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Abstract: Tools exist to predict fatalities related to floods, but current models do not focus on fatalities
in buildings. For example, Storm Xynthia in France in 2010 resulted in 41 drowning deaths inside
buildings. Therefore, there has been increasing recognition of the risk of people becoming trapped
in buildings during floods. To identify buildings which could expose their occupants to a risk of
death in the case of flooding, we propose the use of the extreme vulnerability index (VIE index),
which identifies which buildings are at greatest risk of trapping people during floods. In addition,
the “mortality function method” is used to further estimate the expected number of fatalities based
on (1) groups of vulnerable people (e.g., aged or disabled), (2) the location of buildings in relation
to major watercourses, and (3) the configuration of buildings (e.g., single or multiple entries and
single or multiple stories). The overall framework is derived from case studies from Storm Xynthia
which give a deterministic approach for deaths inside buildings for coastal floods, which is suited for
low-lying areas protected by walls or sandy barriers. This methodology provides a tool which could
help make decisions for adaptation strategy implementation to preserve human life.

Keywords: coastal flooding risk; loss of life; fatality assessment; residential buildings; climate change
adaptation; VIE index

1. Introduction

Floods killed 8 million people in the last century [1]. The conditions under which
235 fatalities occurred in relation to 13 floods events (hurricanes and storms) were analyzed.
It was concluded that 68% of the deaths were caused by people drowning in cars and on
foot (33 and 25%, respectively), while just 6% occurred inside buildings [1]. By contrast,
54% (out of 771 people) were drowned in buildings during Hurricane Katrina in 2005 [2],
while all of the fatalities (41) caused by Storm Xynthia in France were those drowned in
buildings [3,4]. Boissier [5] suggested that for high-magnitude, low-frequency events, most
of the fatalities occur inside buildings.

Storm Xynthia (28 February 2010) had major impacts along the Atlantic coast of France,
especially between the Loire and Gironde estuaries. The analysis of fatalities provided by
Vinet et al. [3,4] for Storm Xynthia highlighted how buildings can trap people during floods.
In addition to factors such as the time of day (e.g., nighttime) and the fact no warning was
given [6], they showed that (1) most drownings occurred when the flood level exceeded
1 m, (2) 90% of drownings occurred inside buildings located within 400 m of the flood
defenses which failed, and (3) 78% of the drownings occurred inside single-story houses.

Subsequently, Creach et al. [7] defined areas where people could be trapped inside
buildings in case of flooding as zones of “extreme vulnerability”.
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In response to Storm Xynthia, the French government instigated the “black zone”
policy, which listed 1628 buildings in areas of extreme flood risk for demolition at a cost
of EUR 315.7 million [8]. This policy attracted significant criticism, however, principally
on the grounds of the lack of methodological transparency [9], expenditure, and failure
to engage local communities in a timely manner. However, of principal concern was the
fact that the strategy did not result in any appreciable reduction in human vulnerability to
flooding hazards along French coasts, as it was also limited in scope to areas flooded in
2010 [10,11]. Thus, the policy was a reactive adaptation which lacked cost-benefit analysis
and time to make an enlightened choice in association with locals.

The French Atlantic Coast is particularly susceptible to flooding. For instance, it is
predicted that a centennial flood could cause 354,079 ha to be submerged [12]. In this
area, there are 535,500 permanent inhabitants [13] and 136,711 buildings [12], 22% of
which are single-story constructions [13]. Furthermore, flooding is likely to be exacerbated
further under the current trajectory of global warming and resulting sea level rise [14–16].
Moreover, other areas along the French Atlantic coast are also exposed to floods [12], and
additionally, the sea level is rising, which will inevitably increase coastal flooding.

To address these problems, in this paper, we propose a global framework to evaluate
potential fatalities specifically inside buildings in relation to coastal flooding. To achieve
this, the novelty is to use extreme vulnerability index (VIE index) to evaluate the buildings
at greatest risk of flooding and to assess the implications for human fatalities [7] in addition
to the population’s features. Using lessons learned from Storm Xynthia, this yields a
deterministic approach which is suited for low-lying areas exposed to coastal floods with
numerous single-story houses, features which are those of the French Atlantic coast. Thus,
this paper will demonstrate the value of the VIE index in assessing and locating most risky
houses which could, in fact, help decision makers to establish strategies to protect human
life from flood risk in the future.

2. Materials and Methods
2.1. State of the Art of Fatality Assessment Methods
2.1.1. General Principles of Fatality Assessment

The assessment of fatalities due to floods is a relatively new research field [17,18],
with research shifting from the hydrological process to its management [19]. Several major
studies have been conducted in the UK, Netherlands, and Canada [20,21] because of greater
data availability pertaining to the conditions under which flood-related fatalities occurred.
These data have been crucial to the development of numerical models. In particular, these
studies focused on coastal or inland floods due to breaches in flood defenses, and they differ
from other work that has focused on fatalities caused by tsunamis or hurricanes [22–24].

According to Di Mauro et al. [21], fatalities are mainly influenced by the number of
exposed people which could be reduced by preventive evacuation. The flood magnitude,
frequency, and location, as well as the types of buildings and people’s vulnerability and
behavior are shown to be the main variables controlling fatality risk.

Fatalities can be evaluated in two different ways on the basis of scale [21,25]: (1) at the
microscale, which pertains to “individual risk”, and (2) the macroscale, which considers
the overall risk to society. Microscale studies are useful for understanding individual
human responses to flooding, but data are lacking, and as a result, numerical models
rely on interpolation and possess limited predictive power [21,26]. Macroscale risk is
simpler in terms of assessing the likelihood that deaths will occur in relation to several
factors [20,21]. This probability has been estimated through examining the statistical
relationships between the fatalities and characteristics of past floods [17]. For example,
Klijn et al. [27] estimated that 0.3% of people could die in the Netherlands due to a flood,
and according to Jonkman et al. [17], 1% of exposed people globally are expected to die in
coastal floods.
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2.1.2. Methods for Assessing Fatalities

Three different methods are used to assess fatalities in relation to floods [21]. First, the
Life Safety Model (LSM) focuses on individual risk. It was developed in Canada to assess
potential fatalities due to dam failure [28,29], and it involves modeling of the behavior of
individuals during floods using an automated 2D cellular model. The health of individual
people is considered in the model. The method requires specific data about the hazard
characteristics (e.g., timing and magnitude), the age and health of the people, and the
building type, configuration, and general accessibility for the purpose of evacuation [21].
This model is useful for simulating evacuation planning and evaluating the mitigative
effects of warning systems on crisis management [21]. It can also be used for educational
purposes to define the best course of action on what to do in the case of flooding.

Second, there is the Flood Risk to People (FRP) methodology—developed in the
UK [30–32]—which can assess both societal and individual risk. The societal risk aims to
evaluate the potential consequences of a flood. It functions by multiplying the exposed
population by a rating factor defined for different sectors. This rating is based on the
assessment of the characteristics of the flood (e.g., water height, water flow, and debris
content), area vulnerability (e.g., type of land use and building configuration to offer
shelters), and the population characteristics (e.g., age and mobility). For each of these
aspects, areas with similar properties are demarcated. The number of people at risk is
obtained through a census [33], which is then divided into residential buildings, and
the number of potential deaths is thus estimated. This method is used to assess the
consequences of different floods to derive a large-scale risk assessment.

Uncertainties exist regarding the evaluation of the number of people at risk depending
on the timing of the flood [30–32]. The methodology nevertheless provides an estimate
of the areas at greatest risk of flooding. It was originally designed to be used as an
operational tool for decision makers in the UK, but only the flood hazard parameter was
used. Priest et al. [34] adapted the FRP methodology for continental floods in Europe. They
showed that the FRP methodology overestimated the number of deaths outside the UK
due to the fact it did not consider population behavior and preventive evacuation. The
Risk to Life Model (RLM) introduced a “mitigation” component to the methodology, which
is defined by the level of awareness and the ease by which people can be evacuated. It is
divided into four classes, depending on the evacuation rate, from >75% to >25%.

Third, the mortality functions method [17,25,35] focuses on fatalities related to coastal
and inland floods following the failure of flood defenses. It is particularly useful for areas
reclaimed from the sea (polders) with flat land protected from floods by flood defenses.
The goal of the method is to estimate the fraction of fatalities from the total population
exposed to flooding to derive the number of potential fatalities (Equation (1)):

N = FD NEXP (1)

where N is the potential number of deaths, FD is the mortality fraction, and NEXP is the
number of exposed people.

