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Introduction

With the growth of the volume of data collected in manufacturing, Big Data offers a tremendous opportunity in the transformation of today's manufacturing paradigm to smart manufacturing and helps us to have AI-driven IIoT solutions working in real-time and being more accurate and efficient. A smart manufac-critical to the operation of the national facilities such as natural gas pipelines, or power grids.

With the application of leading technologies such as the Internet of Things, Cloud Computing, and Artificial Intelligence to smart manufacturing, a modern ICS outweighs traditional manufacturing [START_REF] Wang | From intelligence science to intelligent manufacturing[END_REF]. For example, ICSs issue commands to open/close hydraulic valves, turn on/off power switches, etc. Therefore, any misoperation in an ICS may lead to fatal financial loss, or environmental destruction.

However, the exponential growth of IIoT brings not only tremendous benefits but also significant challenges to designing and implementing ICSs related to the cyber-security problems. In fact, a modern ICS is not an isolated system anymore, but is connected to the Internet. Hence, it would result in severe and heavy consequences if hackers could gain access to control the network and steal the security-critical data, or malware and worms could invade and destroy the operating system of a factory. The IIoT-based Industrial Control Systems are now one of the top industries targeted by a variety of attacks.

Many real reported attacks against SM systems have been provided in [START_REF] Tuptuk | Security of smart manufacturing systems[END_REF].

Therefore, the problem of protecting IIoT systems against cyber-attacks is becoming increasingly important and indispensable in their design. Various techniques such as firewall, antivirus or Intrusion Detection Systems (IDS) have been proposed. However, as threats become increasingly more complicated, there is a need for an anomaly detection algorithm that can discover attacks timely and accurately while still being lightweight enough to be deployed in IoT devices with limited computing powers in industrial settings.

From another perspective, in a Smart Manufacturing environment, centralized cloud computing of all data collected in manufacturing is deployed to empower the workloads and applications, reduce costs, and increase release velocity and agility. However, a SM always requires massive analysis in real-time, so that offloading computationally intensive tasks to a cloud centre may result in a delay, due to the time needed to transmit, process, and receive a large amount of data. To overcome this limitation, the concept of Edge computing came into play in a smart factory [START_REF] Yu | A survey on the edge computing for the internet of things[END_REF]. This distributed approach can solve the Big Data processing issue in SM where data is collected from various sensors such as pressure, flow, speed.., so as generating a huge volume of data inside smart factories.

Edge computing can quickly perform a necessary task in the network edge, i.e., between data sources and the cloud centre. Hence, the workload concentrated in the central cloud can be reduced.

Therefore, in this research, we propose an IIoT decentralised architecture for detecting Anomaly in Industrial Control Systems (ICS), where the processing intelligence is performed near to the data sources. In this edge-cloud architecture, we propose to:

Decentralize the anomaly detection task to the edge where a hybrid model of Variational Autoencoder (VAE) [START_REF] Kingma | Auto-encoding variational bayesarXiv[END_REF] and Long-Short Term Memory (LSTM) [START_REF] Hochreiter | Long Short-Term Memory[END_REF] is deployed to cope with anomaly detection for time-series data. The hybrid model is suitable for detecting anomalies over multiple time scales.

The hybrid model is designed with an optimized threshold using Kernel Quantile Estimator (KQE) to have high detection accuracy. In addition, the VAE module inside the hybrid model is also designed with only 2 fully connected layers at the VAE encoder and decoder to get high accuracy and compute fast enough so that suitable for being deployed in a low-computing capacity hardware like an edge, respectively. Develop Federated Learning (FL) to only send the training model of each edge to the cloud for the global update. This way helps to reduce bandwidth occupied in the link between edges and the cloud. FL supports the detection model right at the edge to have a faster system response upon attack arrivals, but providing a platform to have a global update on the training model of each edge that monitors a singular area.

The overall FL architecture is proved to operate efficiently in terms of CPU and Memory usage, Power consumption at edge hardware. In our case study, designing and implementing the training/anomaly detection task right at an edge device will take up to 85% of CPU usage of such embedded hardware in the worst case; and 37% of Memory usage of the edge on average. These indicators show that the proposed architecture can be totally implementable in an IIoT industrial system with deployment of edge computing.

Besides, it also reduces bandwidth consumed in the transmission link between the edge and the cloud by 35%. It means, we can save 35% of the bandwidth for other application traffic which runs on top of the industrial system.

In the centralized learning manner, our detection algorithm with the optimization of the threshold is proved to outperform the same VAE-LTSM algorithm with heuristically-found threshold [START_REF] Lin | Anomaly detection for time series using vae-lstm hybrid model[END_REF] in terms of precision, recall, F1score.

In the FL mode, the hybrid algorithms still achieves good detection performance which is quite similar to the centralized learning mode where all raw data is sent to the cloud centre for training. And it is a very promising indicator for efficient Edge-Cloud computing where the detection accuracy is high while detection task is offloaded from the cloud to the edge which is nearer the data sources. Hence obviously the system can respond to cyber attacks faster.

Related Work

Cyberattack Detection for Industrial Control System

Recently, there have been a number of researches in the field of detecting cyberattacks for Industrial Control System [START_REF] Myers | Anomaly detection for industrial control systems using process mining[END_REF][START_REF] Nader | l p -norms in one-class classification for intrusion detection in scada systems[END_REF][START_REF] Gumaei | A robust cyberattack detection approach using optimal features of scada power systems in smart grids[END_REF][START_REF] Priyanga | Detection of cyberattacks in industrial control systems using enhanced principal component analysis and hypergraph-based convolution neural network (epca-hg-cnn)[END_REF][START_REF] Li | Detecting cyberattacks in industrial control systems using online learning algorithms[END_REF][START_REF] Li | A degradation-based detection framework against covert cyberattacks on scada systems[END_REF][START_REF] Kravchik | Efficient cyber attack detection in industrial control systems using lightweight neural networks and pca[END_REF]. The authors in work [START_REF] Myers | Anomaly detection for industrial control systems using process mining[END_REF] propose a process mining method based on the log data of the devices in the system to make anomaly detection more efficient thanks to the rich source of information of the logs. In work [START_REF] Nader | l p -norms in one-class classification for intrusion detection in scada systems[END_REF], the authors investigate and use the oneclass classification algorithms SVDD and KPCA for intrusion detection in the SCADA system. The computational cost when implementing these solutions in practice is always an important issue in the solution development process.

