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Abstract

In recent years, the rapid development and wide application of advanced tech-

nologies have profoundly impacted industrial manufacturing, leading to smart

manufacturing (SM). However, the Industrial IoT (IIoT)-based manufacturing

systems are now one of the top industries targeted by a variety of attacks. In this

research, we propose detecting Cyberattacks in Industrial Control Systems us-

ing Anomaly Detection. An anomaly detection architecture for the IIoT-based

SM is proposed to deploy one of the top most concerned networking technique

- a Federated Learning architecture - that can detect anomalies for time series

data typically running inside an industrial system. The architecture achieves

higher detection performance compared to the current detection solution for

time series data. It also shows the feasibility and efficiency to be deployed on

top of edge computing hardware of an IIoT-based SM that can save 35% of

bandwidth consumed in the transmission link between the edge and the cloud.

At the expense, the architecture needs to trade off with the computing resource

consumed at edge devices for implementing the detection task. However, find-

ings in maximal CPU usage of 85% and average Memory usage of 37% make

this architecture totally realizable in an IIoT-based SM.

Keywords: Smart Manufacturing, Industrial Control Systems, Anomaly

Detection, Time series, Federated Learning, IIoT.

1. Introduction

With the growth of the volume of data collected in manufacturing, Big Data

offers a tremendous opportunity in the transformation of today’s manufacturing

paradigm to smart manufacturing and helps us to have AI-driven IIoT solutions

working in real-time and being more accurate and efficient. A smart manufac-5

turing system is monitored by sensors, controlling operations based on intelligent

computing technologies to improve product quality, system performance as well

as minimizes costs [1, 2]. Such modern industrial control systems (ICS) are
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critical to the operation of the national facilities such as natural gas pipelines,

or power grids.10

With the application of leading technologies such as the Internet of Things,

Cloud Computing, and Artificial Intelligence to smart manufacturing, a modern

ICS outweighs traditional manufacturing [3]. For example, ICSs issue commands

to open/close hydraulic valves, turn on/off power switches, etc. Therefore,

any misoperation in an ICS may lead to fatal financial loss, or environmental15

destruction.

However, the exponential growth of IIoT brings not only tremendous benefits

but also significant challenges to designing and implementing ICSs related to

the cyber-security problems. In fact, a modern ICS is not an isolated system

anymore, but is connected to the Internet. Hence, it would result in severe and20

heavy consequences if hackers could gain access to control the network and steal

the security-critical data, or malware and worms could invade and destroy the

operating system of a factory. The IIoT-based Industrial Control Systems are

now one of the top industries targeted by a variety of attacks.

Many real reported attacks against SM systems have been provided in [4].25

Therefore, the problem of protecting IIoT systems against cyber-attacks is be-

coming increasingly important and indispensable in their design. Various tech-

niques such as firewall, antivirus or Intrusion Detection Systems (IDS) have been

proposed. However, as threats become increasingly more complicated, there is

a need for an anomaly detection algorithm that can discover attacks timely and30

accurately while still being lightweight enough to be deployed in IoT devices

with limited computing powers in industrial settings.

From another perspective, in a Smart Manufacturing environment, central-

ized cloud computing of all data collected in manufacturing is deployed to em-

power the workloads and applications, reduce costs, and increase release velocity35

and agility. However, a SM always requires massive analysis in real-time, so that

offloading computationally intensive tasks to a cloud centre may result in a de-

lay, due to the time needed to transmit, process, and receive a large amount of

data. To overcome this limitation, the concept of Edge computing came into
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play in a smart factory [5]. This distributed approach can solve the Big Data40

processing issue in SM where data is collected from various sensors such as pres-

sure, flow, speed.., so as generating a huge volume of data inside smart factories.

Edge computing can quickly perform a necessary task in the network edge, i.e.,

between data sources and the cloud centre. Hence, the workload concentrated

in the central cloud can be reduced.45

Therefore, in this research, we propose an IIoT decentralised architecture for

detecting Anomaly in Industrial Control Systems (ICS), where the processing

intelligence is performed near to the data sources. In this edge-cloud architec-

ture, we propose to:

� Decentralize the anomaly detection task to the edge where a hybrid model50

of Variational Autoencoder (VAE) [6] and Long-Short Term Memory (LSTM)

[7] is deployed to cope with anomaly detection for time-series data. The

hybrid model is suitable for detecting anomalies over multiple time scales.

The hybrid model is designed with an optimized threshold using Kernel

Quantile Estimator (KQE) to have high detection accuracy. In addition,55

the VAE module inside the hybrid model is also designed with only 2

fully connected layers at the VAE encoder and decoder to get high ac-

curacy and compute fast enough so that suitable for being deployed in a

low-computing capacity hardware like an edge, respectively.

� Develop Federated Learning (FL) to only send the training model of each60

edge to the cloud for the global update. This way helps to reduce band-

width occupied in the link between edges and the cloud. FL supports the

detection model right at the edge to have a faster system response upon

attack arrivals, but providing a platform to have a global update on the

training model of each edge that monitors a singular area.65

The overall FL architecture is proved to operate efficiently in terms of CPU

and Memory usage, Power consumption at edge hardware. In our case study,

designing and implementing the training/anomaly detection task right at an

edge device will take up to 85% of CPU usage of such embedded hardware
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in the worst case; and 37% of Memory usage of the edge on average. These70

indicators show that the proposed architecture can be totally implementable in

an IIoT industrial system with deployment of edge computing.

Besides, it also reduces bandwidth consumed in the transmission link be-

tween the edge and the cloud by 35%. It means, we can save 35% of the band-

width for other application traffic which runs on top of the industrial system.75

In the centralized learning manner, our detection algorithm with the opti-

mization of the threshold is proved to outperform the same VAE-LTSM algo-

rithm with heuristically-found threshold [8] in terms of precision, recall, F1-

score.

In the FL mode, the hybrid algorithms still achieves good detection per-80

formance which is quite similar to the centralized learning mode where all raw

data is sent to the cloud centre for training. And it is a very promising indicator

for efficient Edge-Cloud computing where the detection accuracy is high while

detection task is offloaded from the cloud to the edge which is nearer the data

sources. Hence obviously the system can respond to cyber attacks faster.85

2. Related Work

2.1. Cyberattack Detection for Industrial Control System

Recently, there have been a number of researches in the field of detecting

cyberattacks for Industrial Control System [9, 10, 11, 12, 13, 14, 15]. The authors

in work [9] propose a process mining method based on the log data of the devices90

in the system to make anomaly detection more efficient thanks to the rich source

of information of the logs. In work [10], the authors investigate and use the one-

class classification algorithms SVDD and KPCA for intrusion detection in the

SCADA system. The computational cost when implementing these solutions

in practice is always an important issue in the solution development process.95

To solve this, in work [11, 12, 15], the authors propose combining the input

dimension reduction technique with the attack detection algorithm. However,

in these studies, the authors have not evaluated and considered the problem of
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live detection, when the task of detecting attacks in industrial control systems

requires fast, accurate, and real-time detection. They also have yet to develop a100

distributed deployment strategy that responds to the scale of large production

systems in real production.