The mortality fraction (FD) is defined by the severity of the hazard, which is controlled
by the extent of the flooded area, water depth, the kinetic properties of the flood, or the
proximity to flood defenses. Jonkman et al. [17] employed a 2D model to simulate different
flooding scenarios. The simulated flooded area is divided into three zones ranked according
to the conditions of the flood defenses: (1) the breached zone (torrential flow), (2) the zone
of rapidly rising water, and (3) the zone with minimal flooding. For each zone, a mortality
function is given depending on the flood characteristics (i.e., from 1 (certain death) to 0
(no risk of death)). Thus, in the breached zone (maximum of 300 m behind the breach),
the mortality fraction is theoretically equal to 1 [35], though most recent works on Storm
Katrina show a value of 0.053 [2].

The mortality function is then multiplied by the number of exposed people (NEXP).
This number depends on (1) the total number of inhabitants in the flooded area, (2) the
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number of people evacuated before the flood, (3) the number of people in the process of
evacuating during the flood, and (4) the number of people rescued. The method is simple
in that it only requires an estimation of the number of fatalities from the total number of
exposed people in a specific area. However, the model parameters are based primarily on
the characteristics of the flood.

In theory, the model could be modified to explicitly account for fatalities inside build-
ings. Consideration of a building’s configuration as a control on the vulnerability of people
to flooding would result in a different mortality function estimate. A simple solution would
be to multiply this value by the total number of exposed people inside buildings.

2.1.3. Limits of Fatality Assessments

The advantages and limitations of the various methods are listed in Table 1. Generally,
micro-tools require numerous hypotheses regarding (1) the behavior of people during
floods, (2) flood wave kinetics, and (3) accurate data about the occupation of buildings.
Furthermore, powerful software is then needed to simulate the spatial and temporal
properties of the flood and the time needed for evacuation in different flood scenarios.

Table 1. Advantages and limitations of the three fatality assessment methods.

Type or Scale Method Advantages Drawbacks

Micro Life Safety
Model (LSM)

Realistic, accurate
locations of

deaths

Technical, fine data
needed for

modulization

Macro Flood Risk
to People (FRP)

Takes into account
several dimensions

of vulnerability

Data not fully
available
in France

Macro Mortality functions Easy to use
Mainly driven

by hazard
characteristics

Macro-models try to assess the potential number of deaths through several factors per-
taining to flood characteristics and the vulnerability of people. Thus, an important objective
is to assess the potential for fatalities that occur inside buildings at the building scale.

The FRP methodology [30–32,34] provides a holistic approach including parameters
related to the flood hazard, such as the vulnerability of a given area and the vulnerability
of people living in or occupying that area. However, this approach was originally designed
in relation to floods in the UK and is relevant thanks to a wide range of accurate data
available there.

The mortality function method [17] is advantageous for its simplicity of use. However,
as stated earlier, it relies on the characteristics of floods to define the mortality fraction. In
this paper, we suppose that the configurations and locations of buildings are also crucial
contributing factors to fatalities. The methodology proposed is a complementary approach
to the mortality function method but with an increased emphasis on vulnerability.

The factors used in various methods are summarized in Table 2. This table shows
that it is a challenging task to measure and model all the parameters which could lead
to fatalities [17,20,34]. The most complete (FRP) method includes six over seven of these
parameters, while the others integrate just four or five. Three factors refer to flood charac-
teristics. Di Mauro and De Brujn [36] stated that results are largely influenced by the extent
of the flooded area, which then raises questions about the simulation of flood hazards.
The introduction of a new parameter based on vulnerability may considerably enhance
fatality estimation.
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Table 2. Parameters integrated into the main flood fatality assessment methods (adapted from [20]).

Model Sourced

Factors Applied

Data Obtained
from Real Floods
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LSM Lumbroso et al. [29] X X X X X

Mortality
Functions

Waarts [37] X X X X HP

Vrouwenvelder and
Steenhuis [38] X X X X HP

Jonkman [35,39] X X X X X HP/L

FRP
HR Wallingford et al.

[31,32] X X X X X X HP

Priest [34] X X X X X HP

At present, buildings are only considered in terms of risk of collapse [20], potential
shelters [31], or for their own vulnerability [40]. According to Di Mauro and De Bruijn [36],
the fact that buildings are scarcely integrated in this type of study is due to the lack of
knowledge of mortality inside buildings. In this respect, the studies of the fatalities due to
Storm Xynthia [3,4] and Hurricane Katrina [2] are very useful.

Table 2 also shows that most of the tools are based on specific flood case studies, which
could affect their applicability to other territories or flood events [17,20,34].

Estimating the number of exposed people to floods also affects the estimation of fatali-
ties [36]. Quantifying the number of exposed people is challenging because this will vary
according to the time of day, season, and the amount of time taken to evacuate particular
types of buildings (e.g., residential homes and offices). According to Jonkman [35], the goal
of mortality functions is not to provide an exact estimate of the number of deaths but to
assess the risk level. For Di Mauro and De Bruijn [36], it is more appropriate to give the
result as a percentage of fatalities rather than an exact number. To give an appropriate esti-
mation, the best way would be to multiply flood and evacuation scenarios [36] to identify
flood-prone areas in which more fatalities are likely.

In summary, the existing tools do not provide a specific assessment of fatalities inside
buildings at the building scale. Therefore, we propose a framework that integrates and
assesses the risk of death inside buildings at the building scale, which could be an add-on
to other methods.

2.2. VIE Index: A Tool to Locate Buildings Which Could Expose Their Occupants to Death
2.2.1. Context

Due to a lack of knowledge about the death risk inside buildings at risk of flooding,
there are few integrated fatality assessment methods [36]. We therefore used the VIE index
method (Vulnérabilité Intrinsèque Extrême, i.e., extreme vulnerability assessment) recently
proposed by Creach et al. [7] to integrate the role of the building type and configuration in
relation to assessments of fatality risk. Following Storm Xynthia, the deficiencies linked to
policies such as the “black zone” and general methods used to identify buildings that put
people at serious risk [9,41] resulted in the VIE index being designed to explicitly assess
the role of buildings in trapping people during floods. The VIE index does not focus on
the risk of building collapse, which is related to the quality and design of buildings. Both
tsunami [42–48] and inland flood hazards [34,49] are not treated by the VIE index as ends in
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themselves. Its main goal is to identify buildings which could trap their occupants during
flooding because of their configuration and location. In this way, the VIE index focuses
more on the vulnerability parameters than on hazard characteristics.

2.2.2. VIE Index Methodology

The VIE index is based on four major criteria which contributed to people having been
trapped in residential buildings during Storm Xynthia [3,4] (Figure 1):

• Cr1: Potential water depth inside buildings;
• Cr2: Distance to flood defenses;
• Cr3: Architectural typology of buildings, since single-story constructions are more

likely to trap people than multi-story buildings, where people could escape upstairs;
• Cr4: Proximity to a rescue point to facilitate ease of evacuation.
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width is 100 times the height of the dike.

Each of the criteria is rated from 0 (no vulnerability) to 4 (high vulnerability). Creach
et al. [11] proposed the formula below (Equation (2)), validated through statistical analysis,
to demarcate buildings that pose the greatest risk in terms of trapping people during floods
(Figure 1):

VIE =

(
Cr1∗ 2

3
+ Cr4 ∗ 1

3

)
+ Cr2 + Cr3 (2)



Buildings 2022, 12, 125 7 of 26

The results range from 0 (no vulnerability) to 12 (maximum vulnerability). To map
the results of the index, they are divided into four classes which represent different levels
of vulnerability:

• Green class (VIE index = 0): buildings are not exposed to floods and therefore do not
endanger people;

• Orange class (VIE index = 1–5): buildings are of a suitable design to reduce risk to
people during floods. The level of risk for people is low;

• Red class (VIE index = 5–8): the risk for people is high but non-lethal if appropriate
action is taken, except for older, younger, or disabled people;

• Black class (VIE index = 8–12): the risk for people is very high and could result in
fatalities in the case of flooding.

