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Abstract—With the increasing development of 5G/Beyond 5G
and network softwarization techniques, we have more flexibility
and agility in the network. This can be exploited by Machine
Learning (ML) to integrate intelligence in the network and
improve network as well as service management in edge-cloud
environment. Intrusion detection systems (IDS) is one of the
challenging issues for managing network. However, traditional
approaches in this domain require all data (and their associated
labels) to be centralized at the same location. In this context, such
approaches lead to: (i) a large bandwidth overhead, as raw data
needs to be transmitted to the server, (ii) low incentives for devices
to send their private data, and (iii) large computing and storage
resources needed on the server side to label and treat all this
data. In this paper, to cope with the above limitations, we propose
a semi-supervised federated learning model for IDS. Moreover,
we use network softwarisation for automation and deployment.
Our model combines Federated Learning and Semi-Supervised
Learning where the clients train unsupervised models (using
unlabeled data) to learn the representative and low-dimensional
features and the server conducts a supervised model (using
labeled data). We evaluate this approach on the well-known
UNSW-NB15 dataset and the experimental results demonstrate
that our approach can achieve accuracy and detection rates up to
84.32% and 83.10%, respectively while keeping the data private
with limited overhead.

Index Terms—Federated Learning, Semi-supervised learning,
Deep Learning, Machine Learning, Internet of Things, Intrusion
Detection.

I. INTRODUCTION

Recent development in Internet of Things (IoT) devices
has led to an explosion in data generation and heterogeneity.
For example, by 2023, a 5G connection will generate nearly
3X more traffic than a 4G connection [1]. These create
significant challenges for the network operator, especially,
for the security of the end-users. Consequently, to improve
network security, some ultra-efficient, fast, and autonomous
network management approaches are crucial. In this context,
some advances such as network softwarisation and Machine
Learning (ML)/Deep Learning (DL) can greatly improve the
intrusion detection task and makes the network environment
more flexible. Additionally, network sofwarization has brought
flexibility and increased automation for network management
and deployment. The Intrusion Detection System (IDS) func-
tionality can be implemented as a virtual network function
(VNF) and deployed at different levels on the infrastructure.

The DL/ML models can be used to detect intrusions by
analyzing the traffic behavior (normal/abnormal). However,
using these models requires a central entity to process and
label the data collected from all users in the network, which
can introduce a privacy leakage of the sensitive data as
well as network congestion. Also, IDS requires fast analysis
whereas sending user data to some central server is time-
consuming [2]. To cope with these issues, Federated Learning
(FL) has been proposed as a decentralized machine learning
scheme. It was firstly developed by Google [3]. FL means
joint learning where several clients work together to train
the models collaboratively [4]. One of the strong assumptions
behind current FL-based solutions for IDS is that all the data
is labeled [2]. However, since new types of attacks emerge
every day, labeling data is expensive and often impossible [5].
Therefore, semi-supervised FL can be a promising solution
to decrease the cost, of labeling all network traffic, by taking
advantage of both labeled and unlabeled data [6].

In this paper, we propose Federated Learning with a semi-
supervised approach for IDS, which combines semi-supervised
learning with FL. Specifically, the FL clients and server train
DL-based IDS models in a collaborative manner without
exchanging data. In our scenario, we can imagine a cloud
server running the FL server and edge nodes running FL
clients. Therefore, by using our semi-supervised FL approach,
the edge nodes will not need to label their local data. They
will just learn the data representations through an unsupervised
model (autoencoder). Then, unlike the classical FL, in our
case, the FL server not only generates a global model but it
exploits a small amount of labeled data to conduct supervised
learning (Neural Network). The small amount of the labeled
data can be provided by public/laboratory data without using
the users’ private data. As a result, our model can be improved
with unlabeled data. FL will help to reduce the communication
overhead, preserve the privacy of clients’ local data, and avoid
overloading the server with malicious/normal flows by sending
the model parameters instead of users’ raw data. Also, it avoids
the time-wasting needed for labeling all the data.

In brief, our contributions can be summarized as follows:
• A semi-supervised FL, combining the use of unsuper-

vised learning at the client and supervised learning at the
server. The unsupervised and supervised models are then



concatenated to obtain a unified representation learning
and classification solution for IDS automatically.