To solve this, in work [START_REF] Gumaei | A robust cyberattack detection approach using optimal features of scada power systems in smart grids[END_REF][START_REF] Priyanga | Detection of cyberattacks in industrial control systems using enhanced principal component analysis and hypergraph-based convolution neural network (epca-hg-cnn)[END_REF][START_REF] Kravchik | Efficient cyber attack detection in industrial control systems using lightweight neural networks and pca[END_REF], the authors propose combining the input dimension reduction technique with the attack detection algorithm. However, in these studies, the authors have not evaluated and considered the problem of live detection, when the task of detecting attacks in industrial control systems requires fast, accurate, and real-time detection. They also have yet to develop a distributed deployment strategy that responds to the scale of large production systems in real production.

Cloud computing has previously been applied to manufacturing control, such as in the case of software-defined networking-based manufacturing. The authors in [START_REF] Adamsky | Integrated protection of industrial control systems from cyber-attacks: the atena approach[END_REF][START_REF] Babiceanu | Cyber resilience protection for industrial internet of things: A software-defined networking approach[END_REF] build a SDN-based architecture to solve related cyber-security issues in IIoT and Industrial Control Systems. With the separation of a traditional network into the data plane and the control plane, SDN offers many benefits in monitoring and detecting network attack problems such as directing traffic when the attack occurs [START_REF] Adamsky | Integrated protection of industrial control systems from cyber-attacks: the atena approach[END_REF]. In these studies, the centrality of SDN is demonstrated by the fact that all decisions are centrally handled at the controller. This leads to system response latency issues as well as placing the processing burden on the controller. Given the distributed scale of manufacturing systems, these disadvantages of SDN are a serious problem. We seek to solve these limitations with our proposal of a distributed architecture with the detection model at the edge.

Anomaly detection for time-series data

In the field of anomaly detection mechanisms for time-series data, there are many research studies up to now [START_REF] Essien | A deep learning model for smart manufacturing using convolutional lstm neural network autoencoders[END_REF][START_REF] Luca | Using an autoencoder in the design of an anomaly detector for smart manufacturing[END_REF][START_REF] Hsieh | Unsupervised online anomaly detection on multivariate sensing time series data for smart manufacturing[END_REF][START_REF] Gao | Robusttad: Robust time series anomaly detection via decomposition and convolutional neural networks[END_REF][START_REF] Chen | A joint model for it operation series prediction and anomaly detection[END_REF][START_REF] Gjorgiev | Time series anomaly detection with variational autoencoder using mahalanobis distance[END_REF][START_REF] Liu | Deep anomaly detection for time-series data in industrial iot: A ommunicationefficient on-device federated learning approach[END_REF]. In these studies, the anomaly detection at different times of the system is performed by the LSTM algorithm [START_REF] Essien | A deep learning model for smart manufacturing using convolutional lstm neural network autoencoders[END_REF][START_REF] Liu | Deep anomaly detection for time-series data in industrial iot: A ommunicationefficient on-device federated learning approach[END_REF]. In addition to being effective in detecting anomalies, Autoencoder is a technique used alone or in combination with LSTM in these studies [START_REF] Gao | Robusttad: Robust time series anomaly detection via decomposition and convolutional neural networks[END_REF][START_REF] Gjorgiev | Time series anomaly detection with variational autoencoder using mahalanobis distance[END_REF].

The deep generative network is a technique widely applied in solving anomaly detection problems. In particular, networks are composed of symmetric encoders [START_REF] Gao | Robusttad: Robust time series anomaly detection via decomposition and convolutional neural networks[END_REF][START_REF] Gjorgiev | Time series anomaly detection with variational autoencoder using mahalanobis distance[END_REF]. In work [START_REF] Gjorgiev | Time series anomaly detection with variational autoencoder using mahalanobis distance[END_REF], the authors propose a deep architecture based on VAE to detect a cyber-attack on the water distribution system. VAE's symmetric architecture is used to reproduce the input through encoders and decoders to extract information for anomaly detection. However, extracting the sequential information of the time series data is still a limitation of VAE. The best overall score in this paper is at 80%, and only 62.4% for the classification task.

In the same direction, the authors in [START_REF] Essien | A deep learning model for smart manufacturing using convolutional lstm neural network autoencoders[END_REF][START_REF] Gao | Robusttad: Robust time series anomaly detection via decomposition and convolutional neural networks[END_REF] also use a deep network model with an asymmetrical structure. In that study, a robust time-series anomaly detection framework is proposed based on a convolutional neural network with a structure of two symmetrical encoders and decoders. The decomposition in this architecture has an important circular role in handling patterns in the time series data for efficient detection. To serve the cloud and IoT monitoring, the authors in work [START_REF] Gao | Robusttad: Robust time series anomaly detection via decomposition and convolutional neural networks[END_REF] evaluate QoS parameters and consider the problem of processing centralized data in the cloud that requires a cloud infrastructure with a large storage capacity and strong processing capacity. Nevertheless, using the convolutional structure (i.e convolutional LSTM [START_REF] Essien | A deep learning model for smart manufacturing using convolutional lstm neural network autoencoders[END_REF], convolutional Encoder-Decoder [START_REF] Gao | Robusttad: Robust time series anomaly detection via decomposition and convolutional neural networks[END_REF]), is time-consuming as well as requires a large amount of data to be effective for the training process. This may not be afforded by the resource limitation of edge devices. Research [START_REF] Huong | An efficient low complexity edge-cloud framework for security in iot networks[END_REF] has shown that with a model based on a neural network structure, it is not necessary to have a structure that is too complex to be effective in classification or detection.

Therefore, in this study, we use fully-connected to build the encoder and decoder structure instead of using multi-convolutional classes to ensure the performance of the algorithm in extracting information from time-series data.

Combining unsupervised anomaly detection and prediction model under one framework can solve the problem of requiring labels of data in anomaly detection methods as well as ensuring accurate prediction for time series data, as elaborated in [START_REF] Hsieh | Unsupervised online anomaly detection on multivariate sensing time series data for smart manufacturing[END_REF][START_REF] Chen | A joint model for it operation series prediction and anomaly detection[END_REF][START_REF] Nguyen | Forecasting and anomaly detection approaches using lstm and lstm autoencoder techniques with the applications in supply chain management[END_REF]. In work [START_REF] Hsieh | Unsupervised online anomaly detection on multivariate sensing time series data for smart manufacturing[END_REF], the authors propose an un-supervised real-time anomaly detection algorithm to execute anomaly detection in Smart Manufacturing with data collected from sensors in the factory production line.