Cloud computing has previously been applied to manufacturing control, such

as in the case of software-defined networking-based manufacturing. The authors

in [16, 17] build a SDN-based architecture to solve related cyber-security issues105

in IIoT and Industrial Control Systems. With the separation of a traditional

network into the data plane and the control plane, SDN offers many benefits in

monitoring and detecting network attack problems such as directing traffic when

the attack occurs [16]. In these studies, the centrality of SDN is demonstrated

by the fact that all decisions are centrally handled at the controller. This leads110

to system response latency issues as well as placing the processing burden on

the controller. Given the distributed scale of manufacturing systems, these

disadvantages of SDN are a serious problem. We seek to solve these limitations

with our proposal of a distributed architecture with the detection model at the

edge.115

2.2. Anomaly detection for time-series data

In the field of anomaly detection mechanisms for time-series data, there are

many research studies up to now [18, 19, 20, 21, 22, 23, 24]. In these studies,

the anomaly detection at different times of the system is performed by the

LSTM algorithm [18, 24]. In addition to being effective in detecting anomalies,120

Autoencoder is a technique used alone or in combination with LSTM in these

studies [21, 23].

The deep generative network is a technique widely applied in solving anomaly

detection problems. In particular, networks are composed of symmetric encoders

[21, 23]. In work [23], the authors propose a deep architecture based on VAE125

to detect a cyber-attack on the water distribution system. VAE’s symmetric

architecture is used to reproduce the input through encoders and decoders to

extract information for anomaly detection. However, extracting the sequential
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information of the time series data is still a limitation of VAE. The best overall

score in this paper is at 80%, and only 62.4% for the classification task.130

In the same direction, the authors in [18, 21] also use a deep network model

with an asymmetrical structure. In that study, a robust time-series anomaly

detection framework is proposed based on a convolutional neural network with

a structure of two symmetrical encoders and decoders. The decomposition in

this architecture has an important circular role in handling patterns in the135

time series data for efficient detection. To serve the cloud and IoT monitoring,

the authors in work [21] evaluate QoS parameters and consider the problem of

processing centralized data in the cloud that requires a cloud infrastructure with

a large storage capacity and strong processing capacity. Nevertheless, using the

convolutional structure (i.e convolutional LSTM [18], convolutional Encoder-140

Decoder [21]), is time-consuming as well as requires a large amount of data to

be effective for the training process. This may not be afforded by the resource

limitation of edge devices. Research [25] has shown that with a model based on

a neural network structure, it is not necessary to have a structure that is too

complex to be effective in classification or detection.145

Therefore, in this study, we use fully-connected to build the encoder and

decoder structure instead of using multi-convolutional classes to ensure the per-

formance of the algorithm in extracting information from time-series data.

Combining unsupervised anomaly detection and prediction model under one

framework can solve the problem of requiring labels of data in anomaly detec-150

tion methods as well as ensuring accurate prediction for time series data, as

elaborated in [20, 22, 26]. In work [20], the authors propose an un-supervised

real-time anomaly detection algorithm to execute anomaly detection in Smart

Manufacturing with data collected from sensors in the factory production line.

The model combining AE and LSTM can early and accurately detect defective155

products to minimize cost and time. In fact, it is difficult to determine the

distribution of real time-series data because it is continuous series over time. So

using VAE instead of AE to re-represent the extracted data in a distribution

yields more principled and objective probabilities. From another point, in this
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method we need a threshold to distinguish anomalous events.160

A similar method is presented in work [8]. By a heuristic way, the authors

use the construction error from the training set to compute the threshold by

testing different values and choosing the threshold value that gives the highest

detection performance. The threshold is selected via the trade-off among the

detection performance measures such as precision, recall, and F1-score. This165

method is highly data-dependent and random.

To improve this, we use the Kernel Quantile Estimator theory to be able to

determine the most appropriate threshold, suitably adaptive to the distribution

of each different training data set.

2.3. Federated Learning170

From the Federated Learning perspective, work [27] concerns Federated

Learning due to its distributed and privacy-preserving nature, which is com-

monly deployed in edge computing as well as industrial IoT settings for anomaly

detection. In this area, work [28] proposes a Federated deep reinforcement

Learning empowered Anomaly Detection (FLAD) in order to detect anomalous175

users trying to leak private data in large-scale industrial settings. The paper

proposes using Anomaly Detection Centers (ADCs) divided into three levels:

Global, Local and Regional. With the Global ADC as the aggregator, the Re-

gional ADCs will learn a detection model using FLAD, with which they will

use to detect anomalous users. However, there is a chance that some Regional180

ADCs are compromised, so there will also be a federated model in the Local

ADCs to detect them.

Rather than simple adoption, other papers seek to improve the FL framework

in various ways. Study [29] concerns that some clients participating in FL could

have bad data or be under attack, and thus will send low-quality weights to185

the aggregation server that negatively affects the global model. It proposes the

server to test each local model sent by each client on some preset data first, and

discarding those that yield a too high loss value. Work [24] and [30] meanwhile

try to optimize the communication cost. Work [24] proposes compressing the
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gradients by only transmitting local gradients that are larger than a certain190

threshold, while research [30] proposes putting edge servers between the clients

and the central cloud. Some gradients calculation will be offloaded to these edge

servers, and they will also communicate with the cloud for FL instead of the

clients. There is controversy that the edge servers, being closer to the clients,

will have higher bandwidth, and also the local model aggregation in the edge195

servers will lower the number of global communication rounds with the cloud

required. These modifications require a significant architectural change or extra

computational load. Therefore, in this paper, we opted for the solution of using

a more simple detection model instead.

3. Federated Learning-based Detection System200

3.1. Federated Learning-based Architecture for Smart Manufacturing

In this study, we propose a Smart Manufacturing architecture using FL

for anomaly detection. By taking advantage of Edge Computing, the anomaly

detection function is implemented on an Edge device with reasonable processing

capacity instead of being carried out in the cloud server as usually seen in205

traditional architecture. It acts as the central monitoring and processing unit

of a local and small area to detect anomalies.

Moreover, FL techniques allow the information between different localities

to be shared through a centralized aggregator in the cloud, to serve the anomaly

detection process at each edge more accurately without gathering all data from210

different edges to perform training.

As shown in Fig 1, our proposed architecture with three main components

include:

� Factory sites: the different factories, or production lines that are divided

into areas under the control of the device called the Edge server. In each215

of these areas is a system of sensors that collects the necessary data for

the edge device to monitor anomalies.
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� Edge device: devices with sufficient processing capacity corresponding to

the size of each monitor area. It is a special feature in this federated-

learning-based architecture where anomaly detection and monitor func-220

tions are located. Accordingly, this device receives data collected from

sensors and performs the anomaly detection process.