• Enabling the edge nodes to learn an efficient intrusion
detection model without the need to label their local data.

• Decreasing the burden of transmitting and labeling all
the traffic at the server: by using FL, we add the edge
nodes into the pipeline of the learning process and employ
unsupervised learning at the edge.

The rest of this paper is organized as follows. The related
work is presented in Section II. Section III presents our
solution with some backgrounds as well as its methodology
and architecture. Section IV presents the datasets, experimental
results, and performance of the proposed model under different
configurations and compared with other well-known models.
Finally, Section V concludes this paper.

II. RELATED WORK

Nowadays, IDS solutions are moving from using fixed sets
of rules towards ML/data-based approaches. Such approaches
allow to reduce the time of analysis, but also - and more
importantly - to detect unknown attacks, as some ML solutions
are self-learning. Various ML techniques have been used for
IDS: Support Vector Machines (SVMs) [7]; ensemble learning
(XGBoost [8, 9], Random Forests [10]), and DL [11, 12].
However, ML techniques in this context bring their own
challenges and FL [3] (detailed in section III-A2) can solve
some of them. With FL, data and labels do not need to be
centralized at the same place hence there is no need to send
huge amounts of raw data to a central server.

Chen et al. [13] propose an FL based IDS for IoT, based on
Attention Gated Recurrent Units (GRU). They showed 8% bet-
ter accuracy as compared to other centralized approaches, with
a drastic drop of 70% in communication cost. This approach is
particularly focused on and efficient against model poisoning
attacks, but at the cost of introducing a bias in the selection of
participating devices. Rahman et al. [14] propose an FL based
IDS for IoT. They showed that FL achieves somewhat similar
accuracy as centralized ML, but is better at protecting privacy
and lowering network and computation overhead. It is also
better than models learned directly on devices (using only local
data), as FL benefits from others’ data even without accessing
them. Mothukuri et al. [15] propose an asynchronous FL
system for IDS using an ensemble of GRU of various sizes,
combined through a Random Forest model. The final model
achieves accuracy similar to that of the centralized version,
but with better privacy protection and a reduced number of
false alarms. To detect attacks, they need to use recurrent
NNs in order to extract relations between packets (end-to-end
DL). Also, as in [14], they consider that the labels are directly
accessible on the devices.

Though FL can be promising, the main drawback of the
above approaches is the assumption that both data and labels
are available. For labels, this assumption seems unrealistic,
as this would mean that a human would have already tagged
all the network traffic. This is difficult in practice (i) due to
the resource constraints on the devices as well as some edge

nodes and (ii) due to the difficulty of manually labeling data on
such devices, which are far from human reach. To address this
drawback, in this paper, we propose a novel semi-supervised
approach, based on FL. The model consists of two parts, one
trained on the edge nodes (unsupervised autoencoder, using
unlabeled data) and the other on the cloud node (supervised
classification, using labeled data).

III. PROPOSITION

We present two main concepts used in our proposal (Au-
toencoder and FL), the methodology, the architectural design,
and the potential implementation platform.

A. Background

1) Autoencoder (AE): AE is an unsupervised neural net-
work, which can learn data representations. It consists of
two parts: an encoder and a decoder. The encoder converts
the input into an abstraction, which is generally known as
a code, then the input can be reconstructed from the code
layer through the decoder. It uses non-linear hidden layers to
perform dimensionality reduction. For more details about AE,
please refer to [16].

We use an AE because, unlike supervised deep neural
networks, it is an unsupervised feature learning neural network
that can extract features from unlabeled data automatically.
Moreover, it is not a complex model and hence can be
implemented on simple FL clients.

2) Federated Learning (FL): FL has been proposed in [3]
as a solution to react with new networks’ behavior (e.g., data
heterogeneity and complexity). Within the FL concept, the
data is maintained where it is generated and no raw data
get exchanged. In other words, FL is a distributed machine
learning concept where the data entities collaborate to jointly
learn a global model without sacrificing the privacy of the
clients. It is also more scalable than centralized ML and would
be very useful in many aspects of network management today.

B. Methodology & Architecture

As mentioned earlier, getting a large amount of unlabeled
traffic data is generally easy and does not require manual
labeling; hence, our system takes advantage of both labeled
and unlabeled data in a decentralized way and minimizes data
exchange. It can be illustrated as in Figure 1.

