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Abstract. In this paper, we propose a new Bayesian co-clustering ap-
proach applied to Multivariate time series. Our methodology of Functional
Non-Parametric Latent Block Model (FunNPLBM) simultaneously cre-
ates a partition of observation and a partition of temporal variables, using
latent multivariate gaussian block distributions. We propose to use a
bi-dimensional Dirichlet Process as a prior for the block distributions
parameters and for block proportions, which natively provides model
selection. This approach is benchmarked and studied on a simulated
dataset and applied to an advanced driver-assistance system validation
use-case.

Keywords: Bayesian Non Parametric · Co-clustering · Model-Based
Clustering · Multivariate Time Series · Driving-Assistance Systems

1 Introduction

Unsupervised classification, or clustering, is a first approach to dataset exploration
that consists in the automatic grouping of similar observations into homogeneous
groups, without supervision, i.e., without labels. Time series clustering is crucial
to decision-making in many domains (Industry, Health, Finance, Biology,. . . )
and has been extensively studied in the literature [1, 2].

In a multivariate setting, the clustering methods deal with several variables
simultaneously. The Co-clustering (also called Bi-clustering, or block clustering)
simultaneously produces a partition of observations and a partition of variables
(respectively row-partition and column-partition). This approach creates a struc-
ture that highlights the dependencies between observation groups and variables
distributions. The co-clustering has been applied in various fields, (e.g., genetics
[27], biological applications [38], text mining [45]) and has been addressed with a
large numbers of methods: through spectral analysis [12], matrix factorization
[31], information theory [13], and, more recently, optimal transport [30] and deep
learning [44]. The Latent Block Model (LBM) [19] is a model-based co-clustering
method, recently used in several domains [21, 25]. The model-based approach
natively provides missing values inference and probabilistic outliers detection,
while keeping a sparse parameter number, which helps interpretability.

In the standard LBM approach, datasets are composed of 1-d cells, i.e., the
considered dataset is a matrix, and the co-cluster (or block) distributions are
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univariate. LBM methods for time series, where each cell is a temporally-indexed
vector, have only been introduced recently. The method FLBM from [9] uses a
piecewise polynomial regression model as block distribution, which assumes that
every time series admits a latent segmented structure in a common polynomial
basis. It should not be confused with the method from [5], which uses a temporal
coclustering structure to perform a univariate time series clustering.

However, FLBM does not reduce the time series dimension as it directly
models the time series in the observation space and is impractical for high-
dimensional time series datasets. The method FunLBM [6], by contrast, includes
a dimension reduction step, which relies on functional PCA projections [36] of the
time series, and assumes a multivariate Normal model for the block distribution.
In a different context, some works extend these approaches by assuming the
presence of several independent partitionments: [18] or hierarchically nested [10].

A limitation of FunLBM is that, as a parametric model, the number of blocks
is assumed known a priori. In practice, it is rarely true, and this number must
be estimated with an additional model selection step. This selection is usually
performed either with a grid-search or by hierarchically exploring existing clusters
with greedy optimization. These strategies have drawbacks: 1) with the grid
search, the computation cost can be prohibitive as every combination of block
number is tested, and the user is never certain that the true model is within the
grid; 2) the greedy optimization heuristic is sub-optimal, by picking iteratively
local optima and assuming a hierarchical structure of the mixture components; 3)
whether with the greedy optimization or grid-search, choosing the model selection
criterion [8, 15] is not an easy task and influences the final results.

The Dirichlet Process Mixture Model (DPMM) is a Bayesian non-parametric
model-based clustering approach that can infer the number of latent clusters. As
a non-parametric model, its parameter set dimension may increase indefinitely
with the dataset size. This model is particularly well suited to massive dataset
exploration, especially when it is possible to allocate additional resources to
augment the dataset and discover new observation space areas.

Non-parametric approaches to LBM (NPLBM) have been studied in few
works [32, 22], but, to the best of our knowledge, never applied to multivariate
time series co-clustering. This paper proposes to close the gap between FunLBM
and NPLBM with functional non-parametric Latent Block Model (funNPLBM),
the first non-parametric model-based method applied to time-series co-clustering.

In addition, our contribution includes a practical use case illustrating the
method’s capacities, a more compact definition of the NPLBM, experiments,
hindsight on the inference settings, and Scala code provided for reproducibility.

