connected feed-forward network with a back-
propagation training rule, based multivariate χ2 control chart to investigate
cause variable(s) of signals of bivariate process. The significant advantages
are showed that the model can indicate both responsible variables (s) and
the magnitude of the shifts in case the multivariate χ2 control chart has
sudden shifts in the mean vector. S. T. A. Niaki and Abbasi 21 suggested
multilayer perceptron (MLP) network, a type of NNs, to classify patterns
to explore variables or the set of variables that caused the fault of the pro-
cess. The authors also make a comparison between MLP based Hotelling’s
T 2 multivariate Shewhart (MSCH) and based multivariate Shewhart (MS)
chart, respectively. The results showed that the proposed MLP MSCH has
a stronger performance. Cheng and Cheng 97 suggested to use 3-layer fully
connected feed-forward network with a back-propagation training rule as
an algorithm of NN for classifying out-of-control signals. The authors also
recommend using SVMs which are considered as the method that has the
same performance although it has more advantages than NN. On the con-
trary, Guh and Shiue 98 suggested using DT techniques instead of NNs based
model to interpret which variable or group of variables has caused the out-
of-control signals. They also demonstrated that the implementation of the
DT approach gained results faster than 25 times than the NN one. Ac-
cording to Yu et al. 99 , a selective NN ensemble approach named Discrete
Particle Swarm Optimization (DPSOEN) algorithm has a significant perfor-
mance to provide the source(s) of out-of-control. Alfaro et al. 100 proposed
to use a multi-class exponential loss function (SAMME) algorithms, an ex-
tension of AdaBoost for classifying which variables have to responsible for
the out-of-control signals. They showed that the proposed method has more
significant performance than ones in the study of S. T. A. Niaki and Ab-
basi 21 . Verron et al. 101 presented a Bayesian network-based control chart
approach to detect and isolate fault variable(s) of a multivariate process. A
DT learning-based model for bivariate process is recommended in a study
of He et al. 102 to identify the cause of faults. Cheng and Lee 31 suggested
using a SVM-based ensemble classification model for interpreting the out-of-
control signal of a multivariate process by indicating the caused variable(s).
An experiment comparison showed the significant performance of the pro-
posed method in comparison with the single Support Vector Classification
(SVC) model, bagging and, AdaBoost. Moreover, Carletti et al. 103 proposed
Depth-based Isolation Forest Feature Importance (DIFFI) approach based
Isolation Forest (IF) algorithm, the one from the idea as the DT to inter-
pret the cause of faults in the process. The authors also make a comparison
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with the Permutation-based Importance (PIMP) approach. Recently, Song
et al. 104 recommend using a NN) method like instance-based Naive Bayes
(INB) algorithm to classify which variables are the cause of out-of-control
signals. This is well implemented for both small and large number variables.
This also overcomes two disadvantages of previous studies as independence
assumption and ignorance of the features of a test instance. Furthermore,
very recently, Diren et al. 28 conduct a study with a variety of ML techniques
including Naive Bayes-kernel (NB-k), K-Nearest Neighbor (KNN), DT, NN,
Multi-Layer Perceptron (MLP), and DL to find the variables responsible for
the out-of-control signals based types of faults. Performance comparison of
these techniques is explored. Salehi et al. 105

5 Difficulties and Challenges for application of Ma-
chine Learning in statistical process control charts

It is evident that firms and corporations are rapidly getting smarter by
adding intelligence into their process to drive continuous improvement, knowl-
edge transfer, and intelligent decision-making procedures. This increases
the demand for advanced AI and SPC tools and also effectual integrated
techniques in various production stages to decrease the cost of production,
improve overall productivity, improve product and process quality, reduce
downtime, and etc. One of the most successful integrations is using ML
algorithms, as an important subset of AI, in development, pattern recogni-
tion, and interpreting of control charts, as the main goals of SPC. To meet
this need, several ML-based approaches have been developed by researchers
and scientists that some of them are reviewed in the previous two sections.
However, most of these tools have been introduced in laboratory environ-
ments and many difficulties and challenges still exist in their applications in
practical environments. Implementation of an efficient ML algorithm that
performs well in an industrial environment as well as produces reliable re-
sults is not very easy. Accordingly, it can be said that although ML is an
efficient and widely-used technique for solving nowadays complex problems,
like any other technique, it should be implemented as a solver due to its
difficulties and challenges. Although data analysts may face a variety of
challenges during the designing and implementation of ML algorithms in
development, pattern recognition, and interpreting of control charts that we
can not address them all here, however, in what follows, we will list some of
them that are most appeared in daily operation problems.