• FL Clients
FL clients operate at the edge nodes since the end-users
devices have limited capabilities (e.g., computing and storage
resources). In other words, using the AE, the edge nodes
conduct unsupervised learning and are able to capture the
representative and low-dimensional features of the network
traffic. Moreover, the edge nodes operate the IDS function
using the intrusion detection model that was trained on the
FL server to detect abnormal behavior.

• FL server
FL server operates on the cloud node. It does not only ag-
gregate the different clients’ AE but also trains the supervised
learning model using labeled data. More concretely, after the
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Fig. 1: Overview of the proposition

clients’ AE aggregation, it removes the global decoder layers
and directly links the global encoder layer to a neural net-
work (NN) classifier. Then, the two models are concatenated
together and the back-propagation algorithm is performed
in order to fine-tune the deep supervised model for traffic
classification.

The steps of the solution can be detailed as follows.

• Step 1: The FL server initiates the hyper-parameters of
the AE model (unsupervised learning) and disseminates
it to the edge nodes.

• Step 2: The selected edge nodes train the AE model using
their local unlabeled data.

• Step 3: The FL server aggregates the weights from
the different edge nodes’ AE once all the updates are
received. For the aggregation, the FederatedAveraging
(FedAvg) algorithm [3] is used.

Wt+1 =

K∑
k=1

nk

n
W k

t+1 (1)

where W is the model parameters at the iteration t+ 1,
n is the total number of the unlabeled data in all the K
clients, nk is the number of training unlabeled data in
client k.

• Step 4: The FL server deletes the global decoder and
concatenates the global encoder part of the global au-
toencoder and the Neural Networks classifier.

• Step 5: The FL server uses the labeled data to fine-
tune the whole concatenated model and hence gets a
supervised model.

• Step 6: The FL server sends back the aggregated AE
(unsupervised model), obtained in Step 3, to the edge
nodes for new local training as well as the concatenated
model for the IDS task.

In each communication round, steps 2, 3, 4, 5, and 6 are
repeated for continuous learning and improvement.

C. Orchestration of our proposition over Cloud and Edge

In order to orchestrate our training workers and aggregation
worker, a Kubernetes-based framework can be used: Akraino 1.
The training workers will run as containers on the edge nodes
and will communicate with the aggregation worker running
on the cloud node. Thus, we will be able to start the training
and aggregation workers, configure the aggregation algorithm,
configure the hyper-parameters, and scale according to the
need. This will allow the automation and orchestration of our
process. The IDS task will also run as a worker. It will detect
attacks using the trained ML model in real-time. Once an
improved ML model has been trained and validated then it
will replace the previous model.

IV. EXPERIMENT AND RESULTS

In this section, we first present the dataset used in our
experiments. Then, we present the model architectures used
for intrusion detection. Finally, the results are analyzed and
discussed.

A. Dataset description

In order to train our semi-supervised FL model, we use the
UNSW-NB15 dataset 2 [17] because it is recent and referenced
in many existing papers. The simulation period of data was 16
hours on Jan 22, 2015, and 15 hours on Feb 17, 2015. It has 9
types of attacks: Fuzzers, Analysis, Backdoors, DoS, Exploits,
Generic, Reconnaissance, Shellcode, and Worms. The training
set contains 175,341 and the testing set contains 82,332 total
observations. The simulation of a partially labeled dataset has
been done through the random selection of a portion of labeled
observations whose labels are removed. Before training the
models, the data are normalized so all their values are in
the range of [0, 1] in order to optimize the training process’
performance.

TABLE I: Implementation parameters

Dataset
Nb input variables 197
Nb output variables 1
Training set 175,341
Unlabeled set 122,739
Labeled set 52,602
Unlabeled ratio Ru 2.33
Testing set 82,332 (default)
Federated Learning
FL server 1
Nb clients 100
Clients used in federated updates 10%
AE epochs (client) 5
NN epochs (server) 20
Communication round 6

1https://wiki.akraino.org/display/AK/Federated+Learning
2https://research.unsw.edu.au/projects/unsw-nb15-data-set

https://wiki.akraino.org/display/AK/Federated+Learning


B. Results

In this section, we study the performance of the pro-
posed semi-supervised FL for IDS under different factors
such as model architecture, communication rounds, the ratio
of unlabeled data, and communication overhead. Also, we
compare our model with its non-FL version (using the same
deep learning algorithms, amount of labeled/unlabeled data).
Table I summarizes the parameters and their selected settings.
In our experiments, to avoid the problem of client failure
and communication overhead, we selected randomly a given
number of clients (10%) to participate in each communication
round. All experiments were run using four core Intel® Core™
i7-6700 CPU@3.40GHz processor, and 32.00 GB of RAM.
The code is made available online 3.

