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Multi-objective optimization of the textile manufacturing process is increasingly challenging because of the growing complexity 

involved in the development of the textile manufacturing process. The use of intelligent techniques have been often discussed in this 

issue, although significant improvement from certain successful applications is reported, the traditional methods fail to work with high-

dimension decision space and require prior experts’ knowledge as well as human intervention. Upon which, this paper proposed a 

multi-agent reinforcement learning (MARL) framework to transform the optimization process into a stochastic game, and introduced 

the deep Q-networks algorithm to train the multiple agents. A utilitarian selection mechanism is employed in the stochastic game that 

maximizes the sum of all agents’ rewards (obeying the increasing ε-greedy policy) in each state to avoid the interruption of multiple 

equilibria and achieve the correlated equilibrium optimal solutions of the optimizing process. The case study result reflects that the 

proposed MARL system is possible to achieve the optimal solutions for the textile ozonation process and it performs better than the 

traditional approaches.  

Keywords: Deep Reinforcement Learning; Deep Q-Networks; Multi-objective; optimization; Decision; Process; Textile 

Manufacturing. 

 

1.   Introduction 

Textile manufacturing process adds value in fiber materials by means of converting the fibers into the yarns, 

fabrics, and finished products. It is very difficult to make decision in textile manufacturing scenario owing to the 

complicated application of a wide range of dependent and independent parameter variables during a very long chain 

of the textile processes [1]. Meanwhile, the optimization of a textile manufacturing process in terms of scenario 

solution always involves the consideration of multiple objectives as the fact that the performance of it generally is 

govern by a few conflicting criteria with different significance [2].  

In recent years, multi-objective optimization of the textile manufacturing process has drawn increasing attention 

thanks to the rapid development and wide application of intelligent techniques in the textile industry[3]–[6]. Along 

with the progress of intelligent manufacturing, the traditional industry of textile manufacturing, which generally is 

based on small and medium enterprises and relies heavily on product customization and short manufacturing cycles 

as distributors and consumers are increasingly looking for variety and personalization, has to be forced to overcome 

diverse challenges ranging from quality, efficiency to cost and environmental impacts. Since the textile 

manufacturing consists of a variety of processes (a general illustration of the textile manufacturing processes is 

displayed in Figure 1), the probable combinations of processes and parameters could be stochastic and enormous 

when the factors of the performance vary in any respects. Furthermore, the known and unknown factors cannot be 

interpolated and extrapolated in a reasonable way based on experimental observations or mill measurements due to 

the shortage of knowledge on the evaluation of the interaction and significance at weight contributing from each 

variable[7]. It turns out that classical techniques are no longer efficient in some scenarios of textile manufacturing on 

account of the growing complexity. While intelligent techniques, especially the machine learning algorithms have 

been successfully applied in many sectors and shown their power for coping with complicated optimization problems 



with large-scale data and high-dimension searching space [8], [9]. Therefore, the use of intelligent techniques is 

strongly related to the nature of the present problem of interest.  

 

Figure 1. a genearl illustration of the textile manufacturing processes from fiber to garment 

 

Historically, researchers generally dealt with the multi-objective optimization problems of textile manufacturing 

by means of mathematical programming methods [10], [11] and meta-heuristic algorithms[12]. These approaches, 

however, either simplify the case by omitting certain non-essential details to achieve manageable equations on the 

basis of a scarification on accuracy or require prior experts’ knowledge and human intervention. More importantly, 

they fail to work with high-dimension decision space. It is noticed that the novel machine learning algorithms are 

demonstrating increasingly versatile and powerful in the practical applications of optimization issues in the industry, 

and considerable researches paid attention to using reinforcement learning (RL) algorithms[13]–[19] in this regard. 

However, most of these previous RL studies focused only on single-objective problems. 

It is known that multi-objective optimization problem could be transformed into game theoretic models to be 

well solved [20], [21], and recent developments of multi-agent system for optimizing multiple objectives on the basis 

of game theory have shown its extreme capability of dealing with functions having high dimensional space[22], [23]. 

On the other hand, the multi agent reinforcement learning (MARL) has been proposed by many contributions for 

robotics distributed control, telecommunications, traffic light control, and dispatch optimization etc. [24]–[26], but 

traditional MARL algorithms generally can hardly handle the large-scale problem, the applicability of it was 

therefore very limited[27]. While in recent years, the development of deep reinforcement learning (DRL) has 

achieved many outstanding results, which prompts a growing number of research efforts paying to the investigations 

of algorithms and applications of DRL in MARL environment [28]–[30]. Although studies reported the use of 

MARL and DRL for optimizing workflow scheduling, electronic auctions and traffic control problems with multiple 

objectives[31], very limited work solved a complex production problem, especially in the textile manufacturing 

industry.  