� Cloud server: The global processing unit is responsible for collecting in-

formation from different Edge devices, then aggregating and creating a

federated model, and updating the whole edge devices in the system.225

Sensor

Factory 1 Factory 1 Factory 1

Edge 1 Edge 2 Edge 3

MQTT MQTT MQTT

MQTT

Aggregated Model

Trained
model 1

Trained
model 2

Trained
model 3

Cloud Server 

Sensor Sensor

Figure 1: Federated-Learning-based Anomaly Detection Architecture for Smart Manufactur-

ing

In this FL-based architecture, the training and detection process is per-

formed at each edge device with local data of each manufacturing area and,

the Edge device only sends information about the weight matrix of the trained

model to the cloud server without having to send the whole raw data as a tra-

ditional cloud-based training system usually does. Although the cloud can have230

large storage and enough computing capacity to handle the volume of data col-

lected in manufacturing, the computationally intensive tasks and the large data

storage are located in the cloud servers may result in a delay. Due to the time
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need to send, transmit and process a large amount of data from IoT devices in

factory sites. This is a serious problem in a smart factory that must perform235

massive monitoring and detection in real-time. In this proposed architecture,

the concept of Edge-Cloud Computing combining with FL can overcome this

limitation.

Loop
round <= comm_round

Edge Bridge Cloud 
Server

[model_weights]

Req{training_args}

Load dataset
Create VAE-LSTM model

Sub: fedml{i} 

Sub: fedml0

Train VAE-LSTM model

Pub{fedml{i}}

[model_weights]

Aggregation

Res{training_args}

Pub{fedml0}

[aggregated_weights][aggregated_weights]

Update local models

Creates VAE-LSTM model

Creates Aggregator

Pub{fedml0}

[initialized_weights]

[initialized_weights]

Set initialized weights
to model

Figure 2: Flow chart of the FL-based Architecture operation

The operation of the FL mechanism in this architecture is illustrated in Fig

2.240

� Cloud Server as a Weight Aggregator first creates the initial model.

� In this architecture, the hybrid VAE-LSTM model is used to overcome

the anomaly detection with time-series data in smart manufacturing. It

then subscribes to several MQTT topics to which clients will send their

models’ weights.245
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� After publishing the first model’s weights to the aggregated model top-

ics, the Cloud Server waits for requests of the specific VAE-LSTM model

configuration from its clients.

� For the Edge side, with received configuration arguments, local models

are created and set with initialized weights received by the subscriptions250

to the aggregated model topics.

� The Edge devices then train the local models with their own data sets.

For every communication round, an Edge device sends trained models’

weights wkt+1 to Cloud Server for aggregation.

� The Cloud then computes the weight of the aggregated global model by255

the formula (1) introduced in [27]:

wt+1 =

K∑
k=1

nk
n
wkt+1 (1)

Where:

K:the number of participating clients

nk: the amount of data that client k possesses

n: the total amount of data that all clients have260

wkt+1: the weight of the local model at client k at time t+ 1

wt+1: the weight of the aggregated global model at time t+ 1.

� This weight of the aggregated global model is finally sent downward to

update the local model of each edge device.265

3.2. Anomaly Detection using the hybrid VAE - LSTM model at the Edge

Anomaly detection in time series faces many challenges such as: contextual

information, noise, concept drift,... Especially, anomaly detection in an Edge-

computing-based IIoT environment has many additional requirements such as

detection time and memory constraints [31]. To deal with this issue, the hybrid270
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VAE-LSTM model is developed at the edge devices where VAE stands for Vari-

ational Autoencoder and LSTM stands for Long Short-Term Memory Networks

[7].

The idea of this hybrid model was actually initiated from research [8] for the

fact that the model makes use of robust local features over short windows of275

VAE. Via VAE, the structural regularities of the time series are captured over

local windows. It also utilizes the capacity of LSTM on estimating the long-

term correlation in the time series over the features inferred by VAE. Hence,

longer term trend can be modeled by LSTM. In fact, both VAE and LSTM are

unsupervised learning, requiring no labelled data for anomaly training. There-280

fore, the hybrid model is an efficient detection method that can detect a new

anomaly in a smart factory even it has not ever occurred before.

It is important to note that, in case the normal behaviour of IoT devices is

changed over time, the performance of anomaly detection methods using one-

class classification techniques may be affected by the increase of false alarms.285

To deal with this problem, we can use the idea of research [32] to develop a

solution to correct the threshold. From the new normal data, the probability

errors will be calculated using the trained hybrid VAE-LSTM model. It will

then be combined with the probability errors of the original training dataset.

Finally, the threshold will be recalculated using the KQE technique.290

In this research, we provide a full description of the step-by-step deployment

of the VAE and LSTM in a Federated-learning IIoT environment. The VAE

model is designed with 2 fully connected layers in the encoder and decoder to

be more light weight in terms of computing requirement. The VAE model then

can be more suitable for deployment in such a hardware with low-computing295

capacity like an Edge. We also enhance the model by optimizing the threshold

using Kernel Quantile Estimator (KQE) to have better detection performance

instead of using a heuristic threshold as proposed in [8].

The full description of the general operation of the VAE-LSTM model is

illustrated in Fig.3.300
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Figure 3: Block Diagram of the VAE-LSTM approach

� First, the time-series data {x1, x2, . . . , xLwin , xLwin+1, . . .} - in which xi ∈

RD is a multivariate data with D-dimensional - will be sliced into rolling

windows of size Lwin, which will be used to train the VAE algorithm.

� A sequence - si, is made by concatenating Lseq non-overlapping windows,

which will be denoted as {s1,i, s2,i, . . . , sLseq,i}.305

� After the VAE module has been trained, the sequences {s1, s2, . . . , si} are

fed into the Encoder of the VAE module, where each window is compressed

into a lower dimensional code. A code sequence ei will consists of multiple

codes - {e1,i, e2,i, . . . , eLseq,i}. The code sequences {e1, e2, . . . , ei} will then

be the input of the LSTM module.310

� The LSTM module uses the first Lseq − 1 components from the current

code sequence i ({e1,i, e2,i, . . . , eLseq−1,i}) as input to return the prediction

of the last Lseq − 1 components: êi = {ê2,i, ê3,i, . . . , êLseq,i}

� Each predicted code sequence êi is then recreated by the trained VAE

decoder to become predicted sequence value ŝi = {ŝ2,i, ŝ3,i, . . . , ŝLseq,i}.315

� Comparing each predicted sequence ŝi with s̄i, which is the input sequence
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si without the first component, yields a series of probabilities errors, or

also called prediction errors.

PEi = ||ŝi − s̄i||2, (2)

� A threshold λTh is used on these errors to classify abnormal points, which

is defined using a technique called Kernel Quantile Estimator (KQE).