1) Impact of model architectures: In DL, the selection
of hyperparameters, such as the number of hidden layers
and hidden units in each hidden layer, greatly affects the
performance of the model and hence impacts the performance
of the FL solution. Since there is no clear mathematical proof
to interpret its architecture, we conduct several experiments
in order to find the optimal model. Table II presents differ-
ent model configurations and their performance in terms of
accuracy. To find the optimal model, we started with simple
architecture, and then we have progressively increased its
complexity. From this table, we can notice that it is not true
that when we increase the complexity of the model (i.e., hidden
layers and number of neurons), we will get better results.
As a consequence of the above analysis, the configuration in
bold text with 3 hidden layers for the encoder parts [150,
100, 50] is selected for further experiments since it provides
the best accuracy. It is important to note here, that since we
used a symmetric AE, the decoder part has the same encoder
architectures. Consequently, our supervised model consists of
an input layer, 3 encoder layers, and NN layer.

TABLE II: Hidden layers configurations used in the experi-
mentation

Model #Hidden layers Number of neurons FL Test accuracy
L1 L2 L3 L4

M1 3 50 50 30 - 80.58%
M2 3 50 50 50 - 80.48%
M3 3 100 100 50 - 78.05%
M4 3 150 100 50 - 84.32%
M5 4 150 100 80 50 80.46%
M6 4 100 100 80 50 79.46%
M7 4 150 110 70 50 78.08%

2) Impact of communication rounds: In this subsection, we
study the relationship between the performance of the semi-
supervised FL and the communication rounds. Since the edge
nodes generally have limited resources compared to the cloud
node, we set the number of epochs to 5 for the AE model on
the edges and to 20 epochs for the supervised models located
on the cloud. For each communication round (between FL

3https://github.com/aouedions11/Semi-supervised-Federated-Learning-for-
IDS.git

server and clients), we present the performance of the proposed
model (Figure 2) while keeping the remaining parameters
fixed.

It can be seen from the results presented in Figures 2,
that the accuracy goes from 82.82% in the second round
to 84.32% in round 6. However, it can be seen also that
increasing the number of communication rounds can decrease
the performance of the model. This means that in our case,
the final model can overfit when the number of communication
rounds is higher than 6.
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3) Trade-off between performance and unlabeled data: To
investigate the impact of unlabeled data, we train our system
using different ratios of unlabeled samples Ru while keeping
the amount of labeled data fixed.

Ru =
nb unlabeled data

nb labeled data
(2)

The performance on the testing set is presented in Figure 3.
It can be seen that, as the amount of unlabeled samples
increases, accuracy increases, and loss decreases rapidly. In
particular, the accuracy of our model exceeds 80% when the
Ru is more than 1.3. This can be explained by the fact that
increasing training set size through adding a huge volume of
unlabeled data can provide valuable information for the model.
Specifically, the local data on the edge nodes can improve the
performance of the AE and reduce the reconstruction error
(finding more relevant representation), which in turn helps the
supervised model to distinguish better between normal and
malicious traffic.

4) Communication overhead: By only exchanging the local
model updates between the FL server and the clients, FL can
help to reduce the communication overhead. Therefore, to min-
imize the communication overhead, two key aspects need to
be considered: (i) reducing the local’s model update frequency,
(ii) reducing the size of data communicated between the FL
server and the clients. We have taken into consideration these
two aspects by considering two scenarios. The first scenario
is when we use centralized learning and the second one is
with FL. For the FL, we also consider two other scenarios by
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Fig. 3: Performance of model with different unlabeled ratio.

changing AE frequency updates, in the first one (our model
with an update every 5 epochs), the edge nodes update their
local model (e.g., autoencoder) after 5 epochs, while in the
second one (our model with an update every 20 epochs), the
local models are updated after 20 epochs. We can observe
from Figure 4 that the local model’s update frequency can
impact the communication overhead. Moreover, in comparison
to the centralized scenario, our solution significantly reduces
the messages’ size. This advantage will become even more
significant in the case of larger training data. This is mainly
due to the fact that FL avoids transferring raw data samples
to the central entity and sends only model parameters. Also,
through the use of the autoencoder model, the FL clients
compress their local data and hence reduce the size of the
parameters communicated with the FL server.