5.1 Non-stationary Processes

Although several studies have been done for developing ML-based control
charts, CCPR frameworks in the presence of autocorrelated observations
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(see for example Lin et al. 90 , Chen and Yu 72 , Kim et al. 44 , and Yang and
Zhou 85), most of these studies are based on the assumption that the process
is stationary. However, most processes in the manufacturing industries are
non-stationary in particular for complex industrial processes which in gen-
eral show non-stationary process characteristics, revealing a time-varying
mean and/or variance or even time-varying autocovariance (Zhao et al. 106).
This phenomenon makes monitoring a complex task no matter the quality
characteristic to be monitored is univariate or multivariate. Non-stationarity
in processes’ behavior frequently occurs due to several factors such as sea-
sonal changes, processes that involve emptying and filling cycles, through-
put changes, the presence of unmeasured disturbances, and also the nature
of the process itself (Chen et al. 107). In these cases, interpreting out-of-
control points is a challenge as studies on the topic almost always make
assumptions about the distribution. Ketelaere et al. 108 presented exam-
ples of non-stationary processes from the industrial machinery monitoring
context and agriculture industry. Another examples of non-stationary pro-
cesses in industrial environments are discussed in Chen et al. 107 and Liu and
Chen 109 . Monitoring non-stationary processes have its challenges and diffi-
culties and it has to be done carefully since there are many hidden problems.
For example, it is difficult to detect the abnormal patterns of non-stationary
observations because they may be hidden by the normal non-stationary vari-
ations (Zhao et al. 106). In addition, Lazariv and Schmid 110 showed that for
some processes and change-point models the ARL does not exist. This is
a very important issue since the ARL is the most popular measure for the
performance of control charts. In such situations, the traditional SPC tech-
niques fail at monitoring such processes and it is important to have tools
that can correctly detect changes in non-stationary processes (Lazariv and
Schmid 111).

5.2 Big Data analysis

The term big data refers not only to the size or volume of data but also to
the variety of data and the velocity of data. These features impose some
challenging issues to the data analyst facing various big data monitoring
problems. One of the main challenges for monitoring big data based on ML
techniques is the training (Phase I) dataset that is expected to contain both
in-control and out-of-control process observations (Qiu 112). It is known that
completing Phase I is critical to successful Phase II monitoring and has a
strong influence on the performance and suitability of the ML algorithm to
get accurate results and to avoid false predictions. However, in SPC applica-
tions, we usually have an in-control dataset only and there is no information
about out-of-control situations in the training data. We know that it is very
important to provide a training data set that entirely represents the struc-
ture of the problem. To tackle this deficiency, the idea of artificial contrasts
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and one-class classification methods have been suggested by authors such
as Tuv and Runger 113 and Sun and Tsung 41 . Another challenge in moni-
toring high dimensional data sets is the fact that not all of the monitored
variables are likely to shift at the same time, thus, some method is neces-
sary to identify the process variables that have changed. In high dimensional
data sets, the decomposition methods used with multivariate control charts
can become very computationally expensive Reis and Gins 114 . To serve the
purpose, many scientists proposed feature selection techniques to monitor
subsets of potentially faulty variables instead of monitoring a sequence of
whole variables to improve detection performance (see for example Capizzi
and Masarotto 115). However, in such cases, the key questions that have not
to be answered yet are a) what kind(s) of features are appropriate to use
for a specific big data monitoring problem, b) how many features should be
extracted for process monitoring, and c) whether the original goals of pro-
cess monitoring have been substantially compromised by using the selected
features Qiu 112 .