Detailed background on LSTM and VAE operation as well as optimization

of threshold λTh by Kernel Quantile Estimator (KQE) will be given in the

following sections.320

3.2.1. Deployment of Long Short-Term Memory Networks

LSTM (Long Short-Term Memory Networks) is utilized to act on the low-

dimensional embeddings produced by VAE, to manage the sequential patterns

over the longer term. Although there are many variations of LSTM, the compar-

ison in [33] has shown that these variations are almost the same, some of which325

are more effective than the others but only in some specific scenes. Therefore, in

this study, we use a simple LSTM Network with one cell to minimize the com-

puting complexity of the system while ensuring the performance in processing

time-series data. The basic structure of one cell in a LSTM network at state t

is shown in Fig 4.

σ tanh

x +

σ

x
tanh

σ xht-1

et

ft
it

ot

ct~

ct-1 ct

ht

Figure 4: A Long-Short Term Memory cell

330

A LSTM cell has input et, output ht (hidden state) and cell state ct at time

t; as well as ct−1 and ht−1 which are the output of the cell at the previous step.
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Different to Recurrent Neural Network (RNN) cell which has only one tanh

function, in order to remember the past data, a LSTM cell has three control

stages:335

� The first stage is the forget gate: With the input data et and previous

output ht−1, the gate will decide which information should be kept and

which should be forgotten, that is performed by the function:

ft = σ(Wf × et +Wf × ht−1 + bf ) (3)

Where:

(Wf , bf ): the weight matrices and bias of the forget gate.

� The second step uses to process information to decide how much informa-

tion should be add to the cell state c, called the input gate.

ct = ct−1 × ft + it × c̃t (4)

In which it and c̃t are computed by:

it = σ(Wi × et +Wi × ht−1 + bi) (5)

c̃t = tanh(Wc × et +Wc × ht−1 + bc) (6)

In this step, the values it is computed by a sigmoid function along with a

vector of values c̃t generated by a tanh function at the same time. (Wi, bi)

and (Wc, bc) in (5), (6) are the weight matrices and the biases of the input340

gate and cell state, respectively.

� The last step is the output gate stage: The output ht of LSTM depends

on input et, ht−1 and the current cell state ct. The tanh function helps

to scale down the value’s range to a number between =1 and 1, and the

sigmoid function helps to filter the information from the cell state being

output through the number within [0,1].

ht = Ot × tanh(ct) (7)
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Which Ot is defined in (8) and (Wo, bo) are the weight matrix and the bias

of the output gate.

Ot = σ(Wo × et +Wo × ht−1+) (8)

In this structure, ct is like a connection between the states with the current

state of the network. This helps to keep the previous important information in

the next states, providing long-term memory for the LSTM model.

3.2.2. Deployment of Variational Autoencoder345

An autoencoder (AE) is a symmetrical, unsupervised neural network with

the center hidden layer having fewer nodes than the input and output layer (a

”bottleneck”). It is trained to recreate the output to be as close to the input

as possible. After this process, the network has learned to compress the input

to the bottleneck layer and then subsequently restore the input from it. This350

middle layer thus becomes the ”latent representation” of the input, retaining

most information about the input using fewer features. The part of the network

before this layer becomes the encoder, and the part after becomes the decoder.

A variational autoencoder (VAE) [6] is a combination of the AE with the

Variational Bayesian method. With VAE, the neural network describes prob-355

ability distribution functions instead of deterministic ones. VAE is used to

summarize the local information of a short window into a low-dimensional em-

beddings as shown in Fig. 5.

The purpose of VAE is to make sure that the latent space is regularized, and

thus allows the generation of new, similar data. With the traditional AE, the360

model only cares about minimizing the reproductive loss and not at all about

the state of the latent space of encoded data. Thus, the space will most likely

be discontinuous and heavily fragmented, and decoding a random data point

in latent space will probably result in nonsense data. On the other hand, the

VAE will create continuously distributed encodings, and thus allows generation365

of new, similar data.
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Figure 5: Illustration of a VAE Structure

Many different designs for VAE have been proposed, using various types of

layers such as Dense, LSTM or CNN [34]. In this paper, we design the VAE

encoder and decoder with only two fully connected layers each. This design is

to achieve the simplicity and light weight of the model which is then capable of370

being trained on edge devices with limited hardware capacity; as well as reducing

the communication cost, while still giving a satisfactory detection performance.

Let x be data generated by inputting a latent variable z through a random

process with parameters θ. The posterior probability can be described as:

pθ(z|x) =
pθ(x|z)pθ(z)

pθ(x)
(9)

Because both the latent variable and the parameters of the process are not

observable, the posterior probability as well as the marginal likelihood pθ(x) are

often intractable. To solve this problem, a recognition model qφ(z|x), which is

an approximation of the posterior, is introduced. The variational parameters φ

of this model will be optimized so that:

qφ(z|x) ≈ pθ(z|x) (10)

The marginal log likelihood of the data can be written as:

log pθ(x) = DKL(qφ(z|x)||pθ(z|x)) + Lθ,φ(x) (11)

with Lθ,φ(x) being the evidence lower bound (ELBO). Because the first term

of Eq. (11) is the Kullback-Leibler divergence and is always non-negative, we
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always have log pθ(x) > Lθ,φ(x). Thus, optimizing the ELBO with respect to

both θ and φ will minimize this KL term, bringing qφ(z|x) closer to the true

posterior. The ELBO is defined as:

Lθ,φ(x) = −DKL(qφ(z|x)||pθ(z)) + Eqφ(z|x)(log pθ(x|z)) (12)

The first term of Eq. (12) is the KL divergence of the distribution of the

encoding with respect to the normal distribution, to ensure that the latent

space is continuous. The second term is the reconstruction loss to make sure375

that the data is being encoded correctly.

A common choice is to have both qφ(z|x) and the prior pθ(z) be Gaussian.

The ELBO to be optimized for each data point i can then be given as:

Lθ,φ(x(i)) =

J∑
j=1

1

2

[
1 + log((σ

(i)
j )2)− (σ

(i)
j )2 + (µ

(i)
j )2

]

− 1

L

L∑
l=1

Eqφ(z|x)
[
log pθ(x

(i)|z(i,l))
] (13)

Where µ and σ are the output mean and standard deviation vectors of the

encoder, J is the size of those vectors, and L is the number of times a sample380

is taken from the latent space.

The parameters of the model can thus be expressed as:

(θ∗, φ∗) = argmaxθ,φL(θ,φ)(x) (14)

Instead of maximizing L, we can simply take its negative as a loss function to

minimize, then apply gradient descent to find the optimal parameters. However,

calculating the gradient is unstable due to the sampling of the random variable

z in the second term of Eq. (13). To circumvent this, a technique called repa-385

rameterization [6] can be used, in which instead of sampling the latent variable z

directly, we write z = µ+σ�ε with ε ∼ N (0, 1) and sample ε instead. That way

the random sampling is externalized and the gradient descent can be calculated

as usual through deterministic nodes.
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3.2.3. Threshold optimization using Kernel Quantile Estimator390

. As aforementioned in Fig. 3, the anomaly detection is based on a set of

prediction scores, and we need to set a threshold for this set of scores to defining

what is anomaly or normal. Usually, this threshold can be determined by several

rules such as 3σ and 2σ by assuming data has a normal distribution. As in [35],

the author uses the maximum likelihood estimation theory to determine the395

threshold value for abnormal points detection with the assumption that the

”error vector” follows by a multivariate Gaussian distribution.