This paper illustrates the funNPLBM application to advanced driver-assistance
systems (ADAS) development, which remains a challenge for car manufacturers.
These systems (e.g., emergency braking, lane centering, assisted parking, . . . ) are
introduced gradually into new cars. Given the high number of different vehicles,
driving conditions, traffic laws, and given the expected reliability, it is today im-
possible to validate ADAS rigorously with only physical "on-tracks" tests. Groupe
Renault has invested in massive driving simulation technology to circumvent
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this issue. The simulation tool mimics car driving conditions based on vehicle
physics, driver behavior, and interaction with a configurable environment. The
simulation process outputs a large amount of information, mainly as multivariate
time series with unequal length. Simulated datasets dimensions are considerable:
for a given use case, the number of simulations can be as large as O(106), with
O(103) variables, each recording O(104) time steps. Overall, more than O(1013)
data points are produced.

In the following, Sect. 2 presents a review of the model-based clustering and
co-clustering. Section 3 describes funNPLBM, its inference, and the time series
preprocessing. Benchmark and experiments are studied in Sect. 4 and, finally, a
real-case application on an industrial dataset is presented in Sect. 5.

2 Related work

In the next sections we use the following notations: X = (xi,j,s)n×p×d is the
dataset, xi,. = (xi,j)1≤j≤p is X’s i-th row, x.,j = (xi,j)1≤i≤n X’s j-th column.
X−i,. and X.,−j designates the dataset without the corresponding row or column.
The row-clusters memberships vector is noted z = (zi)n and the column-clusters
memberships w = (wj)p, such that (zi, wj) = (k, l) indicates that element xi,j
belongs to row-cluster k and column-cluster l.

2.1 Model-based clustering and Dirichlet Process Mixture Model

Mixture Model (MM) [11] is a probabilistic clustering approach which assumes
that the overall density on the (p.d)-dimensional space is a convex combination of
densities: p(xi,.) =

∑K
k=1 πkF (θk), with πk = p(zi = k), and F (θk) = p(xi,.|zi =

k) is the distribution of xi,. in component k, with density family F . With this
definition, sampling xi,. is performed by first drawing a membership zi ∼Mult(π)
then drawing from F (θzi). Model inference is performed by likelihood optimization
using the Expectation-Maximization (EM) algorithm [11]. The MM admits the
alternative representation:

∀i ∈ {1, .., n}, xi,. | θi ∼ F (θi) , θi ∼ G, G =

K∑
k=1

πkδθk ,

with δθ the Dirac delta function, In this definition, each observation xi is associated
to a parameter θi. Because G is finite and K < n, several θi are similar, which
creates groups of elements with common distribution. The Dirichlet Process
Mixture Model (DPMM) can be seen as a Bayesian non-parametric extension of
the MM where G is now an infinite random distribution with a Dirichlet Process
(DP) prior distribution. This prior is a distribution over distribution that takes
two parameters: a concentration α and a base distribution G0. The distribution
G admits [40] the stick-breaking representation G =

∑∞
k=1 πk(v)δθk , with

πi(v) = vi

i−1∏
j=1

(1− vj) , v = (vi){1,...,n}, vj
i.i.d.∼ Beta(1, α), θj

i.i.d.∼ G0.
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Several methods have been developed to infer DPMM’s parameters, either based
on variational inference [4], or Markov chain Monte Carlo (MCMC) [14, 34].
For large datasets applications, variational inference methods have often been
preferred over MCMC for their speed, at the cost of hypothesis on the posterior
distribution structure. However, recent works [42, 33] have made MCMC processes
scalable and rehabilitate their use for industrial purposes. In particular, the
collapsed Gibbs sampler is a natively fast MCMC’s method that assumes the
prior distribution G0 conjugate to the density family F . This assumption enables
close-form computations of the prior and posterior predictive distributions, that
are used to estimate posterior cluster membership probabilities.