Upon which, this paper formulates the multi-objective optimization problems of the textile manufacturing 

process into a Markov game paradigm and collaboratively applying multi-agent deep-Q-networks (DQN) 

reinforcement learning instead of current methods to optimize the textile process in terms of multiple objectives. 

2.   State of art and contributions 

Textile manufacturing originates from the fibers (e.g. cotton) to final products (such as curtain, garment, and 

composite) through a very long procedure with a wide range of different processes filled with a large number of 
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variables. The simultaneous optimization of multiple targets in a textile production scheme from the high 

dimensional space is extremely challenging with a dramatically high cost. 

There have been a variety of works on the textile process multi-objective optimization from the last decades. For 

example, Sette and Langenhove [32] simulated and optimized the fiber-to-yarn process to balance the conflicting 

targets of cost and yarn quality. Majumdar et al [10] optimized the functional clothing in terms of ultraviolet 

protection factor and air permeability. Mukhopadhyay et al[33] attempted to optimize the parametric combination of 

injected slub yarn to achieve least abrasive damage on fabrics produced from it. Almetwally [34] optimized the 

weaving process performances of tensile strength, breaking extension and air permeability of the cotton woven 

fabrics by searching optimal parameters of weft yarn count, weave structure, weft yarn density and twist factor. 

These works generally used the prior techniques that combine the multiple objectives into a single weighted cost 

function, the classical approaches such as weighted sum , goal programming, min-max, etc. are not efficient due to 

the fact that they cannot find the multiple solutions in a single run but times as many as the number of desired 

Pareto-optimal solutions. Pareto optimal solutions or non-dominated solutions are equally important in the search 

space that superior to all the other solutions when multiple objectives are considered simultaneously, and the curve 

formed by joining Pareto optimal solutions is the well-known Pareto optimal front[35].  

Heuristic and meta-heuristic algorithms are a branch of optimization in computer science and applied 

mathematics[36]. The investigations and applications of the related algorithms and computational complexity theory 

are very popular in the textile manufacturing industry with regard to the multi-objective optimization that is feasible 

to approach the Pareto optimal solutions. Among these, evolutionary algorithms such as genetic algorithms (GA) and 

gene expression programming (GEP) are the ones that most often taken into consideration in previous studies in the 

textile sector. Kordoghli et al[37] schedule the flow-shop of a fabric chemical finishing process aiming at minimal 

make-span and arresting time of machine simultaneously using multi-objective GA. Nurwaha[38] optimized the 

electrospinning process performance in terms of fiber diameter and its distribution by searching optimal solutions 

with regard to the processing parameters including solution concentration, applied voltage, spinning distance and 

volume flow rate. The electrospinning process parameters were mapped to the performances by the GEP model, and 

a multi-objective optimization method was proposed on the basis of GA to find the optimal average fiber diameter 

and its distribution. Wu and Chang [39] proposed a nonlinear integer programming framework on the basis of GA to 

globally optimized the textile dyeing manufacturing process. The results of their case study presented the 

applicability and suitability of this methodology in a textile dyeing firm and exactly reflected the complexity and 

uncertainty of application challenges in the optimal production planning program in the textile industry. 

In terms of multi-objective optimization, the general GA systems developed in the works above may not 

efficient in certain cases as the elitist individuals could be over-reproduced in many generations and lead to early 

convergence. To this end, Deb [40] proposed Non-dominated sorting genetic algorithm Ⅱ (NSGA-Ⅱ) that introduced 

a specialized fitness function and fast non-domination sorting as well as crowding distance sorting  in the common 

GA system to promote solution diversity in the generations. Such a modified strategy has been widely applied in 

related textile studies. For instance, Ghosh et al[41] optimized the yarn strength and the raw material cost of the 

cotton spinning process simultaneously with NSGA-Ⅱ on the basis of two objective function models in terms of 

artificial neural networks and regression equation. Similarly, Muralidharan et al. [42]described the combined use of 

NSGA-Ⅱ with response surface methodology for the design and control of color fast finish process to optimize five 

quality characteristics, i.e. shade variation to the standard, color fastness to washing, center to selvedge variation, 

color fastness to light and fabric residual shrinkage. Majumdar et al. [43] derived the Pareto optimal solutions using 