5.3 Monitoring image data

Thanks to the rapid developments of digital devices like sensors and com-
puters and using them increasingly in industrial and medical applications,
intelligent decision-making tools such as machine vision systems (MVS) has
gradually taken the place of human-based inspections in many factories due
to their ability to provide not only dimensional information but also informa-
tion on product geometry, surface defects, surface finish, and other product
and process characteristics Megahed et al. 116 . A MVS is a computer-based
system for analyzing and processing image data that is provided by image-
capturing devices (e.g., cameras, X-ray devices, or vision sensors). New
studies show that implementing MVSs in industrial environments could be
fully utilized to improve the quality of the product Zuo et al. 117 . In this
regard, researchers developed a new interdisciplinary field of research by in-
tegrating MVS approaches and SPC principles. This new field applied SPC
tools for monitoring the process quality using images. There are several
applications in industrial and medical areas that image monitoring can be
used to check the stability of the process state. For instance, monitoring
the brightness of the cover in the printing process of a journal or monitoring
the changes of tumors and vascular. Through an extensive review of image-
based control charting methodologies, Megahed et al. 116 emphasized that
using MVS-based monitoring procedure is superior to visual inspection with
respect to, (1) monitoring processes with high production rates; (2) perform-
ing multiple simultaneous tasks with different objects; (3) their ability to
cover all the ranges of the electromagnetic spectrum, as in the use of mag-
netic resonance imaging (MRIs) and X-rays in medical applications; (4) the
lack of susceptibility to fatigue and distraction; and (5) in some cases, the
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use of MVSs is cheaper than the use of human inspectors and it is expected
that the cost of MVSs will continue to decrease over time. However, there
several challenges in implanting image monitoring in practical situations.
The first challenge is that the number of pixels in a simple cell phone image
nowadays is around 4 million pixels and thus, we have to monitor a process
with 4 million components over time that faces us to high-dimensional prob-
lems. Another challenge is that the neighboring pixels within an image are
often highly correlated. This correlation can result in a considerable amount
of data redundancy and ignoring the correlation can result in a high level
of false alarms as well as poor performance once a fault occurs. In addi-
tion, there are several stages for successful impersonation of an image-based
monitoring procedure such as the choice of the image-capturing device, the
frequency of imaging, the set-up of the imaging to avoid lighting, alignment,
the software to use for image analysis, the preliminary image processing.
and the type of monitoring method to employ. There are no currently ex-
isting guidelines for guiding the practitioner through all of these decisions
Megahed et al. 116 . Thus, the last challenge is providing easy- and clear-to-
used guidelines to applied an efficient image monitoring model in practical
applications.

6 Perspectives for Application of Machine Learn-
ing (ML) in statistical process control charts in
Smart Manufacturing (SM)

Making processes smart and digitized, motivate researchers and scientists
to develop effective ML strategies for anomaly detection in daily operations.
For example, startegies to keep the production systems always dynamic in
dealing with unexpected variations and abnormal patterns. variations and
abnormal patterns. Although recent studies have investigated new ML-
based techniques in the development, pattern recognition, and interpreting
of control charts in manufacturing, there still exists a significant potential for
reducing the gap between the theory and application in modern industries.
Addressing this gap will ensure that ML tools can be seamlessly integrated
into factory operations. The following topics are recommended here for
future research.

6.1 Auto-correlated processes and Non-stationary processes

Thanks to the rapid evolution of sensor technologies and the velocity of avail-
able data in modern industrial processes, a good ability has created to gather
observations instantaneously that results in a high degree of autocorrelation
within observations. In fact, the real-world data are in most cases auto-
correlated. To deal with such data, most of the existing approaches are not
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sufficient, and there is an essential need to develop new powerful ML tools to
analyze these kinds of datasets. While the effect of autocorrelation on tra-
ditional SPC tools has been investigated by several authors, see for example
Maragah and Woodall 118 and Alwan 9 , a review paper by Apsemidis et al. 35