Fig. 4: Comparison in terms of communication overhead

5) Comparison with supervised models: To verify the clas-
sification efficiency of the proposed semi-supervised FL, we
compared it to four reference ML models including (i) simple
classifiers, which are Decision Tree (DT) and Support Vector
Machine (SVM), (ii) ensemble learning such as Random For-

est (RF). In fact, these models use only the labeled data located
on the FL server for their learning process. As presented in Ta-
ble I, the number of labeled samples is 52,602. It is important
to note here, that we test the performance of these classifiers on
the same test set used with our model. Table III and Figure 5
illustrate the comparison of our proposed model with those
classifiers. It is worth noting that the semi-supervised federated
learning model outperforms the classical supervised models
in terms of all the evaluation metrics. For example, the F1-
score is increased by 3.68%, 5.46%, 6.21%, 7.55% for MLP,
RF, SVM, and DT, respectively. This may be attributed to
the fact that the use of unlabeled data in the training process
boosts the performance of our model. In addition, the proposed
model outperforms these classifiers because, with the help
of the clients’ private data, the AE models generate deeply
learned features that yield superior results compared to the
initial statistical features.

TABLE III: Comparison with supervised models.

Model Accuracy
(%)

Precision
(%)

Recall
(%)

F1-score
(%)

DT 76.48 76.36 75.94 76.08
SVM 79.46 85.94 77.21 77.42
RF 80.13 86.70 77.90 78.17
MLP 81.11 84.16 79.49 79.95
proposed model 84.32 86.19 83.10 83.63

Fig. 5: The performance of identifying normal and attack flows
of our model against supervised models.

6) Comparison with Non-FL model: In this section, we
compare our model with the non-FL semi-supervised model
in order to evaluate the performance of our model. Here the
non-FL-based model is trained on the centralized training data
using the same amount of unlabeled/labeled data, and DL
architectures (e.g., layers, neurons) used during the training
of our model. As shown in Table IV, our proposed model
outperforms its non-FL version in terms of accuracy, precision,
recall, and F1-score. This is maybe attributed to the training
rounds between the FL server and the clients that improve the
intrusion detection performance. These results illustrate the
effectiveness of our proposed model without leaking users’
private data.



TABLE IV: Performance of the proposed model against the
Non-FL model.

Accuracy Precision Recall F1-score
Non-FL model 81.40 83.83 79.92 80.39
proposed model 84.32 86.19 83.10 83.63

V. DISCUSSION AND CONCLUSION

In this paper, a semi-supervised, federated-learning, based
Intrusion Detection System has been presented. This model
was trained in a semi-supervised way, in which both the
labeled and unlabeled data were used. Moreover, it overcomes
the difficulties of central data storage, processing, and privacy
concerns for sharing sensitive data, by keeping the data
close to where it was generated. The experimental results
demonstrate that our model gave good results thanks to the
deep learning structure, collaborative learning combined with
a feature extraction ability.

The presented results demonstrate that using a small amount
of labeled data on the FL server helps to reduce the human-
labor operation to annotate the clients’ data. On the other
hand, the support of unlabeled data for the training process
on the edge enhances the performance of the learned model.
Using our semi-supervised FL model, the edge networks have
the ability to detect attacks without the need to have labeled
samples or share their private data. Also in case of connection
loss, the edge servers can still independently detect anomalies
in their edge network since the models are locally located.
In addition, the FL server benefits from the FL clients to
improve its supervised model without the need to collect or
process 100% data in a centralized way. Finally, using FL
helps to reduce the communication overhead and hence reduce
the network congestion if all traffic has to be sent to the FL
server.

For future works, we plan to implement the model in
Akraino and study the network performance as well as improve
the accuracy of the proposed model and cross verifying with
other datasets.
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