NSGA-II so as to obtain the effective knitting and yarn parameters to engineer knitted fabrics having optimal 

comfort properties and desired level of ultraviolet protection. Barzoki et al. [44]  and Vadood et al. [45] employed 

this algorithm with artificial neural networks and Fuzzy logic respectively to optimize the properties of core-spun 

yarns in the rotor compact spinning process, where the investigated process parameters consist of the filament pre-

tension, yarn count and type of sheath fibers, and the objectives were yarn tenacity, hairiness and abrasion resistance 

for the former but elongation and hairiness for the latter respectively. Apart from the GA frameworks, applications 

reported of other heuristic or meta-heuristic algorithms for multi-objective optimization in textile domain also have 



been presented with synergetic immune clonal selection (SICS), artificial bee colony (ABC) algorithm, ant colony 

optimization (ACO), and particle swarm optimization (PSO) [12], [46]. Meanwhile, simultaneous optimization using 

desirability function[47], in addition to the heuristic or meta-heuristic algorithms, was very popular in the textile 

manufacturing process multi-objective optimization applications as well[48], [49].  

As the focus of this paper is on the large-scale data and high-dimension space in the multi-objective 

optimization problems in the textile manufacturing process, however, the aforementioned techniques are 

significantly restricted by prior expert’s knowledge from a global point of view and failed to work with large-scale 

data and high-dimension decision space. Although these classical techniques might make sense in certain previous 

studies, the effectiveness and efficiency of these traditional tools would be unacceptable in the industry 4.0 era with 

the massive quantities of data as well as the high complexity of the textile manufacturing process. For example, the 

heuristic methods are time-consuming that can hardly be applied in the context of industrial practice, when the 

number of variables is very large, along with large change intervals[50]. By contrast, multi-agent reinforcement 

learning (MARL) is a machine learning approach using a relatively well understood and mathematically grounded 

framework of Markov decision process (MDP) on the basis of game theory that has been broadly applied to tackle 

the practical multi-objective optimization problems in the industry[26], [31]. However, at present, none of the studies 

ever reported the use of MARL for optimizing the textile manufacturing process before. Unlike classical RL 

algorithms such as Q-learning and SARSA that relied on a memory-intensive tabular representation of the value or 

instant reward, which not only perform inefficiently in the high-dimensional cases but waste computational power as 

well, deep-Q-networks (DQN) algorithm utilizes deep learning tools and strategies of experience replay[51] and 

fixed Q-target that is quite good at coping with the large-scale issues and has recently been well evaluated in many 

applications  of deep reinforcement learning (DRL) [18], [52], [53]. Given the advantages that the DQN can offer 

when confronted with high-dimensional complexities in the textile process, this paper proposes the DQN algorithm 

in the MARL framework for multi-objective optimization. To the best of our knowledge, this is the first paper that 

investigates the multi-objective textile process optimization problems using DQN based MARL system.  

The main contributions of this paper are listed below: 

(1) Construction of a machine learning based multi-objective optimization system for the textile manufacturing 

process.  

(2) Formulation of optimizing the textile manufacturing process as a Markov decision process, and applying 

reinforcement learning to solve the problem. 

(3) Transforming the multi-objective optimization problems of textile manufacturing into the game-theoretic 

model, and introducing multi-agent for searching the optimal process solutions. 

(4) The application of DQN is extended to the multi-agent reinforcement learning system. Compared to the 

tabular RL algorithms applied in prior related works, DQN is more applicable and preferred to cope with 

the complicated realistic problem in the textile industry. 

The rest of this paper is organized as follows: Section 3 presents the problem formulation of textile 

manufacturing process multi-objective optimization and the mathematical representation of the problem in the 

system model, followed by the detailed illustrated framework of the proposed MARL system and a case study of 

applying the system to optimize an advanced textile finishing process optimization in Section 4 and Section 5 

respectively. Finally, conclusions and future works are discussed in Section 6.  

3.    System model 

Consider the solution of a textile manufacturing process P is composed and determined by a set of parameter 

variables {v1, v2… vn}, the impacts of these variables on the process performance could be varied a lot from n 

different respects with uncertainty, as the number of the processes and the related variables in the textile 

manufacturing industry is enormous and the influences of these variables on the targeted optimization performance 

are unclear. For example, the longer time was taken of a textile process generally would lead to the increment of 

production cost, and a tiny enhance of temperature used in the textile production process could significantly arouse 



the power consumption, but sometimes the enhanced temperature may promote the process efficiency so that 

decrease the production cost eventually. Therefore, it is necessary to study the interrelated effects of process 

variables on the process performance. From the engineering perspective, it is important to achieve a solution in the 

textile manufacturing process that can achieve good quality and avoid idle time, waste and pollutions at the same 

time. Models that incorporate the information of the process simulating the variation of multiple objective 

performances from the change of variable in the solutions are rather essential. 