shows that a few studies have yet been conducted in the area of kernel-based
ML methods for such data. In another comprehensive review paper, Weese
et al. 34 recommended that although some few ML-based monitoring proce-
dures have been proposed for autocorrelated data considering known time
series model by researchers like Arkat et al. 119 , Issam and Mohamed 58 , and
Kim et al. 120 , there is ample potential to develop new algorithms when
the time series model is unknown. In literature of ML techniques based
control chart pattern recognition there are also few investigations (Cuen-
tas et al. 121) that recognize relatively simple patterns such as process mean
shift (Chinnam and Kumar 122 , Hsu et al. 123 , and Hsu et al. 124) and process
variance shift (Chinnam 37), while more complex patterns including trend,
cycle, and systematic patterns only considered in the study of Lin et al. 90 .
Concurrently, the existing body of researches needs to be enhanced and im-
proved the existing techniques of monitoring auto-correlated processes. In
addition, there are several real-world examples that not only the observa-
tions are auto-correlated, but also they have non-stationary behaviors in
which they are not oscillating around a common mean or its variance and
autocovariance are changing over time. This phenomenon may happen due
to several reasons. Researchers such as Ketelaere et al. 108 , Chen et al. 107

and Chen et al. 107 presented examples of non-stationary processes in in-
dustrial environments. Up to now, most existing researches have focus on
developing ML-based control charts and CCPR techniques for monitoring
stationary processes and there is a remarkable need for developing such
tools for handling time series data from non-stationary processes. This gap
should be filled by new researches. Recently, Tran et al. 125 and Nguyen
et al. 126 proposed Long Short Term Memory networks (LSTM) and LSTM
Autoencoder techniques for monitoring multivariate time series data from
non-stationary processes. These techniques can be also employed as efficient
solutions for CCPR problems involving auto-correlated non-stationary data
for future study. Section 7 of the current chapter provides a good discussion
for bearing failure anomaly detection based on the LSTM method. Finally,
Explainable AI techniques (see Rudin 127) should also be used to develop
frameworks for interpretation of out-of-control points in this context.

6.2 Big data analysis

Nowadays in smart factories, a wide range of sensors have embedded in sev-
eral devices of production lines as well as are connected to many comput-
ers for data analysis, management, and visualization, which brings fruitful
business results in the long run. These advanced technologies created the
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concepts of high-volume, high-dimensional, and high-velocity data that are
called in brief Big data. This type of data always has complex natures as
well as often has hierarchical or nested structures. In such situations, tra-
ditional SCP methods are incapable of monitoring such data and existing
methodologies should be stretched to new limits. Although data-driven ML
algorithms have a good potential to do this end, there is poor literature
about ML-based studies for anomaly detection and pattern recognition us-
ing data sets that would be considered big data (Wang and Jiang 128 , Jin
et al. 129 , Qiu 130 , and Sparks and Chakraborti 131). Thus, there is a tremen-
dous opportunity and significant need for the development of advanced ML
tools for both anomaly detection and CCPR. For example, Qiu 112 provided
a comprehensive discussion on some recent SPC methods in the presence of
big data and recommended the following research directions as further re-
search. (i) feature selection methods have been suggested by some authors to
simplified the computations for monitoring big data sets. In such cases, the
key questions that have not been properly addressed yet in the literature and
future research is needed in this direction are a) what kind(s) of features are
appropriate to use for a specific big data monitoring problem, b) how many
features should be extracted for process monitoring, and c) whether the
original goals of process monitoring have been substantially compromised
by using the selected features. (ii) process observations in SPC literature
are widely assumed to be either independent or following some specific para-
metric time series models such as ARMA models. These assumptions are
rarely satisfied in practice, especially when we are dealing with big data
sets. More precisely, in the context of big data, process observations have
many other complicated structures. Thus, developing SPC tools to properly
accommodate such data structures will be an attractive research area. (iii)
In practice, the performance of a process is often affected by various covari-
ates that can provide some helpful information to us. Therefore, taking this
information into account in developing and designing new SPC tools can
improve the efficiency of the monitoring procedures. However, there is no
study in the SPC literature yet regarding the proper use of helpful informa-
tion in covariates. All these topics can also be investigated based on ML
methods for both anomaly detection, interpreting out-of-control signals, and
CCPR as well. More discussions on this topics can be found in Megahed
and Jones-Farmer 132 and Reis and Gins 114 .

