
HAL Id: hal-03544100
https://hal.science/hal-03544100

Submitted on 1 Apr 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Adaptive Loop Filter Hardware Design for 4K ASIC
VVC Decoders

Ibrahim Farhat, Wassim Hamidouche, Adrien Grill, Daniel Menard, Olivier
Deforges

To cite this version:
Ibrahim Farhat, Wassim Hamidouche, Adrien Grill, Daniel Menard, Olivier Deforges. Adaptive Loop
Filter Hardware Design for 4K ASIC VVC Decoders. IEEE Transactions on Consumer Electronics,
2022, 68 (2), pp.107-118. �10.1109/TCE.2022.3146272�. �hal-03544100�

https://hal.science/hal-03544100
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

ACCEPTED MANUSCRIPT - CLEAN COPY

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCE.2022.3146272, IEEE
Transactions on Consumer Electronics

IEEE TRANSACTIONS ON CONSUMER ELECTRONICS 2022 1

Adaptive Loop Filter Hardware Design for 4K
ASIC VVC Decoders

Ibrahim Farhat, Wassim Hamidouche, Adrien Grill, Daniel Ménard, and Olivier Déforges

Abstract—Versatile video coding (VVC) is the next generation
video coding standard released in July 2020. VVC introduces
new coding tools enhancing the coding efficiency compared to
its predecessor high efficiency video coding (HEVC). These new
tools have a significant impact on the VVC software decoder with
a complexity estimated to two times HEVC decoder complexity.
In particular, the adaptive loop filter (ALF) introduced in VVC
as an in-loop filter increases both the decoding complexity and
memory usage. These concerns need to be carefully addressed
regarding the design of an efficient hardware implementation of
a VVC decoder. In this paper, we present an efficient hardware
implementation of the ALF tool for VVC decoder. The proposed
solution establishes a novel scanning order between Luma and
Chroma components that reduces significantly the ALF memory.
The design takes advantage of all ALF features and establishes
an unified hardware module for all ALF filters. The design uses
26 regular multipliers in a pipelined architecture with a fixed
throughput of 2 pixels/cycle and fixed system latency regardless
of the selected filter. This design operates at 600 MHz frequency
enabling to decode on ASIC platform a 4K video at 30 frames
per second in 4:2:2 chroma sub-sampling format.

Index Terms—VVC, In-loop Filter , ALF and ASIC.

I. INTRODUCTION

THE versatile video coding (VVC) is the next generation
video coding standard jointly developed by ISO/IEC

Motion Picture Experts Group (MPEG) and ITU-T Video
Coding Experts Group (VQEG) under the Joint Video Experts
Team (JVET). The ITU-T H.266 | MPEG-I - Part 3 (ISO/IEC
23090-3) VVC [1, 2] standard introduces several new coding
tools enabling up to 40% of coding gains beyond the high
efficiency video coding (HEVC) standard for similar objec-
tive video quality [3, 4]. These coding tools have different
complexity and quality enhancement trade-offs [2, 5, 6]. The
hardware design of the VVC transform module including both
multiple transform selection (MTS) and low frequency non-
separable transform (LFNST) blocks has been well studied in
the literature for field-programmable gate array (FPGA) [7–
9] and application-specific integrated circuit (ASIC) [10–13]
platforms. In these solutions, the authors mainly leverage
the transform features such as butterfly decomposition of

Ibrahim Farhat, Wassim Hamidouche, Daniel Menard and Olivier
Déforges are with Univ. Rennes, INSA Rennes, CNRS, IETR - UMR
6164, 20 Avenue des Buttes de Coesmes, 35708 Rennes, France. E-
mails: Ibrahim.Farhat@insa-rennes.fr, wassim.hamidouche@insa-rennes.fr,
Daniel.Menard@insa-rennes.fr, Olivier.Deforges@insa-rennes.fr.

Ibrahim Farhat and Adrien Grill are with VITEC, 99 rue Pierre
Semard, 92320 Chatillon, France. E-mails: ibrahim.farhat@vitec.com,
adrien.grill@vitec.com

Manuscript submitted on Septemer 2021.

the discrete cosine transform (DCT) type II and the linear
relationship between discrete sine transform (DST)-VII and
DCT-VIII to reach a high throughput while minimizing hard-
ware resources. One of the tools that significantly contributed
to enhance the overall coding performance is the adaptive
loop filter (ALF) [14]. The ALF was firstly considered as
HEVC tool candidate but finally it was not included in the
standard [15, 16]. The ALF was then standardized as one of
the in-loop filters in VVC [17].

In-loop filters are located in the decoding loop of the
encoder and aim to enhance the perceived quality of the
decoded video sequence by eliminating the blocking, ringing
or blurring artifacts generated by previous decoding stages.
The VVC in-loop filter block relies on three filters: deblocking
filter (DBF) [18], sample adaptive offset (SAO) [19] and
ALF. The encoder estimates the optimal filter parameters that
maximizes, the most, the objective quality of a block. These
parameters are then transmitted to the decoder so that the in-
loop filters of the decoder can use them to efficiently filter the
reconstructed frame. The role of the three filters are defined
as follows. The first one is the DBF whose aim is to remove
the blocking artifacts that appear at the edges of the coding
unit (CU). It will be mainly in charge of applying a smoothing
filter to edges in order to remove blocking artifacts. A different
type of smoothing filter can be applied to a block according
to the properties of its neighboring blocks. The strength of the
filter coefficients will be determined by the specific values of
the edge pixels and thequantization parameter (QP). The SAO
comes second with the objective to reduce the undesirable
visible artifacts such as ringing. The SAO filter classifies pixels
of a coding tree unit (CTU) into two different categories. The
reconstructed samples in a specific category with a smaller
value than the original ones, a positive offset is added to reduce
the existing error. On the other hand, if samples in a specific
category have higher values than their corresponding original
samples, a negative offset will be applied. The final block of
in-loop filters in VVC is the ALF. The main role of the ALF
is to reduce visible artifacts such as ringing and blurring by
reducing the mean absolute error between the original image
and the reconstructed one. ALF is the main purpose of this
paper. Fig. 1 illustrates the VVC in-loop filters carried out
at the decoder. The in-loop block is fed by a reconstructed
picture, which is then processed by the three filters in the
order illustrated in Fig. 1. Finally, the ALF filter delivers
the reconstructed and filtered picture to the decoded pictures
buffer for temporal prediction and rendering at the decoder
side. The ALF can also be applied at the post-processing
stage of any decoded video to enhance its visual quality

mailto:Ibrahim.Farhat@insa-rennes.fr
mailto:wassim.hamidouche@insa-rennes.fr
mailto:Daniel.Menard@insa-rennes.fr
mailto:Olivier.Deforges@insa-rennes.fr
mailto:ibrahim.farhat@vitec.com
mailto:adrien.grill@vitec.com

ACCEPTED MANUSCRIPT - CLEAN COPY

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCE.2022.3146272, IEEE
Transactions on Consumer Electronics

IEEE TRANSACTIONS ON CONSUMER ELECTRONICS 2022 2

before the display. The filter parameters are in this case sent
as metadata or supplemental enhancement information (SEI)
massage to enhance the overall video quality on consumer
electronic devices such as TVs, smartphones, tablets, and VR
headsets.

DF SAO ALF

In-loop Filter

Rec_Pic Filtred_Pic

Fig. 1: VVC In loop filters

This paper addresses a hardware implementation of the ALF
filter. Unlike previous hardware solutions, our design is the
first to address both the memory and gradient stages of the
ALF. In addition to ALF computational complexity, the most
challenging part of its hardware implementation is related to
the memory organization and the input scanning. In this paper,
we propose an optimized scanning order between Luma and
Chroma components that enables the most efficient memory
management and usage. The design supports all ALF filters
including 7×7 diamond shape filter (DSF) for Luma, 5×5
DSF and 3×4 cross-component adaptive loop filter (CCALF)
diamond filter for the Chroma. These filters are implemented
in a unified design that uses 26 regular multiplier (RM) to
sustains a fixed throughput of 2 pixels/cycle and a fixed system
latency in a pipelined architecture. The main contribution of
this paper is to propose an optimized hardware design with
minimal memory usage for ASIC decoder featuring many
advantages:

• Optimized scanning order between Luma and Chroma
components.