The VIE index method has been validated through statistical analysis [11]. The first
results were then validated by comparison with the locations of deaths during Storm
Xynthia [11]. The calculation of the VIE index shows that 83% of fatalities occurred in
buildings classified “black”, while 17% of the fatalities fell within the “red” class. Thus,
this shows the good ability of VIE index method to identify buildings in which death may
occurs in the case of a coastal flood.

2.3. A Derived Method for Evaluating the Risk of Fatalities inside Buildings during Floods

From the methods and their limitations reviewed in Section 2, a derived method for
assessing fatalities is proposed which involves the following:

• Focusing on vulnerability more than on hazards;
• Using data about fatalities that occurred inside buildings during Storm Xynthia;
• Incorporating the VIE index method to assess the vulnerability of buildings for people.

We included the FRP framework because of its holistic approach [30–32,34] and the
mortality function method [17] for its simplicity in calculating a mortality fraction for areas
of equal vulnerability. In contrast with Kolen et al.’s paper [6], where they applied the
rule of thumb of 1% deaths during coastal floods for Storm Xynthia (see Appendix A), we
calculated a specific mortality fraction for each area, which assumed that the probability
of death varied according to the building’s vulnerability to flooding. Though only a
single event, the data for Storm Xynthia [3,4] enabled us to calculate the following in a
determinist way:

• A relationship between fatalities related to Storm Xynthia and buildings which posed
the greatest risk to people, as determined by the VIE index [11]. This allowed us to
estimate a parameter close to the FRP framework’s area vulnerability.

• A relationship between the age of deceased people and the total number fatalities. This
allowed us to estimate a parameter close to the FRP framework’s people vulnerability.

These two parameters are then used to estimate a mortality fraction.
Another important aspect of Storm Xynthia was the importance of secondary houses

(i.e., houses which are held by people who do not live there throughout the year and which
are mainly used for leisure during holiday times) in the coastal municipalities impacted
by the storm, which had a major influence on the number of exposed people. This is an
additional parameter to be estimated for assessing the exposed population.

In summary, we propose an add-on methodology that assesses fatality risk, taking
into account the two previously mentioned aspects for the assessment of the mortality rate
(Figure 2).

2.3.1. Lessons Learned from Storm Xynthia’s Fatalities

The circumstances regarding deaths inside buildings during Storm Xynthia are listed
in Table 3, according to previous detailed work by Vinet et al. [3,4]. This shows that 29 of the
41 deaths by drowning occurred inside buildings in the municipality of La Faute-sur-Mer.
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Table 3. Synthesis of death circumstances inside buildings during Storm Xynthia with regard to VIE
index results.

Number of Deaths % of Total (29 Deaths)

Total Number of Deaths 29 100%

Deaths distribution depending on
vulnerability class

Black 24 83%
Red 5 17%

Deaths distribution depending on age
Under 15 3 10%

15–60 4 14%
Above 60 22 76%

Deaths distribution depending on
occupation

Principal houses 20 69%
Secondary houses 9 31%

From the VIE index, people residing in a house in a black zone are at substantially
greater risk of fatality than those in a house in a red zone. According to Devaux et al. [50],
1661 out of 1996 flooded buildings in the municipality of La Faute-sur-Mer were likely
to expose their occupants to a risk of death, according to the VIE index [7]. Of these
1661 buildings, 63% (1027 buildings) were “black” zone buildings and 37% (604 buildings)
were “red” zone buildings, according to the definitions of the VIE index. However, 83% of
the deaths were located inside “black” zone buildings according to Table 3, compared with
just 17% inside “red” zone buildings. According to these results, “orange” zone buildings
are not considered to be likely to expose their occupants to a risk of death, because their
vulnerability level should allow people to escape (upstairs or to a shelter close to the house).

In addition, elderly or very young people are at greatest risk of being drowned. In
2006, the census reported that 45% of the inhabitants of La Faute-sur-Mer were above the
age of 60 [51]. Crucially, over 76% of deaths occurred in people older than 60 (Table 3). By
contrast, people aged 15–60 years represented 45% of the population in 2006. However,
only 14% of the total number of deaths related to Storm Xynthia affected this age group
(Table 3).

Four deaths of people aged from 15–60 were located inside black zone houses, thus
confirming the risks associated with this classification of building. For the red zone build-
ings, 33% of the deaths of people aged under 15 and 18% of people aged above 60 occurred,
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which also confirms the danger of this classification of building. From these data, the
probability of death relating to age and building type could be estimated.

A final point concerned the occupation of principal and secondary houses. From
a total of 3737 buildings in 2006 [51], 86% were secondary houses, and only 14% were
principal houses. Storm Xynthia occurred during a holiday weekend, and it is probable that
several principal houses were unoccupied while several secondary houses were occupied.
Table 4 shows that 69% of deaths occurred in principal houses while 31% were located
inside secondary houses. This finding has important implications for estimating the
exposed population.

Table 4. Results of the mortality fraction by building vulnerability class and age of population.

VIE Index Typology Age Category Mortality Fraction

Black class

Under 15
(

FB−15
D ) 2.61%

15–60
(

FB 15−60
D ) 1.20%

Above 60
(

FB+60
D ) 5.38%

Red class

Under 15
(

FR−15
D ) 2.22%

15–60
(

FR 15−60
D ) 0%

Above 60
(

FR+60
D ) 2.04%

Based on these different observations, we focused on the most vulnerable zone (red and
black classes), and a mortality fraction was proposed for each situation using Equation (3):

Fi,j
D =

Ni,j

Ni,j
EXP

(3)

where i = {B, R} refers to the building vulnerability class (black or red class), j = {−15, 15–60, +60}
is the age of the population, Fi,j

D is the mortality fraction according to the building vulnera-
bility class and the age of the inhabitants, Ni,j is the potential number of deaths for each
situation, and Ni,j

EXP is the corresponding exposed population.
Detailed calculations of the mortality fraction for each situation are given in Appendix B,

and the results are summarized in Table 4 and Appendix C (lines 15–20). It needs to be
said that black buildings could lead to death for all, whereas red class buildings are rela-
tively safe except for the young and the elderly, who can have difficulties moving inside a
flooded house.

2.3.2. Estimating a Global Mortality Fraction per Municipality (FMUNICIPALITY
D )

Based on these mortality fractions, a specific mortality function per municipality,
called FMUNICIPALITY

D , is calculated, which includes the following:

• Age of the local population according to census data;
• Proportion of black and red houses according to the VIE index results.

As shown by Equation (4), each mortality fraction is multiplied by the proportion of
each age category. Then, the proportions between the black and red houses are included:

FMUNICIPALITY
D =

[(
FB,−15

D ∗ P−15
)
+
(

FB,15−60
D ∗ P15−60

)
+
(

FB,+60
D ∗ P+60

)]
∗ PB

+
[(

FR,−15
D ∗ P−15

)
+
(

FR,15−60
D ∗ P15−60

)
+
(

FR,+60
D ∗ P+60

)]
∗ PR

(4)

where FB,−15
D is the mortality fraction for people aged under 15 in black zone houses, P−15

is the proportion of people aged under 15 in the municipality population, FB,15−60
D is the

mortality fraction for people aged 15–60 in black zone houses, P15−60 is the proportion
of people aged 15–60 in the municipality population, FB,+60

D is the mortality fraction for
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people aged above 60 in black zone houses, P+60 is the proportion of people aged above 60
in the municipality population, PB is the proportion of black zone houses among dangerous
buildings (red and black houses), FR,−15

D is the mortality fraction for people aged under
15 in red zone houses, FR,15−60

D is the mortality fraction for people aged 15–60 in red zone
houses, FR,+60

D is the mortality fraction for people aged above 60 in red zone houses, and PR

is the proportion of red houses among dangerous buildings (red and black zone houses).
This method enables having a more accurate assessment of the mortality fraction for

each city. For example, a city with mostly red zone houses and people aged 15–60 will have
a low mortality fraction.

2.3.3. Estimating the Exposed Population per Municipality (NEXP)

To estimate the most exposed population per municipality in the case of coastal
flooding, the fatality risk in relation to building vulnerability to flooding needs to be
emphasized. In particular, this concerns the occupants of both the red and black zone
houses as classified by the VIE index. This number is estimated using the total number of
the potentially deadliest buildings and the average number of people per household, as
defined by census data.