6.3 Real word implementation and hyperparameters opti-
mization

Scientists and engineers believe that we are at the beginning of the fourth in-
dustrial revolution that is being called Industry 4.0. Broadly speaking, this
revolution has been happening by decreasing human intervention and adding
intelligence into the production processes and service operations. Digitaliza-

23



tion and computerization enable manufacturers/managers to make their own
smart factories/companies as a unified digital ecosystem of all the different
works aspects using advanced technologies to organize and optimize their
production/service cycles. In this situation, companies and corporates have
begun to adapt and implement the state-of-the-art into daily operations to
improve production efficiency, flexibility, and reduce cost (See for example
Malaca et al. 133). On the other hand, Woodall and Montgomery 134 express
that “Despite the large number of papers on this topic we have not seen much
practical impact on SPC”. This is an unacceptable face of SPC literature
that may occur because of several reasons. Weese et al. 34 also stated that
there are very few discussions in the related literature that, i) address the
step-by-step procedures of selection and operation of algorithm in practical
situations, ii) conduct an illustrative Phase I analysis, and iii) provide some
advice on how to apply the methods in practice, including how to establish
an in-control training sample or how large training data size is needed to
algorithm learned effectively. As an example of concerns (i) and (iii), one
of the most important stages of ML-based algorithms implementation is hy-
perparameter optimization which is also known as hyperparameter tuning.
Hyperparameters are those that lead to the highest accuracy and/or least er-
ror in the validation set and provide the best results for the problem they are
solving. It is important to note that the hyperparameter is different from the
model parameter. Hyperparameters are the model arguments that should be
determined before the learning process begins and they are not learned from
the training data like model parameters. For example, K in KNN, kernel
type and constants in SVMs, number of layers, and neurons in neural net-
works are some of the well-known hyperparameters. These hyperparameters
can be determined by maximizing (e.g. the accuracy) or minimizing (e.g the
loss function) the specified metrics. Although these hyperparameters play a
crucial role in utilizing ML algorithms that the effectiveness of the algorithm
largely depends on selecting good hyperparameter values, surprisingly, most
of the studies applying ML in SPC have not considered hyperparameter
optimization in their studies. Bochinski et al. 135 proposed an evolutionary
algorithm-based hyper-parameter optimization approach for committees of
multiple CNNs. Trittenbach et al. 136 developed a principled approach using
the Local Active Min-Max Alignment method to estimate SVDD hyperpa-
rameter values by active learning. In a ML-based SPC investigation, Trinh
et al. 137 investigated the application of one-class SVM to detect anomalies
in wireless sensor networks with data-driven hyperparameter optimization.
Also, Wu et al. 138 proposed an effective technique for Hyperparameter tun-
ing using reinforcement learning. Based on the above-mentioned discussions,
there is a large gap between the theories and assumptions in literature and
real demands in industrial environments that should be reduced through
future research. Accordingly, it is recommended to scientists for providing
illustrative guidelines for probably non-specialist practitioners to show them
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clearly how to implement the method in their problems. Moreover, it is also
important to prepare the source code of test designs using ML because most
of them have no explicit expression of control limits and ARL. This would
make the implantation of the proposed methods easy for practitioners.

6.4 Integration of SVM and NN techniques

It is known that both SVM and NN are powerful ML algorithms in the
anomaly detection and pattern recognition contexts because of their im-
pressive results which are reported in many references. However, each of
them has its advantages and disadvantage. For example, the structural risk
minimization of SVMs benefits their performance, in contrast with the em-
pirical risk minimization of NNs, which creates problems. While NNs try to
minimize the training error, the SVMs minimize an upper bound of the er-
ror, something that enables them to generalize easier even when the dataset
is small. Furthermore, SVMs find a global solution and cannot be stuck
in local minima, in contrast with the NNs (Apsemidis et al. 35). So, their
combination may lead to aggregation of benefits to serve as a unified attrac-
tive tool for ML-based SPC activities. For example in an anomaly detection
problem, one might utilize a deep NN and have the final classification via
SVM at the output layer. It is likely to have better classification results
compared to ordinary NN. Recently, Hosseini and Zade 139 suggested a new
hybrid technique called the MGA-SVM-HGS-PSO-NN model for detection
of a malicious attack on computer networks by combining SVM and NN
techniques. Their proposed method includes two stages, a feature selec-
tion stage and an attack detection stage. The feature selection process was
performed using SVM and a Genetic Algorithm (GA). On the other side,
the attack detection process was performed using an NN approach. The
performance of the MGA-SVM-HGS-PSO-NN method was compared with
other popular techniques such as Chi-SVM, NN based on gradient descent
and decision tree, and NN based on GA based on performance metrics like
classification accuracy, training time, the number of selected features, and
testing time on the basis of the well-known NSL-KDD dataset. They showed
that the proposed method is the best performing method on all criteria. For
example, the proposed MGA-SVM-HGS-PSO-NN method can attain a max-
imum detection accuracy of 99.3%, dimension reduction of NSL-KDD from
42 to 4 features, and needs only 3 seconds as maximum training time. In
a good review paper on ML Kernel Methods in SPC, Apsemidis et al. 35