• Optimized memory structure and memory region usage.
• Area efficient design by taking advantage of all the

symmetrical features of the ALF filters.
• Sustain a fixed throughput and a fixed system latency

regardless of the ALF filter size.
• Use a fixed number of RMs in a unified and pipelined

architecture.
The rest of this paper is organized as follows. Section II

presents the background of the ALF followed by the existing
ALF hardware implementations in Section III. The proposed
hardware implementation of the ALF module is presented in
Section IV. In Section V, the performance of the proposed
hardware module is assessed in terms of hardware area.
Finally, Section VI concludes the paper.

II. BACKGROUND ON VVC ADAPTIVE LOOP FILTER

A. VVC adaptive loop filter

ALF uses Wiener filters for its core operation. Wiener filters
are designed to minimize the mean squared error (MSE) be-
tween the original samples and the filtered samples of a signal.
The original samples refer to the original frame from the video

sequence and the filtered samples to the reconstructed picture
after the ALF (ALF’s output). The ALF is divided into several
processing stages. The first one performs block partitioning,
where the CTU is divided into multiple elementary macro
blocks of size 4×4. These macro blocks are then filtered
using the same set of coefficients. The filter’s coefficients
selection is detailed separately in the next section. ALF uses
different filters for Luma and Chroma components. For the
Luma component, it uses a 7× 7 DSF. The filter coefficients
of the 7 × 7 DSF can be fixed or signaled in the adaptation
parameter set (APS). For the Chroma components, the ALF
uses two filters. The first one is a 5× 5 DSF filter and, unlike
the 7 × 7 DSF, the filter coefficients can only be signaled in
the APS. The second filter is the CCALF diamond filter. This
latter uses the co-located Luma samples to filter the Chroma
ones. Like the 5×5 DSF, the coefficients can only be signaled
in the APS. Fig. 2 shows the ALF process as defined in VVC
specification.

CCALF

7x7 Luma

5x5 Chroma

SAO:Y

SAO:Cb

SAO:Cr

ALF:Y

ALF:Cb

ALF:Cr

CCALF:Cr

CCALF:Cb

Fig. 2: ALF Luma and Chroma filters in the VVC decoder.

The remaining of this section will be divided in two parts.
The first part addresses the Luma filter and its coefficients’
derivation while the second part investigates the Chroma
filtering.

B. Luma filter

1) Block classification: The ALF classification process
relies mainly on the Luma component. First, the ALF divides
the CTU into multiple macro blocks of size 4 × 4. Each
macro block is categorized into one out of 25 classes. The
classification index C is computed by Equation (1) based on
the macro block directionality D and a quantized value of
local pixels activity A.

C = 5D + Ã (1)

To calculate D and Ã, the sum of horizontal gh, vertical gv
and two diagonal gd1, gd1 gradients are first computed using
a 1-D Laplacian as follows:

gh =
i+5∑

k=i−2

j+maxY∑
l=j−minY

Hk,l,

Hk,l = |Rk−1,l − 2Rk,l +Rk+1,l| .

(2)

ACCEPTED MANUSCRIPT - CLEAN COPY

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCE.2022.3146272, IEEE
Transactions on Consumer Electronics

IEEE TRANSACTIONS ON CONSUMER ELECTRONICS 2022 3

gv =
i+5∑

k=i−2

j+maxY∑
l=j−minY

Vk,l,

Vk,l = |Rk,l−1 − 2Rk,l +Rk,l+1|

(3)

gd1 =
i+5∑

k=i−2

j+maxY∑
l=j−minY

D1k,l,

D1k,l = |Rk−1,l−1 − 2Rk,l +Rk+1,l+1| .

(4)

gd2 =
i+5∑

k=i−2

j+maxY∑
l=j−minY

D2k,l,

D2k,l = |Rk−1,l+1 − 2Rk,l +Rk+1,l−1| ,

(5)

where indices (i, j) refer to the coordinates of the upper left
sample within the 4 × 4 macro block and Ri,j indicates a
reconstructed sample at coordinate (i, j). maxY and minY
are derived based on the macro block position relative to the
virtual boundary. The maximum values that can take minY
and maxY are 2 and 5, respectively.

To reduce the complexity of the block classification, the
sub-sampled 1-D Laplacian calculation is applied. As shown
in Fig. 3, the same sub-sampled positions are used for gradient
calculation in all directions. This means that Equations (3),
(2), (4) and (5) are only applied when both k and l are
even numbers or both are odd numbers. This reduces the
computation complexity by half. The blue pixels in Fig. 3
refer to the current 4 × 4 macro block to be filtered. All
samples of this macro block share the same class value C.

After computing the sum of gradient in all directions, the
maximum and minimum values of the macro block between
the horizontal and vertical directions, and between the two
diagonal directions, are computed by Equation (6)

gmax
hv = max(gh, gv),

gmin
hv = min(gh, gv),

gmax
d = max(gd0, gd1),

gmin
d = min(gd0, gd1).

(6)

According to its direction, each 4 × 4 macro block will be
assigned an integer value D in the interval [0, 4]. The value D
will be then used to select the macro block class. To determine
the value of the directionality D, the gmax

hv and gmax
d are

compared against each other with two thresholds t1 and t2
as follows:

• Step 1: if both gmax
hv ≤ t1 g

min
hv and gmax

d ≤ t2 g
min
d are

true, then D is set to 0.
• Step 2: if gmax

hv /gmin
hv > gmax

d /gmin
d then continue from

step 3, otherwise continue from step 4.
• Step 3: if gmax

hv > t2 g
min
hv , D is set to 2, otherwise D is

set to 1.
• Step 4: if gmax

d > t2 g
min
d , D is set to 4, otherwise D is

set to 3.

This process is summarized as a pseudo code in Algorithm 1.

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

H

(a): vertical
gradient position

(b): horizontal
gradient position

D1

D1

D1

D1

D1

D1

D1

D1

D1

D1

D1

D1

D1

D1

D1

D1

D1

D1

D1

D1

D1

D1

D1

D1

D1

D1

D1

D1

D1

D1

D1

D1

D2

D2

D2

D2

D2

D2

D2

D2

D2

D2

D2

D2

D2

D2

D2

D2

D2

D2

D2

D2

D2

D2

D2

D2

D2

D2

D2

D2

D2

D2

D2

D2

(c): diagonal up
gradient position

(d): diagonal down
gradient position

Fig. 3: Sub-sampled gradients in vertical, horizontal and two
diagonal directions. Empty samples are not used for gradients
computation. The samples of current 4×4 macro block are
highlighted in blue color.

The quantized activity value Ã is calculated by Equation (7):

Ã =

 i+5∑
k=i−2

j+maxY∑
l=j−minY

(Vk,l +Hk,l)

4

0

, (7)

where i and j are the positions within the image relative to
the top-left corner , bAe40 stands for a quantized value of A to
the nearest integer and saturated in the interval [0, 4]. Finally,
based on the values of D and Ã, the corresponding class
value C is derived by Equation (1). The class value is used to
determine the filter coefficients to filter the Luma component.

Before applying the filter, ALF performs geometric transfor-
mations to the filter kernel. This is equivalent to applying these
transformations to the samples in the filter support region. The
idea is to make different filtered macro blocks more similar
by aligning their directionality.