The importance of secondary houses will be integrated into the population estimation.
This is achieved using census data in which the proportion of principal and secondary
houses is collected. For each of them, an average occupation rate based on data from Storm
Xynthia is proposed, which is 69% for principal houses and 31% for secondary houses
(Table 4). This results in a global occupation rate for the deadliest buildings. This is then
multiplied by the average people per household and gives Equation (5):

NMUNICIPALITY
EXP = [(PPH ∗ TPH) + (PSH ∗ TSH)] ∗ NRB ∗ NHF (5)

where NMUNICIPALITY
EXP is the population potentially exposed to a risk of death per mu-

nicipality in the case of coastal flooding, PPH is the proportion of principal houses in the
municipality, TPH is the estimated occupation rate of principal houses (69%), PSH is the
proportion of secondary houses in the municipality, TSH is the estimated occupation rate of
secondary houses (31%), NRB is the number of black and red buildings identified by the
VIE index, and NHF is the average number of people per household of the municipality.

This formula allows the proportion of the deadliest houses (which could vary from
one municipality to another) to be considered, as well as secondary houses which could
radically increase the number of people at risk of fatality. In the case of La Faute-sur-Mer,
according to the formula, a total of 1182 people were exposed to flooding during Storm
Xynthia (Appendix B).

2.3.4. Assessing the Potential Number of Deaths (N)

Using Equation (4) (FMUNICIPALITY
D ) and Equation (5) (NMUNICIPALITY

EXP ), the potential
number of deaths (N) for each municipality, depending on its specific characteristics on the
basis of the formula of Jonkman et al. [17], was calculated (Equation (1)). For the specific
case of La Faute-sur-Mer, the application of the formula yielded a total of 29 potential
deaths, which is an accurate result in light of the data on fatalities in this municipality.

The strength of this method is that it allows for the inclusion of parameters pertaining
to the vulnerability of houses, which could vary from one municipality to another (altimetry
and architectural type of buildings). The method also accounts for the importance of
secondary houses, which could be an important parameter to assess the exposed population
in the case of some touristic municipalities exposed to coastal floods.

3. Results

The results of both the VIE index and potential fatality assessment were calculated
for seven municipalities on the French Atlantic coast [7,52]. Three of them are located in
Baie de l’Aiguillon, and they were directly impacted by Storm Xynthia: La Faute-sur-Mer
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(29 deaths), L’Aiguillon-sur-Mer (no deaths), and Charron (3 deaths). The others are located
on Noirmoutier Island, which was impacted little by the storm, but the configuration of
human settlement is similar to the municipalities impacted in 2010 [52,53] and has been
impacted by coastal floods in the past [54,55].

The results of these previous studies show good validation of the model for the three
studied municipalities impacted by Storm Xynthia (see Section 2.2.2), as well as confirming
that it was highly risky places with black houses representing levels of 48%, 28%, and 1%
in La Faute-sur-Mer, l’Aiguillon-sur-Mer, and Charron, respectively [7]. This was due to
recent allotments of single-story type buildings constructed in the lower parts of these
municipalities. On the other hand, the municipalities of Noirmoutier Island showed a low
level of black houses which was always under 4%, except for in La Guérinière (20%) [52].
In general, buildings in flood-prone areas on the island are located relatively far from the
sea (500 m or more).

Here, we focus on the case of La Guérinière, since it is the most exposed municipality
of Noirmoutier Island [52]. However, data and detailed calculations of potential fatalities
are given for each of the seven municipalities in Appendix C.

3.1. Study Site

Noirmoutier Island is in the central part of the French Atlantic coast (Figure 3). It is a
low-lying island with an area of 49 km2 and with 68% of its territory located beneath the
level of the storm surge associated with Storm Xynthia [53]. To protect it from the sea, a
network of 24 km of flood defenses was established on the east coast of the island, while
the west coast is protected by a sandy barrier [56]. La Guérinière is in the central part of
the island, namely on its narrowest part (800 m between the west and east coasts). It is the
smallest municipality of the island with an area of 7.8 km2, and 80% of its territory could
potentially be flooded [50], therefore making it the most exposed town on the island. Its
position increases the risk of coastal floods. In addition, in the event of failure of the eastern
flood defenses (5-m elevation flood defenses) or the sandy barrier (5.5-m elevation), the
resulting damage would be catastrophic.
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Today, Noirmoutier is noted for its leisure activities [58]. In the last 40 years, the
number of buildings increased by 162%, and the population increased by 19% [57], with
most of this urbanization occurring in low-lying areas. Thus, should a centennial flood
occur, one half of the residential buildings of the island would be at extreme risk of
flooding [52].

With a total of 1460 inhabitants in 2011 [51], La Guérinière is the smallest municipality
of the island with 15.5% of the island’s total population. However, the number of residential
buildings has increased by 144% since 1968 [51], and they represent 17% of the total number
of residential buildings on the island (2817 of 16,438 buildings). Of these buildings, 74%
are secondary homes, while the average is 66% on the island [51]. For a centennial-scale
flood, 63% of the residential buildings of La Guérinière could be flooded [52] (Table 5).

Table 5. VIE index results for La Guérinière municipality (adapted from [57]). Non-identified
buildings correspond to those for which the VIE index cannot be calculated due to missing data (i.e.,
architectural type unknown) or which are not residential buildings.

Class Number of Buildings % of Buildings among “Total
Identified Buildings”

Green class 1034 37%
Orange class 329 12%

Red class 885 31%
Black class 569 20%

Total identified buildings 2817 100%
Non-identified buildings 1251 ø

Total buildings 4068 ø

Although only 3% of the area of Noirmoutier was flooded during Storm Xynthia [50],
and though no major storms have impacted the island since the 1950s, major floods have
occurred in the past [55,59]. For example, the storm of 1937 is known to have flooded a
large part of the island even though no deaths occurred, probably because of the lower
population density [55]. Even though Noirmoutier Island was not recently impacted by
coastal floods, it remains at risk, since low-lying areas are heavily urbanized.

3.2. VIE Index Results

The VIE index results for La Guérinière were presented in two recent publications, with
one presenting the results for the whole of Noirmoutier Island for two flood scenarios [52]
and the other focusing on the case of La Guérinière and presenting four different flood
scenarios [57]. In this section, the “medium scenario”, which corresponds to a centennial
return period, is selected for analysis. As recommended by the French Ministry for the
Environment, this scenario needs to be used for regulatory documents for urban planning
in flood-prone areas [60]. It needs to be based on either the highest known historical sea
level or on the results of a centennial flood numerical model [60]. For Noirmoutier Island,
the sea level measured in the harbor of Noirmoutier-en-l’Île was used. It was measured to
be 4.20 m NGF (French legal altimetric datum). It needs to be said that only the water depth
was used to specify the hazard, as the VIE index focuses on vulnerability inside buildings,
with the proximity to coastal defenses being a way to estimate high rising water inside.

Calculation of the VIE index requires several steps for each criterion, which are linked
to different maps. Here, we refer to Creach’s [61] atlas to review each map of the process. It
should be noted that the results presented here refer to buildings for which the VIE index
has been calculated (“total identified buildings” given in Table 5), which could defer from
the total number of buildings in the territory as most of them are not residential buildings
(e.g., garages or garden sheds) or sometimes data are missing (i.e., architectural typology).

La Guérinière has a total amount of 1783 residential houses located under 4.20 m NGF
and which could be flooded in a centennial flood (Table 5). It represents 24% of the total
number of potentially inundated buildings of the island, and 75% of them in La Guérinière
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could be submerged by a water depth >1 m, which is considered a level of extreme danger
for people [17,30,62]. A 1-m water level would result in 28% of the buildings on the island
being inundated. While 40% of the coast of the island is artificial, few buildings are close to
flood defenses. Less than 23% could be directly affected by high rising water if the flood
defenses failed. However, in La Guérinière, where the island is the narrowest, 56% of
residential buildings are particularly vulnerable to a dike failure (Cr2). The architectural
typology (Cr3) shows that 60% of the potentially inundated buildings of La Guérinière are
single-story, with the average on the island being 64%. Finally, since Noirmoutier Island is
a low-lying territory, there are few natural shelter areas (i.e., above the maximum water
level). In La Guérinière, these correspond to the sandy barrier. Additionally, 35% of La
Guérinière’s buildings (Cr4) are less than 100 m from a natural shelter area (average of 25%
on Noirmoutier Island), while 14% are located more than 200 m away (average of 9% on
Noirmoutier Island).