Suppose models exist that can map variables v1, v2… vn of the process solution P to its performance in 

accordance with m objectives, the performance of a specific solution could be simulated by: 

                                      (1) 

When a decision-maker who wants to find a solution that satisfies m objectives of the process performances that 

the objectives are non-commensurable and no preference of the objectives related to each other is coming up with the 

decision-maker. The multi-objective problem could be defined as giving the n-dimensional variable vector P = {v1, 

v2… vn} in the solution space, finding a vector of p
*
 that optimizes a given set of m objective functions: 

                  
        

               (2) 

The solution space is generally restricted by a series of constraints, when the domain of vj ∈ Vj for j = 1, …, n is 

known, and representing the m objectives by M, the objective of the problem is to find (3): 

          ∈                                             (3) 

Equation (3) aims at searching the optimal solution of variable settings, while there are always conflicting 

objectives that satisfying one single target but lead to unacceptable results to the others. A perfect multi-objective 

solution that simultaneously optimizes each objective function is almost impossible. To this end, this paper proposes 

a self-adaptive DQN-based MARL framework where the m optimization objectives are formulated as m DQN agents 

that trained through self-adaptive process constructed upon a Markov game.  

4.   Methodology 

4.1.   Multi-objective optimization of textile manufacturing process as Markov game 

We begin by formulating the single objective textile process optimization problem as a Markov decision process 

(MDP) in terms of a tuple :{ S, A, T, R}, where S is a set of environment states, A is a set of actions, T is the state 

transition probability function, R is a set of reward or losses. An agent in an MDP environment would learn how to 

take action from A by observing the environment with states from S, according to corresponding transition 

probability T and reward R achieved from the interaction. The Markov property indicates that the state transitions are 

only dependent on the current state and current action is taken, but independent to all prior states and actions[54]. 

While in the case of a multi-agent system, the joint actions are the result of multiple agents, the MDP is generalized 

to the stochastic Markov game of {S,   ,…,  , T,   ,…,   }, where S and T are similar to the MDP that are the 

finite set of environment states and the state transition probability function respectively in a Markov game, whereas 

differently, m is the number of agents,    for i =1,…, m are the finite sets of actions available to the agent i,    for i 

=1,…, m are the reward functions of the agent i. 

As known that the solution of a textile manufacturing process is affected by a number of variables as P {v1, v2… 

vn}, if the possible value of vj is h(vj), the feasible values of the parameter in the process can define the environment 

space   from        
 
      ∈     impacting the performance of textile process with regard to the k objectives. These 

parameter variables are independent to each other and obey a Markov process that models the stochastic transitions 

from a state St  at time step t to next state St+1, where the environment state at time step t is:  

 St = [   
  ,   

      
  ] ∈        (4) 



RL algorithm trains an agent to act optimally in a given multi-agent environment based on the observation of 

states and other agents as well as the feedback derived from the interactions, acquiring rewards and maximizing the 

accumulative future rewards over time from the interaction[54]. In our case, the agents learn in the interaction with 

the environment and other agents by taking action that can be conducted on the parameter variables ∈ P {v1, v2… vn} 

at time step t. Specifically, the action of an agent in a time step t of optimizing a textile manufacturing process in the 

Markov game, could be adjusting variable    to keep (0) or change to up (+) and down (-) with a specific unit uj 

subjected to the constraint. As a result, there are 3
n
 actions in total in the joint action space A and, for simplicity, the 

action vector    at time step t could be:   

       
     

     
   ,     where   

  
∈                ∈                    (5) 

We define      ∈   ∈ 
     for the joint action from overall the agent i’s set of pure actions at state s. The m 

objectives of textile manufacturing process optimization are assigned to m agents in the Markov game. As known 

that apart from the benefits derived from the distributed nature of the multi-agent system such as parallel 

computation, the experience sharing from different agents also significantly improve the multi agent algorithms. 

Therefore, it is assumed that agents can observe each other’s action and rewards to select the joint distribution in our 

case, and the joint action are determined by the actions selected of each agent               .  

The state transition probabilities, as mentions that, are only dependent on the current state St and action  . It 

specifies how the reinforcement agents take action    at time step t to transit from St to next state St+1 in terms of T 

(St+1 St,    ). For all    
  

∈                ∈                       > 0 and                        ∈ . The 

reward achieved by an agent in an environment is specifically related to its transition between states, which evaluates 

how good the transition agent conducts and facilitates the agent to converging faster to an optimal solution.  