2) Geometric transformations: Three geometric transfor-
mations are introduced including rotation, vertical flip and
diagonal flip expressed by Equations (8), (9) and (10), re-
spectively.

fr(k, l) = f(N − l − 1, k),

cr(k, l) = c(N − l − 1, k),
(8)

fv(k, l) = f(k,N − l − 1),

cv(k, l) = c(k,N − l − 1),
(9)

fd(k, l) = f(l, k),

cd(k, l) = c(l, k),
(10)

ACCEPTED MANUSCRIPT - CLEAN COPY

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCE.2022.3146272, IEEE
Transactions on Consumer Electronics

IEEE TRANSACTIONS ON CONSUMER ELECTRONICS 2022 4

Algorithm 1 Pseudo-code to compute D

Input: gmax
hv maximum between horizontal and vertical gra-

dients
gmin
hv minimum between horizontal and vertical gradients
gmax
d maximum between first and second diagonal gradients
gmin
d minimum between first and second diagonal gradients

if gmax
hv ≤ t1 gmin

hv and gmax
d ≤ t2 g

min
d then

D ← 0
else

if gmax
hv /gmin

hv > gmax
d /gmin

d then
if gmax

hv > t2 g
min
hv then

D ← 2
else
D ← 1

end if
else

if gmax
d > t2 g

min
d then

D ← 4
else
D ← 3

end if
end if

end if

return D

TABLE I: Mapping between the gradient values and the
geometric transformations

Gradient value comparison Transformation type
gd2 < gd1 and gh < gv No transformation
gd2 < gd1 and gv < gh Diagonal flip
gd1 < gd2 and gh < gv Vertical flip
gd1 < gd2 and gv < gh Rotation

where N is the size of the filter and 0 ≤ k, l ≤ N − 1 are
coefficients coordinates, such that coordinates (0, 0) refer to
the upper left corner and coordinates (N − 1, N − 1) to the
lower right corner. The transformations are applied to the filter
coefficients f(k, l) and to the clipping values c(k, l) depending
on gradient values calculated for the current macro block. The
relation between the transformation and the four gradients of
the four directions are summarized in Table I.

3) Luma 7×7 diamond shape filter: The ALF uses a 7×7
2D diamond shape filter for the Luma component as shown in
Fig. 4:(a). The DSF is a point-symmetrical filter which allows
factoring the coefficients two by two and thus reducing the
number of multiplications by half. Since multipliers need much
larger chip area than an adder or a subtractor, this factorization
reduces significantly the processing part area by eliminating
half of the multipliers for the ALF.

Using the symmetry, the total number of coefficients for
the Luma filter is 12. These coefficients are of two types:
1) the first is the fixed filter coefficients, 2) the second is
the customized filter coefficients for Luma signaled in APS.

TF c11 c10 c9

c8

c9 c10 c11

c6

c2

c0

c1 c3

c5 c7 c8c4

c7 c6 c5 c4

c1c2c3

c0

TF c5 c4c4 c5

c2

c0

c1 c3

c3 c2 c1

c0

(a) (b)

Fig. 4: Diamond Shape filters for Luma and Chroma, (a):
Luma 2D 7× 7, (b) Chroma 2D 5× 5

VVC defines the fixed filter coefficients using two matrices.
The first matrix, named AlfFixFiltCoeff, contains the 64 fixed
Luma filters defined by VVC. The second matrix, named
AlfClassToFiltMap, holds 16 sets of 25 indices that can be
used in the AlfFixFiltCoeff matrix of size 16×25 to determine
the Luma filter. The first index of the AlfClassToFiltMap is
signaled in the slice header and can be in the range 0 to 15. The
second index is determined based on the classification value
C of the current 4× 4 macro block, where C is an integer
bounded in the interval [0, 24]. Based on these indices, the
third index can be accessed from the AlfClassToFiltMap thus
retrieving the filter coefficients defined in the AlfFixFiltCoeff.
The second type of luma coefficients is the Luma coefficients
in APS. This alternative uses coefficients that are signaled in
APS. In one APS, up to 25 sets of Luma filter coefficients
and clipping values could be signalled. The choice of these
coefficients is determined by the encoder. This process de-
pends on a certain criteria based on the pixel level analysis
and rate-distortion optimisation. Each 4× 4 macro block uses
one filter set which can be selected among 25 filters using the
classification value of the macro block.

colocated position (420)

Luma sample

TF c2c1

c0

c3 c4 c5

c6

Fig. 5: Cross component 2D Diamond Shape filter, 420 sub-
sampling example

C. Chroma filters

The ALF uses two DSF for the Chroma components, the
first one is a 5×5 DSF shown in Fig. 4:(b) and the second one,
shown in Fig. 5, is a cross-component filter which uses co-
located Luma samples to filter Chroma ones. Like the Luma
filter, the 5 × 5 DSF is point symmetrical where only 6 of

ACCEPTED MANUSCRIPT - CLEAN COPY

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCE.2022.3146272, IEEE
Transactions on Consumer Electronics

IEEE TRANSACTIONS ON CONSUMER ELECTRONICS 2022 5

coefficients are signaled in the APS. On the opposite, the
CCALF filter does not have the symmetrical propriety and
needs a total of 7 coefficients for its filtering process. Unlike
the Luma filter, the coefficients of Chroma filters can only
be signaled in the APS, therefore there is no classification
for Chroma macro blocks nor fixed coefficients. Eight sets of
coefficients are transmitted in the APS, while the index of the
used set is signaled at the CTB level.

III. RELATED WORK

In this section, a brief description of existing hardware
implementations of the ALF is given. Several ALF hardware
implementations have been proposed in the literature, since it
was previously proposed for the HEVC standard. Du et al. [20]
proposed a hardware architecture for both deblocking filter and
ALF. They implemented the ALF based on macro block size
in raster scan order. The ALF needs the eight surrounding 4×4
final-deblocked blocks to process a 4 × 4 block. The authors
concluded that the deblocking and ALF orders require large
local buffers to enable data reuse for deblocking. Ruhan et
al. [21] proposed a shared hardware architecture for the 5×5,
7 × 7 and 9 × 9 diamond shaped ALF filters using the fact
that large filter sizes have small ones nested in them. The
paper took advantage of the ALF symmetrical characteristics
to reduce the total number of multiplications from 13 to 7
for the 5 × 5 DSF, from 25 to 13 for the 7 × 7 DSF and
from 39 to 20 in the case of 9×9 DSF. This is carried-out by
applying addition operations to the samples that have the same
corresponding coefficient. The work in [21] was synthesized
targeting an FPGA platforms of 40 nm technology. Fabiane et
al. [22] proposed efficient hardware designs for the ALF cores
of sizes 5×5, 7×7 and 9×9. Similar to [21], the symmetrical
feature of the ALF is explored to reduce the total number of
multipliers. The three architectures were synthesized targeting
FPGA platform of 90 nm technology. Results showed that the
proposed designs were able to process 110, 102 and 98 frames
per second in 1080p resolution for the 5× 5, 7× 7 and 9× 9
filter sizes, respectively. In [23], the same author presented a
hardware architecture for the 5 × 5 ALF core targeting the
same family of FPGA platforms.

However, the aforementioned studies do not address the
gradient computation nor the memory management of the ALF
which are considered as the most critical parts of the design.
Moreover, a fixed system latency for all filter sizes is an impor-
tant feature to ensure efficient interaction of the ALF module
with other decoder modules. This paper proposes a complete
study of the ALF module including the memory, the gradient
and the filtering module. The proposed design leverages all
the proprieties of the ALF including the symmetry, the sub-
sampled gradients and the virtual boundary clipping to reach
an efficient trade off between memory usage and chip surface.
Our design uses 26 shared regular multipliers (RM) for the
three filters in a pipe-lined architecture, fulfilling the target
of 2 pixels/cycle throughput with a fixed system latency. To
our knowledge, this is the first ALF hardware design study,
compliant with the VVC standard targeting ASIC platform.