2.2 Latent Block Model

The LBM [21] is a bi-dimensional MM, that assumes the presence of a finite
number of latent column-clusters in addition to the observation partition. Inside a
block Xk,l, each cell follows the component distribution F (θk,l), with F a density
family. The LBM likelihood of X is given by:

p(X) =
∑
Z×W

p(z,w)p(X| z,w) =
∑
Z×W

p(z)p(w)p(X| z,w),

where Z and W respectively denote the sets of all possible row and column
partitions. The row-membership distribution p(z) is defined as

∏
i p(zi) =

∏
i πzi ,

with π = (πk)K the mixing proportions, and p(w) =
∏
j p(wj) =

∏
j ρwj . The

density of X, p(X| z,w) =
∏
k,l

∏
x∈Xk,l

p(x | θk,l), with x ∼ F (θk,l). The
inference process is usually performed in an Expectation-Maximization fashion,
e.g. with a Stochastic-Gibbs [26] approach, or variational inference [20]. In the
following, we define the funNPLBM and the stochastic inference process.

3 Functional Non-Parametric Latent Block Model

This section introduces the novel Functional Non-Parametric Latent Block
Model and the inference. Because multivariate time series are observed in high-
dimensional spaces, in which models are known to suffer from the curse of
dimensionality, it is essential to preprocess the dataset with a dimension reduc-
tion method. In addition, this step greatly reduces the computation cost. The
functional PCA (fPCA) [36] is a two-step dimensionality reduction method, popu-
lar in the parametric model-based setting [41, 6]. This method handles time series
with unequal lengths, as is the case in our applications. During fPCA, the time se-
ries are first projected in a common polynomial basis. Among the many candidate
representations available in the literature (e.g., Fourier, Legendre, Chebyshev,
. . . ), we use an interpolated log-scaled Fourier periodogram, as advocated in
[7]. This transformation consists in projecting each time series individually in
the frequency domain, then interpolating the obtained log-periodograms in a
common frequency basis. After this transformation, the second step of the fPCA
consists in projecting the obtained coefficients in a lower-dimensional space using
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PCA. As a result, the time series, described by O(103) points, are transformed
into O(101)-dimensional vectors. In the following, we note d this final dimension.

3.1 Functional Bayesian Non-Parametric Latent Block Model

In another context than the multivariate time series analysis, [32] proposed a
definition of the NPLBM. This work assumes Pitman-Yor Process (PYP) priors
for the row-memberships and column-membership. However, PYP priors (as DP
priors) are distributions over parameters and not on memberships. Using PYP,
the authors are in fact implicitly defining sets of parameter distributions that are
not linked to the block distributions. In the following, we propose a comprehensive
definition that links block distributions and memberships intuitively.

This definition is based on a bi-dimensional extension of the DP. Each dataset
cell xi,j is associated with a parameter θi,j , grouped in the n× p matrix Θ. Two
Dirichlet Process priors are defined: one on Θ’s rows and one on Θ’s columns.
This double definition ensures that every cells of a row belongs to the same
row-cluster and every column element to the same column-cluster. This process
is formally defined by:

xi,j | θi,j ∼ F (θi,j)

θi,. | G ∼ G,G =

∞∑
k=1

πk(s) δθk,.
,

θ.,j | H ∼ H,H =

∞∑
l=1

ρl(t) δθ.,l ,

πk(s) = sk

k−1∏
k′=1

(1− sk′) , s =(sk){1,...,n}, sk
i.i.d.∼ Beta(1, α),

ρl(t) = tl

l−1∏
l′=1

(1− tl′) , t =(tl){1,...,p}, tl
i.i.d.∼ Beta(1, β).

With this definition, the generation of the matrix X is done by generating π
and ρ, sampling z and w separately, then sampling Θ given z and w, and
finally drawing the cells value xi,j from F (θi,j). The likelihood of X is given by
p(X | z,w, Θ) =

∏
i,j p(xi,j | θi,j), and the joint prior distribution of the hidden

variables is given by:

p(z,w, t, s, Θ | G0, α, β) = p(z | s) p(s | α) p(w | t) p(t | β) p(Θ | G0).

In the next section we describe the bi-dimensional stochastic inference process.

3.2 Model Inference

The inference is performed with a collapsed Gibbs sampler that simulates draws
from the posterior distribution p(z,w | X,G0, α). This approach directly uses the
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predictive distributions closed form and therefore does not require sampling block
parameters. At each iteration m, the sampler alternates the following two-steps:

1. Draw z(m+1) | w(m), X, α,G0,
2. Draw w(m+1) | z(m+1), X, β,G0.

During the first step, the row memberships update is performed sequentially:
each row-cluster membership zi is updated with the other row-memberships z−i
and column-partition w(m) fixed, following p(zi = k | z−i, X,w(m), α,G0) ∝


nk

n− 1 + α
p(xi,. | w(m), X−i, z−i, G0), existing cluster k, (1)

α

n− 1 + α
p(xi,. | w(m), G0), new row-cluster, (2)

where nk is row-cluster k size. We emphasize that the parameters Θ do not appear
in these formulas, as they are integrated over in the predictive distributions.