The model combining AE and LSTM can early and accurately detect defective products to minimize cost and time. In fact, it is difficult to determine the distribution of real time-series data because it is continuous series over time. So using VAE instead of AE to re-represent the extracted data in a distribution yields more principled and objective probabilities. From another point, in this method we need a threshold to distinguish anomalous events.

A similar method is presented in work [START_REF] Lin | Anomaly detection for time series using vae-lstm hybrid model[END_REF]. By a heuristic way, the authors use the construction error from the training set to compute the threshold by testing different values and choosing the threshold value that gives the highest detection performance. The threshold is selected via the trade-off among the detection performance measures such as precision, recall, and F1-score. This method is highly data-dependent and random.

To improve this, we use the Kernel Quantile Estimator theory to be able to determine the most appropriate threshold, suitably adaptive to the distribution of each different training data set.

Federated Learning

From the Federated Learning perspective, work [START_REF] Mcmahan | Federated learning of deep networks using model averaging[END_REF] concerns Federated Learning due to its distributed and privacy-preserving nature, which is commonly deployed in edge computing as well as industrial IoT settings for anomaly detection. In this area, work [START_REF] Wang | Towards accurate anomaly detection in industrial internet-of-things using hierarchical federated learning[END_REF] proposes a Federated deep reinforcement Learning empowered Anomaly Detection (FLAD) in order to detect anomalous users trying to leak private data in large-scale industrial settings. The paper proposes using Anomaly Detection Centers (ADCs) divided into three levels:

Global, Local and Regional. With the Global ADC as the aggregator, the Regional ADCs will learn a detection model using FLAD, with which they will use to detect anomalous users. However, there is a chance that some Regional ADCs are compromised, so there will also be a federated model in the Local ADCs to detect them.

Rather than simple adoption, other papers seek to improve the FL framework in various ways. Study [START_REF] Qin | A selective model aggregation approach in federated learning for online anomaly detection[END_REF] concerns that some clients participating in FL could have bad data or be under attack, and thus will send low-quality weights to the aggregation server that negatively affects the global model. It proposes the server to test each local model sent by each client on some preset data first, and discarding those that yield a too high loss value. Work [START_REF] Liu | Deep anomaly detection for time-series data in industrial iot: A ommunicationefficient on-device federated learning approach[END_REF] and [START_REF] Ye | Edgefed: Optimized federated learning based on edge computing[END_REF] meanwhile try to optimize the communication cost. Work [START_REF] Liu | Deep anomaly detection for time-series data in industrial iot: A ommunicationefficient on-device federated learning approach[END_REF] proposes compressing the gradients by only transmitting local gradients that are larger than a certain threshold, while research [START_REF] Ye | Edgefed: Optimized federated learning based on edge computing[END_REF] proposes putting edge servers between the clients and the central cloud. Some gradients calculation will be offloaded to these edge servers, and they will also communicate with the cloud for FL instead of the clients. There is controversy that the edge servers, being closer to the clients, will have higher bandwidth, and also the local model aggregation in the edge servers will lower the number of global communication rounds with the cloud required. These modifications require a significant architectural change or extra computational load. Therefore, in this paper, we opted for the solution of using a more simple detection model instead. 

Federated Learning-based Detection System

w t+1 = K k=1 n k n w k t+1 (1) 
Where:

K:the number of participating clients It is important to note that, in case the normal behaviour of IoT devices is changed over time, the performance of anomaly detection methods using oneclass classification techniques may be affected by the increase of false alarms.

To deal with this problem, we can use the idea of research [START_REF] Abdelaty | Daics: A deep learning solution for anomaly detection in industrial control systems[END_REF] to develop a solution to correct the threshold. From the new normal data, the probability errors will be calculated using the trained hybrid VAE-LSTM model. It will then be combined with the probability errors of the original training dataset.

Finally, the threshold will be recalculated using the KQE technique.

In this research, we provide a full description of the step-by-step deployment of the VAE and LSTM in a Federated-learning IIoT environment. The VAE model is designed with 2 fully connected layers in the encoder and decoder to be more light weight in terms of computing requirement. The VAE model then can be more suitable for deployment in such a hardware with low-computing capacity like an Edge. We also enhance the model by optimizing the threshold using Kernel Quantile Estimator (KQE) to have better detection performance instead of using a heuristic threshold as proposed in [START_REF] Lin | Anomaly detection for time series using vae-lstm hybrid model[END_REF].

The full description of the general operation of the VAE-LSTM model is illustrated in Fig. 3.
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First, the time-series data {x 1 , x 2 , . . . , x Lwin , x Lwin+1 , . . .} -in which x i ∈ R D is a multivariate data with D-dimensional -will be sliced into rolling windows of size L win , which will be used to train the VAE algorithm. A sequence -s i , is made by concatenating L seq non-overlapping windows, which will be denoted as {s 1,i , s 2,i , . . . , s Lseq,i }.

After the VAE module has been trained, the sequences {s 1 , s 2 , . . . , s i } are fed into the Encoder of the VAE module, where each window is compressed into a lower dimensional code. A code sequence e i will consists of multiple codes -{e 1,i , e 2,i , . . . , e Lseq,i }. The code sequences {e 1 , e 2 , . . . , e i } will then be the input of the LSTM module.

The LSTM module uses the first L seq -1 components from the current code sequence i ({e 1,i , e 2,i , . . . , e Lseq-1,i }) as input to return the prediction of the last L seq -1 components: êi = {ê 2,i , ê3,i , . . . , êLseq,i } Each predicted code sequence êi is then recreated by the trained VAE decoder to become predicted sequence value ŝi = {ŝ 2,i , ŝ3,i , . . . , ŝLseq,i }.

Comparing each predicted sequence ŝi with si , which is the input sequence s i without the first component, yields a series of probabilities errors, or also called prediction errors.

P E i = ||ŝ i -si || 2 , (2) 
A threshold λ T h is used on these errors to classify abnormal points, which is defined using a technique called Kernel Quantile Estimator (KQE).