IV. PROPOSED DESIGN

This paper proposes a novel hardware-architecture for the
VVC ALF filter, considering its three filters: 7× 7, 5× 5 and
3× 4 CCALF. This design is based on the Working Draft 10
[24] and the test model VTM10 of the VVC standard. The
proposed design sustains a fixed throughput of 2 pixels/cycle
with a fixed system latency that reaches processing a 4K video
at 30 frames per second in 4:2:2 Chroma subsampling. The
proposed design is integrated into a professional video decoder
chip supporting multiple video coding standards.

This section is composed of three subsections. Subsection
IV-A describes the top level design of the ALF module, then
subsection IV-B describes the different memory configura-
tions. The proposed scanning order for the optimal memory
usage is presented in subsection IV-B, and finally subsection
IV-D describes the unified architecture for the Luma and
Chroma filters.

A. ALF top level design

Fig. 6 shows the top level design of the ALF mod-
ule. The proposed design is decomposed of three main
parts: the memory management, the gradients computation
and the filtering module. The memory module (MEM-
ORY ACCESS MODULE in Fig. 6) is the most critical
part of the ALF module, and this design aims to reduce the
cost of the memory. To find the lowest memory cost, we
investigated multiple scanning orders for Luma and Chroma
components. The lowest cost for memory is found when the
scanning of Luma and Chroma samples is interlaced. This
design uses two memories: the first stores Luma and Chroma
macro blocks where the second one stores only Luma macro
blocks. The memory handler takes care of memory accesses
and selects the appropriate group of macro blocks to send to
core module. The memory access of the design is detailed
in the next section. The gradient module is applied only
when Luma component is selected. It computes the sum of
gradients and determines the classification value used to select
the appropriate Luma filter coefficients. Finally, the filtering
module aims to take advantage of the fact that larger filters
have smaller ones nested inside. It allows the reuse of hardware
ressources used in small filters to implement larger filters.
Thus, it is possible to reduce the total hardware resources cost
in comparison with an architecture that implements the three
filters independently. For ASIC devices, this reduction in terms
of resource consumption is important, since these devices are
limited in terms of both size and battery.

B. Block scanning and memory optimisation

The ALF is applied at the CTU level. The CTU within a
picture are scanned in raster order from left to right and from
top to bottom. VVC supports CTU of sizes up to 128×128. To
reduce the memory usage and eliminate the use of line buffer
(storing an entire frame line of 4×4/4×2 Luma/Chroma macro
blocks), the ALF introduces a set of clipping methods applied
for different pixels close to the CTU boundaries. However,
this does not eliminate totally the need for a memory, it only
reduces the total number of macro blocks to store.

ACCEPTED MANUSCRIPT - CLEAN COPY

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCE.2022.3146272, IEEE
Transactions on Consumer Electronics

IEEE TRANSACTIONS ON CONSUMER ELECTRONICS 2022 6

Memory_Handler

Control unit1

P
i
P
e

Control unit2

FILTER_MODULE

GRADIENT_MODULE

APS_en

Y_
en

aps_en

sel_aps_luma

(b) (c)

color_flag(0)

Y_en

Cr_en

color_flag(1)

color_flag(1)

color_flag(0)

Cb_en

sel_YCrCb
C

r_
en

C
b

_e
n Color_flag

u_ram

RAM_16

RAM_4

Luma_in

Cr_in

Cb_in

Synchronizer

MEMORY_ACCESS_MODULE ALF_CORE_MODULE

Luma_out

Cr_out

Cb_out

(a)

sel_aps_chroma

Control unit3

fix_en

Luma coeff/
clip

(d)

Chroma Coeff/
clip

Luma/Chroma
Coeff/Clip

Fix_en

sel_aps_luma

sel_aps_chroma Coeff/clip

Coeff/Clip

sel_YCrCb(1)

sel_YCrCb(0)

In_Block Out_Block

Control unit 1

Control unit 2

Control unit 3

Fig. 6: Proposed hardware ALF architecture, (a): Unified design for all filters, (b): Control unit 1 initiates the start signals
depending on the input color component. (c): Control unit 2 initiate the coefficients in APS enable signals depending on the
input color component, (d): depending on the APS enable and the Fix en signals, control unit 3 provides the core module
with appropriate coefficients and clip values.

For the Luma component, the 7×7 DSF is applied for each
4 × 4 macro block using one among 25 filters determined
by the classification results. To compute the class and apply
the filter, each macro block needs its eight surrounding macro
blocks: top left (TL), top (T), top right (TR), left (L), right (R),
bottom left (BL), bottom (B) and bottom right (BR), as shown
in Fig. 7:(a). Within the Luma coding tree block (CTB), macro
blocks are scanned using raster scan order and when BR block
is received, the current block, in orange, is processed.

Unlike the Luma, the Chroma components has two filters:
the 5× 5 DSF and the CCALF DSF, the coefficients of these
filters are determined by the encoder and signaled, via the
APS, to the decoder. The 5 × 5 DSF is applied to macro
blocks of size of 4 × 2. Same as for the Luma component,
to filter one Chroma 4× 2 macro block, its eight surrounding
macro blocks: TL, T, TR, L, R, BL, B and BR are needed, as
shown in Fig. 7: (b). Following the raster scan order, when
BR block is received, the current block, in orange, is filtered.
On the other hand, the CCALF filter uses co-located Luma
pixels to apply 4 × 3 CCALF filter, as shown Fig. 7:(b) for
4:2:0 chroma subsampling example. As it can be noticed, a

RL

BL B BR

6

T TRTL

4Luma Co-located
samples for cc-alf

RL

BL B BR

1
2

T TRTL

(a)
(b)

12
12

Fig. 7: (a) required macro blocks for Luma component (b)
required macro blocks for Chroma component

ACCEPTED MANUSCRIPT - CLEAN COPY

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCE.2022.3146272, IEEE
Transactions on Consumer Electronics

IEEE TRANSACTIONS ON CONSUMER ELECTRONICS 2022 7

group of surrounding Luma pixels are required to apply the
CCALF filter. Finally, the filtered Chroma block is the sum of
the result of the two filters (CCALF and 5 × 5 DSF).

In this paper, we propose a novel scanning order for the
Luma and Chroma components that reduces the memory size
from CTB wise to just lines of the CTB. It is important to note
that to filter a Chroma macro block, Luma macro blocks need
to be already stored in memory. This means that all required
Luma macro blocks must be stored in memory before applying
the CCALF. This fact led us to study multiple scanning order
scenarios between Luma and Chroma components with the
objective of minimizing the total required memory size. The
main studied scenarios are the following:

• (A) Process the entire Luma CTB then start Chroma CTB:
raster scan or Z-scan order for macro blocks.

• (B) Process the entire Chroma CTBs then start Luma
CTB: raster scan or Z-scan order for macro blocks.

• (C) Alternate processing between Luma and Chroma
macro blocks: one 4 × 2 Cr followed by one 4×2 Cb
followed by two 4×4 Luma macro blocks.

Table II shows the memory usage for each scanning order
scenario. For scenarios (A) and (B), the raster scan and the
z-scan are almost similar in terms of memory usage, therefore,
Table II reports the results for raster scan. As it can be noticed,
the proposed scanning order reduces significantly the memory
usage compared to the other two scenarios. For scenario A,
the entire Luma CTB is stored so that the CCALF can be
applied when starting the Chroma components. Compared to
the proposed scanning order, it consumes 75% more memory.
For scenario B, the entire Chroma CTBs is processed using
the 5× 5 DSF, however it is not possible to start the CCALF
since the Luma components are still not available. As a
result, the processed Chroma CTBs are stored, waiting for
the CCALF filter result, which is applied when the Luma
component is received. Compared to the proposed scanning
order, it consumes 74% more memory. To conclude, the
lowest memory can only be achieved when the Luma and
Chroma macro blocks are interlaced, which led us to define
our own scanning order which is an alternation between color
components of the same CTU line. The ALF module alternates
between Luma and Chroma macro blocks by reading for each
CTU line one 4× 2 Chroma Cr macro block followed by one
4× 2 Chroma Cb macro block followed by two 4× 4 Luma
macro blocks. The proposed scanning order is described in
details in the next subsection.