When the reinforcement agents perform joint action    at time step t to divert the system from St to next state 

St+1 with transition probability T, each agent would earn reward           from (3) of the objective functions. This 

procedure would be repeated at time t+1 again, and finally converge agents’ behaviors to a stationary policy.  

According to our previous study[55], a random forest (RF) predictive model is applied to simulate the textile process 

in this proposed framework, and implement the objective functions (3) to earn the agents rewards. As illustrated in 

Figure 2 the textile manufacturing process multi-objective optimization problem in the paradigm of MARL, the 

optimization objectives are abstracted as RL agents, given feedbacks from the RF models integrated in the Markov 

game environment with state space formulated in Equation (4) that consist of all the parameter variables of the 

simulated textile process, the agents, are able to evaluate the values of its actions for adjusting the parameter 

variables with regard to the state (solution) and consequently improve its policy in the environment to optimize 

objectively gradually.  

 

Figure 2. The Markov game for textile manufacturing process multi-objective optimization in the proposed framework 
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Stochastic games are neither fully cooperative nor fully competitive[24]. The performance of multi-objective 

optimization of our case in stochastic Markov game is determined by the agents’ capability of gathering information 

about the other agents’ behavior and the reward functions from the interaction to make more informed decision 

thereafter. The rewards mechanisms along with the interaction among agents perform a significant function in this 

respect, so that the proposed system, similar to the study of [31], employs an utilitarian selection mechanism 

         ∈                ∈  that maximize the sum of all agents’ rewards in each state to avoid the 

interruption of multiple equilibria. Convergence to equilibria is a basic stability requirement of MARL, and the Nash 

equilibrium is a well-known solution concept for the stochastic game that a joint strategy leading to a status of no 

agent is incentive to change its strategy. But a correlated equilibrium with increased generality instead of Nash 

equilibrium is taken into consideration in this issue as it allows agents’ strategies to be interdependent. It is a joint 

distribution of actions from which none of the agents has any motivation to deviate unilaterally. Consequently, the 

solutions of the textile manufacturing process multi-objective optimization problem are correlated equilibria. 

Formally, given a Markov game, a joint stationary policy π leads to a correlated equilibrium when: 

   ∈    ∈         
              

       

 ∈       ∈      

 
(6) 

where        is the set of action vector in state s excluding ones of agent i. The above inequality denotes that in state 

s, when it is recommended that agent i play a, it prefers to play a, because the expected utility of a is greater than or 

equal to the expected utility of   , for all   . 

4.2.    Deep Q-networks reinforcement learning algorithm  

Classical RL algorithms such as the Q-learning and the SARSA (0/λ), are based on a memory-intensive tabular 

representation (i.e. Q-table) of the value or the instant reward, of taking an action a in a specific state s (the Q value 

of state-action pair, a.k.a Q(s, a)). These tabular algorithms impede the RL in realistic large-scale applications due to 

the huge amounts of states or actions involved in.  The tabular expression not only comes short of recording all of the 

Q(s,a) in these application, but also shows poor generalization in the environment with uncertainty.  

The deep neural networks (DNNs) is another widely applied machine learning technique coping with the large-

scale issues and has recently been innovatively combined with the RL to evolve toward deep reinforcement learning 

(DRL) algorithms. Deep-Q-network (DQN) is a DRL algorithm developed by Mnih et al[53] in 2015 as the first 

artificial agent that is capable of learning policies directly from high-dimensional sensory inputs and agent-

environment interactions. It is an RL algorithm proposed based on Q-learning, one of the most widely used model-

free off-policy and value-based RL algorithms.  

The Q-learning agent learns through estimating the sum of rewards r for each state St when a particular policy π 

is being performed. It uses a tabular representation of the Q
π
(     ) value to assign the discounted future reward r of 

state-action pair at time step t in Q-table. The target of the agent is to maximize accumulated future rewards to 

reinforce good behavior and optimize the results. In Q-learning algorithm, the maximum achievable Q
π
(     ) obeys 

Bellman equation on the basis of an intuition: if the optimal value Q
π
(         ) of all feasible actions     on state 

     at the next time step is known, then the optimal strategy is to select the action       maximizing the expected 

value of             
             .  

                        
             (7) 

According to the Bellman equation, the Q-value of the corresponding cell in Q-table is updated iteratively by: 

                                      
                         (8) 



where    and    are the current state and action respectively, while      is the state achieved when executing      in 

the set of S and A in any given MDP tuples of{S, A, T, R}.   ∊ [0, 1] is the learning rate, which indicates how much 

the agent learned from new decision-making experience (              ) would override the old memory 

(         ). r is the immediate reward,   ∊ [0, 1] is the discount factor determining the agent’s horizon.  