The calculation of the VIE index confirmed that La Guérinière is the most exposed
municipality of Noirmoutier Island. At the island scale, the exposure of residential build-
ings for people is not particularly high; the green class (no vulnerability of the buildings
for people) is 54%, the red class is 26% (potential risk of death due to individual behavior
or vulnerable people), and the black class is 5% (potential death due to the vulnerability
of the building for people). In La Guérinière, according to Table 5, 37% of residential
buildings are in the green class, 12% are in the orange class, and most importantly, 31%
are in the red class, while 20% are in the black class. Therefore, there is a considerable risk
of death for people living in 52% of the residential buildings of La Guérinière, compared
with 31% for the whole island. The black class is far more representative than the other
municipalities, as this class reaches a maximum of 4% on Noirmoutier-en-l’Île and less than
1% on L’Epine and Barbâtre. On Noirmoutier-en-l’Île, it comprises 291 buildings, whereas
in La Guérinière, it is 569.

As shown in Figure 4, most of the black houses are relatively close to the southwest
coast, where the sandy barrier is narrow, less elevated, and thus poorly protected by flood
defenses. These houses are also of a single-story type, which does not allow for vertical
evacuation, contrary to the surrounding red houses which are located at the same altimetry
but offer multiple stories. A rapid rise of water is possible, meaning there is insufficient time
for people to evacuate, except if a preventive evacuation is carried out or if it is possible to
escape upstairs. On the other hand, buildings at the two ends of La Guérinière are located
on the barrier (green class) or are protected by it, and therefore the rise in water level would
be slower (red or orange class).

3.3. Potential Fatalities

From the VIE index results, and with reference to the census data which are given in
Appendix C, it is possible to estimate the potential number of deaths in relation to floods.

3.3.1. Estimating the Mortality Fraction (FD)

The mortality fraction was calculated from the age of the population, the proportion
of potentially lethal houses (red and black VIE index classes), and the integrated mortality
fraction (Appendix C). The age composition of the population for 2011 (to allow comparison
with Storm Xynthia’s context of 2010) and the proportion of red and black houses among
the potentially lethal houses are given in Appendix C (from line 6 to 9 and lines 3 and 4,
respectively).

Derived from Equation (4) and according to the data from Appendix C, we have
Equation (6):

FLaGueriniere
D = [(0.261 ∗ 0.138) + (0.120 ∗ 0.482) + (0.538 ∗ 0.379)] ∗ 0.39

+[(0.222 ∗ 0.138) + (0 ∗ 0.482) + (0.204 ∗ 0.379)] ∗ 0.61) = 0.018
(6)

This indicates a mortality fraction of 1.82%, which is less than that for La Faute-sur-
Mer (2.45%). The difference is explained by the potentially lethal black zone houses, which
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are less represented in La Guérinière (39%) than in La Faute-sur-Mer (60%). Thus, in
proportion, fewer buildings will expose the occupants to an extreme risk of death.
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Concerning the age of the population, the elderly are less represented in La Guérinière
(38%) than in La Faute-sur-Mer (45%), but the representation of young people is large (14%
in La Guérinière, relative to La Faute-sur-Mer (10%)).

La Guérinière is the municipality with the highest mortality fraction of Noirmoutier
Island (1.5% in Noirmoutier-en-l’Île, 1.2% in Barbâtre, and 1.1% in L’Epine). This is mainly
because of the importance of black buildings among potentially lethal houses; these repre-
sent 39% of houses in La Guérinière but only 19% in Noirmoutier-en-l’Île, 2% in Barbâtre,
and 0.2% in L’Epine. Thus, the probability of dying inside a residential house in La
Guérinière is higher than in the other municipalities of Noirmoutier Island.

3.3.2. Estimating the Exposed Population (NEXP)

According to Equation (5), the exposed population was estimated from the average
number of people per household, which is given in line 14 of Appendix C (2.1 inhabitants
per household). Appendix C also shows the proportion of principal houses (line 11; 26%)
and secondary houses (line 12; 74%) and the occupation rate (Table 4 and Appendix C,
lines 21 and 22, respectively, at 69% for principal houses (TPH) and 31% for secondary
houses (TSH)), and the number of potentially lethal houses (line 5; 1454 (NRB)):

NLaGueriniere
EXP = [(0.26 ∗ 0.69) + (0.74 ∗ 0.31)] ∗ 1454 ∗ 2.10 = 2146.65 (7)
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Equation (7) gives a total of 1247 of people potentially exposed to flooding. The fact
that this number is smaller than the number of potentially lethal houses is due to the im-
portance of secondary houses, which represent 74% of the buildings of La Guérinière. This
number of potentially exposed people is slightly higher than the number of people exposed
to Storm Xynthia in La Faute-sur-Mer (1182 according to Equation (A3) in Appendix B).
The number of potentially exposed people in La Guérinière is the highest for Noirmoutier
Island but not as high as elsewhere (1118 in L’Epine, 1054 in Noirmoutier-en-l’Île, and 1022
in Barbâtre). This difference is mainly due to the slightly higher number of potentially
lethal houses in La Guérinière (1454) than in the other locations (1228 in L’Epine, 1220 in
Noirmoutier-en-l’Île, and 1214 in Barbâtre).

3.3.3. Number of Potential Fatalities (N)

By applying the formula for the mortality function method (Equation (1)) using (1) the
mortality fraction calculated for La Guérinière (FLa Gueriniere

D = 1.8%) and (2) the number of
potentially exposed people (NLa Gueriniere

EXP = 1247), the potential number of deaths could be
estimated using Equation (8):

NLa Gueriniere = FLa Gueriniere
D ∗ NLa Gueriniere

EXP = 1.8% ∗ 1247 = 22.71 (8)

In the case of a centennial flood in La Guérinière, 23 fatalities could be recorded
inside houses. This is lower than the number of deaths that occurred in La Faute-sur-Mer
during Storm Xynthia (29 deaths recorded). As explained previously, this is the result
of the mortality fraction being lower in La Guérinière (FLa Gueriniere

D = 1.8%) than in La
Faute-sur-Mer (FLa Faute−sur−Mer

D = 2.45%).
The other municipalities on the island may also experience fewer fatalities in the case

of a centennial flood (16 in Noirmoutier-en-l’Île, 12 in L’Epine, and 12 in Barbâtre) because
of a lower mortality fraction but also an exposed population (Appendix C, line 25).

This result confirms that La Guérinière is the municipality most at risk of fatalities on
Noirmoutier Island, even if it is not as exposed as La Faute-sur-Mer.

4. Discussion

Regarding the VIE index, the key limitations are discussed in the work of Creach et al. [7].
Different uncertainties are responsible for overestimation of the number of flooded houses.
These include (1) the use of a “static” method to estimate the potential water depth, (2)
no consideration of flood defenses to reduce water depth (as recommended by the French
Ministry for Environment (see [62])), and (3) estimation of the water depth in relation
to the local topography. It is an evaluation of the worst scenario possible. If a building
is likely to be flooded, even though the probability is low, it needs to be considered at
risk of inundation. The precautionary principle needs to be considered when protecting
human life.

The novelty for fatality assessment is to identify those buildings in which deaths are
most likely, which allows for proposing adaptation strategies to reduce their vulnerability.
However, there are several specific limitations to the approach proposed in this paper.
First, it is a deterministic approach, as the mortality fractions are only estimated from
Storm Xynthia. This limitation is evident when considering that the mortality fraction
is 0 for people aged 15–60 in red houses (Table 4), because no deaths were recorded in
this case during Storm Xynthia [3,4]. In fact, deaths are less likely to occur in red houses
for “healthy” people [1,4], but there is still a degree of risk. It was similarly necessary to
consider principal and secondary houses because they represent more than 50% of the
residential buildings in the studied coastal municipalities [51]. Despite the availability of
accurate data about the number of secondary houses, even though there are general data
proposed at the municipality scale, it is difficult to estimate the population exposed to a risk
of flooding. The number of people occupying secondary houses can vary because of holiday
periods, which themselves are seasonal. Only very fine resolution studies would permit
the elucidation of details concerning the exact location and number of occupied secondary
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houses, but this would require numerous interviews [63,64] or new considerations about
the occupancy of residential houses throughout the year, with this type of research still
being in progress for the French Atlantic coast [64]. In fact, the hypothesis we used could
be seen as an upward occupancy in regard to the most frequent season for coastal floods to
occur on the French Atlantic coast [59]. Winter is not the period at which residential homes
are the most occupied.