C. Proposed scanning order

As shown in Fig. 7:(a), each 4 × 4 Luma macro block
needs its eight surroundings. Starting from the TL to the BR
macro block. The current macro block starts the processing
only when the BR is received. This implies that the top two
macro block lines of the Luma CTB need to be stored in
memory. These lines of 4× 4 macro blocks are measured on
the maximum size of a CTB supported by the VVC standard
which is 128 × 128, which results in storing 8 × 128 pixels.
Using these two macro block lines (8 pixel lines) in a rotating
memory, the entire Luma CTB can be filtered. Moreover, the

TABLE II: Memory usage (Kbits) comparison for different
scanning order scenarios.

Scanning scenarios A B C
7×7 DSF 163.84 20.48 20.48
5×5 DSF 25.60 163.84 25.60
3×4 CCALF 0? 0? 1.28
Total size 189.44 (100%) 184.32 (97%) 47.36 (25%)

? Required samples are already in memory.

last column of a CTB can be filtered only once the next CTB
is available. As a result, macro blocks belonging to the last
column of the CTB need to be stored in memory along with
its TL, L, BL, T and B neighbors. As a result, for Luma
components, two lines and two columns of 4×4 macro blocks
measured on a CTB of size 128×128 are stored. Thus, the total
random-access memory (RAM) size for Luma components is
20.48 Kbits for 10-bits pixels.

Like Luma, each 4×2 Chroma macro block is filtered, with
the 5×5 DSF, using its eight neighbors, as shown in Fig. 7:(b).
This requires to store a total of two Chroma macro block lines
in memory. These macro block lines are measured on 128×64
Chroma CTBs, for 4:2:2 sub-sampling, which means a total
of 4 × 64 pixels are stored. As for Luma, the last column of
the Chroma CTB can be filtered only once the first column
of the next CTB is available. As a result, for the 5× 5 DSF,
two lines and two columns of 4 × 2 macro blocks measured
on a CTB of size 128× 64 are stored, which corresponds to a
total of 4× 64 pixels for line memory and 8× 128 pixels for
column memory. Thus, the total RAM size for the 5× 5 DSF
for both Chroma components (Cr and Cb) is 25.60 Kbits for
10-bits pixels, supporting 4:2:2 Chroma sub-sampling.

Fig. 8 shows an example of Luma/Chroma scanning order
for a CTU of size 32×32 for 4:2:0 chroma sub-sampling. The
Luma, Cb and Cr chroma samples are illustrated in Fig. 8 by
gray, blue and yellow colors, respectively. Fig. 8:(b) shows
the alternation pattern between Luma and Chroma macro
blocks. As shown in the figure, one Chroma Cr followed
by one Chroma Cb followed by two Luma macro-blocks are
processed. This pattern is repeated until the CTB finishes the
filtering process. The macro blocks of consecutive numbers
and color in the figure belong to the same CTB. For each
color component, four CTBs are shown with different color
intensities. As it can be noticed, the ALF is actually applied
to a shifted version of the CTB with the same size, delim-
ited by the green rectangle in Fig. 8:(a). For the Chroma
component, once the macro blocks of position 31 for Cr (or
Cb) components is available, the macro block at positions 26,
from the previously received line, is processed. For the Luma
component, macro blocks of positions 53 and 54 are processed
once the macro blocks of positions 62 and 63, respectively,
are available. The distance between received macro block and
the current macro block is one CTB line, which can be seen
in the input/output sequencing in Fig. 8:(b). As it can be
noticed from the timeline, the CCALF filter can be applied in
parallel with the 5× 5 DSF taking advantage of the fact that
co-located Luma macro blocks are already retrieved from the
memory when applying the 7×7 DSF. As a result, no further

ACCEPTED MANUSCRIPT - CLEAN COPY

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCE.2022.3146272, IEEE
Transactions on Consumer Electronics

IEEE TRANSACTIONS ON CONSUMER ELECTRONICS 2022 8

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

53 54 55

61 62 63

5 6 7

13 14 15

21 22 23

29 30 31

37 38 39

45 46 47

53 54 55

61 62 63

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15
16 17 18 19
20 21 22 23
24 25 26 27
28 29 30 31

24 25 26 27
28 29 30 31

26 27
30 31
2 3
6 7

10 11
14 15
18 19
22 23
26 27
30 31

0 1 2 3
4 5 6 7
8 9 10 11

12 13 14 15
16 17 18 19
20 21 22 23
24 25 26 27
28 29 30 31

24 25 26 27
28 29 30 31

26 27
30 31
2 3
6 7

10 11
14 15
18 19
22 23
26 27
30 31

31 31
62 63

28 28
56 57

29 29
58 59

3 3
6 7

26 26
52 53

26 26
53 54

27 27
4855

24 24

30 30
60 61

49 50
25 25

51 52
30 30

61 62
21 21

43 44

Y Cr Cb

In_Block:

Out_Block:

time↗

(a)

(b)

Fig. 8: ALF macro block scanning for 4:2:0 sub-sampling. (a): CTU32 example: each color intensity represents a CTB. The
red rectangle is the current CTB. The green rectangle represents the block processed by the ALF (shift version of the current
CTB). (b) input/output macro block sequencing: one 4×2 Cr macro block followed by one 4×2 Cb macro block followed by
two 4×4 Y macro blocks.

memory accesses or memory storage are required for this filter.
However, since the last column of the Chroma CTB is filtered
at the reception of the first column of next CTB, a column of
1 pixel wide is stored in memory. Without that, when the the
second CTB is available, the CCALF filter would be missing
the left co-located samples. Thus, the memory required for
CCALF is 1.28 Kbits (128×10−bits). As a result, for the two
Chroma filters, a total of 26.88 Kbits (25.60 required for 5×5
DSF + 1.28 for CCALF) for the RAM are required for 10-bits
pixels for supporting 4:2:2 and 4:2:0 Chroma sub-sampling.

Finally, the total memory used for both Luma and Chroma
components is 47.36 Kbits of RAM (20.48 for Luma 7×7 DSF
+ 25.60 for Chroma 5×5 DSF + 1.28 for CCALF). Compared
to filtering color components in order (Luma CTB followed
by Chroma Cr CTB followed by entire Chroma Cb CTB), the
proposed scanning order reduces the memory by 75%.

D. Luma/Chroma unified filtering architecture

After selecting the right group of macro blocks from
the memory, the next stage of the ALF depicted by the
ALF CORE MODULE in Fig. 6: (a) is executed. This
module is composed of two sub-modules: the gradient module
and the unified filtering module. The gradient module, applied
only when Luma samples are processed, computes the sum
of gradients and determines the classification value used to
select the appropriate Luma filter coefficients which are then

delivered to the filtering module. The filtering module is a
unified design that uses 26 multipliers to apply the three
Luma/Chroma filters : 7×7 DSF, 5×5 DSF and 3×4 CCALF.

The gradient module is actually formed by three sub-
modules: the gradient sum, the read-only memory (ROM),
and the kernel transpose. The first module is the gradient
sum module. In this module the sum of gradients is computed
following Equations (3), (2), (4) and (5). Using the gradient
result, the classification value is determined and the filter
coefficients to be used for the Luma component are selected.
When one of the Chroma components is chosen, the gradient
sum module is bypassed and the it delivers directly the Chroma
coefficients to the filtering module. These coefficients (whether
Luma or Chroma) are synchronized with the required data
and delivered to the filtering module. The second module is
the ROM memory which is used to store the fixed Luma
coefficients defined by the VVC standard. Luma components
have also coefficients that are signaled in the APS. In all
cases, from the ROM or from the APS, one Luma filter
is selected. But, before transmitting these coefficients to the
filtering module a certain transposition is applied to the filter
kernel. This transposition is lead by the transpose module,
where, depending on the gradient sum results a rotation,
vertical flip or horizontal flip is applied to the Luma filter,
according to the conditions presented in Table I.