In fact, in most contexts, it seems difficult to confirm that realistic data have

a normal distribution. To solve this problem, we can determine the threshold

independently from the data distribution by applying a non-parametric method.400

In this study, we use the Kernel Quantile Estimator (KQE) method [36] to

estimate the λTh for the training data set based on probability error follow by

(2).

In (2), we have a set of prediction scores Score = {PE1, PE2, . . . , PEk}.

Suppose that PE1 ≤ PE2 ≤ . . . ≤ PEk are reorganized corresponding to

the order statistics of the reconstruction error. KQE is used to calculate the

λTh as shown in Equation. (15):

λTh =

N∑
i=1

[∫ i
k

i−1
k

Kh(t− p)dt

]
PE(i) (15)

Where K is the density function symmetric about zero; bandwidth h (greater405

than 0) is used to control the smoothness of the estimator for k samples in the

prediction score set, and p (0 < p < 1) is the preset value.

In equation (15), the selection of kernel for K and bandwidth for kernel

density estimator should be in focus. The author in [36] has shown that the

estimation performance does not have many effects by the choice of function K.

In this study, we use the standard Gaussian kernel for K like in (16).

K(z) =
1√
2π

exp(−z
2

2
) (16)

In contrast to K, the smoothness of the density estimate is affected significantly
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by bandwidth h. To overcome this problem, an asymptotically optimized band-

width like in [36] is computed as:410

hopt =

√
p(1− p)
k + 1

(17)

Threshold λTh is used to determine the anomalous points in the time series data.

By using the Kernel Quantile Estimator method, we can solve the unknown

distribution of the data, ensuring the accuracy of anomaly detection.

4. System performance evaluation

In this section, we evaluate the performance of our proposed overall ar-415

chitecture in terms of anomaly detection performance and effectiveness of the

Federated-learning-based Edge computing. The main case study is smart manu-

facturing in a Gas Pipeline Factory with a realistic time-series data set achieved

from the Supervisory Control and Data Acquisition (SCADA) systems [37].

However, in order to assess the anomaly detection performance of our so-420

lution in various industrial contexts, we also use other time-series data sets

collected in several different fields such as ECGs [38], respiration [38], power

demand [38], gesture [38], space shuttle [38] and NYC taxi [39]. The short

introduction of these data set are shown in the Table 1.

4.1. Data set pre-processing425

Data sets are the input for any training model developed at either the Edge

or the Cloud. However, those data sets frequently have many missing feature

values, so it is always necessary to clean and pre-process data before the training

process. For example, as our main case study, the SCADA data set is shown

in Fig 6 with many missing values (i.e ”?” values). The SCADA data set in-430

cludes 274,628 samples and, each sample contains network information, payload

information etc.

To deal with the missing values, we can crop the samples or features that

include those missing values. However, those cropped samples and features may
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Table 1: List of the data sets used in our experiments

Data sets Description

Gas pipeline (SCADA) [37] The gas pipeline data set was collected in 2015

by Mississippi State University Lab for anomaly

detection using their in-house gas pipeline sys-

tem

ECGs [38] The data set on Electrocardiograms is a time-

series of the electrical signals caused by heart-

beats

Respiration [38] The respiration data set contains information on

Patient’s respiration measured by thorax exten-

sion when waking up

Power demand [38] The data set provides information on the power

consumption of a Dutch research facility in 1997

Gesture [38] The gesture data set consists of 2 features repre-

senting the coordinates of the actor’s right hand

while performing a variety of actions

Space shuttle [38] The data set measures the solenoid current of a

Marotta MPV-41 series valve cycled on and off

NYC taxi [39] The data set contains information on The New

York taxi passenger data stream from July 2014

to June 2015

Figure 6: Examples of the missing values in the SCADA data set.
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contain useful information for precise training. Therefore, carelessly removing435

them can lower the model’s precision.

According to work [40], there are 3 types of missing data mechanisms: miss-

ing completely at random (MCAR), missing at random (MAR), and missing not

at random (MNAR). MCAR means the missingness of data is unrelated to any

values. MAR indicates that the tendency of a value to be missing might depend440

on the observed data, but not the missing data. In contrast, MNAR indicates

that there is a relationship between the missingness and its value. Considering

the missing values as shown in Fig. 6, we notice that the SCADA data set is

likely to have the characteristic of MAR. In the same direction, the authors

in work [41] also base on the LOCF method to process missing values in the445

SCADA data set, the results show that this method is more suitable and effec-

tive than some other methods in the anomaly detection problem. Therefore, we

apply Last Observation Carried Forward (LOCF)[42], a well-known method to

handle MAR, to process the missing values in the SCADA dataset. LOCF uses

the immediately preceding value of the same feature to fill in the missing value.450

If the data set begins with missing values, we use the first observed value to

substitute them.

After handling the missing values, to normalize all features to the same scale

and arithmetic values, we perform data transformation by the mean-standard

deviation scale techniques as in (18) .

x′i =
xi − µ
σ

(18)

In which, µ and σ are the mean and the standard deviation of the listed feature

values, respectively. To train and evaluate the performance of our solution in

different scenarios, we divide the SCADA data set into the training set (160,870455

samples) and testing set (68,657 samples) while the training set contains only

normal samples for anomaly detection purposes.
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4.2. Detection Performance Evaluation

In this section, we evaluate the performance of our approach in various con-

texts. The assessments were carried on the aforementioned data sets in terms460

of precision, recall, and F1-score. These metrics are defined by as follows:

Precision = true positive
true positive+false positive

Recall = true positive
true positive+false negative

F1 = 2× Precision×Recall
Precision+Recall465

Where:

� true positive: an outcome where the model correctly predicts the positive

class

� false positive: an outcome where the model incorrectly predicts the pos-

itive class470

� false negative: an outcome where the model incorrectly predicts the neg-

ative class.

Note for time series data, an anomaly only occurs in one single time point,

but is detected using a window, so in the ground truth array, all the points in

this window are considered as anomalies. The algorithm may not recognize all,475

but only some elements in that window as outliers. Realistically, this means

the true anomaly has been detected, but due to the way the ground truth is

constructed, the algorithm is still being fined for false negatives. We resolve

this with the same approach in [43], in which if any elements in a window are

detected, the whole window is also considered detected.480

4.2.1. Experiment 1

Experiment 1 is presented in Table.2 in which the performance of our Federated-

learning detection model is compared with the cloud-centralized-based VAE-

LSTM detection model with the heuristic threshold λTh mentioned in [8]. The
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detection performance of the two approaches is compared on top of 7 different485

data sets. This comparison is to evaluate how close the detection performance

of the FL approach can get to the current centralized approach with the same

detection method.