Detailed background on LSTM and VAE operation as well as optimization of threshold λ T h by Kernel Quantile Estimator (KQE) will be given in the following sections. A LSTM cell has input e t , output h t (hidden state) and cell state c t at time t; as well as c t-1 and h t-1 which are the output of the cell at the previous step.

Different to Recurrent Neural Network (RNN) cell which has only one tanh function, in order to remember the past data, a LSTM cell has three control stages:
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The first stage is the forget gate: With the input data e t and previous output h t-1 , the gate will decide which information should be kept and which should be forgotten, that is performed by the function:

f t = σ(W f × e t + W f × h t-1 + b f ) (3) 
Where:

(W f , b f ): the weight matrices and bias of the forget gate.

The second step uses to process information to decide how much information should be add to the cell state c, called the input gate.

c t = c t-1 × f t + i t × ct (4) 
In which i t and ct are computed by: 

i t = σ(W i × e t + W i × h t-1 + b i ) (5) ct = tanh(W c × e t + W c × h t-1 + b c ) (6) 
h t = O t × tanh(c t ) (7) 
Which O t is defined in ( 8) and (W o , b o ) are the weight matrix and the bias of the output gate.

O t = σ(W o × e t + W o × h t-1 +) (8) 
In this structure, c t is like a connection between the states with the current state of the network. This helps to keep the previous important information in the next states, providing long-term memory for the LSTM model.

Deployment of Variational Autoencoder

An autoencoder (AE) is a symmetrical, unsupervised neural network with the center hidden layer having fewer nodes than the input and output layer (a "bottleneck"). It is trained to recreate the output to be as close to the input as possible. After this process, the network has learned to compress the input to the bottleneck layer and then subsequently restore the input from it. This middle layer thus becomes the "latent representation" of the input, retaining most information about the input using fewer features. The part of the network before this layer becomes the encoder, and the part after becomes the decoder.

A variational autoencoder (VAE) [START_REF] Kingma | Auto-encoding variational bayesarXiv[END_REF] is a combination of the AE with the Variational Bayesian method. With VAE, the neural network describes probability distribution functions instead of deterministic ones. VAE is used to summarize the local information of a short window into a low-dimensional embeddings as shown in Fig. 5.

The purpose of VAE is to make sure that the latent space is regularized, and thus allows the generation of new, similar data. With the traditional AE, the model only cares about minimizing the reproductive loss and not at all about the state of the latent space of encoded data. Thus, the space will most likely be discontinuous and heavily fragmented, and decoding a random data point in latent space will probably result in nonsense data. On the other hand, the VAE will create continuously distributed encodings, and thus allows generation of new, similar data. Many different designs for VAE have been proposed, using various types of layers such as Dense, LSTM or CNN [START_REF] Gjorgiev | Time series anomaly detection with variational autoencoder using mahalanobis distance[END_REF]. In this paper, we design the VAE encoder and decoder with only two fully connected layers each. This design is to achieve the simplicity and light weight of the model which is then capable of 370 being trained on edge devices with limited hardware capacity; as well as reducing the communication cost, while still giving a satisfactory detection performance.

Let x be data generated by inputting a latent variable z through a random process with parameters θ. The posterior probability can be described as:

p θ (z|x) = p θ (x|z)p θ (z) p θ (x) (9) 
Because both the latent variable and the parameters of the process are not observable, the posterior probability as well as the marginal likelihood p θ (x) are often intractable. To solve this problem, a recognition model q φ (z|x), which is an approximation of the posterior, is introduced. The variational parameters φ of this model will be optimized so that:

q φ (z|x) ≈ p θ (z|x) (10) 
The marginal log likelihood of the data can be written as:

log p θ (x) = D KL (q φ (z|x)||p θ (z|x)) + L θ,φ (x) (11) 
with L θ,φ (x) being the evidence lower bound (ELBO). Because the first term of Eq. ( 11) is the Kullback-Leibler divergence and is always non-negative, we always have log p θ (x)

L θ,φ (x). Thus, optimizing the ELBO with respect to both θ and φ will minimize this KL term, bringing q φ (z|x) closer to the true posterior. The ELBO is defined as:

L θ,φ (x) = -D KL (q φ (z|x)||p θ (z)) + E q φ (z|x) (log p θ (x|z)) (12) 
The first term of Eq. ( 12) is the KL divergence of the distribution of the encoding with respect to the normal distribution, to ensure that the latent space is continuous. The second term is the reconstruction loss to make sure that the data is being encoded correctly.

A common choice is to have both q φ (z|x) and the prior p θ (z) be Gaussian.

The ELBO to be optimized for each data point i can then be given as:

L θ,φ (x (i) ) = J j=1 1 2 1 + log((σ (i) j ) 2 ) -(σ (i) j ) 2 + (µ (i) j ) 2 - 1 L L l=1 E q φ (z|x) log p θ (x (i) |z (i,l) ) (13) 
Where µ and σ are the output mean and standard deviation vectors of the encoder, J is the size of those vectors, and L is the number of times a sample is taken from the latent space.

The parameters of the model can thus be expressed as:

(θ * , φ * ) = argmax θ,φ L (θ,φ) (x) (14) 
Instead of maximizing L, we can simply take its negative as a loss function to minimize, then apply gradient descent to find the optimal parameters. However, calculating the gradient is unstable due to the sampling of the random variable z in the second term of Eq. ( 13). To circumvent this, a technique called reparameterization [START_REF] Kingma | Auto-encoding variational bayesarXiv[END_REF] can be used, in which instead of sampling the latent variable z directly, we write z = µ+σ with ∼ N (0, 1) and sample instead. That way the random sampling is externalized and the gradient descent can be calculated as usual through deterministic nodes.

Threshold optimization using Kernel Quantile Estimator

. As aforementioned in Fig. 3, the anomaly detection is based on a set of prediction scores, and we need to set a threshold for this set of scores to defining what is anomaly or normal. Usually, this threshold can be determined by several rules such as 3σ and 2σ by assuming data has a normal distribution. As in [START_REF] Malhotra | Long short term memory networks for anomaly detection in time series[END_REF],

the author uses the maximum likelihood estimation theory to determine the threshold value for abnormal points detection with the assumption that the "error vector" follows by a multivariate Gaussian distribution.

In fact, in most contexts, it seems difficult to confirm that realistic data have a normal distribution. To solve this problem, we can determine the threshold independently from the data distribution by applying a non-parametric method.