The last sub-module of the ALF core is the filtering module,

ACCEPTED MANUSCRIPT - CLEAN COPY

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCE.2022.3146272, IEEE
Transactions on Consumer Electronics

IEEE TRANSACTIONS ON CONSUMER ELECTRONICS 2022 9

TABLE III: Performance (%) in terms of Bjøntegaard delta rate (BD-BR) and run time complexity (%) when ALF, CCALF
and SAO tools turned off in VTM10.0 [25]. Evaluations performed under the VVC common test conditions [26].

Disabled tool All Intra Main 10 Random Access Main 10 Low Delay B Main 10
BD-BR (%) Complexity (%) BD-BR (%) Complexity (%) BD-BR (%) Complexity (%)

Y U V EncT DecT Y U V EncT DecT Y U V EncT DecT
ALF 2.20 12.81 12.43 100 92 4.34 19.31 19.06 97 89 4.12 25.06 19.58 99 92

CCALF −0.14 9.69 8.55 100 97 −0.13 13.88 13.73 100 99 −0.15 18.58 13.79 100 97

SAO 0.01 0.15 0.20 100 91 0.08 0.14 0.31 97 96 0.11 0.43 1.23 97 93

pixel
selection

clip/
sum

TL
T
TR
L
In
R
BL

BR
B

pix_array
Mult

pix1_array

pix2_array
Out

FILTER_MODULE

S1

S2 S3

coeffs

26 RM

12x8

clips 12x2

Fig. 9: ALF filter module

shown in Fig. 9. At the input, the module receives nine 4
× 4 macro blocks containing the current macro block (In)
with its eight surroundings, along with the filter clipping
and coefficients values. At the output, it delivers the filtered
macro block at a throughput of 2 pixels/cycles. This module
is composed of 3 pipeline stages including S1: pixel selection,
S2: clip/sum and S3: mult stage. The S1 stage is used for pixel
selection. In fact, for a given pixel position (x, y) within the
4× 4 macro-block, it selects the required neighbour pixels to
use for the core filter. The selected pixels are then transmitted,
via the “pix array” register to the pre-multiplication stage
(S2). As we know, ALF filters are point symmetrical, this
allows to add symmetrically positioned pixels before applying
the multiplication. Therefore, stage two performs additions and
clipping operations. The results of this stage are delivered to
the third and final stage via two separate arrays (pix1 array,
pix2 array), each representing one pixel. In order to process 2
pixels/cycle, stage three uses a total of 26 RM. Finally, the 4×4
ALF filtered macro block is delivered via the Out interface.

V. EXPERIMENTAL RESULTS

A. Experimental Setup

The proposed design was implemented by the VHDL hard-
ware description language. A state-of-the-art logic simulator
[27] is used to test the functionality of the ALF memory and
core multiplication modules. The test strategy is as follows:
a software implementation of the ALF has been developed,
based on the specification of the last version of the VVC
standard. Using self-check techniques, the bit accurate test-
bench compares the simulation results with those obtained us-
ing the reference software implementation. In the next section

we evaluate the coding gain and the software complexity of
the ALF.

B. ALF coding gain and software complexity

The coding gain and software complexity of the ALF and
CCALF modules under the VVC common Test conditions
in three main coding configurations including all intra (AI),
random access (RA) and low delay B are analysed. Table III
gives the coding losses and the complexity reductions at both
encoder and decoder when the ALF and CCALF tools are
turned off. It can be noticed that disabling ALF and CCALF
tools introduces a high coding losses for Chroma components
for all configurations with a maximum of 25.06% and 18.58%
BD-BR (U component) for low delay configuration when these
two tools are disabled, respectively. Compared to SAO, dis-
abling the ALF tools introduces larger coding loss specifically
for the Chroma components. This is due to the fact that the
ALF uses two filters for the Chroma components: the 5 ×
5 DSF and the CCALF. Fig. 10, shows the complexity of
the ALF compared to other VVC tools in terms of decoding
time. As it can be noticed, the ALF, embedding the CCALF,
is considered as one of the most complex tool of the VVC
decoder. Compared to the DBF, ALF takes more than 24%
of decoding complexity and it comes second after the motion
compensation (MC) for both QP values.

C. Synthesis Results and Analysis for ASIC platform

TABLE IV: Synthesis results for ALF @2 p/c at 600 MHz on
ASIC 28-nm platform for typical condition of 85 Celsius with
0.65 input voltage

Memory access Gradient Filter
module module module

Number of mult.F 0 0 26
Combinational area 9368 10398 12910
Non combinational area 20281 4368 5115
Total area 30758 14767 18025
RAM (bits) 47360 - -

F The number of multipliers is included in the total number of gates.

TABLE V: Power results for ALF @2 p/c at 600 MHz on
ASIC 28-nm platform for typical condition of 85 Celsius

0.8 V 0.65 V
Power (mW) 9.5819 6.6921
Total area (gate count) 66997 76521

ACCEPTED MANUSCRIPT - CLEAN COPY

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCE.2022.3146272, IEEE
Transactions on Consumer Electronics

IEEE TRANSACTIONS ON CONSUMER ELECTRONICS 2022 10

Entropy
1.5%

MC

51.0%

Others

6.7%

ALF

30.7%

Inv. Transf1.2%

Deblock7.7%

Intra Pred
1.2%

(a) QP 37

Entropy
2.1%

MC

43.6%

Others
6.3%

ALF

37.5%

Inv. Transf1.6%

Deblock7.5%

Intra Pred
1.4%

(b) QP 32

Fig. 10: Complexity distribution of decoding tools in the VTM software for two different QPs.

TABLE VI: Adaptive Loop Filter vs Inverse transform blocks
(MTS + LFNST) @2 p/c

ALF iMTS iLFNST
number of mult.F 26 32 32
Total area 66997 89082 74592
RAM (bits) 47360 - -

F The number of multipliers is included in the total number of gates.

Table IV gives the results of ALF module in terms of chip
surface and memory consumption targeting ASIC platforms at
600 Mhz. This table also shows how resources are distributed
over the sub-modules of the ALF. The ALF design operates at
600 MHz with a total of 66.997 Kgate and a total 47.36 Kbits
of RAM used to store two lines of 4×4 macro blocks for each
color component and one additional Luma column of 1 sample
wide measured for CTUs of size 128× 128. The memory ac-
cess module consumes 48% of design total resources while the
gradient and the filter modules consumes only 23% and 29%,
respectively. The proposed design was integrated into a real
time video decoder enabling to decode a 4k video at 60 frame
per second (fps) for 4:2:2 chroma subsampling. The decoder
also supports the three recent MPEG video standards including
AVC/H.264, HEVC/H.265 and VVC/H.266 standard.