In the centralized learning experiment, to achieve the best threshold by the

heuristic way proposed by work [8], we tested with 25 different thresholds evenly490

spaced between the smallest and largest reconstruction error, and finally finding

the best heuristic threshold for each of the 7 data sets. In addition, a notice

that work [8] did not mention how the authors realized VAE, since there are

different types of layers: Dense, multi-layer CNN... However, as we experi-

mented, application of VAE with multi-layer CNN is implementable at the edge495

device since its computing complexity is so high and training time is so long

even running the algorithm over a high-computing server, much worse for a low-

computing-capacity edge device. Therefore, although the centralized solution

with multi-layer-CNN works quite perfectly in terms of detection performance

as shown in the original work [8], we decided to implement VAE of work [8] with500

Dense to reduce the number of layers, features, thereby decreasing computing

complexity and the matrix of weight at the edge. This experiment and imple-

mentation make work [8] implementable at the edge device for the comparison,

but leading to the different detection performance shown in this study compared

to the original work [8].505

In the Federated-learning experiment, the proposed threshold optimization

using KQE is achieved by varying 9 values of p ranging from 0.1 to 0.9, with

the distance of 0.1, in addition to 2 more values of 0.95 and 0.99 for a total of

11 values.510

As shown in Table 2, the hybrid VAE-LSTM module performs well on many

time-series data sets, but did poorly on some, such as the respiration or the

gesture data set. We believe this could be improved by making the detection

model more complex, but that would come at the cost of increased computation

and bandwidth demand at edge devices so that the edge is not be able to handle.515
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But the VAE-LSTM proves to work very well in the the main case study - the

SCADA data set in which Precision, Recall and F1-score get very high.

Furthermore, despite the fact that the Centralized Learning model tends

to perform better than their Federated-Learning counterparts, and that the

KQE approach only has less than half as many tries compared to the heuristic520

approach. However, surprisingly, our Federated-learning approach still outper-

forms the centralized learning VAE-LSTM solution proposed by [8] in most of

the data sets. The only data set where our proposal performs worse on all

metrics is stdb 308 0. This shows that a suitable threshold found by the KQE

method can vastly improve the performance of an anomaly detection model,525

and that our KQE is better and faster at finding the optimal threshold in most

cases.

Table 2: Federated Learning approach vs. Centralized Learning approach over 7 different

time-series data sets

Data set Test set Cloud-Centralized-VAE-LSTM [8] Our FL-based approach

Precision Recall F1 Precision Recall F1

Space shuttle

TEK14 0.5792 0.9990 0.7333 0.8623 0.8431 0.8536

TEK16 0.9636 0.8881 0.9243 1 1 1

TEK17 0.8961 0.9637 0.9287 0.9650 1 0.9822

Respiration
nprs43 0.6586 0.4952 0.5653 0.9313 0.5530 0.6939

nprs44 0.9786 0.2799 0.4353 0.5347 0.5027 0.5182

Gesture gesture 0.3422 0.9989 0.5098 0.5278 1 0.6910

Nyc taxi nyc taxi 0.7711 0.7628 0.7669 0.9606 1 0.9799

ECG

Chfdb chf01 275 1 1 1 0.9175 1 0.9570

chfdb chf13 45590 1 1 1 0.9489 1 0.9738

chfdbf15 0.6484 0.8968 0.7526 0.9458 1 0.9721

ltstdb 20221 43 0.9607 1 0.9800 1 1 1

ltstdb 20321 240 1 1 1 1 1 1

mitdb 100 180 0.9754 1 0.9876 1 1 1

qtdbsel102 0.5827 1 0.7364 0.9604 1 0.9797

stdb 308 0 0.7521 1 0.8585 0.6073 0.6373 0.6220

xmitdb x108 0 0.6727 1 0.8043 1 0.7628 0.8654

Power demand Power demand 0.2728 0.8948 0.4182 0.7355 0.9100 0.8135

SCADA Scada 0.9315 1 0.9645 0.9609 0.9982 0.9792

4.2.2. Experiment 2

In order to test the effect of the FL approach and KQE-based threshold

optimization on the detection performance separately, we tested the heuristic530
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and KQE approaches for finding the best threshold on top of both centralized

(e.g. the approach of work [8]) and FL scenarios, in the main case study - the

SCADA data set. The results are demonstrated in Table 3.

We can see that in both of the centralized and federated case, the KQE-based

scheme gives the better F1 score and Precision, and only has a slight reduction535

in Recall in the Federated-learning approach. With the KQE-based threshold

selection method, the cloud-based centralized method proposed by work [8]

slightly increases its own detection performance compared to the results shown

in Table 2.

The best p found for the SCADA data set is 0.9. We also tested the AUC540

(Area under the ROC Curve) value for both scenarios, as this metric is not

affected by the choice of threshold. We found that the Federated-Learning

model only has a slightly lower AUC value than the Centralized-Learning model,

proving that the decrease in model quality by FL is only minuscule.

Table 3: SCADA Centralized vs. Federated Results

Learning Approach
Heuristic-based threshold KQE-based threshold

AUC
Precision Recall F1 Best p Precision Recall F1

Centralized 0.9315 1 0.9645 0.9 0.9585 1 0.9788 0.8539

Federated 0.9315 1 0.9645 0.9 0.9609 0.9982 0.9702 0.8500

4.3. Evaluation on Edge Computing Efficiency545

In this section, we desire to study the performance of a real edge hardware

working in the Federated-learning IoT environment. This issue is important

since we can estimate how well such a proposed Edge-computing architecture

can work in reality with limited hardware capacity like an Edge.

Communication efficiency of the FL approach is compared with that of the550

Centralized Learning architecture. In addition, the aspects of computational

resources and energy consumption at every single Edge are also covered.

At first, the detail of the devices, framework and measurement method used

in the testbed is elaborated in the following section.
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4.3.1. Experimental setup and Measurement implementation555

Testbed setup

Raspberry Pi 4

Cloud server

Edge

MQTT

Raspberry Pi 4 Raspberry Pi 4

Power measurement 
module

Transmit BW

Raspberry Pi 4
python-resmon

A resource monitor

Figure 7: Testbed Setup

As illustrated in Fig. 7, our testbed involves:

� Four Raspberry-Pi-4-Model-B kits acting as edge devices; Raspberry-Pi-4560

features a 1.5GHz ARM Quad-core Cortex-A72 processor and 4GB RAM

with Raspbian OS 32-bit)

� A Dell Precision 3640 Tower workstation serving as a Cloud Server; the

workstation features an Intel Core i7–10700K 3.8GHz (up to 5.1GHz),

RAM of 16GB, Arch Linux.565

� All Edge devices and Cloud Server are interconnected with a router via

their wifi interfaces

In the edge devices, we implement our FL-based VAE-LSTM framework

written in Python 3 with the Tensorflow 2 platform, which is built with the

support of the FL framework - FedML. [44].570

In our architecture, the edge devices and cloud server interchange weights

and bias matrices of the VAE-LSTM model using the MQTT protocol which

28



is standardized for IoT environment. For better performance in the long run,

EMQ X Broker [45] is hosted on the cloud server as a MQTT broker. EMQ

X Broker is found an open-source broker that can be most scalable to accept575

more edge devices connecting to the server.