Analysis of more past flood events is clearly needed to validate the methodology and to
refine the mortality fractions. For instance, the 1953 storm in the Netherlands [65], Canvey
Island in the UK [21,26], and Hurricane Katrina in the USA [2] are well-documented storms
for which data concerning deaths inside buildings are available. Therefore, the application
of the methodology presented in this paper is a first step which can be adapted and applied
to the French Atlantic coastal municipality, as they exhibit similar characteristics in terms
of the degree of urbanization, architectural typology, number of secondary houses, and
population. In addition, the current lack of accurate data, both on fatalities related to
Storm Xynthia and census information, as well as other parameters that could influence
the number of fatalities (e.g., gender or health condition), have not been considered [1].
Finally, there is also a disparity between the accuracy of the outputs given by the VIE index,
which can permit the identification of each residential house based on its vulnerability and
ranking from fatality assessments, which provide an estimation of the potential number of
deaths at the municipality scale. This is because of difficulties such as the lack of available
high-resolution spatial data in France. This is particularly true for other parameters such
as the building type, size, and function (i.e., principal or secondary house) as well as the
number of occupants and their ages and genders.

Applying the method to other past floods could also allow for addressing another
limitation of the proposed method: building collapses are not considered, as no collapse
occurred during Storm Xynthia [4]. However, this is usually integrated in such studies [20],
as it could amplify the risk of death [39].

Despite these limitations, the proposed methodology is suited for low-lying areas
protected from the sea by walls or sandy barriers, which vast territories along the French
Atlantic coast or in Netherlands and UK have. It could be proposed as an add-on to the LSM,
the FRP, and the mortality functions methods. It allows one to identify buildings which
are safe or unsafe, depending on the exposed population in an agent-based model, and it
could add another input to the FRP method and allow one to address a specific mortality
fraction, depending on the building typology, other than those currently estimated by the
mortality functions method. Moreover, it should be seen as a useful experimental tool for
enabling decision makers to reduce the vulnerability of buildings and to protect people
from future floods, which could increase with the sea level’s rising due to climate change.
The achievability of this goal is enhanced by the possibility of undertaking cost–benefit
analyses. Overall, it provides a complementary approach to existing fatality assessment
methods by considering the risk of death inside buildings.

5. Conclusions

The methodology presented herein is useful for considering how fatalities may result
from people being trapped in buildings during coastal floods. The primary example of
Storm Xynthia showed how the building type, configuration, and location could consider-
ably increase the risk of death [3,4].

The VIE index [7] provided a method of assessing which buildings posed the greatest
risk to occupants during times of flooding. This index is based on four criteria, which were
identified as predominant in the estimation of human vulnerability during Storm Xynthia:
(1) potential water depth inside buildings, (2) distance to flood defenses, (3) the architectural
typology of the buildings, and (4) proximity to a rescue point. These criteria are used to
assign a rating to houses which present the greatest risks to people. The results are divided
into four vulnerability classes (green to black), of which two represent a potentially lethal
situation for occupants: (1) the red class, where death risk is more related to at-risk behavior
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or vulnerable people, and (2) the black class, where the configurations and locations of
people contribute more to the risk of fatalities during periods of flooding.

From the assessment of the vulnerability of houses for people, a deterministic quantifi-
cation of the death risk was proposed using the mortality function method developed by
Jonkman et al. [17] and data from Storm Xynthia. This method estimates the probability
of death (FD) among an exposed population (NEXP). According to Jonkman et al. [17], the
probability of death occurring depends on the hazard characteristics. In this paper, the
probability of death was shown to have been conditioned not just by the zone (i.e., the
“black class”) of the occupied houses but also the age of the occupants. Based on the condi-
tions under which fatalities occurred during Storm Xynthia [3,4], a mortality fraction of the
deaths was estimated depending on the vulnerability of the houses for people (red or black
class) and the age of the population (under 15, 15–60, and above 60 years). By integrating
census data and the VIE index results at the municipality scale, it is possible to estimate
a specific probability of death for people. Then, the exposed population is calculated
depending on the average number of households living in dangerous houses (red and black
classes of the VIE index) considering the combined effects associated with the principal
and secondary houses. This allows the potential number of deaths to be calculated.

The model gives good results, with the VIE index highlighting the high vulnerability of
buildings in La Faute-sur-Mer and L’Aiguillon-sur-Mer—the most impacted towns during
Storm Xynthia—for which the death toll was counterbalanced by numerous secondary
houses unoccupied at the time of the flood. The method has also been applied to Noir-
moutier Island, which was not impacted by Storm Xynthia, but with similar characteristics
regarding buildings’ locations and configurations. However, the expected deaths there are
less important due to a less important mortality fraction. This is due to the fact that, in
general, buildings are located farther from the sea, so their vulnerability level is lower.

Despite several limitations of the deterministic approach, specifically the need for
more data regarding the circumstances of death, and the fact that it is impossible to assess
the exact number of deaths, the estimate provided by the methodology is a first step toward
a complementary approach that links with other existing methods for assessing fatalities
in relation to floods and which is suited for urbanized coastal flood-prone areas protected
from the sea by sandy barriers or walls. Moreover, the present methodology could be
used for evaluation with cost-efficiency analysis (CEA) for building mitigation strategies.
This may be a very useful tool for decision makers to save lives by identifying the best
adaptation strategies to reduce vulnerability to coastal floods, the magnitude and frequency
of which are expected to increase in response to rising sea levels [16,66].

6. Patents

• Different fatality assessment methods due to floods exist but do not integrate
building characteristics;

• The VIE index framework allows one to assess a building’s vulnerability for people;
• Coupled with census data, it allows one to evaluate a specific mortality fraction

per municipality;
• This derived fatality assessment method is useful for working on a building’s adap-

tation.
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Appendix A. Estimation of the 1% Value of Deaths in the Case of Storm Xynthia

Jonkman [35] and Jonkman et al. [17] proposed the generic value of 1% of deaths (FD)
among an exposed population (NEXP) in case of flooding, and it was successfully applied
in the case of Storm Xynthia by Kolen et al. [6]. Considering the number of deaths (N = 29)
and an exposed population (NEXP) estimated to be 3000 people, the mortality fraction (FD)
is equal to 1%, as shown below (Equation (A1)):

FD =
N

NEXP
=

29
3000

= 0.01 (A1)

However, the value of NEXP can be criticized. It corresponds approximately to the
combined population of La Faute-sur-Mer and L’Aiguillon-sur-Mer, which are neighboring
and were both impacted by Storm Xynthia. The total population of the two municipalities
was 3291 in 2006 and 3001 in 2011 [51]. However, the deaths were only recorded in La
Faute-sur-Mer; its population was 1008 inhabitants in 2006. Thus, Equation (A2) yields

FD =
N

NEXP
=

29
1008

= 0.0288 (A2)

Here, the mortality fraction (FD) is close to 3%. It could be improved by considering
that not every building was flooded, and thus certain municipal areas were not affected.
The exposed population was clearly lower, and if so, the mortality fraction was higher.
Thus, we consider that the value of 1% was not sufficient in this case.

This contrasts with other values used in the literature. For instance, for the 1953
storm at Canvey Island (UK), the mortality fraction was estimated to be 0.4% [36], and in
The Netherlands, it was proposed to have a mortality fraction of 0.3% for coastal floods [27].

Appendix B. Calculation of the Mortality Fraction Depending on Building
Vulnerability and the Age of Casualties for La Faute-sur-Mer

To estimate a mortality fraction using the VIE index, which considers red or black
houses and the ages of people, we used the data from Storm Xynthia (see Section 2.3.1).
The results are given in Table 4. In this appendix, we give details on the calculation of
each mortality fraction (FD) according to data from Storm Xynthia for the La Faute-sur-Mer
municipality (29 deaths) as derived from Equation (2). We needed to estimate the number
of people impacted (NEXP) to do so.

Census data used for the calculation are given in Appendix C (lines 6–14).
It should be noted that all buildings identified by the VIE index were not flooded

during Storm Xynthia (due to the limitations discussed in Section 4). Table A1 shows
the number of buildings effectively flooded, which needed to be used for estimating the
mortality fractions from Storm Xynthia. Among the flooded buildings, 63% were black
houses, and 37% were red houses.

www.coselmar.fr
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Table A1. Differences between buildings theoretically (according to VIE index results) and effectively
flooded during Storm Xynthia.