To further evaluate the performance, the ALF design is
synthesised for two input voltages at a typical condition of a
temperature of 85 Celsius, the result can be seen in Table V.
As it can be noticed from the table, for 0.8V the power
consumption is about 9 mW which is almost 30% larger than
the one with the 0.65V which is about 6 mW. Reducing the
power consumption comes at the expense of larger chip area,
the one targeting 0.65 V is 12% larger than the first one. In
Table VI, the result of this study are compared to our previous
study [12] done for the VVC inverse transform block. Both
studies were done in the same environment and got integrated

in a real time 4Kp60 multi-standard decoder, which allows
an accurate comparison. Both the ALF and transform block
can be reduced to a matrix multiplication problem. Taking
advantage of the butterfly decomposition and the zeroing for
large block sizes, the inverse MTS can be computed using only
32 multipliers for two pixels/cycle. The inverse LFNST on the
other hand, is applied to the top left 8×8 corner of the input
transform block, this allows it to use only 32 multipliers for
the same throughput. The largest filter for the ALF is the 7 ×
7 DSF and by taking advantage of the symmetrical feature of
the filter, the ALF is able to process 2 pixels/cycle using only
26 multipliers. Compared to the transform blocks, the ALF
uses less multipliers which allows it to consume 11% less
area than the LFNST and 24% less area than the MTS. Since
the ALF requires neighboring samples to apply the filters, it
uses about 47Kbits of memory, on the other hand, the 1-D
MTS and the LFNST do not require any memory where the
blocks are independently processed.

D. Comparison with state-of-the-art

A fair comparison with the state of the art solutions is quite
difficult since most of works focus on earlier versions of the
ALF and do not support the memory management and the
gradient computation. Table VII give the key performance of
state-of-the-art FPGA and ASIC-based works. The only work
that discusses the memory is found in [20], however it focuses
on the chaining between the DBF and ALF and does not
provide the results of memory usage. Compared to previous
works, the net memory results related to the ALF and CCALF
are provided. Also, a study of a shared architecture for all
ALF filters based the last version of the VVC standard [24]
is provided.

The solutions proposed in [21–23] discuss only the cal-
culation part of ALF filters and do not address the mem-
ory. Unlike these solution, our solution provides a complete

ACCEPTED MANUSCRIPT - CLEAN COPY

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCE.2022.3146272, IEEE
Transactions on Consumer Electronics

IEEE TRANSACTIONS ON CONSUMER ELECTRONICS 2022 11

TABLE VII: Comparison of different ALF hardware designs on FPGA and ASIC platforms.

Solutions Du et al. [20] Conceicao et al. [21] Redies et al. [22] Redies et al. [23] Proposed design
Platform FPGA 65 nm FPGA 90nm FPGA 90nm FPGA 40 nm ASIC 28 nm
9 × 9 DSF ! ! ! % %

7 × 7 DSF ! ! ! % !

5 × 5 DSF ! ! ! ! !

Gradient sum % % % % !

CCALF % % % % !

Chroma sub-sampling 4 : 2 : 0 4 : 2 : 0 4 : 2 : 0 4 : 2 : 0 4 : 2 : 2/4 : 2 : 0

LUTs 15561 1660 2071 113 %

Gates % % % % 66997
Frequency (MHz) 211 115 229 41 600
DSPs/RMs 41 39 20 13 26F

Throughput (fps) 1920 × 1080 30 fps 3840 × 2160 33 fps 2560×1600 49 fps 1920 ×1080 19 fps 3840×2160 30 fps
Memory % % % % 47.36 Kb

F The number of multipliers is provided for information since it is already included in the total number of gates.

study for the ALF hardware implementation and discusses the
most challenging part which is the memory. Like the work
of [21, 22], a shared architecture is proposed for multiple filters
taking advantage of the fact that smaller filters are nested
within larger ones by using a number of regular multipliers.
Compared to [21], our solution consumes less multipliers
while supporting the same throughput. This is because [21]
supports a previous version of the ALF that uses 9 × 9 DSF
which was not included in the VVC specification. Compared to
[22], our solution supports larger throughput and more Chroma
sub-sampling, this comes at the use of more multipliers.
Solution in [23] provides a study only for the 5 × 5 DSF
which is considered to be little. To the best of our knowledge,
our solution is the first to address a complete study for ALF
based on the last version of the VVC standard [24].

The proposed design is integrated into a video decoder that
supports three different video standards including AVC/H.264,
HEVC/H.265 and the last MPEG VVC/H.266. The proposed
architecture operates at 600Mhz with 66.997 Kgate and with
47.36 Kbits of RAM spread over two RAMs, one of size 46.08
Kbits for the 7×7 and 5×5 DSF and the second of size 1.36
Kbits for the CCALF filter. The design is able to decode in
real-time 4k video at 30fps for 4:2:0 and 4:2:2 Chroma sub
sampling formats.

VI. CONCLUSION

In this paper a hardware implementation of the adaptive
loop filter (ALF) has been investigated targeting a real time
4Kp30 VVC decoder on ASIC platforms. The ALF is part of
the in-loop carried-out at the end of the coding loop. It aims
at reducing visible artifacts from the reconstructed image by
performing adaptive filtering to minimize the mean squared
error (MSE) between original and reconstructed samples based
on Wiener filtering. The proposed hardware implementation
relies on regular multipliers and sustains a constant system
latency with a fixed throughput of 2 pixels per cycle. It uses
a total of 26 multipliers in a pipe-lined architecture for all
ALF filters including the 7×7, 5×5 and CCALF diamond
shape filters. It is the first hardware design that addresses the
memory architecture of the ALF. By creating an alternation

between Luma and Chroma components, the memory size is
reduced at most, from CTB wise to just lines of CTB. The
proposed design is able to reach real time decoding of 4K
video 4:2:2 at 30 frames par second. This design has been
successfully integrated in a hardware ASIC decoder supporting
recent MPEG standards including AVC, HEVC and VVC.

REFERENCES

[1] B. Bross, Y.-K. Wang, Y. Ye, S. Liu, J. Chen, G. J. Sullivan, and J.-
R. Ohm, “Overview of the versatile video coding (vvc) standard and
its applications,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 31, no. 10, pp. 3736–3764, 2021.

[2] W. Hamidouche, T. Biatek, M. Abdoli, E. François, F. Pescador, M. Ra-
dosavljević, D. Menard, and M. Raulet, “Versatile video coding standard:
A review from coding tools to consumers deployment,” arXiv preprint
arXiv:2106.14245, 2021.

[3] F. Bossen, X. Li, A. Norkin, and K. Sühring, “Jvet-o0003,” in Meeting
Report of the 16th Meeting of the Joint Video Experts Team (JVET),
Geneva. JVET AHG report: Test model software development (AHG3),
July. 2019.

[4] N. Sidaty, W. Hamidouche, P. Philippe, J. Fournier, and O. Déforges,
“Compression Performance of the Versatile Video Coding: HD and
UHD Visual Quality Monitoring.” Picture Coding Symposium (PCS),
November 2019.

[5] F. Pakdaman, M. A. Adelimanesh, M. Gabbouj, and M. R. Hashemi,
“Complexity Analysis Of Next-Generation VVC Encoding And Decod-
ing,” 2020 IEEE International Conference on Image Processing (ICIP),
Oct 2020.

[6] M. Saldanha, G. Sanchez, C. Marcon, and L. Agostini, “Complexity
analysis of vvc intra coding,” in 2020 IEEE International Conference
on Image Processing (ICIP), 2020, pp. 3119–3123.

[7] M. J. Garrido, F. Pescador, M. Chavarrı́as, P. J. Lobo, and C. Sanz,
“A High Performance FPGA-Based Architecture for the Future Video
Coding Adaptive Multiple Core Transform,” IEEE Transactions on
Consumer Electronics, vol. 64, no. 1, pp. 53–60, 2018.

[8] M. J. Garrido, F. Pescador, M. ChavarrÃas, P. J. Lobo, and C. Sanz, “A
2-d multiple transform processor for the versatile video coding standard,”
IEEE Transactions on Consumer Electronics, vol. 65, no. 3, pp. 274–
283, Aug 2019.

[9] A. Kammoun, W. Hamidouche, F. Belghith, J. Nezan, and N. Masmoudi,
“Hardware Design and Implementation of Adaptive Multiple Transforms
for the Versatile Video Coding Standard,” IEEE Transactions on Con-
sumer Electronics, vol. 64, no. 4, October 2018.