showed that while 43% of the papers compare the SVM and NN algorithms
and in 51.9% there is no reference of NN in the SVM method, only 5.1% of
the cases the SVM and NN are combined to work together in the proposed
method. Thus, there is a large room here for developing new methods and
improving existing ML-based anomaly detection and CCPR models. For
instance, investigating the possible design of control charts for monitoring
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stationary and non-stationary multivariate time series data with LSTM or
Autoencoder CNN combined with SVDD technique can be considered as a
good research topic (see Tran et al. 125 and Nguyen et al. 126).

6.5 ML algorithm in the presence of drift

One of the assumptions in supervised learning is that the mapping func-
tion f is assumed to be static, meaning that it does not change over time.
However, in some problems, but not all problems, this assumption may not
hold true. It means that the structure of data can change over time and
hence the relation between input and output would be dynamic. This phe-
nomenon in the ML literature known as concept drift and may happen due
to several reasons. Ignoring concept drift while we are selecting and learning
the predictive model can affect the prediction power of the algorithm. To
tackle this problem, many adaptive learning techniques have been proposed
by researchers like Žliobaitė et al. 140 and Gama et al. 141 . However, to the
best of our knowledge, there is no study for ML-based control charts, pat-
tern recognition, and interpreting out-of-control signals by considering the
concept drift. So, there is a large potential here for more researches.

6.6 Data fusion and feature fusion

Data fusion and features are newly developed fields in data science that deal
with the problem of the integration of data and knowledge from multiple
sources and reducing the features’ space of raw data, respectively. This
technique can improve available information of data in the sense of decreas-
ing the associated cost, increasing the data quality and veracity, gathering
more related information, and increasing the accuracy of ML-based tools.
Especially, it can be useful in smart factories with multisensor environments.
For example, the main advantages of data fusion are discussed in more de-
tail in the biosurveillance area by Shmueli and Fienberg 142 (pp. 123-133).
Castanedo 143 classified the data fusion techniques into three main cate-
gories as ,i) data association, ii) state estimation, and iii) decision fusion.
In addition, feature fusion techniques can improve the ability of mixture
CCPRs. Recently, Zhang et al. 144 proposed a CCPR model based on fusion
feature reduction (FFR), which makes the features more effective, and fire-
works algorithm-optimized MSVM. They showed that the proposed method
can significantly improve the recognition accuracy and the recognition rate
and the run time of CCPR as well as deliver satisfying prediction results
even with relatively small-sized training samples. Another CCPR technique
based on the feature fusion approach is presented in Zhang et al. 145 . In con-
clusion, developing new and refining existing ML-based control charts and
ML-based CCPR models, as well as interpreting out-of-control techniques
based on data fusion and feature fusion methods are good directions for
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future research of the scientist in the field of this chapter (Weese et al. 34).