Theoritically Flooded (According to
VIE Index) for Storm Xynthia

Effectively Flooded for
Storm Xynthia

% Effectively or
Theoretically Flooded

Red class 885 604 68.2%
Black class 1305 1027 78.7%

Total 2190 1631 74.5%

Appendix B.1. Estimating the Impacted Population (NEXP)

Since we know the number of deaths (29), the context of the casualties (Table 4), and
the number of effectively flooded buildings (1631) [9], it is possible to apply Equation (4) as
follows (Equation (A3)):

NLa Faute−sur−Mer−Xynthia
EXP = [(PPH ∗ TPH) + (PSH ∗ TSH)] ∗ NRB ∗ NHF = 1181.7 (A3)

where NEXP is the population potentially exposed to a risk of death in the case of a coastal
flood, PPH is the proportion of principal houses in the municipality (=13.4%), TPH is the
occupation rate of principal houses (69%), PSH is the proportion of secondary houses in
the municipality (85.9%), TSH is the occupation rate of secondary houses (31%), NRB is the
number of black and red buildings identified by the VIE index and flooded during Storm
Xynthia (1631), and NHF is the average household of the municipality (2.02).

The result showed a total number of 1182 persons exposed to death risk during
Storm Xynthia.

Appendix B.2. Mortality Fraction for People Aged under 15 Living in Black Houses

Based on the results from Equation (A3) (NLa Faute−sur−Mer−Xynthia
EXP = 1181.7), it was

possible to estimate the number of those aged under 15 who were exposed to the flood
during Storm Xynthia that were living in black houses. This number was driven by the
proportion of people under 15 in the municipality population (P−15 = 10.3%, line 7 from
Appendix C) and the proportion of black houses effectively flooded during the storm
(PB = 63%). This gives Equation (A4):

NB−15
EXP =

(
NLa Faute−sur−Mer−Xynthia

EXP ∗ P−15
)
∗ PB = (1181.7∗ 0.103)∗ 0.63 = 76.7 (A4)

The result gives a total number of 77 people aged under 15 who were exposed to the
flood in that were black houses during Storm Xynthia (NB−15

EXP ). Among them, two deaths
were recorded (NB−15). The mortality fraction (FB−15

D ) is given by Equation (A5):

FB−15
D =

NB−15

NB−15
EXP

=
2

76.7
= 0.0261 (A5)

The mortality fraction for people under 15 in black houses (FB−15
D ) was 2.61% according

to the data from Storm Xynthia in La Faute-sur-Mer.

Appendix B.3. Mortality Fraction for People Aged 15–60 Living in Black Houses

The people aged 15–60 represented 44.7% of the local population in 2006 (P15−60; line
8 from Appendix C). The total number of the exposed population (NEXP = 1181.7) and the
proportion of black houses effectively flooded during the storm (PB = 63%) are given in
Equation (A6):

NB15−60
EXP =

(
NLa Faute−sur−Mer−Xynthia

EXP ∗ P15−60
)
∗ PB = (1181.7∗ 0.447)∗ 0.63 = 332.8 (A6)
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The result gives a total of 333 people aged 15–60 who were exposed to flooding
during Storm Xynthia (NB15−60

EXP ). Among them, four deaths were recorded (NB15−60). The
mortality fraction (FB15−60

D ) is given by Equation (A7):

FB15−60
D =

NB15−60

NB15−60
EXP

=
4

332.8
= 0.0120 (A7)

The mortality fraction for people aged 15–60 who were in black houses (FB15−60
D ) was

1.20% according to the data from Storm Xynthia in La Faute-sur-Mer.

Appendix B.4. Mortality Fraction for People Aged above 60 Living in Black Houses

People aged above 60 represented 45% of the local population in 2006 (P+60; line 9 from
Appendix C). Using the total number of people exposed in the population (NEXP = 1181.7)
and the proportion of black houses effectively flooded during the storm (PB = 63%) gives
Equation (A8):

NB+60
EXP =

(
NLa Faute−sur−Mer−Xynthia

EXP ∗ P+60
)
∗ PB = (1181.7∗ 0.449)∗ 0.63 = 334.3 (A8)

This indicates that a total of 334 people aged above 60 were exposed to flooding during
Storm Xynthia (NB+60

EXP ). Among them, 18 deaths were recorded (NB+60
EXP ). The mortality

fraction (FB−15
D ) is given by Equation (A9):

FB+60
D =

NB+60

NB+60
EXP

==
18

334.3
= 0.0538 (A9)

The mortality fraction for people aged above 60 in black houses (FB−15
D ) was 5.38%

according to data from Storm Xynthia in La Faute-sur-Mer.

Appendix B.5. Mortality Fraction for People Aged under 15 Living in Red Houses

People aged under 15 comprised 10.3% of the local population in 2006 (P−15; line
7 from Appendix C), and those effectively flooded red houses during Storm Xynthia
represented 37% (PR). We could estimate the number of people aged under 15 effectively
exposed to flooding (NR−15

EXP ) using Equation (A10):

NR−15
EXP =

(
NLa Faute−sur−Mer−Xynthia

EXP ∗ P−15
)
∗ PR = (1181.7∗ 0.103)∗ 0.37 = 45.03 (A10)

This gives a total of 45 people aged under 15 who were exposed to flooding in red
houses during Storm Xynthia (NR−15

EXP ). Among them, one death was recorded (NR−15). The
mortality fraction (FR−15

D ) is given by Equation (A11):

FR−15
D =

NR−15

NR−15
EXP

=
1

45.03
= 0.0222 (A11)

The mortality fraction for people aged under 15 in red houses (FR−15
D ) was 2.22%

according to data from Storm Xynthia in La Faute-sur-Mer.

Appendix B.6. Mortality Fraction for People Aged 15–60 Living in Red Houses

Using the total number of the exposed population (NEXP = 1181.7), the proportion of
people aged 15–60 (P15−60 = 44.7%; line 8 from Appendix C), and the proportion of red
houses effectively flooded during the storm (PR = 37%), we could estimate the exposed
population of people aged 15–59 living in red houses (NR15−60

EXP ) using Equation (A12):

NR15−60
EXP =

(
NLa Faute−sur−Mer−Xynthia

EXP ∗ P15−60
)
∗ PR = (1181.7∗ 0.447)∗ 0.37 = 195.5 (A12)
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This gives a total of 196 people aged 15–60 exposed to flooding in red houses during
Storm Xynthia (NR15−60

EXP ). Among them, no deaths were recorded (NR15−60). The mortality
fraction (FR15−60

D ) is given by Equation (A13):

FR15−60
D =

NR15−60

NR15−60
EXP

=
0

195.80
= 0.0 (A13)

The mortality fraction for people aged 15–60 living in red houses (FR15−60
D ) was 0%

according to data from Storm Xynthia in La Faute-sur-Mer.

Appendix B.7. Mortality Fraction for People Aged above 60 Living in Black Houses

Using the total number of the exposed population (NEXP = 1181.7), the proportion of
people aged above 60 (P+60 = 45%; line 9 from Appendix C), and the proportion of red
houses effectively flooded during the storm (PR = 37%), we could estimate the exposed
population of people aged above 60 living in red houses (NR+60

EXP ) using Equation (A14):

NR+60
EXP =

(
NLa Faute−sur−Mer−Xynthia

EXP ∗ P+60
)
∗ PR = (1181.7∗ 0.449)∗ 0.37 = 196.3 (A14)

This gives a total of 197 people aged above 60 exposed to flooding living in red houses
during Storm Xynthia (NR+60

EXP ). Among them, four deaths were recorded (NR+60). The
mortality fraction (FR+60

D ) is given by Equation (A15):

FR+60
D =

NR+60

NR+60
EXP

=
4

196.3
= 0.0204 (A15)

The mortality fraction for people aged above 60 living in red houses (FR+60
D ) was 2.04%

according to data from Storm Xynthia in La Faute-sur-Mer.
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Appendix C.

Table A2. Data Used for Calculations in Section 3 (Results).