In eq. (2), p(xi,. | w(m), G0) =
∏
l p(x

(m)
i,l | G0), with x

(m)
i,l the elements of

row i in column-cluster l at iteration m. For each column-cluster l, the prior
predictive distribution of x(m)

i,l is obtained by integrating over the component’s

parameter: p(x(m)
i,l | G0) =

∫
θ
p(x

(m)
i,l | θ) p(θ | G0) dθ. Because G0 is a prior

conjugate to F , this integral is analytically tractable (see Sect. 3.3 for the detail
in the multivariate gaussian case). The joint posterior predictive distribution
p(xi,. | w(m), X−i, G0) from eq. (1) has the same definition, with G0 updated
with the observations inside the blocks.

The second step of the Gibbs-sampler is performed symmetrically on column
clusters. Once the maximum number of iterations reached, the row and column
final partitions are estimated with the mean of the partitions sampled after burn-
in (c.f. Sect. 3.4 - §3 for computation detail). The algorithm global complexity is
linear in n, p, in the current blocks number and in the iterations number, but
also depends on the complexity of the sufficient statistics update and predictive
distribution computation. The inference is summarized in algorithm 1. In the
next subsection we detail how eq. (1) and (2) simplify with our choice of G0.

3.3 Multivariate Gaussian case

After the time series preprocessing step, each dataset cell xi,j is a d-dimensional
numeric vector produced by the fPCA, that we model with a multivariate
Gaussian density. As as conjugate prior, we choose G0 to be the Normal Inverse
Wishart (NIW) distribution with hyper-parameters (µ0, λ0, Ψ0, ν0). Given Xk,l,
the observations in block (k, l), the block parameters posterior distribution is
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formally defined by p(µ,Σ | Xk,l) = NIW (µ,Σ | µk,l, κk,l, Ψk,l, νk,l), with:

µk,l =
κ0µ0 + nk,lxk,l

κk,l
, κk,l = κ0 + nk,l, νk,l = ν0 + nk,l,

Ψk,l = Ψ0 + C +
κ0nk,l
κk,l

(µ0 − xk,l)(µ0 − xk,l)T , C =
∑

x∈Xk,l

(x− xk,l)(x− xk,l)T .

With these parameters and following [16], the joint posterior predictive distribu-
tion needed in eq. (1) is the multivariate t-student distribution:

tνk,l−p+1

(
µk,l,

(κk,l + 1) Ψk,l
κk,l(νk,l − p+ 1

)
.

This definition outlines the cubic complexity in d, due to the t-student density
computation cost. The next section details the inference process implementation.

3.4 Implementation

G0 hyperparameters specification The clustered objects are PCA coeffi-
cients, which are centered. Therefore we set µ0 to be the d-dimensional zero
vector. The precision matrix Ψ0 specification is a bit trickier and depends on
assumptions on the dataset. For non-parametric autoregressive models, [39] com-
pares several prior specifications for Ψ0 and concludes that the dataset precision
obtained with maximum likelihood estimation is a good standard, which we keep
in our application. κ0 and ν0, which represent the user’s confidence in µ0 and Ψ0,
are set to their lowest value, as we want them as uninformative as possible.

Initialization strategy Initializing a bayesian non-parametric MCMC inference
algorithm is often done with single-component partition [37, 35]. However, [23]
shows that this strategy may be suboptimal when dealing with high-dimensional
datasets and high component numbers, and recommends to use random partition
as initial state, with more components than the actual component number. How-
ever, this number is unknown. A tempting solution is to initialize the partitions
with one component per observation, but this choice is computationally expensive
because the membership update has linear complexity in the block number. We
propose a heuristic, consisting of running the inference process twice. In a first
run, the inference is initialized with a one-cluster partition; after this first run
completion, the maximum block number sampled during the inference is kept
and used as the initial number of components for the second run.