In this study, we use the Kernel Quantile Estimator (KQE) method [START_REF] Sheather | Kernel quantile estimators[END_REF] to estimate the λ T h for the training data set based on probability error follow by [START_REF] Wang | Deep learning for smart manufacturing: Methods and applications[END_REF].

In (2), we have a set of prediction scores Score = {P E 1 , P E 2 , . . . , P E k }.

Suppose that P E 1 ≤ P E 2 ≤ . . . ≤ P E k are reorganized corresponding to the order statistics of the reconstruction error. KQE is used to calculate the λ T h as shown in Equation. [START_REF] Kravchik | Efficient cyber attack detection in industrial control systems using lightweight neural networks and pca[END_REF]:

λ T h = N i=1 i k i-1 k K h (t -p)dt P E (i) ( 15 
)
Where K is the density function symmetric about zero; bandwidth h (greater than 0) is used to control the smoothness of the estimator for k samples in the prediction score set, and p (0 < p < 1) is the preset value.

In equation ( 15), the selection of kernel for K and bandwidth for kernel density estimator should be in focus. The author in [START_REF] Sheather | Kernel quantile estimators[END_REF] has shown that the estimation performance does not have many effects by the choice of function K.

In this study, we use the standard Gaussian kernel for K like in [START_REF] Adamsky | Integrated protection of industrial control systems from cyber-attacks: the atena approach[END_REF].

K(z) = 1 √ 2π exp(- z 2 2 ) (16) 
In contrast to K, the smoothness of the density estimate is affected significantly by bandwidth h. To overcome this problem, an asymptotically optimized bandwidth like in [START_REF] Sheather | Kernel quantile estimators[END_REF] is computed as:

h opt = p(1 -p) k + 1 (17) 
Threshold λ T h is used to determine the anomalous points in the time series data.

By using the Kernel Quantile Estimator method, we can solve the unknown distribution of the data, ensuring the accuracy of anomaly detection.

System performance evaluation

In this section, we evaluate the performance of our proposed overall architecture in terms of anomaly detection performance and effectiveness of the Federated-learning-based Edge computing. The main case study is smart manufacturing in a Gas Pipeline Factory with a realistic time-series data set achieved from the Supervisory Control and Data Acquisition (SCADA) systems [START_REF] Turnipseed | A new scada dataset for intrusion detection research[END_REF].

However, in order to assess the anomaly detection performance of our solution in various industrial contexts, we also use other time-series data sets collected in several different fields such as ECGs [START_REF] Keogh | Hot sax: efficiently finding the most unusual time series subsequence[END_REF], respiration [START_REF] Keogh | Hot sax: efficiently finding the most unusual time series subsequence[END_REF], power demand [START_REF] Keogh | Hot sax: efficiently finding the most unusual time series subsequence[END_REF], gesture [START_REF] Keogh | Hot sax: efficiently finding the most unusual time series subsequence[END_REF], space shuttle [START_REF] Keogh | Hot sax: efficiently finding the most unusual time series subsequence[END_REF] and NYC taxi [START_REF]Nyc taxi and limousine commission[END_REF]. The short introduction of these data set are shown in the Table 1. To deal with the missing values, we can crop the samples or features that include those missing values. However, those cropped samples and features may 

Data sets Description

Gas pipeline (SCADA) [START_REF] Turnipseed | A new scada dataset for intrusion detection research[END_REF] The gas pipeline data set was collected in 2015 by Mississippi State University Lab for anomaly detection using their in-house gas pipeline system ECGs [START_REF] Keogh | Hot sax: efficiently finding the most unusual time series subsequence[END_REF] The data set on Electrocardiograms is a timeseries of the electrical signals caused by heartbeats Respiration [START_REF] Keogh | Hot sax: efficiently finding the most unusual time series subsequence[END_REF] The respiration data set contains information on Patient's respiration measured by thorax extension when waking up

Power demand [START_REF] Keogh | Hot sax: efficiently finding the most unusual time series subsequence[END_REF] The data set provides information on the power consumption of a Dutch research facility in 1997

Gesture [START_REF] Keogh | Hot sax: efficiently finding the most unusual time series subsequence[END_REF] The gesture data set consists of 2 features representing the coordinates of the actor's right hand while performing a variety of actions

Space shuttle [START_REF] Keogh | Hot sax: efficiently finding the most unusual time series subsequence[END_REF] The data set measures the solenoid current of a Marotta MPV-41 series valve cycled on and off NYC taxi [START_REF]Nyc taxi and limousine commission[END_REF] The data set contains information on The New York taxi passenger data stream from July 2014 to June 2015 According to work [START_REF] Liu | Chapter 14 -methods for handling missing data[END_REF], there are 3 types of missing data mechanisms: missing completely at random (MCAR), missing at random (MAR), and missing not at random (MNAR). MCAR means the missingness of data is unrelated to any values. MAR indicates that the tendency of a value to be missing might depend on the observed data, but not the missing data. In contrast, MNAR indicates that there is a relationship between the missingness and its value. Considering the missing values as shown in Fig. 6, we notice that the SCADA data set is likely to have the characteristic of MAR. In the same direction, the authors in work [START_REF] Perez | Machine learning for reliable network attack detection in scada systems[END_REF] also base on the LOCF method to process missing values in the SCADA data set, the results show that this method is more suitable and effective than some other methods in the anomaly detection problem. Therefore, we apply Last Observation Carried Forward (LOCF) [START_REF] Shao | Last observation carry-forward and last observation analysis[END_REF], a well-known method to handle MAR, to process the missing values in the SCADA dataset. LOCF uses the immediately preceding value of the same feature to fill in the missing value.

If the data set begins with missing values, we use the first observed value to substitute them.

After handling the missing values, to normalize all features to the same scale and arithmetic values, we perform data transformation by the mean-standard deviation scale techniques as in [START_REF] Essien | A deep learning model for smart manufacturing using convolutional lstm neural network autoencoders[END_REF] .

x i = x i -µ σ (18) 
In which, µ and σ are the mean and the standard deviation of the listed feature values, respectively. To train and evaluate the performance of our solution in different scenarios, we divide the SCADA data set into the training set (160,870 samples) and testing set (68,657 samples) while the training set contains only normal samples for anomaly detection purposes.