6.7 Control chart for complex data types

Data in the smart factories are nowadays collected with a high frequency,
high dimension, complex structure, and large variety which cannot be treated
straightforwardly. These new circumstances create the concept of complex
data. Functional data, compositional data, and topological data are some
important types of complex data. To handle such data, new data analysis
methods have developed or the existing techniques have refined by some re-
searchers. For example, Topological Data Analysis (TDA) has proposed to
analyze topological data that emerges as a powerful tool to extract insights
from high-dimensional data. The core idea of TDA is to find the shape,
the underlying structure of shapes, or relevant low dimensional features of
complex structure and massive data. In Umeda et al. 146 , the application
of TDA is used to describe the time-series DL for analyzing time series
data and anomaly detection. In particular, two key technologies-Mapper
and persistent homology are applied in both supervised learning and unsu-
pervised learning. Mapper presents the distinguishing features of a set of
data as an easy-to-understand graph. Persistent homology is a technology
that numerically captures a data shape in detail. This paper developed an
anomaly detection technology for time-series to detect an abnormal state
using TDA. Besides that, the data is becoming more and more related to
functional data. The studies on monitoring functional data have drawn a
lot of attention Colosimo and Pacella 147 , Liu et al. 148 , and Flores et al. 149 .
Anomaly detection methods for functional data based on functional PCA Yu
et al. 150 , wavelet functional PCA Liu et al. 148 are developed. However, the
application of advanced ML on this type of data for development, pattern
recognition, and interpreting of control charts still needs to be discovered.
Thus, more efforts are needed to develop tests that use ML to track these
types of data, need to find more documentation on ML methods suitable for
them in order to write them correctly. For instance, although these studies
have eliminated a lot of assumptions about the distribution of data when
designing control charts with ML techniques, there are still independent
data assumptions that do not exist in the data environment collected from
IoT sensors. In general, there are still very few studies on this promising
approach and further researches needs to be carried out to discover its nu-
merous applications to the smart factory. Accordingly, developing advanced
ML techniques to eliminate most of the assumptions of traditional SPC
in development, pattern recognition, and interpreting of control charts for
monitoring complex data types such as multivariate time series data, image
data, and Big Data with complex structures is a high-potential area to carry
out more researches. This will be a promising research direction to solve the
problem of smart factory SPC implementation with Big Data.
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6.8 Monitoring image data

Although applications of MVSs in industrial and medical shop floors have
been increased dramatically and a huge number of possible applications ex-
ist here, but there are only a few papers dealing with image monitoring.
Megahed et al. 116 reviewed image-based control charts including univariate,
multivariate, profile, spatial, multivariate image analysis, and medical im-
age devices charts and addressed the capability of image-based monitoring
in a much wider variety of quality characteristics. They noted that the use
of image-based control charts differs from traditional applications of control
charts in the SPC area. These differences can be attributed to a number
of factors, which include the type of data being monitored, the rationale
behind using control charts, and how the control charts are applied. Addi-
tionally, preprocessing of image data can also become a factor with 100%
inspection since the data preprocessing time can be longer than the pro-
duction cycle time. Therefore, these factors need to be considered when
developing the control charting strategy. He et al. 151 proposed a multivari-
ate control charting method for both single and multiple faults. In their
method, each image is divided into non-overlapping regions of equal size,
and the mean intensities of these regions are monitored with a multivariate
GLR-based statistic. Later, by extending the results of He et al. 152 , Stankus
and Castillo-Villar 153 developed a multivariate generalized likelihood ratio
control chart to identify process shifts and locate defects on artifacts by
converting 3D point cloud data to a 2D image. They considered the surface
dent in addition to two ordinary types of defects, surface curvature, and
surface scratch, that does not identify by the existing methodologies. By
means of a comparative study, Stankus and Castillo-Villar 153 showed that
the new methodology has a significantly shorter out-of-control ARL than
the He et al. 152 methodology for the scratch and no significant difference
in out-of-control ARL for the incorrect surface curvature. Zuo et al. 117 re-
ported that the existing research in the image-based SPC area has focused
on either identification of fault size and/or location or detection of fault
occurrence and there is limited research on both fault detection and iden-
tification. To handle such situations, they proposed an EWMA and region
growing based control chart for monitoring of 8-bit grayscale images of in-
dustrial products. The results of the simulation study showed that the new
method is not only effective in quick detection of the fault but also accurate
in estimating the fault size and location. Recently, Okhrin et al. 154 provided
an overview of recent developments on monitoring image processes. While
we review some existing literature in this field, there are still some research
opportunities in the integration of ML-based control charting methods and
pattern recognition models with image data. It is known that with smart
manufacturing, the amount of images collected from production lines is very
big and each image may include millions of pixels that need ML approaches
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to develop new control charts and CCPR frameworks. Many authors assume
an independent residual process, while there is a natural spatial correlation
structure of the pixels in neighborhoods. Therefore, there is a consequent
need for some ML-based approaches for the successful monitoring of image
processes. The existing methods, for instance, Okhrin et al. 155 and Yuan
and Lin 156 , can be improved to developing CNN and Transformers control
charts to monitoring images in SM.