Implementation of Bandwidth occupation measurement

To measure bandwidth occupation in the link between each edge and the cloud

server, we use the tool bmon [46] on the up-streaming direction of the edge580

devices’ Wifi interfaces to measure bandwidth usage. bmon [46] is a monitoring

and debugging networking tool, especially used to capture statistics of a net-

work.

Implementation of Computation resource and Energy consumption585

measurement

For exact assessment of computational resources such as CPU and Memory

usage as well as energy consumption, external monitors and peripheral devices

for Raspberry Pis should not be used since they will increase the CPU/Memory

usage and Energy consumption whilst we only want to measure the impact of590

the Federated-learning based VAE-LSTM model onto the edge hardware only.

Consequently, it is needed to establish an SSH connection to those Edge devices

so as to conduct measurement experiments. To display the measurement results,

all measured values are logged into separate text files and processed later to

display into graphs.595

These SSH connections are set up over the Ethernet interfaces of the Rasp-

berry Pi kits, as a substitute for WIFI ones, via a second router; since the WIFI

interfaces are used for sending data from the edge to the cloud. This setting is

to avoid noise hence more accurate bandwidth occupation measurement can be

acquired.600

In order to assess the computing occupation level of the edge devices, we

use the tool resmon [47] to measure CPU usage and memory usage during the

training task of the FL-based VAE-LSTM model; in comparison with the cen-
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tralized learning model in which all data coming to the edge are just forwarded

to the cloud for centralized learning.605

The measurement of energy consumption involves using UM25C USB Tester [48]

to calculate the energy usage of Raspberry Pi.

4.3.2. Experimental Scenarios

To compare the communication efficiency of our Federated-Learning archi-

tecture with the centralized learning architecture using the same type of detec-610

tion mechanism, two main scenarios are established.

In each scenario, we evaluate with the same detection model (i.e. VAE-

LSTM) and the same data set (i.e. SCADA of 58MB). We focus on four key

metrics to evaluate the performance of an edge:

� Bandwidth consumption in the link between the edge and the cloud615

� Power consumption at an Edge during training

� CPU usage at an Edge during training

� Memory usage at an Edge during training

Scenario 1 is for the cloud-based centralized learning architecture in which all

data from clients and sensors are sent to the cloud for centralized training and620

detecting anomalies. Hence, the Edge just forwards traffic directly to the cloud

server.

Scenario 2 is for the FL architecture in which incoming traffic is captured by

edge devices. Then the training process as well as anomaly detection are taken

place right at the edge. Hence, the edge only sends its own model (i.e. matric625

of weights) to the cloud for global updating.

Scenario 3 is for investigating the behavior of the edge during the detection

phase of FL. To set up the experiment, a time-series test set of 2000 samples

from the SCADA dataset is utilized. This set of data is then fed into the

detection module which will process one block of 1000 data points at a time.630

In the detection phase, the output of anomalous points is determined by the
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comparison of the reconstruction error with a threshold that was previously

defined using the KQE method

4.3.3. Performance Results and Analysis

Bandwidth Occupation during the training phase635

Fig. 8 demonstrates the bandwidth occupation for Scenario 1 - the central-

ized learning architecture where data coming from sensors are all forwarded to

the cloud by the edge devices during 45 seconds of the experiment. As it can be

seen, during 45 seconds, bandwidth occupation stays at a rate of approximately

2000 KiB per second on average for most of the time and reaches the rate of640

around 2600 KiB per second at maximum. (Note: 1 KiB is denoted for 1024

Bytes in this study).
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Figure 8: Bandwidth occupied in the Edge-Cloud link for the Centralized Learning approach

Meanwhile, for the FL architecture, since data coming from the sensors

are processed for training right at the edge devices, thus, the edge just sends

matrices of weights to the Cloud for further global updates. As Fig. 9 elaborates,645

during the whole VAE-LSTM training process of app. 1400 seconds, we almost

get only one spike of bandwidth occupation of about 1700 KiBytes per second.

And this spikes spans in only about 8 seconds as illustrated Fig. 10 as the

zoom-in of Fig. 9.
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Figure 9: Bandwidth occupied during the VAE-LSTM training in the Edge-Cloud link for the

Federated Learning approach

The results from Fig. 8 and Fig. 9 show that the proposed FL architec-650

ture saves bandwidth by 35% and takes only 18% of the the transmission time

in compared with the centralized learning architecture. Therefore, deployment

of such a FL architecture will leave the edge-cloud link to have more free link

capacity to convey other information data of the Industrial IIoT system. More-

over, to mention again, such a FL model can help reducing the system response655

to attacks since the early attack prevention is implemented right at the Edge

which is near the attack sources inside a smart factory.

In case, larger data size should be trained for the sake of detection perfor-

mance, the FL approach will outperform the Centralized learning mode better

in terms of Bandwidth occupation since the amount of model data (i.e. weights)660

transmitted to the Cloud remains the same while raw data from sensors trans-

mitted to the Cloud for centralized training increases.

However, from another perspective, implementing a detection model dis-

tributively at every edge device may result in an trade-off with the resource and

energy consumption at the edge. This issue is obvious since now all edge devices665

need to compute and process data by their own resource for the anomaly detec-

tion task. Therefore, it leads us to investigate the Power, CPU, and Memory
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Figure 10: Zoom-in of the Bandwidth spike in Fig. 9

consumption of an edge during the training phase.

Power Consumption at the Edge during the training phase670

In this experiment, power consumption in each single Edge device during

the Centralized Learning process (i.e. forwarding-traffic process) and the FL

process (i.e. training process) are measured.

As Fig. 11 illustrates, the power consumption at the edge in the centralized

learning scenario is in the range of 2600-3600 mW. The baseline power con-675

sumption of the Raspberry-Pi-4 edge is presented in the first 20 seconds of Fig.

11, which stands for about 2600 mW. (Baseline power is defined as the state in

which the edge is just switched ON without processing any task).

For the FL scenario, as Fig. 12 shows, the power consumed during the

training process is divided into continuous phases: the VAE phase, the phase of680

producing embeddings for the LSTM phase and the LSTM phase.