Detection Performance Evaluation

In this section, we evaluate the performance of our approach in various contexts. The assessments were carried on the aforementioned data sets in terms of precision, recall, and F1-score. These metrics are defined by as follows: Note for time series data, an anomaly only occurs in one single time point, but is detected using a window, so in the ground truth array, all the points in this window are considered as anomalies. The algorithm may not recognize all, but only some elements in that window as outliers. Realistically, this means the true anomaly has been detected, but due to the way the ground truth is constructed, the algorithm is still being fined for false negatives. We resolve this with the same approach in [START_REF] Xu | Unsupervised anomaly detection via variational auto-encoder for seasonal kpis in web applications[END_REF], in which if any elements in a window are detected, the whole window is also considered detected.

P recision =

Experiment 1

Experiment 1 is presented in Table .2 in which the performance of our Federatedlearning detection model is compared with the cloud-centralized-based VAE-LSTM detection model with the heuristic threshold λ T h mentioned in [START_REF] Lin | Anomaly detection for time series using vae-lstm hybrid model[END_REF]. The detection performance of the two approaches is compared on top of 7 different data sets. This comparison is to evaluate how close the detection performance of the FL approach can get to the current centralized approach with the same detection method.

In the centralized learning experiment, to achieve the best threshold by the heuristic way proposed by work [START_REF] Lin | Anomaly detection for time series using vae-lstm hybrid model[END_REF], we tested with 25 different thresholds evenly spaced between the smallest and largest reconstruction error, and finally finding the best heuristic threshold for each of the 7 data sets. In addition, a notice that work [START_REF] Lin | Anomaly detection for time series using vae-lstm hybrid model[END_REF] did not mention how the authors realized VAE, since there are different types of layers: Dense, multi-layer CNN... However, as we experimented, application of VAE with multi-layer CNN is implementable at the edge device since its computing complexity is so high and training time is so long even running the algorithm over a high-computing server, much worse for a lowcomputing-capacity edge device. Therefore, although the centralized solution with multi-layer-CNN works quite perfectly in terms of detection performance as shown in the original work [START_REF] Lin | Anomaly detection for time series using vae-lstm hybrid model[END_REF], we decided to implement VAE of work [START_REF] Lin | Anomaly detection for time series using vae-lstm hybrid model[END_REF] with Dense to reduce the number of layers, features, thereby decreasing computing complexity and the matrix of weight at the edge. This experiment and implementation make work [START_REF] Lin | Anomaly detection for time series using vae-lstm hybrid model[END_REF] implementable at the edge device for the comparison, but leading to the different detection performance shown in this study compared to the original work [START_REF] Lin | Anomaly detection for time series using vae-lstm hybrid model[END_REF].

In the Federated-learning experiment, the proposed threshold optimization using KQE is achieved by varying 9 values of p ranging from 0.1 to 0.9, with the distance of 0.1, in addition to 2 more values of 0.95 and 0.99 for a total of 11 values.

As shown in Table 2, the hybrid VAE-LSTM module performs well on many time-series data sets, but did poorly on some, such as the respiration or the gesture data set. We believe this could be improved by making the detection model more complex, but that would come at the cost of increased computation and bandwidth demand at edge devices so that the edge is not be able to handle.

But the VAE-LSTM proves to work very well in the the main case study -the SCADA data set in which Precision, Recall and F1-score get very high. Furthermore, despite the fact that the Centralized Learning model tends to perform better than their Federated-Learning counterparts, and that the KQE approach only has less than half as many tries compared to the heuristic approach. However, surprisingly, our Federated-learning approach still outperforms the centralized learning VAE-LSTM solution proposed by [START_REF] Lin | Anomaly detection for time series using vae-lstm hybrid model[END_REF] in most of the data sets. The only data set where our proposal performs worse on all metrics is stdb 308 0. This shows that a suitable threshold found by the KQE method can vastly improve the performance of an anomaly detection model, and that our KQE is better and faster at finding the optimal threshold in most cases. 

Experiment 2

In order to test the effect of the FL approach and KQE-based threshold optimization on the detection performance separately, we tested the heuristic and KQE approaches for finding the best threshold on top of both centralized (e.g. the approach of work [START_REF] Lin | Anomaly detection for time series using vae-lstm hybrid model[END_REF]) and FL scenarios, in the main case study -the SCADA data set. The results are demonstrated in Table 3.

We can see that in both of the centralized and federated case, the KQE-based scheme gives the better F1 score and Precision, and only has a slight reduction in Recall in the Federated-learning approach. With the KQE-based threshold selection method, the cloud-based centralized method proposed by work [START_REF] Lin | Anomaly detection for time series using vae-lstm hybrid model[END_REF] slightly increases its own detection performance compared to the results shown in Table 2.

The best p found for the SCADA data set is 0.9. We also tested the AUC (Area under the ROC Curve) value for both scenarios, as this metric is not affected by the choice of threshold. We found that the Federated-Learning model only has a slightly lower AUC value than the Centralized-Learning model, proving that the decrease in model quality by FL is only minuscule. 

Evaluation on Edge Computing Efficiency

In this section, we desire to study the performance of a real edge hardware working in the Federated-learning IoT environment. This issue is important since we can estimate how well such a proposed Edge-computing architecture can work in reality with limited hardware capacity like an Edge.

Communication efficiency of the FL approach is compared with that of the Centralized Learning architecture. In addition, the aspects of computational resources and energy consumption at every single Edge are also covered.

At first, the detail of the devices, framework and measurement method used in the testbed is elaborated in the following section. All Edge devices and Cloud Server are interconnected with a router via their wifi interfaces

In the edge devices, we implement our FL-based VAE-LSTM framework written in Python 3 with the Tensorflow 2 platform, which is built with the support of the FL framework -FedML. [START_REF] He | Fedml: A research library and benchmark for federated machine learning[END_REF].

In our architecture, the edge devices and cloud server interchange weights and bias matrices of the VAE-LSTM model using the MQTT protocol which is standardized for IoT environment. For better performance in the long run, EMQ X Broker [START_REF][END_REF] is hosted on the cloud server as a MQTT broker. EMQ X Broker is found an open-source broker that can be most scalable to accept more edge devices connecting to the server.

Implementation of Bandwidth occupation measurement

To measure bandwidth occupation in the link between each edge and the cloud server, we use the tool bmon [START_REF][END_REF] on the up-streaming direction of the edge devices' Wifi interfaces to measure bandwidth usage. bmon [START_REF][END_REF] is a monitoring and debugging networking tool, especially used to capture statistics of a network.