The agent takes action on a state in the environment and the environment interactively transmits the agent to a 

new state with a reward signal feedback. The basic principle of Q-learning algorithm essentially relies on a trial and 

error process, but different from humans and other animals who tackle the real-world complexity with a harmonious 

combination of RF and hierarchical sensory processing systems, the tabular representation of Q-learning is not 

efficient at presenting an environment from high-dimensional inputs to generalize past experience to new 

situations[53]. 

Q-table saves the Q value of every state coupled with all its feasible actions in an given environment, while the 

growing complexity in the problem nowadays indicates that the states and actions in an RL environment could be 

innumerable (such as Go game). In this regard, DQN applies DNNs instead of Q-table to approximate the optimal 

action-value function. The DNNs feed by the state for approximating the Q-value vector of all potential actions, for 

example, are trained and updated by the difference between Q-value derived from previous experience and the 

discounted reward obtained from the current state. While more importantly, in order to solve the instability of RL 

representing the Q value using nonlinear function approximator[56], DQN innovatively proposed two ideas termed 

experience replay[51] and fixed Q-target. As known that Q-learning is an off-policy RL, it can learn from the current 

as well as prior states. Experience replay of DQN is a biologically inspired mechanism that learns from randomly 

taken historical data for updating in each time step, which therefore would remove correlation in the observation 

sequence and smooth over changes in the data distribution. Fixed Q-target performs a similar function, but 

differently, it reduces the correlations between the Q-value and the target by using an iterative update that adjusts the 

Q-value towards target values periodically. 

Specifically, the DNNs approximate Q-value function in terms of Q-(s, a; θi) with parameters θi which denotes 

weights of Q-networks at iteration i. The implementation of experience replay is to store the agent’s experiences et= 

(St, At, rt, S t+1,) at each time step t in a dataset Dt = {e1,…et,}. Q-learning updates were used during learning to 

samples of experience, (S, A, r, S’) ~ U(D), drawn uniformly at random from the pool of stored samples. The loss 

function of Q-networks update at iteration i is: 

 
                                     

  
           

              

 

  (9) 

where   
 are the networks weights from some previous iteration. The targets here are dependent on the network 

weights; they are fixed before leaning begins. More precisely, the parameters   
  from the previous iteration is fixed 

as optimizing the ith loss function        at each stage and are only updated with    every F steps. To implement this 

mechanism, DQN uses two structurally identical but parametrically differential networks, one of it predicts 

          using the new parameters   , the rest one predicts               
        

   using previous parameters 

  
    Every F steps, the Q network would be cloned to obtain a target network   , and then    would be used to 

generate Q-learning target              
        

   for the following F updates to network Q.  

4.3.   DQN based MARL for multi-objective optimization of textile manufacturing process 

The pseudo-code of the DQN based MARL framework for multi-objective optimization of the textile 

manufacturing process is illustrated in Algorithm 1. Correspondingly, Figure 3 graphically depicts a single episodic 

running of Algorithm 1. In order to learn a correlated equilibrium strategy, the DQN agents interact with the textile 

solution environment and other agents iteratively on the basis of local updates of Q-values and policy at each state. 

As mentioned, the random forest models (RF) are constructed to simulate the objective performances of the textile 

process in the proposed framework. Along with suitable reward mechanisms designed according to objective 

functions (in our framework, the reward of an agent is given by the improvement of the objective performance from 



the current state compared with the last state), the convergence of the DQN-based algorithm in multi-agent settings 

can be guaranteed.  

The given algorithm can work without episodes as the target of agents is to find the optimized solution, in terms 

of state in the environment with specifications of multiple objective performances in the textile process simulated by 

RF models, however, the lack of exploration of the agent in an environment may cause local optimum in a single 

running. So we initialize the first state randomly from each sub-state   
  , where parameter variables    ∈    , and 

introduce an episodic learning process to the agent for enlarging the exploration and preventing local optimum. 

Additionally, we employed an increasing  -greedy policy to balance the exploration and exploitation of states at the 

learning period and optimizing period respectively. As illustrated in Algorithm 2, increasing  -greedy is employed 

with an increment given in each time step from 0 until it equals to     . This helps the agents find the best actions in 

the present state to go to the next state with a possibility of   that may also randomly choose an action with a 

possibility of      to get a random next state. In this regard, the agents can explore the unexplored states without 

staying in the exploitation of already experienced states of Q-networks, and plentifully exploit them when the states 

are traversed enough. 