[10] A. Mert, E. Kalali, and I. Hamzaoglu, “High Performance 2D Transform
Hardware for Future Video Coding,” IEEE Transactions on Consumer
Electronics, vol. 62, no. 2, May 2017.

[11] Y. Fan, Y. Zeng, H. Sun, J. Katto, and X. Zeng, “A pipelined 2d
transform architecture supporting mixed block sizes for the vvc stan-
dard,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 30, no. 9, pp. 3289–3295, 2020.

ACCEPTED MANUSCRIPT - CLEAN COPY

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCE.2022.3146272, IEEE
Transactions on Consumer Electronics

IEEE TRANSACTIONS ON CONSUMER ELECTRONICS 2022 12

[12] I. Farhat, W. Hamidouche, A. Grill, D. Menard, and O. Déforges,
“Lightweight hardware implementation of vvc transform block for asic
decoder,” in ICASSP 2020 - 2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 2020, pp. 1663–
1667.

[13] I. Farhat, W. Hamidouche, A. Grill, D. Ménard, and O. Déforges,
“Lightweight hardware transform design for the versatile video coding
4k asic decoders,” IEEE Transactions on Consumer Electronics, vol. 67,
no. 4, pp. 329–340, 2021.

[14] M. Karczewicz, N. Hu, J. Taquet, C.-Y. Chen, K. Misra, K. Andersson,
P. Yin, T. Lu, E. François, and J. Chen, “Vvc in-loop filters,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 31,
no. 10, pp. 3907–3925, 2021.

[15] C. Tsai, C. Chen, T. Yamakage, I. S. Chong, Y. Huang, C. Fu, T. Itoh,
T. Watanabe, T. Chujoh, M. Karczewicz, and S. Lei, “Adaptive loop
filtering for video coding,” IEEE Journal of Selected Topics in Signal
Processing, vol. 7, no. 6, pp. 934–945, 2013.

[16] C. Chen and al, “The adaptive loop filtering techniques in the hevc stan-
dard,” Proceedings of SPIE Applications of Digital Image Processing,
vol. 7, no. 35, p. 849913, 2012.

[17] B. Bross, J. Chen, S. Liu, and Y.-K. Wang, “Algorithm description for
versatile video coding and test model 8 (vtm 8).” oint Video Experts
Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG
11, April 2020.

[18] A. Norkin, G. Bjontegaard, A. Fuldseth, M. Narroschke, M. Ikeda,
K. Andersson, M. Zhou, and G. Van der Auwera, “Hevc deblocking
filter,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 22, no. 12, pp. 1746–1754, 2012.

[19] C. Fu, E. Alshina, A. Alshin, Y. Huang, C. Chen, C. Tsai, C. Hsu, S. Lei,
J. Park, and W. Han, “Sample adaptive offset in the hevc standard,” IEEE
Transactions on Circuits and Systems for Video Technology, vol. 22,
no. 12, pp. 1755–1764, 2012.

[20] J. Du and L. Yu, “A parallel and area-efficient architecture for deblocking
filter and adaptive loop filter,” in 2011 IEEE International Symposium
of Circuits and Systems (ISCAS), 2011, pp. 945–948.

[21] R. Conceição, F. Rediess, B. Zatt, M. Porto, and L. Agostini, “Config-
urable hardware design for the hevc-based adaptive loop filter,” in 2014
IEEE 5th Latin American Symposium on Circuits and Systems, 2014,
pp. 1–4.

[22] F. Rediess, L. Agostini, C. Cristani, P. Dall’Oglio, and M. Porto, “High
throughput hardware design for the adaptive loop filter of the emerging
hevc video coding,” in 2012 25th Symposium on Integrated Circuits and
Systems Design (SBCCI), 2012, pp. 1–5.

[23] F. Rediess, C. Cristani, P. Dall’Oglio, M. Porto, and L. Agostini,
“Architectural design for the adaptive loop filter of the emerging high
efficiency video coding standard,” in XXVII SIM - South Symposium on
Microelectronics, 2011, pp. 1–5.

[24] J. Chen, Y. Ye, and S. H. Kim, “Algorithm description for versatile video
coding and test model 10 (vtm 10).” JVET AHG report: Test model
software development (AHG3), October 2020.

[25] W.-J. Chien and J. Boyce, “Jvet ahg report: Tool reporting procedure
(ahg13).” JVET document T0013, 19th meeting by teleconference, July
2020.

[26] X. L. K. Sühring, “Jvet common test conditions and software reference
configurations.” JVET Document JVET-H1010, meeting by teleconfer-
ence, November 2017.

[27] RivieraPro-Aldec-Functional-Verification-Tool. [On-
line]:https://www.aldec.com/en/products/ functional verification/riviera-
pro.

Ibrahim Farhat was born in Eljem, Tunisia, in
1993. He received the engineering degree in com-
munication systems and computer science from
SUP’COM school of engineering, Tunis, in 2018.
In 2019, he joined the Institute of Electronic and
Telecommunication of Rennes (IETR), Rennes, and
became a member of VITEC company hardware
team, France, where he is currently pursuing the
Ph.D. degree. His research interests focus on video
coding, efficient real time and parallel architectures
for the new generation video coding standards, and

ASIC/FPGA hardware implementations.

Wassim Hamidouche received Master’s and Ph.D.
degrees both in Image Processing from the Uni-
versity of Poitiers (France) in 2007 and 2010, re-
spectively. From 2011 to 2013, he was a junior
scientist in the video coding team of Canon Re-
search Center in Rennes (France). He was a post-
doctoral researcher from Apr. 2013 to Aug. 2015
with VAADER team of IETR where he worked
under collaborative project on HEVC video stan-
dardisation. Since Sept. 2015 he is an Associate
Professor at INSA Rennes and a member of the

VAADER team of IETR Lab. He has joined the Advanced Media Content Lab
of b<>com IRT Research Institute as an academic member in Sept. 2017.
His research interests focus on video coding and multimedia security. He is
the author/coauthor of more than one hundred and forty papers at journals and
conferences in image processing, two MPEG standards, three patents, several
MPEG contributions, public datasets and open source software projects.

Adrien Grill was born in 1988 in Aix-en-Provence,
France. After receiving his engineering degree at
Supelec in 2010, he specialized in hardware algo-
rithm implementation. He joined Vitec in 2014, and
currently works as technical leader on codec im-
plementation projects. His fields of interest include
signal, image processing, and video coding.

Daniel Ménard received the Ph.D. and Habilitation
degrees in Signal Processing and Telecommunica-
tions from the University of Rennes, respectively
in 2002 and 2011. Since 2012, he has been Full-
Professor at INSA Rennes - department of Electrical
and Computer Engineering and member of the IETR
lab. He has 20 years of expertise in the design
and implementation of image and signal processing
systems. His research interests include low power
video codecs, approximate computing and energy
consumption. He has a long experience of collab-

orative projects, he has been involved in different national and European
projects He is currently member of different Technical Program Committees
of international conferences (ICASSP, SiPS and DATE). Since 2018, he has
been an elected member of the Technical Committee ASPS of the IEEE
Signal Processing society. He has published more than 100 scientific papers
in international journal and conferences.

Olivier Déforges received the Ph.D. degree in image
processing in 1995. He is a Professor with the
National Institute of Applied Sciences (INSA) of
Rennes. In 1996, he joined the Department of Elec-
tronic Engineering, INSA of Rennes, Scientic and
Technical University. He is a member of the Institute
of Electronics and Telecommunications of Rennes
(IETR), UMR CNRS 6164 and leads the IMAGE
Team, IETR Laboratory including 40 researchers. He
has authored over 130 technical papers. His principal
research interests are image and video lossy and

lossless compression, image understanding, fast prototyping, and parallel
architectures. He has also been involved in the ISO/MPEG standardization
group since 2007.