Implementation of Computation resource and Energy consumption measurement

For exact assessment of computational resources such as CPU and Memory usage as well as energy consumption, external monitors and peripheral devices for Raspberry Pis should not be used since they will increase the CPU/Memory usage and Energy consumption whilst we only want to measure the impact of the Federated-learning based VAE-LSTM model onto the edge hardware only.

Consequently, it is needed to establish an SSH connection to those Edge devices so as to conduct measurement experiments. To display the measurement results, all measured values are logged into separate text files and processed later to display into graphs.

These SSH connections are set up over the Ethernet interfaces of the Raspberry Pi kits, as a substitute for WIFI ones, via a second router; since the WIFI interfaces are used for sending data from the edge to the cloud. This setting is to avoid noise hence more accurate bandwidth occupation measurement can be acquired.

In order to assess the computing occupation level of the edge devices, we use the tool resmon [START_REF][END_REF] to measure CPU usage and memory usage during the training task of the FL-based VAE-LSTM model; in comparison with the cen-tralized learning model in which all data coming to the edge are just forwarded to the cloud for centralized learning.

The measurement of energy consumption involves using UM25C USB Tester [START_REF][END_REF] to calculate the energy usage of Raspberry Pi.

Experimental Scenarios

To compare the communication efficiency of our Federated-Learning architecture with the centralized learning architecture using the same type of detection mechanism, two main scenarios are established.

In each scenario, we evaluate with the same detection model (i.e. VAE-LSTM) and the same data set (i.e. SCADA of 58MB). We focus on four key metrics to evaluate the performance of an edge:

Bandwidth consumption in the link between the edge and the cloud from the SCADA dataset is utilized. This set of data is then fed into the detection module which will process one block of 1000 data points at a time.

In the detection phase, the output of anomalous points is determined by the comparison of the reconstruction error with a threshold that was previously defined using the KQE method The results from Fig. 8 and Fig. 9 show that the proposed FL architecture saves bandwidth by 35% and takes only 18% of the the transmission time in compared with the centralized learning architecture. Therefore, deployment of such a FL architecture will leave the edge-cloud link to have more free link capacity to convey other information data of the Industrial IIoT system. Moreover, to mention again, such a FL model can help reducing the system response to attacks since the early attack prevention is implemented right at the Edge which is near the attack sources inside a smart factory.

In case, larger data size should be trained for the sake of detection performance, the FL approach will outperform the Centralized learning mode better in terms of Bandwidth occupation since the amount of model data (i. As Fig. 11 illustrates, the power consumption at the edge in the centralized learning scenario is in the range of 2600-3600 mW. The baseline power consumption of the Raspberry-Pi-4 edge is presented in the first 20 seconds of Fig. 11, which stands for about 2600 mW. (Baseline power is defined as the state in which the edge is just switched ON without processing any task).

For the FL scenario, as Fig. 12 shows, the power consumed during the training process is divided into continuous phases: the VAE phase, the phase of producing embeddings for the LSTM phase and the LSTM phase. Instead, much smaller chunks of data are fed as input to the detection module, hence leading to the significant reduction in power consumption as well as consumed computing resources.

Limitations, Discussion and Future Work

In this research, we have proposed a Federated-Learning architecture based on Edge-computing for smart applications of Smart manufacturing in the context of Big Data. The overall solution has shown to have high detection performance, whilst giving the advantage of having a fast response since anomaly detection is implemented near the attack sources (i.e the edge). The FL architecture distributes the monitoring and detection task to smaller local areas, so that it can deal with Big Data generated inside a smart factory better. In addition, the proposed system is proved to reduce bandwidth for controlling data in the transmission link between the edge and the cloud, meanwhile ensuring that the edge hardware will not be overloaded in terms of CPU and Memory usage.

For future work, we will try to optimize our system more in terms of weights Another interesting issue in ICSs for future study is the change of the normal behaviour over time due to, for example, IoT devices are aging. Hence new behaviour of devices can be classified as an anomaly, which then causes a high false-positive rate. It is the common issue for any anomaly detection approach using one-class classification Machine Learning in which we use only normal data for training. In fact, there is a research direction in online machine learning that updates old models with the most up-to-date data. And to the best of our knowledge, this research direction seems not have been investigated in FL. In the future, we would like to study deeper in the direction of online Federated Learning.

Besides, another critical aspect for our future work is: when manufacturing sites are not identical, for example, in the number of machines. It raises the issue of imbalanced distributed training for the VAE-LSTM models running on the edge. Since data sets of different sites can be different, it increases the bias of pattern learned by the FL server. In the state of the art, there is very new research [START_REF] Duan | Self-balancing federated learning with global imbalanced data in mobile systems[END_REF] that dealt with this issue to prevent the bias of training caused by imbalanced data distribution, so we presume we can learn the way to improve this problem from that work.
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 112 Figure 1: Federated-Learning-based Anomaly Detection Architecture for Smart Manufacturing
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  k : the amount of data that client k possesses n: the total amount of data that all clients have w k t+1 : the weight of the local model at client k at time t + 1 w t+1 : the weight of the aggregated global model at time t + 1.This weight of the aggregated global model is finally sent downward to update the local model of each edge device. 3.2. Anomaly Detection using the hybrid VAE -LSTM model at the Edge Anomaly detection in time series faces many challenges such as: contextual information, noise, concept drift,... Especially, anomaly detection in an Edgecomputing-based IIoT environment has many additional requirements such as detection time and memory constraints [31]. To deal with this issue, the hybrid VAE-LSTM model is developed at the edge devices where VAE stands for Variational Autoencoder and LSTM stands for Long Short-Term Memory Networks [7]. The idea of this hybrid model was actually initiated from research [8] for the fact that the model makes use of robust local features over short windows of VAE. Via VAE, the structural regularities of the time series are captured over local windows. It also utilizes the capacity of LSTM on estimating the longterm correlation in the time series over the features inferred by VAE. Hence, longer term trend can be modeled by LSTM. In fact, both VAE and LSTM are unsupervised learning, requiring no labelled data for anomaly training. Therefore, the hybrid model is an efficient detection method that can detect a new anomaly in a smart factory even it has not ever occurred before.
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 21 Deployment of Long Short-Term Memory NetworksLSTM (Long Short-Term Memory Networks) is utilized to act on the lowdimensional embeddings produced by VAE, to manage the sequential patterns over the longer term. Although there are many variations of LSTM, the comparison in[START_REF] Greff | Lstm: A search space odyssey[END_REF] has shown that these variations are almost the same, some of which are more effective than the others but only in some specific scenes. Therefore, in this study, we use a simple LSTM Network with one cell to minimize the computing complexity of the system while ensuring the performance in processing time-series data. The basic structure of one cell in a LSTM network at state t is shown inFig 4. 
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 4 Figure 4: A Long-Short Term Memory cell