For simplicity and display clarity of the Figure, we show the power consump-

tion of the VAE-LSTM training process with only 1 communication round of

the VAE phase, and 1 (embedding and LSTM) phase in order to demonstrate

how much power an edge device (i.e. Raspberry Pi 4) consumes over time. As685
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Figure 11: Power consumption at an Edge in Centralized Learning

measured in the Raspberry-Pi-4 edge device, for each round, it takes about 410

seconds for 1 round of the VAE phase, 850 seconds for producing embeddings

and LSTM phase, and 1300 seconds to complete the whole training process.

In a real situation of running the VAE phase in 15 communication rounds

to get high detection performance, the power consumption of the VAE phase690

illustrated Fig. 12 will replicate the same pattern of the first round 15 times

over time.

And in order to complete the 15-round VAE-LSTM training process to get

the high detection performance presented in Table. 3, we will have to run 15

times of the VAE phase and plus 1 embedding and LSTM phase. It will take695

an additional 410 seconds per VAE phase and take about 2 hours for the whole

training process at the edge.

It is important to note that, in this research, the VAE-LSTM is used for

feature extraction. In case there is a change in the network status but long

training time is not allowed, we still can use the VAE-LSTM which was trained700

with the old data without retraining to reduce the training time. In this case,

the new threshold recalculation will be based on both of the prediction scores

computed from the old data and new data which is got through the trained VAE-
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Figure 12: Power consumption at an Edge in Federated Learning

LSTM to provide corresponding prediction scores. Using VAE-LSTM only one

time will reduce much of the training time in case long training time is not705

allowed to protect critical ICSs..

In conclusion, to develop such a proposed FL-based Edge-computing archi-

tecture, the system should be designed to monitor and detect anomalies inside

an IIoT industrial system in every 2 hours. The edge device like Raspberry-Pi-4

must load average power consumption of 5000-6000mW.710

CPU consumption at the Edge during the training phase

In the same experimental setup with the Power measurement, CPU usage

in a single edge is also measured.

For centralized training scenario, Fig. 13 elaborates the CPU usage of an715

edge during 45 seconds of forwarding data from the sensors to the cloud.

For the FL scenario, Fig. 14 demonstrates the CPU usage in a single edge

during the training VAE-LSTM process of 1 round of the VAE phase and 1

embeddings and LSTM phase.

As we can see, in the centralized learning architecture, since the detection720

task is offloaded onto the cloud server, the edge device is just in charge of

35



0 10 20 30 40 50 60
Time (second)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

CP
U 
Us

ag
e 
(%

)

CPU_Centralized_Learning

Figure 13: CPU Usage of an Edge in Centralized Learning
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Figure 14: CPU usage of an Edge in Federated Learning

forwarding data from sensors, so the CPU usage reaches only 5% the total CPU

on average. This figure of 5% also presents for the application traffic running

on top of all hardware deployed inside a Smart factory like the Gas Pipeline

factory.725

Whilst, in the FL scenario, the training task takes 80% of the CPU in the

worst case. However, the figure of 80% is a good figure since Edge’s CPU still

has 20% left for other application information which may account for another
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5%. Therefore, the overall CPU usage for anomaly detection task and other traf-

fic communication tasks account for roughly 85%. It shows that our proposed730

edge-computing architecture is definitely implementable in smart manufactur-

ing.

Memory Usage at the Edge during the training phase

In the same experimental setting, we also present the memory usage of an Edge
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Figure 15: Memory Usage of an Edge in Centralized Learning
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Figure 16: Memory Usage of an Edge for Federated Learning
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for the Centralized Learning and Federated Learning scenario.735

Fig. 15 shows the memory usage of an Edge in Centralized learning architec-

ture which accounts for less than 6% at maximum over 45 seconds of the total

experiment time. Whilst, in the FL architecture, the memory usage presented

in Fig. 16 accounts for 37% on average during 1300 seconds of the training

phase with 1 round of the VAE phase and 1 embedding and LSTM phase.740

Power Consumption, CPU Usage, Memory Usage at the Edge during

the detection phase

In Scenario 3, Power Consumption, CPU and Memory Usage of the Edge745

device during the anomaly detection phase are presented in Figure.17, Figure.18,

and Figure.19 accordingly. As Figure.17 illustrates, the power consumption at

the edge during the detection period mostly is in the range of 4000-4200mW in

which note again that the baseline power consumption of the the Raspberry-Pi-

4 edge accounts for 2600mW. The CPU usage during the detection phase takes750

about 60% on average, and memory usage takes about 11% in the worst case.
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Figure 17: Power Consumption of an Edge device during the anomaly detection phase

Overall, this consumption is lower than that of the training phase which can
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Figure 18: CPU Usage of an Edge device during the anomaly detection phase

be explained as the Edge device no longer has to deal with extensive mathemat-

ical computation relating to high dimensional matrices as the training dataset.

Instead, much smaller chunks of data are fed as input to the detection mod-755

ule, hence leading to the significant reduction in power consumption as well as

consumed computing resources.

5. Limitations, Discussion and Future Work

In this research, we have proposed a Federated-Learning architecture based

on Edge-computing for smart applications of Smart manufacturing in the con-760

text of Big Data. The overall solution has shown to have high detection per-

formance, whilst giving the advantage of having a fast response since anomaly

detection is implemented near the attack sources (i.e the edge). The FL archi-

tecture distributes the monitoring and detection task to smaller local areas, so

that it can deal with Big Data generated inside a smart factory better. In addi-765

tion, the proposed system is proved to reduce bandwidth for controlling data in

the transmission link between the edge and the cloud, meanwhile ensuring that

the edge hardware will not be overloaded in terms of CPU and Memory usage.

For future work, we will try to optimize our system more in terms of weights
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Figure 19: Memory Usage of an Edge device during the anomaly detection phase

communicating between the Edge and the Cloud, as well as defining the more770

suitable training data so that the Edge devices take up as little computing

resource as possible to be able to carry on more other tasks. The limit of

the data size and number of features should be studied to ensure the edge

computing work in a stable mode. Moreover, the research can be extendable

to other applications of SM such as: Predictive maintenance, Quality control,775

Real-Time Production Optimization in a Smart Factory 4.0.

Another interesting issue in ICSs for future study is the change of the normal

behaviour over time due to, for example, IoT devices are aging. Hence new

behaviour of devices can be classified as an anomaly, which then causes a high

false-positive rate. It is the common issue for any anomaly detection approach780

using one-class classification Machine Learning in which we use only normal

data for training. In fact, there is a research direction in online machine learning

that updates old models with the most up-to-date data. And to the best of our

knowledge, this research direction seems not have been investigated in FL. In

the future, we would like to study deeper in the direction of online Federated785

Learning.

Besides, another critical aspect for our future work is: when manufacturing
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sites are not identical, for example, in the number of machines. It raises the

issue of imbalanced distributed training for the VAE-LSTM models running on

the edge. Since data sets of different sites can be different, it increases the bias790

of pattern learned by the FL server. In the state of the art, there is very new

research [49] that dealt with this issue to prevent the bias of training caused by

imbalanced data distribution, so we presume we can learn the way to improve

this problem from that work.
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