Algorithm 1:  DQN based MARL main body: 

Input: game ℾ , RF models for simulating m objective performance         , selection mechanism h, expected     

            performance of process P (p1, p2 … pm,), number of episodes     E , number of time steps N, learning rate  ,  

            discount factor   , the step updating DQN F, replay memory size D;  

Initialize function   with random weights  ; 

Initialize function    with weights     ; 

Initialize state s0= (         )  

For episode =1, E do 

    For time step=1,  N do 

        Choose an action randomly or at ∈ h using increasing ε-greedy policy 

        Execute action at , observe next state st+1  

        Estimate               and                   to observe    (               
                

  ) 

        Store transition (st, at, rt, st+1) in D 

        Sample random minibatch of  transitions (st, at, rt, st+1) from D 

        Set     
                                                                                                      

                   
                                                                      

  

        Perform a gradient descent step on                 
 

 with regard to    

        Every R steps reset                
 

        st  ← st+1 

    End For 

End For 

 



 

Figure 3. Flowchart of the algorithm implementing the proposed DQN based multi-agent system for optimizing 

textile manufacturing process with multiple objectives 

 

Algorithm 2:  Increasing  -greedy policy 

Input:           ,      

                          ; 

If random(0,1) >   

    Randomly choose action at from action space 

Else 

    at         ∈                ∈  

End if   

5.   Case study 

5.1.   Experimental setup 

The case study of the developed system to optimize an advanced ozonation process for textile color fading with 

respect to multiple objectives was implemented for the evaluation purpose. Color fading is an essential finishing 

process for specific textile products such as denim to obtain a worn effect and vintage fashion style [57]. But this 

effect conventionally was achieved by chemical procedures which have an expensive cost, and highly consume water 

and power, resulting in heavy negative impacts on the environment. Instead, ozone treatment is an advanced 

finishing process employing ozone gas to achieve color faded effects on textile products without a water bath, so that 

save power and water, and causes less environmental issues. The interrelated influences of this process on its process 

performances have been investigated in our previous works[58]–[61], and according to the experience data with 129 

samples we collected from these experimental studies, four random forests (RF) predictive models were constructed 

for simulating the 4 process performances of the color fading ozonation process. The present case study will attempt 
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to solve the optimization problems of the color fading ozonation process with regard to the 4 process performance 

using the DQN based MARL system.   

The RF models are inputted by 4 ozonation process parameters (water-content, temperature, pH and treating 

time) to predict four objective color faded performances in terms of color indexes known as k/s, L
*
, a

*
, and b

*
 of the 

treated fabrics with the accuracy of R
2
=0.996, 0.954, 0.937 and 0.965 respectively. The k/s value indicates the color 

depth, while L
*
, a

*
, and b

*
 are the color indexes from an widely used international standard illustrating the color 

variation in three dimensions (lightness from 0 to 100, chromatic component from green to red and from blue to 

yellow from -120 to 120 respectively)[62]. Normally, the color of the final textile product in line with specific k/s, L
*
, 

a
*
, and b

* 
is within the acceptable tolerance of the consumer.    

We optimize the color performance in terms of k/s, L
*
, a

*
, and b

* 
of the textile in ozonation process by finding a 

solution including proper parameter variables of water-content, temperature, pH and treating time that minimizes the 

difference between such specific process treated textile product and the targeted sample. Therefore, there are four 

agents in the stochastic Markov game, and the state space   of it is composed by the solutions containing four 

parameters (water-content, temperature, pH and treating time) in terms of St = [   
  ,   

     
  ,   

  ]. In a time step t, 

given the adjustable units of these parameter variables u = 50, 10, 1, 1 with regard to the constraint ranges of [0, 150], 

[0,100], [1, 14] and [1, 60] respectively, as the action of a single variable    could be kept (0) or changed up (+) / 

down (-) in the given range with specific unit u, so there are 3
4 
=81 actions totally in the action space and the action 

vector every single agent at time step t is        
     

     
     

   , where    
  ∈               ∈        ; 

  
  ∈               ∈        ;   

  ∈             ∈       ;   
  ∈             ∈       . 

The transition probability is 1 for the states in the given range of state space above, but 0 for the states out of it.  

The reward r of an agent at time step t is expected to be in line with how close the agent gets to its target representing 

the related objective function. We set up the reward function as illustrated below to induce the agents to approach 

corresponding optimization objective results: 

                
                

                  (10) 

As demonstrated the pseudo-code of DQN based MARL main body in Algorithm 1, the expected color 

performances of ozonation process treated samples (               , in terms of k/s, L
*
, a

*
, and b

*
)  are sampled by 

experts as 0.81, 15.76, -20.84, and -70.79 respectively to function the system in the present case study. Therefore, 

there are four agents in this case with respect to their corresponding optimization targets. In addition to the targets, 

the parameters of DQN agents such as step F for updating Q-networks and replay memory size D, as well as the 

learning rate   and the discount rate   for updating loss function, etc., are listed in Table 1. In particular, the F step 

for updating DQN here denotes that after 100 steps, the Q-networks would be updated at every 5 steps.  