# Line
La

Faute-sur-Mer
L’Aiguillon-sur-

Mer Charron Noirmoutier-en-
l’Île L’Epine La Guérinière Barbâtre

# % # % # % # % # % # % # %

(i) Building’s vulnerability (calculated with VIE Index)

1 Buildings in flood prone area 2406 X 2337 X 491 X 2227 X 1747 X 1783 X 1775 X
2 “Orange” buildings 216 X 253 X 187 X 1007 X 519 X 329 X 561 X
3 “Red” buildings (PR) 885 40.4% 1262 60.6% 293 96.4% 929 76.1% 1225 99.8% 885 60.9% 1189 97.9%
4 “Black” buildings (PB) 1305 59.6% 822 39.4% 11 3.6% 291 23.9% 3 0.2% 569 39.1% 25 2.1%

5 Potentially lethal buildings
(NRB = #3 + #4) 2190 100% 2084 100% 304 100% 1220 100% 1228 100% 1454 100% 1214 100%

Census data (source: INSEE [48])
Census’s year 2006 2006 2006 2011 2011 2011 2011

(j) Population
6 Total population 1008 100% 2283 100% 2140 100% 4550 100% 1713 100% 1460 100% 1786 100%
7 Under 15 (P−15) 104 10.3% 225 9.9% 448 20.9% 614 13.5% 204 11.9% 201 13.8% 267 14.9%
8 15-60 (P15-60) 451 44.7% 893 39.1% 1259 58.8% 2224 48.9% 802 46.8% 704 48.2% 784 43.9%
9 Above 60 (P+60) 453 44.9% 1165 51.0% 433 20.2% 1713 37.6% 706 41.2% 554 37.9% 735 41.2%

Houses
10 Residential houses total 3737 100% 2334 100% 897 100% 6984 100% 2124 100% 2667 100% 3172 100%
11 Principal houses (PPH) 499 13.4% 1140 48.8% 839 93.5% 2219 31.8% 846 39.8% 695 26.1% 856 27.0%
12 Secondary houses (PSH) 3210 85.9% 1116 47.8% 30 3.3% 4554 65.2% 1197 56.4% 1963 73.6% 2221 70.0%
13 Unoccupied houses 28 0.7% 78 3.3% 29 3.2% 211 3.0% 81 3.8% 9 0.3% 95 3.0%

Average people per households

14 Average people–Principal houses
(NHF = #6∗/#10) 2.02 2.00 2.55 2.05 2.02 2.10 2.09

Standard values (see Section 2.3)
Mortality fraction values (FDV) per age and building’s vulnerability

15 FD
B–15 0.0261

16 FD
B15–60 0.0120

17 FD
B+60 0.0538

18 FD
R–15 0.0222

19 FD
R15–60 0.0000

20 FD
R+60 0.0204
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Table A2. Cont.

# Line
La

Faute-sur-Mer L’Aiguillon-sur-Mer Charron Noirmoutier-en-l’Île L’Epine La Guérinière Barbâtre

# % # % # % # % # % # % # %

Occupation rate (Tx) per type of houses
21 Tx Principal houses (TPH) 69.0%
22 Tx Secondary houses (TSH) 31.0%

Mortality fraction (FD)
FD = [(FD

B–15 ∗ P−15) + (FD
B15–60 ∗ P15–60) + (FD

B+60 ∗ P+60) ∗ PB] + [(FD
R–15 ∗ P-15) + (FD

R15–60 ∗ P15–60) + (FD
R+60 ∗ P+60) ∗ PR]

23
FD

MUNICIPALITY = [(#15 ∗ #7) + (#16
∗ #8) + (#17 ∗ #9) ∗ #4] + [(#18 ∗
#7)+(#19 ∗ #8) + (#20 ∗ #9) ∗ #3]

2.4% 2.1% 0.9% 1.5% 1.1% 1.8% 1.2%

Exposed population (NEXP)
NEXP = [PPH ∗ TPH) + (PSH ∗ TSH)] ∗ NRB ∗ NHF

24 NEXP
MUNICIPALITY = [(#11 ∗ #21) +
(#12 + #22)] ∗ #5 ∗ #14

1587 2025 508 1054 1118 1247 1022

Number of potential fatalities (N = FD
MUNICIPALITY ∗ NEXP

MUNICIPALITY)

25 N = #23 ∗ #24 38 43 5 16 12 23 12



Buildings 2022, 12, 125 24 of 26

References
1. Jonkman, S.N.; Kelman, I. An analysis of the causes and circumstances of flood disaster deaths. Disasters 2005, 29, 75–97.

[CrossRef]
2. Jonkman, S.N.; Maaskant, B.; Boyd, E.; Levitan, M.L. Loss of Life Caused by the Flooding of New Orleans after Hurricane Katrina:

Analysis of the Relationship between Flood Characteristics and Mortality. Risk Anal. Off. Publ. Soc. Risk Anal. 2009, 29, 676–698.
[CrossRef]

3. Vinet, F.; Lumbroso, D.; Defossez, S.; Boissier, L. A Comparative Analysis of the Loss of Life during Two Recent Floods in France:
The Sea Surge Caused by the Storm Xynthia and the Flash Flood in Var. Nat. Hazards 2012, 61, 1179–1201. [CrossRef]

4. Vinet, F.; Boissier, L.; Defossez, S. La Mortalité Comme Expression de La Vulnérabilité Humaine Face Aux Catastrophes Naturelles:
Deux Inondations Récentes En France (Xynthia, Var, 2010). VertigO—Rev. Électron. Sci. Environ. 2011, 11, 28. [CrossRef]

5. Boissier, L. La Mortalité Liée Aux Crues Torentielles Dans le Sud de la France: Une Approche de la Vulnérabilité Humaine Face
au Risque D’inondation. Ph.D. Thesis, Université Paul Valéry-Montpellier III, Montpellier, France, 2013.

6. Kolen, B.; Slomp, R.; Jonkman, S.N. The Impacts of Storm Xynthia February 27–28, 2010 in France: Lessons for Flood Risk
Management. J. Flood Risk Manag. 2013, 6, 261–278. [CrossRef]

7. Creach, A.; Pardo, S.; Guillotreau, P.; Mercier, D. The Use of a Micro-Scale Index to Identify Potential Death Risk Areas Due to
Coastal Flood Surges: Lessons from Storm Xynthia on the French Atlantic Coast. Nat. Hazards 2015, 77, 1679–1710. [CrossRef]

8. Cour des Comptes. Les Enseignements des Inondations de 2010 sur le Littoral Atlantique (Xynthia) et Dans le Var; Cours des Comptes:
Paris, France, 2012; p. 299.

9. Mercier, D.; Chadenas, C. La tempête Xynthia et la cartographie des « zones noires » sur le littoral français: Analyse critique à
partir de l’exemple de La Faute-sur-Mer (Vendée). Norois 2012, 222, 45–60. [CrossRef]

10. Pitié, C.; Bellec, P.; Maillot, H.; Nadeau, J.; Puech, P. Expertise des Zones de Solidarité Xynthia en Charente-Maritime;
CGEDD/MEEDDM: Paris, France, 2011; p. 186.

11. Pitié, C.; Puech, P. Expertise Complémentaire des Zones de Solidarité Délimitées en Vendée Suite à la Tempête Xynthia Survenue Dans la
Nuit du 27 au 28 Février 2010; CGEDD/MEEDDM: Paris, France, 2010; p. 80.

12. CETMEF; CETE Méditerranée; CETE Ouest. Vulnérabilité du Territoire National Aux Risques Littoraux; CETMEF/DLCE: Plouzané,
France, 2009; p. 163.

13. MEDDE. Mieux Savoir Pour Mieux Agir: Principaux Enseignements de la Première Evaluation des Risques D’inondation sur le Territoire
Français-EPRI 2011; MEDDE: Paris, France, 2012; p. 72.

14. Nicholls, R.J.; Brown, S.; Hanson, S.; Hinkel, J. Economics of Coastal Zone Adaptation to Climate Change; The World Bank: Washington,
DC, USA, 2010; p. 62.

15. Creach, A. Coastlines with Increased Vulnerability to Sea-level Rise. In Spatial Impacts of Climate Change; ISTE Ltd.: London, UK;
John Wiley and Sons Inc.: Hoboken, NJ, USA, 2021; pp. 71–92, ISBN 978-1-78945-009-5.

16. IPCC. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; IPCC: Geneva, Switzerland, 2019; p. 1170.
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