Infering the final partitions In output of the Gibbs sampler algorithm, the
user gets a set of sampled row-partitions (z(m))m and column-partitions (w(m))m,
that must be aggregated to obtain the final partition modes: ẑ and ŵ. This
consensus partition estimation is an NP-complete problem [29], that several works
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have addressed (c.f. [43] for an extensive review). We use the recent method [17],
which proposes an efficient extension of a combinatorial optimization method
[24] that construct the partition with the minimal distance [28] to the samples,
without assumptions on the final number of clusters or on the clustering structure.

Algorithm 1: FunNPLBM Inference
input :Dataset X, n× p× d tensor

α, β,G0 (c.f. specification strategies in Sect. 3.4 - §1)
Iteration number M

output :Estimated row-partition ẑ and column-partition ŵ

Initialize z(0) and w(0) (c.f. initialization methods in Sect. 3.4 - §2)
for m← 1 to M do

for i← 1 to n do
Compute p(zi | z−i, X,w

(m), α,G0) as defined by eq. (1) and (2)
Sample z(m+1)

i

for j ← 1 to p do
Compute p(wj | w−j , X, z

(m+1), β,G0) as defined by eq. (1) and (2)
Sample w(m+1)

j

Average the partitions (c.f. Sect. 3.4 - §3) to obtain the final partitions ẑ and ŵ.

4 Experiments on Synthetic Data

4.1 Experimental setup

Benchmark and experiments are conducted on a dataset sampled from a known
generative model. The dataset is generated by sampling from the distributions
N
(
fk,l(t), s

2
)
where fk,l is a given prototype function and s = 0.02. The estimated

block partition quality is compared to the known generative partition, based
on several scores: the Rand Index (RI), Adjusted Rand Index (ARI) and the
Normalized Mutual Information (NMI). The RI is a popular criterion choice
in the clustering domain, which represents the proportion of correctly grouped
and separated observations with respect to the observed classes. The ARI is a
corrected-for-chance version of the RI that takes into account the probability
of getting good RI at random. The NMI is an entropy-based criterion from the
information theory literature estimating the quantity of knowledge a partition
gives on another. In the following benchmark and experiments, we work on a
dataset of dimension 140×140, with unbalanced row cluster sizes (20, 30, 40, 30, 20)
and column cluster sizes (40, 20, 30, 20, 30), which amounts to 19600 time series.
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4.2 Baselines and compared methods

As detailed in the introduction, co-clustering has been the subject of numerous
works on various data types, but most of the time on univariate observations
matrices (i.e., d = 1). To the best of our knowledge, the co-clustering on datasets
containing multidimensional cells (d > 1) has only been dealt with very recently
in the literature, and only a few methods currently exist. Apart from the model-
based method from [9], which does not include a dimension reduction aspect
and is, therefore, impractical on large datasets, FunLBM [6] is the only existing
method dealing with this use case. In addition, we consider two decoupled meth-
ods that perform co-clustering by inferring row-partitions and column-partitions
independently: a bi-dimensional Gaussian Mixture Model (BGMM) and a bi-
dimensional DPMM (BDPMM). This benchmark compares the block partitions
quality, but also the results of the associated model selection step, described
by the selected number of blocks, compared to the true number (5 × 5). For
BGMM and FunLBM, which are parametric approaches, this selection step is
performed by a grid-search with the ICL selection [3, 26] and with a maximum
of seven row clusters and seven column clusters. In the non-parametric cases,
this selection is natively performed with the inference, with hyper-parameters
α = 0.1, β = 0.1, and G0 specified as described in 3.4. For each methods, the
results are the performances mean on 10 runs - or the median in the case of the
number of clusters. These performances are shown in Table 1.

FunNPLBM has the upper-hand in this benchmark, and estimates the correct
structure, while its parametric counterpart FunLBM slightly underestimates the
correct number of blocks. In this setup, FunLBM’s performances comes from
locally optimal estimations of the candidate models during the grid-search model
selection. The same effect explains the performance’s gap between BGMM and
BDPMM. Overall, the two-steps methods BGMM and BPDMM show the worse
results, presumably because they both infer the row and column partitions inde-
pendently and therefore cannot use the row-clusters informations to help findind
the best column-clusters partition, and reciprocally. In conclusion, FunNPLBM
is able to simultaneously select the right model and to infer the right partition.