TABLE I.  DQN ALGORITHM SETTING IN TEXTILE OZONATION PROCESS CASE STUDY 

F D                     E N 

5(>100) 2000 0.01 0.9 0.001 0.9 1 5000 

The neural networks implemented by TensorFlow[63] are used in our case study to realize Q-networks, and 

specifically, the networks consist of two layers with 50 and 3
4 

hidden nodes respectively, where the last layer 

corresponds to the actions. In order to reflect the effectiveness and efficiency of the proposed DQN-based MARL 

system for multi-objective optimization of the textile manufacturing process in this case study, multi-objective 

particle swarm optimization (MOPSO), and Non-dominated Sorting Genetic Algorithm Ⅱ  (NSGA-Ⅱ ) are 

considered as the baseline algorithms. 

5.2.   Results and discussion 

In the case study, we trained four agents on the basis of the DQN algorithm in a Markov game to optimize an 

ozone textile process with multiple objectives. As shown in Figure 4 that the increasing  -greedy policy was used for 

agents to balance the exploration and exploitation of states. Where the exploration decays in the first 900 steps so 



that agents initially lack the information and policy explore possible actions, but increasingly follows its own policy 

exploiting the available information by taking action selection mechanism h, rather than acting randomly. The effects 

of it are clearly illustrated on the convergences of DQN agents given in Figure 5 (for the illustration conveniences, 

200, 400, and 600 units of loss are additional given to agent 2, agent 3, and agent 4 respectively). It denotes that the 

deep Q-networks adapts successfully to the stochastic environment that the representation of Q-value in this deep Q-

networks for agents is stable and accurate and the agents act deterministically after 900 steps when the  -greedy 

increased to the maximum.   

 

Figure 4. Increasing  -greedy policy for choosing action  
 

Figure 5. The loss function of DQN for four agents in the 

Markov game 

The agents targeted at optimizing the solution of a textile ozone process to approach the fabric color 

performance of 0.81, 15.76, -20.84, and -70.79  in regard to k/s, L
*
, a

*
, and b

*
. During the DQN agents interacted in 

the Markov game with 5000 steps, the minimum errors of each agent and their sum in total given by RF models are 

collected and displayed in Figure 6. The convergence diagrams of all the four agents and their sum in terms of 

minimum error, verify the effectiveness and efficiency of the designed reward function, and it seems that the solution 

with lower error can possibly be obtained along with growing time steps. 

 
Figure 6. The minimum error of DQN agents tuned and their sum value versus time steps  

 

The comparison of the constructed framework with baseline approaches in regard to optimized results is 

depicted in Figure 7. The multi-agent reinforcement learning (MARL) system proposed performed dominated the 

baseline methods of MOPSO and NSGA-2 in our case study to optimize the ozonation process solution and achieve 

the objective color on treated fabrics. The difference from these comparative results could be explained as that the 

meta-heuristic algorithms of MOPSO and NSGA-2 have been reported that may fail to work with smaller datasets[6] 

and take an impracticably long time in iteration[64]. But more importantly, though they are effective to deal with low 



dimension multi-objective optimization problems, the increased stress of selection due to the growing dimension in 

the problem would decline the effects dramatically when the objectives are more than three.  

 

Target MARL MOPSO NSGA-2 

 

Figure 7. Comparison of baseline algorithms and the proposed multi-agent reinforcement learning framework with 

simulated results 

6.   Conclusions and future work 

In this work, we proposed a multi-agent reinforcement learning (MARL) methodology to cope with the 

increasingly complicated multi-objective optimization problems in the textile manufacturing process. The multi-

objective optimization of textile process solutions is modeled as a stochastic Markov game and multiple intelligent 

agents based on deep Q-networks (DQN) are developed to achieve the correlated equilibrium optimal solutions of 

the optimizing process. The stochastic Markov game is neither fully cooperative nor fully competitive, so that the 

agents employ a utilitarian selection mechanism that maximizes the sum of all agents’ rewards (obeying the 

increasing ε-greedy policy) in each state to avoid the interruption of multiple equilibria. The case study result reflects 

that the proposed MARL system is possible to achieve the optimal solutions for the textile ozonation process and it 

performs better than the traditional approaches.  
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