  In this step, the values i t is computed by a sigmoid function along with a vector of values ct generated by a tanh function at the same time. (W i , b i ) and (W c , b c ) in (5), (6) are the weight matrices and the biases of the input 340 gate and cell state, respectively. The last step is the output gate stage: The output h t of LSTM depends on input e t , h t-1 and the current cell state c t . The tanh function helps to scale down the value's range to a number between =1 and 1, and the sigmoid function helps to filter the information from the cell state being output through the number within [0,1].
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 5 Figure 5: Illustration of a VAE Structure
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 1 Data set pre-processing Data sets are the input for any training model developed at either the Edge or the Cloud. However, those data sets frequently have many missing feature values, so it is always necessary to clean and pre-process data before the training process. For example, as our main case study, the SCADA data set is shown in Fig 6 with many missing values (i.e "?" values). The SCADA data set includes 274,628 samples and, each sample contains network information, payload information etc.
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 6 Figure 6: Examples of the missing values in the SCADA data set.

  true positive: an outcome where the model correctly predicts the positive class f alse positive: an outcome where the model incorrectly predicts the pos- itive class f alse negative: an outcome where the model incorrectly predicts the negative class.
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 31 Experimental setup and Measurement implementation

Figure 7 :

 7 Figure 7: Testbed Setup

  Power consumption at an Edge during training CPU usage at an Edge during training Memory usage at an Edge during training Scenario 1 is for the cloud-based centralized learning architecture in which all data from clients and sensors are sent to the cloud for centralized training and detecting anomalies. Hence, the Edge just forwards traffic directly to the cloud server. Scenario 2 is for the FL architecture in which incoming traffic is captured by edge devices. Then the training process as well as anomaly detection are taken place right at the edge. Hence, the edge only sends its own model (i.e. matric of weights) to the cloud for global updating. Scenario 3 is for investigating the behavior of the edge during the detection phase of FL. To set up the experiment, a time-series test set of 2000 samples
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 338 Fig. 8 demonstrates the bandwidth occupation for Scenario 1 -the centralized learning architecture where data coming from sensors are all forwarded to the cloud by the edge devices during 45 seconds of the experiment. As it can be seen, during 45 seconds, bandwidth occupation stays at a rate of approximately 2000 KiB per second on average for most of the time and reaches the rate of around 2600 KiB per second at maximum. (Note: 1 KiB is denoted for 1024 Bytes in this study).
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 9 Figure 9: Bandwidth occupied during the VAE-LSTM training in the Edge-Cloud link for the Federated Learning approach
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 10 Figure 10: Zoom-in of the Bandwidth spike in Fig. 9
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 11 Figure 11: Power consumption at an Edge in Centralized Learning
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 1213141516 Figure 12: Power consumption at an Edge in Federated Learning
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 15 Fig.15shows the memory usage of an Edge in Centralized learning architecture which accounts for less than 6% at maximum over 45 seconds of the total experiment time. Whilst, in the FL architecture, the memory usage presented in Fig.16accounts for 37% on average during 1300 seconds of the training phase with 1 round of the VAE phase and 1 embedding and LSTM phase.
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 1718 Figure 17: Power Consumption of an Edge device during the anomaly detection phase
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 19 Figure 19: Memory Usage of an Edge device during the anomaly detection phase

Table 1 :

 1 List of the data sets used in our experiments

Table 2 :

 2 Federated Learning approach vs. Centralized Learning approach over 7 different time-series data sets

	Data set	Test set	Cloud-Centralized-VAE-LSTM [8]	Our FL-based approach
			Precision	Recall	F1	Precision	Recall	F1
		TEK14	0.5792	0.9990	0.7333	0.8623	0.8431	0.8536
	Space shuttle	TEK16	0.9636	0.8881	0.9243	1	1	1
		TEK17	0.8961	0.9637	0.9287	0.9650	1	0.9822
		nprs43	0.6586	0.4952	0.5653	0.9313	0.5530	0.6939
	Respiration							
		nprs44	0.9786	0.2799	0.4353	0.5347	0.5027	0.5182
	Gesture	gesture	0.3422	0.9989	0.5098	0.5278	1	0.6910
	Nyc taxi	nyc taxi	0.7711	0.7628	0.7669	0.9606	1	0.9799
		Chfdb chf01 275	1	1	1	0.9175	1	0.9570
		chfdb chf13 45590	1	1	1	0.9489	1	0.9738
		chfdbf15	0.6484	0.8968	0.7526	0.9458	1	0.9721
		ltstdb 20221 43	0.9607	1	0.9800	1	1	1
	ECG	ltstdb 20321 240	1	1	1	1	1	1
		mitdb 100 180	0.9754	1	0.9876	1	1	1
		qtdbsel102	0.5827	1	0.7364	0.9604	1	0.9797
		stdb 308 0	0.7521	1	0.8585	0.6073	0.6373	0.6220
		xmitdb x108 0	0.6727	1	0.8043	1	0.7628	0.8654
	Power demand	Power demand	0.2728	0.8948	0.4182	0.7355	0.9100	0.8135
	SCADA	Scada	0.9315	1	0.9645	0.9609	0.9982	0.9792

Table 3 :

 3 SCADA Centralized vs. Federated Results

		Heuristic-based threshold		KQE-based threshold		
	Learning Approach								AUC
		Precision	Recall	F1	Best p	Precision	Recall	F1	
	Centralized	0.9315	1	0.9645	0.9	0.9585	1	0.9788	0.8539
	Federated	0.9315	1	0.9645	0.9	0.9609	0.9982	0.9702	0.8500

turing system is monitored by sensors, controlling operations based on intelligent computing technologies to improve product quality, system performance as well as minimizes costs[START_REF] Lu | Smart manufacturing process and system automation -a critical review of the standards and envisioned scenarios[END_REF][START_REF] Wang | Deep learning for smart manufacturing: Methods and applications[END_REF]. Such modern industrial control systems (ICS) are