Table 1. Benchmark with Bi-dimensional GMM (BGMM), Bi-dimensional DPMM
(BDPMM), functional Latent Block Model (FunLBM), and our proposal FunNPLBM

Score BGMM BDPMM FunLBM FunNPLBM
ARI 0.558 0.667 0.897 1
RI 0.927 0.958 0.990 1
NMI 0.837 0.905 0.968 1

# Blocks 12 16 22 25
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4.3 Hyperparameters specification study

The hyperparameter set is composed of the base NIW distribution G0, the
concentration parameters (α, β), the iterations number M , and the preprocessing
parameters: the Fourier basis dimension and the number of PCA axes. In an
unsupervised context, hyperparameters specification remains an active research
topic as there is no label to support hyperparameter inference. Consequently, it
is not possible to give definitive and general good specifications choices, which
depend on the dataset contents and must be hand-tuned by the experts. These
specifications, however, can be based on the knowledge of each hyperparameters
impact on funNPLBM’s behavior, which we illustrate in the following. In each
case, we compare funNPLBM’s performances when one hyperparameter varies
while keeping the others equal to given default values: α = β = 0.1, M = 10, a
Fourier expression basis of dimension 30 and 3 PCA axes.

Concentration parameters and number of iterations In the funNPLBM
setting, as in the DPM, the prior distribution of the number of components is
an increasing function of the concentration parameters: without knowledge of
the data, the higher the concentration parameters, the higher the probability of
producing high numbers of components. Because the whole method is symmetric
on the dataset rows and columns, and because the experiment dataset dimensions
n and p are equal, we consider the case α = β. As shown in Fig. 1, the concen-
tration parameters effects are negligible for this dataset and only have an impact
when extremely high (>1E12) - in which case the number of components is highly
overestimated - or extremely small (<1E-10) - in which case only one-cluster
partitions are inferred. This small impact of α comes presumably from the high
separation of the components in the time series high-dimensional observation
space. This separability is simulated for this experiment but is consistent with
what we observe in practice. This separation also explains the small number of
iterations needed for convergence (here, less than 4 for 1e−6 ≤ α ≤ 1e10), and
the high stability of the MCMC chain. For a specific dataset, if α and β’s values
are complex to specify, we advise, as a simple workaround, to add a Gamma
hyper-prior assumption for α and β and estimate their values during the inference
algorithm, which is a common practice in the DPM setting. It implies, however,
to study specification strategies for the Gamma distribution parameters.

Preprocessing parameters The Fourier Basis dimension and the PCA axes
numbers both influence funNPLBM’s performances and affect the trade-off
between sparsity and quality of time series representation. Fig. 2(a) shows the
effects of under-estimating or over-estimating the number of PCA axes. Low
numbers of PCA axes (<3) are associated with poor scores and few block
components due to poor representations of the time series, which are too close in
the projection space. On the contrary, if the number of axes is too high (>=6), the
high dimensionality exaggerates the time series separation, and the component
number is overestimated, which explains the sharp decrease of the ARI and NMI.
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In our use cases, we observed that 3 PCA axes lead to the most interesting
results. In Fig. 2(b), we observe that, with a fixed number of 3 PCA axes, high
polynomial basis dimensions (> 50) are correlated with poor scores, presumably
because of lower time series representation quality (reflected by the low variance
explained score). On the contrary, when this basis dimension is low (<10), the
3-axes PCA adequately represents the information and the variance explained is
high (>= 0.97). However, in this case, the Fourier basis dimension is too low to
adequately represent the time series, which explains the poor scores. The studied
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Fig. 2. (a) Scores versus number of PCA axes. (b) Scores versus Fourier logPeriodogram
dimension.

datasets, data generation scripts, and the Scala code used for the benchmark and
the experiments are available at the following (anonymized) github repository
https://tinyurl.com/4k9jze45, along with the data simulation method. In the
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next section, a real-case situation is studied and illustrates the method’s interest
for Advanced Driving-Assistance Systems validation.