7 A Case Study: Monitoring and early fault de-
tection in bearing

In this section, we present an application of ML based control chart for mon-
itoring and early fault detection in bearing. AD in vibration signals is an
important technique for monitoring, early detection of the failure, and fault
diagnosis for rotating machinery. Very recently, Tran et al. 125 , Tran et al. 157

and, Nguyen et al. 126 have developed very efficient methods with Long Short
Term Memory networks (LSTM) and LSTM Autoencoder techniques in de-
tecting anomalies for multivariate time series data. In this case study, we will
combine both of these methods to propose a new ML based control chart that
performs anomaly detection in an industry context. According to Nguyen
et al. 126 , we suppose that the autoencoder LSTM has been trained from a
normal sequence {x1, x2, . . . ,xN}, where N is the number of samples and

xt = {x(1)t , x
(2)
t , ..., x

(k)
t }, t = 1, 2, . . . is the value of the multivariate time

series at the time t with k number of variables (these notations are from
previous section). Using a sliding window of size m, the trained autoen-
coder LSTM can read the input sequence Xi = xt, . . . ,xt−m+1, encode it
and recreate it in the output X̂i = (x̂t, . . . , x̂t−m+1), with i = m+ 1, . . . , N..
Since these values has been observed from the data, one can calculate the
prediction error ei = ‖X̂i −Xi‖, i = m+ 1, . . . , N. The anomaly detection
is then based on these prediction errors. The anomaly scores distribution
of the training dataset is shown in Figure 5. In many studies, these er-
ror vectors are supposed that follow a Gaussian distribution and then used
the maximum likelihood estimation method to estimate the parameters of
this distribution. However, one can argue that the assumption of Gaussian
distribution for error vectors may not be true in practice. To overcome
the disadvantage of this method, Tran et al. 125 proposed used the kernel
quantile estimation (KQE) control chart (Sheather and Marron 158) to au-
tomatically determines a threshold for time series anomaly detection. In
particular, at the new time t, if et > τ , xt is classified as anomaly point and
vice versa, see Tran et al. 125 for more details.

The experimental data were generated from a bearing test rig that was
able to produce run-to-failure data. These data were downloaded from the
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Prognostics Center of Excellence (PCoE) through a prognostic data repos-
itory contributed by Intelligent Maintenance System (IMS), University of
Cincinnati (Qiu et al. 159). According to (Qiu et al. 159), vibrations signals
were collected every 10 minutes with a data sampling rate was 20kHz and
the data length was 20 480 sensor data points.

Figure 5: Anomaly scores distribution of the training dataset

This ML-based control chart allows for conditional monitoring and pre-
diction of the upcoming bearing malfunction well in advance of the actual
physical failure. It allows to automatically define a threshold value for flag-
ging anomalies while avoiding too many false positives during normal op-
erating conditions. The early detection of bearing failure is shown in the
Figure 6, the bearing failure is confirmed at the end of this experiment (Qiu
et al. 159). This promising approach could provide a perfect tool to enable
predictive maintenance implementation in SM.

8 Conclusion

Along with the development of technologies and AI, leading to production
systems become more complex and modern-day by day. Therefore, the ap-
plication of ML to SPC is an interesting and necessary trend that has been
strongly developed in recent years to meet the needs of SM. In this chapter,
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Figure 6: Bearing Failure Anomaly Detection

we have introduced different applications of ML in control chart implemen-
tation including designing, recognition trend, and interpreting. A literature
review about these issues is discussed. Although there have been many
achievements in research in this field, there are still many difficulties and
problems that need to be solved in order to be able to apply control charts
to SM. There still exists a significant potential for reducing the gap between
theory and application in modern industries. A case study is also provided
to present a ML-based control chart for monitoring and early fault detection
in bearing.
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