5 Application to Advanced Driver-Assistance System
Validation

5.1 Use case description

This section illustrates the use of the co-clustering approach to the Emergency
Lane Keeping (ELK) assistance system validation. In a straight lane scenario,
the vehicle under test (called ego) is drifting towards an oncoming car on the
other lane (c.f. Fig. 3). The ELK system is expected to put the vehicle back to
its lane center with an emergency maneuver. With different settings (ego speed,
drift angle, . . . ), the simulation system has produced a set of 400 simulations,
described by 22 features. We emphasize that these simulations are generated with
a simulation black-box that faithfully recreates the real-life driving conditions,
and are not simply produced by the generative model proposed in this article.

The time series are expressed in a common log-periodogram with dimension
40, then reduced to 3 PCA axes. The concentration parameters are set to 1e-2,
and the NIW parameters to the default values discussed in Sect. 3.4. The objective
is to discriminate simultaneously driving patterns and correlated variables.

Fig. 3. Use case illustration: ego drifts from its lane, crosses the center line and heads
toward an oncoming vehicle. The system detects the target and change ego’s direction.

5.2 Results

The final co-clustering is the block partitions mean (c.f. averaging methods in 3.4
- §3) of 10 samples obtained after a burnin of 10 iterations and is composed of 6
row-clusters and 13 column-clusters. With color indicating block membership,
Fig. 4 shows the global co-clustering structure, and Fig. 5 an extract of the block
contents. The first column-cluster discriminates uninformative signals (car width,
road bend radius, constant inactive system, . . . ). The other column-clusters
relevantly regroup variables of interest: the 6th, 7th, and 8th column clusters
respectively regroup ego direction variables, ego lateral position variables, and
ego speed variables. Their content is shown in Fig. 5 top-left, top-right and
bottom-left respectively. The row-clustering is also insightful: each row-cluster
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Fig. 4. Resulting co-clustering on Emergency Lane Keeping (ELK) dataset. The result
consists of 6 row-clusters and 13 column-clusters

correspond to well-separated driving behaviors. This separation is best seen in
Fig. 5 (top-right) that shows the following driving behaviors: 1) ego drifting left
and the ELK system failing (light green); 2) the symmetric behavior on the right
(dark green); 3) the ELK system correcting the car trajectory (light orange).

Finally, the three other row-clusters (regrouping the remaining 5% of the
observations) are composed of outliers simulations, with driving behavior dis-
played on Fig. 5 (bottom-right). In this situation, the oncoming car is correctly
detected, and ego heading is changed accordingly, but not enough to prevent the
collision. In conclusion, funNPLBM has correctly discriminated uninformative
signals while creating meaningful clusters of features and clusters of simulations.
From this information, it is easy to visualize the variety of driving behaviors
that compose our datasets and understand them from the variable perspectives,
which was the original objective of the application. The next step is to link the
driving behavior to the control logic parameters and, if need be, refine them to
reach the performance objectives.

6 Conclusion and future work

This paper describes FunNPLBM, a Bayesian non-parametric based method
that addresses the problem of co-clustering multivariate time series. This work
proposes the first Bayesian non-parametric co-clustering method dedicated to
functional data analysis, the description of an adapted collapsed Gibbs sampling,
and a more compact definition of the NPLBM model.

This method regroups redundant features, discriminates uninformative ones,
and provides the user with a two-dimensional analysis of a multivariate time
series dataset. The hyperparameters (concentrations parameters, components
parameters) specifications are discussed and experimented on a simulated dataset,
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Fig. 5. top-left: two highly negatively correlated direction change signals; top-right: ego
lateral position in the 3 biggest observation clusters; bottom-left: 2 correlated speed
variables; bottom-right: 3 outlier driving pattern in the 3 smallest observation clusters.

and a benchmark is presented that shows FunNPLBM adequacy in a context that
matches our assumptions. Finally, the method is applied to a real-case dataset
from the autonomous driving system validation domain. In this application,
FunNPLBM proves its ability to create meaningful clusters of driving behavior
and correlated variables simultaneously.

We are confident that FunNPLBM can be useful in other domains dealing
with correlated temporal variables. For instance in industrial contexts for sensor
anomaly detection or predictive maintenance, in health for ECG and biological
signals data analysis, in finance for stock trade data analysis. In addition, we
The method can also be applied to anomaly detection thanks to the native
production of probabilistic predictive intervals and supervised classification by
simply constraining the row and column partitions values. We consider two mains
developments to extend the application fields: a) higher-order tensor co-clustering;
b) relaxing the model to multi-clustering. These perspectives will be addressed
in future work.
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